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Abstract

We discuss the effectiveness of branch and cut for solving large instances
of the independent set problem. Typical LP formulations, even strengthened
by clique inequalities, yield poor bounds for this problem. We prove that a
strong bound is obtained by the use of the so called “rank inequalities”, which
generalize the clique inequalities. For some problems the clique inequalities
imply the rank inequalities, and then a strong bound is guaranteed already by
the simpler formulation. This is the case of the contact map overlap problem,
which was proposed as a measure for protein structure alignments. We formalize
this problem as a particular, large independent set problem which we solve




by integer programming. We strengthen our formulation by the use of clique
inequality cuts. Although there are exponentially many cliques, we show how to
separate over them in polynomial time. Unprecedented computational results
on real data show the effectiveness of our approach.




1 Introduction

The Mazimum Independent Set (MIS) is one of the classic problems in combinatorial
optimization. Both the cardinality version and the weighted version of MIS have been
studied. The literature on this problem —or its twin, the Mazimum Clique— is vaste
and dates back to the beginning of the field. Although its definition is nice and simple,
this problem is one of the toughest to solve exactly. Many papers over the years have
dealt with the exact solution of the maximum clique/independent set [20, 3, 6, 16].
The state of the art for this problem is that we cannot practically solve instances on
dense graphs of more than a couple hundred nodes [16]. The most successful approach
to the exact solution of combinatorial optimization problems is probably Integer Lin-
ear Programming, which has been applied profitably in very many cases [19, 7, 17].
The Integer Programming approach consists in formulating a problem as the maxi-
mization of a linear function of some integer variables and then solving it via branch
and bound, where the upper bound comes from the linear programming relazation.
The LP relaxation is the same question, only that the variables are not restricted to
be integer, which makes it polynomially solvable. A formulation is as successful as
the strength of its LP bound. That is, if we can prove that the value of the objective
function over the relaxation is close to the value over the integers, then the bound,
and hence the pruning of the search space, will be effective. It is often the case that in
order to obtain better bounds, the formulation is reinforced by the use of additional
constraints, called cuts, and the resulting approach is known as branch and cut. Cuts
are constraints that do not eliminate any feasible integer solution, but make the space
of fractional solutions smaller, this way decreasing the value of the LP bound.

The maximum independent set has a natural, nice formulation as an integer pro-
gramming problem. Unfortunately, this formulation gives a terribly bad bound, e.g.
the bound can be as big as n/2 for an instance with optimal value of 1. The formula-
tion can be strengthened by the use of clique-inequalities cuts. These are constraints
that say that each clique can have at most one node in common with any independent
set. By using some concepts from Ramsey Theory, we will show that even with clique
inequalities the gap between the LP value and the optimum can be very bad. In this
paper we pinpoint the fundamental constraints for the Maximum Independent Set as
the “rank inequalities”. Their addition guarantees an O(logn) gap between the LP
bound and the optimum. This does not contradict the known complexity results for
MIS (stated in Section 2) since, in general, it is NP-complete to find all violated rank
inequalities. However, the theory we develop here can be also useful in practice, since
there are some fortunate cases in which a formulation implies the rank inequalities and
hence we know that the bound will be strong. This is the case for a particular problem
studied in this paper, namely the mazimum contact map overlap (CMO) problem.

A contact map is an undirected graph giving a concise representation of the 3D



fold of a protein. Each residue of a protein is a node, and there is an edge (called
a contact) between two nodes if their euclidean distance is within a given threshold
when the protein is folded. The contact map overlap problem tries to capture the
similarity in the 3D folds of two proteins by comparing their contact maps. In this
sense, it is a new way of aligning 3D structures. The value of an alignment of the
residues of one protein vs. the other, is taken as the number of contacts in the first
contact map whose endpoints are aligned with residues that also share a contact in
the second contact map. The CMO, introduced in [9] and proved NP-hard in [12], is
emerging as the most important practical measure of protein structure similarity.

The CMO problem can be reduced to a very large MIS problem on a suitable
graph. In this paper we formulate the CMO problem as an Integer Program and use
clique~inequalities and some other cuts to strengthen the bound. Although we show
that there is an exponential number of different clique inequalities, we characterize
them completely and show how to separate over them in fast polynomial time. That
is, given a fractional solution, we can find in time O(n?) the most violated clique
inequality and add it to the LP formulation. Finding cliques in a graph is in general
a difficult problem. However, in our case we can solve it effectively since we will show
that the underlying graph is perfect. For this type of graphs, the clique inequalities
imply the rank inequalities, which gives a theoretical explanation of the practical good
performance of our algorithm. We have implemented our ideas in a computer program,
which has been run on some real data coming from the PDB protein data base. This
is the first time that exact solutions have been found for real instances of this problem.
We have been able to align optimally several pairs of proteins with contact maps of
50 to 100 residues/contacts. These values are typical of small and moderate-sized
proteins, of which there is in abundance in PDB.

2 The Maximum Independent Set Problem

Given an undirected graph G = (V,E), |[V| = n, a subset V' C V of nodes is an
independent or stable set if no two nodes in V' are joined by an edge. The Maximum
Independent Set problem consists in determining an independent set of maximal weight
or cardinality. Given a weight function c¢ on the vertices (¢ := 1 in the cardinality
version), the standard LP formulation associates a binary variable z, to each node
veV:

ma,x{chx,,{xu+mv§1V{u,v}EE, va{O,l}VUEV}: (1)

vEV .

The LP relaxation of the cardinality version of (1) has the optimal value [n/2],
achieved when z, = 1/2 for all v € V. This bound can be O(n) times larger than the
true optimum: e.g. if G is a clique, the optimum is 1. Since any clique @ C V can have
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at most one node in common with any independent set, the following clique—inequality
constraints can be added to (1):

Yz, <1 VQ clique in G (2)

vEQR

Adding contstraints (2) presents two types of difficulites. First, findig cliques in a
graph is itself a hard problem. Second, there may be exponentially many different
cliques. We can overcome these difficulties if we have a separation oracle: that is a
black box that, given a solution to an LP with only some of the inequalities (2), tells us
if the solution is in fact feasible for all the inequalities (2), or else returns us a violated
clique inequality. In the next section we will argue that even in this case we are not
guaranteed that the LP relaxation of (1) and (2) will in fact be a good approximation
of the optimum.

The complexity theory results for the MIS paint a bleak picture as far as our ability
to approximate this problem. Since the maximum independent set in a graph is the
maximum clique in the complement graph, the complexity results are the same as those
for the maximum clique problem. If P # NP, then MIS cannot be approximated to
within a factor of O(n¢), where ¢ is a fixed positive constant defined for MIS, [10, 2, 1].
Under stronger complexity assumptions, MIS cannot be approximated to within a
factor of O(n%37¢), [13]. The best approximation factor for MIS found so far is a mere
O(i5gr) for the cardinality version, [5].

2.1 Ramsey Theory and the Integrality Gap

We just saw that one cannot expect to ever be able to find a reasonable approxima-
tion for MIS. A tacit polyhedral combinatorics axiom is that if there is a reasonable
approximation for MIS, there should be an LP relaxation for MIS which is solvable
in polynomial time and has a reasonable size integrality gap. Such an LP relaxation
would not allow any of the clique inequalities to be violated by too large a factor. Call
the LP relaxation that consists of the clique inequalities for all of the maximal cliques
the clique relazation. In order for this relaxation to be polynomially solvable, we need
an efficient separation algorithm for these exponentially many clique inequalities. Let
z* be our current fractional solution. With the vertices of G weighted by z*, this
separation algorithm must be able to find a clique of weight more than 1 if such a
clique exists. Hence, our separation algorithm must be powerful enough to solve the
maximum weighted clique problem. However, maximum weighted clique is as difficult
to approximate as MIS.

Suppose we eliminated this obstacle to a small integrality gap by imagining we
have a separation oracle that finds a clique of weight more than 1 if such a clique
exists. What can we say then about the integrality gap? We argue here that the
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results from a branch of graph theory called Ramsey theory make it unlikely that the
gap is a constant even in this case.

Ramsey theory in part studies the occurrence of large cliques and large independent
sets in arbitrary graphs. An idea in Ramsey theory is that if a graph is large enough
and has no large cliques (independent sets), then it must have large independent sets
(cliques). More formally, there is a smallest integer R(k,!) such that every graph with
at least R(k,l) vertices has either a clique of k£ vertices or an independent set of [
vertices. This number is called the (k,[)-th Ramsey number.

Ramsey numbers are notoriously difficult to compute, and seem to grow reasonably
quickly. We are particularly interested in their growth when the clique number k¥ = 3,
and conjecture the following.

Conjecture 1

limj—z—(z”—l—)-=oo

=00

(3)
An integrality gap result follows as a corollary to this conjecture.

Corollary 1 If conjecture 1 holds, there is no constant integrality gap between MIS
and the cliqgue LP relozation.

Proof Let r € N be given. We now produce a graph where the integrality gap exceeds
r/2. Choose I, € N such that ﬂf’r’—’jl‘u > r. Choose a graph G, having R(3,!,) — 1
vertices that has no clique of size 3 and no independent set of size /.. An optimal
solution to the clique LP relaxation is z} = 1/2 for all € V,.. The cost of this solution
is —F@’%’E. The MIS solution has cost [, — 1. Hence, this integrality gap exceeds /2,
as required. o

Ramsey theory thus shows that inequalities other than the clique inequalities are
needed in an LP relaxation for there to be a constant integrality gap. The analysis
above suggests which additional inequalities are needed: For each H C V, we have
the valid inequality _

z(H) < r(H), (4)

where the rank function r(H) is the maximum size of any independent set contained in
H. These inequalities are called the rank inequalities of MIS. We call the LP relaxation
consisting precisely of all of the rank inequalities the rank LP relazation.

Theorem 1 The integrality gap between weighted MIS and its rank LP relazation is
at most logn + 1.

Proof Denote a maximizer for the rank LP relaxation by z*. We will demonstrate that
Iong*H is less than or equal to a convex combination of incidence vectors of independent
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sets of G. From an averaging argument, one of these independent sets costs more than
Iog z +1’ from which our mtegrahty gap result follows. z

We first find the smallest integer & so that for every vertex v € V, z = =,
where [, € N. We will decompose z* 1nt0 a linear combination of 1n01dence vectors of
independent sets Wlth linear multipliers % We start by having z* = 3° + 2°, where
y® := z* and 2° := 0. We successively form ¢, 2% for i = 1,2,... by taking < k t1mes an
incidence vector of an independent set away from y*~! and addmg it to 2*~*. Hence,
yi+ 2t =z* fori = 1,2,.... We terminate our process at an integer last when y"“t =0
and 2!%*¢ = z*. We thus have 2'°% expressed as a linear combination of independent
sets. Define

Vi={veV:yt>0}fori=12,....
Consider a maximum cardinality indepent set z° for G[V;]. Define

. , 1 . . . 1 .
Y=gy — Ew’, 2t = zz'l-l-zwz fori=1,2,....

Because z* satisfies the rank inequalities for the vertex sets V;, we have that
z*(V;) < z*(V;) fori = 1,2,....

We can now determine a lower bound on how much g decreases in each iteration, and
thus an upper bound on how many terms are in our linear decomposition of z* into
independent sets. We have

y'(V) = ¢ (V) —2(V) Sy} (V) - 32 (V)
Yy V) =3 (V) = 1= Dy (V).
We determine inductively that
y(V) < (1= (V)=01-pz*(V)
< (1=

IAN I

Hence, we have
y" < Q-Fn<g2
<

= g
yklogn ——lognn < 1.

After at most klogn iterations have been done, we are very nearly done. It is easy
to see that at most & more iterations are needed to reach the integer last satisfying
y*%* = (. This means that last < k(logn + 1). Hence, we have

z* k T+ 1 last

S

< =
logn+1 7 last  last

As previously discussed, by an averaging argument, one of these z*’s will cost at least
as much as which establishes our theorem. o

logn+1 ?




3 Subgraph IsoAm(‘)rphi‘sm of Sorted Graphs and The
Contact Map Overlap Problem

We are given two undirected graphs G; = (V4, Ey) and G2 = (V,, Es). Let n; = |V
and m; = |E;|, for ¢ = 1,2. The graphs are sorted i.e. a total order is defined on
Vi ={e1,...,0,,} and Vo = {b1,...,bp,}, s0 that a; < ... < ap, and b; < ... < by,.
Because of this total ordering, we may identify V; with {1,...,n;} for i = 1,2, and
resort to a; and b; notation only when there is a possible confusion for a node ¢ being in
- Vi or Va. It is customary to draw a sorted graph with the vertices arranged increasingly
on a line. Although the graph is undirected, we distinguish a tail and a head for each
edge {%, j}, where the tail is the left endpoint (i.e. min{%, j}) and the head is the right
endpoint (i.e. max{z,j}). Therefore, we will denote an edge by an ordered pair (3, j)
where 7 is the tail and j the head of the edge.

A non—crossing map of Vi in V; is defined by two subsets of the same size £,
{i1,.-.,%} C V7 and {uy,...,ux} C Vo, where 4; < é3... < i and similarly for the
up’s. In this map, u;, is the image of ¢ for 1 < A < k. Two edges (¢,5) € E; and
(u,v) € E, are shared by the map if there are [, < ks.t. i1 =14, j =14, u =y and
v = u; (see Figure 1).

Each pair of shared edges contributes a sharing to the objective function. The
mazimum subgraph isomorphism for sorted graphs consists in finding the non—crossing
map which maximizes the number of sharings. This problem is closely related to
the maximum edge-induced common subgraph problem [11, 8], with the additional
constraint that the isomorphism of the subgraphs must preserve the ordering of the
nodes.

Also, a similar problem is the RNA sequence structure alignment, to which Lenhof,
Reinert and Vingron applied and IP approach in [18]. Note that non—crossing maps are
in one-to-one correspondence with non—crossing matchings in the complete bipartite
graph W having vertex sets V; and V5 and edge set V; x V,. The complete bipartite
graph W will be extensively referred to in the arguments to follow.

The problem is largely motivated by its application to computational biology
named in the introduction, i.e. the mazimum contact map overlap problem. A contact
map is a graph giving a concise representation of the 3D fold of a protein: for each
residue there is a node, and there is an edge (called a contact) between two nodes if
their euclidean distance is within a given threshold when the protein is folded. The
value of an alignment of the residues of one protein vs the other, is the number of
contacts in the first contact map whose endpoints are aligned with residues that also
share a contact in the second contact map. Since an alignment must preserve the or-
der of the residues, to find the best alignment one has to solve a Maximum Subgraph
Isomorphism of Sorted Graphs. :




Figure 1: A noncrossing map of value 5

4 Integer Programming Formulation

We denote by y.; a binary variable for e € Ey and f € Ej, which is 1 iff the edges e
and f are a sharing in a feasible solution. The objective function is then

max Y g (5)
ecE,,fEE,

The sharings (e1, f1) and (es, f2) can be both achieved by a noncrossing map if and
only if they are compatible, i.e. no two of the lines betweens the tails of e; and fi,
the tails of e; and f,, the heads of e; and f; and the heads of e; and f, do intersect
at a single point (or, as we will say, cross). Then the constraints for the problem are
simply

Yerf + Yerss <1 Vey,e2 € By, f1, f2 € Bz 1 (e, f1), (€2, f2) are not compatible(. )
6
Although it would be possible to list all pairs of incompatible sharings and solve
the corresponding IP with this formulation, there are two reasons why we choose not
to proceed this way. First, the LP bound is very weak (see the preceding discussion
on the independent set problem) unless we strengthen it with cuts, which are not
easy to deal with in the space of only y variables. Second, throwing in all the pairs
of incompatible sharings may result in too many constraints, which will slow down
unacceptably the solving algorithm.
Therefore we decide to introduce a new set of binary variables z;, for i € V] and
u € V5, which represent the actual map, and constraints such that the support graph
of z must be a non—crossing matching. Instead of using the predicate PC we then
bound the y variables by means of the z variables. That is, the edges (¢,7) and (u,v)
can be shared only if 7 is mapped to v and 7 to v :



YoNuo) S Tiw a0 Yy < Tie (7)

We can immediately strengthen considerably these constraints as follows: For i €
V1 (and analogously for i € V), denote by 6+(¢) the set {j € i+1,...,n1: (5,7) € E1}
of heads of edges of which i is the tail. Similarly, 6~ (1) ={j € 1,...,i—1:(4,%) € Ex}
are the tails of edges with head in i. Then, in place of (7), we can write the following
constraints:

Z Y(,5) (uw) < Tiy and Z Y(4,0) () < Ty Vi€ .Vla (U, ’U) € E2 (8)
jeat(d) jes—(3)
and of course analogous constraints for ¢ € V5 and (u,v) € E;. We call these
activation constraints.
The noncrossing constraints are of the form:

Tiw + Tjy < 1 Vi<i<j<n,l<v<u<ny:i#jvVu#u. (9)

Noncrossing and activation constraints are sufficient to model completely the prob-
lem. Note that we can define a relation of compatibility for the x variables in a similar
way as we did for the y. A matching in W can be seen as a set of lines connecting
nodes of V] and V5 in the usual drawing of W in which V; is drawn on the top and
V, is drawn on the bottom. We denote such a line for ¢ € V; and j € V2 by [4,j]. We
say that two lines cross if their intersection is a point, and that they strictly cross if
they cross at a point other than an endpoint. Two lines are compatible if they do not
cross. A set of sharings is feasible if they are all mutually compatible, otherwise it
is infeasible. Similarly we define a feasible and infeasible set of lines. If we draw the
lines connecting the endpoints of an infeasible set of sharings, we have an infeasible
set of lines. In the following section we will show that there is a very effective way
of finding infeasible sets of lines in W. This sets will correspond to cuts in the IP
which will in turn bound the infeasible sets of sharings. There is a well known notion
in combinatorial optimization for finding a set of compatible elements, which is the
stable set, or independent set problem.

4.1 The max independent set problems

We define two new graphs G, and G, as follows. In G, there is a node N;, for each
line [¢,u] with 4 € V4 and v € V; and two nodes N;, and Nj, are connected by an
edge iff [4,u] and [4,v] cross. Similarly, in G, there is a node N for each e € Ey and
f € E; and two nodes N, and Ny are connected by an edge iff the sharings (e, f)
and (€', f') are not compatible.
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Then a selection of z variables feasible for all noncrossing constraints corresponds
to an independent set in GG, and a feasible set of sharings is an independent set in
Gy. The maximum independent set in G, is the solution sought after. Hence, all
cuts which are valid for the independent set problem can be applied to the z and y
variables. The use of these cuts is vital in this problem. Without them, it is easy
to build a trivial solution in which all fractional values are 1/2 and which achieves
the useless bound of min{m;, my}. The most notable cuts for the independent set
problem are the clique inequalities: An independent set and a clique can share at
most one element. Therefore, we want to determine cliques in G, and G,. Another
" class of inequalities for the max independent set is the odd-holes. We will show that
G has no odd holes, while Gy may contain them.

In the remainder of the paper, we will describe a very fast method ((O(n?)) for
separating over the exponentially large (O(22")) set of all cliques in the z variables.
Although we cannot characterize all cliques for the y variables, we identify several
classes of cliques in G, and show that satisfying the clique inequalities for the z
variables implies also satisfying the clique inequalities for the y variables for all but two
classes of cliques. Furthermore, the cuts for z—cliques will be so strong that adding the
two non-implied classes of cliques for the y variables yields only a tiny improvement in
the bound, while incrasing the running time in a way that makes their use dispensable.
We will elaborate on this in the section on computational results. For all these reasons,
we will focus primarily on cliques in the z variables, i.e. sets of lines in the bipartite
graph W which are all mutually crossing. Note that the usual matching constraints
are just some such cliques (all lines share an endpoint) :

S 2 <1 VieV; and D 1, <1 VeV,
ueVe eV .

Instead of separating on the O(n) matching constraints, we would like to have them
in our basic formulation. However they are not maximal and can be strengthened. We
will show that each mazimal clique in W will correspond to a path which we call
zigzag. Let ZZ be the set of all zigzag paths and ZZ (k) be the zigzag paths with &
internal nodes. The matching constraints are then contained in the set of zigzag paths
with only one internal node. ZZ(2) and ZZ(3) will also turn out to be useful, since it
appears from our computational experiments that separating over ZZ(2) and ZZ(3)
first and only after failure looking at all cliques in ZZ results in a faster branch and
bound algorihtm in practice.

4.2 The final IP formulation

Our final IP formulation for the max subgraph isomorphism of sorted graphs is as
follows:
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z = max ZGEEl,fGEz Yef

s.t.
Toest(u) Yid)we) < Tiu V(i,j) € Br,u€ Vs
Euéé" () Y(,5) () < Zju V(Z,j) € Ei,veV,
2 e+ (@) Y6, (uw) < Ty V(u,v) € Byt €V}
Yico-() Y ww) < Tju V(u,v) € B2, j €Wy
2ieQ. Tt <1 Y@, clique in G,
2 (e,))eQy Yef <1 for some @, clique in G,
22 (e,f)€0, Yef < 104172 YO, odd holes in G,
Tij, Yes € 10,1} VieV,,j€Va,ec B, f € Esy

The remainder of the paper is organized as follows:

5 Cliques in the X variables

In this section we study the problem of characterizing all cliques of G, i.e. sets of
lines in the bipartite graph W which are all mutually crossing.

We define the following notion of a trianglein W. T'(3, j|u) = {[¢, u], i+1,u],...,[j—
1,ul, [j,u]} where i < j € V; and u € Va, and T(i|j,u) == {[i,7],[5,7 + 1], .., [5,u —
1], [é,u]} where i € V4 and j < u € V; Clearly a triangle corresponds to a clique, so
that

z(T(¢,jlu)) €1 and z(T(f,u) <1

are valid inequalities for each 4, j and u. These includes the standard matching
constraints, which are just T(i|1, no) and T(1, n;|u).

Lemma 1 Given a fractional LP solution x*, we can compute the value of any t
triangles in time O(n? + t).

Proof We start with a preprocessing in which we compute z*(7'(z|1,v)) and z*(T(1,%|v))
for each i € V; and v € V; in total time O(n?). This is done by first fixing 4, letting
z*(T(i|l1,1)) = z}, and noticing that 2*(T'(i|1,v)) = z*(T(4|1,v — 1)) + z}, (and simi-
larly we obtain all z*(T'(1,3|v))). Now, given say any 4; < iz € V; and u € V5, we get
z*(T (i1, dlu)) = 2*(T (1, i2lu)) — (T (1, 41 — 1|w)) in time O(1). o

We call the algorithm computing the O(n?) basic triangles of the proof SETUP.
It will be the preliminary step to the fast separation algorithms for the classes of
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inequalities described later. Note that there are only a polynomial number of triangles
(O(n®)) overall so that their value can trivially be computed in polynomial time.
However it would cost O(tn) to compute the value of any ¢ triangles in a direct way,
so that the lemma gives us an O(n) speed-up factor for ¢ > n?, which is going to be
the case (e.g. some inequalities will be defined —implicitely— over O(n?) triangles, and
the separation could take time O(n*)). Going from n? to n® and n* makes a huge
practical difference in running times. We will show that all our separation algorithms
have complexity O(n?), i.e. are very efficient.

5.1 Polynomial Separation of all Maximal Cliques

Call a1, an,, b1, and by, the set of terminal nodes. Consider a simple (i.e. without
repeated nodes) path P which passes through all the terminal nodes, and alternates
nodes of V; and V; in a zig—zag fashion: That is, we can orient the path so that a;
if the first of the nodes of V; visited by the path, and if a; has been visited by the
path, then all of the nodes in V; visited after a; are “to the right” (i.e. larger) of ay.
Similarly, by, is the first of the nodes of V; visited by the path, and if b, has been
visited by the path, then all of the nodes in V, visited after b, are “to the left” (i.e.
smaller) of b,. Note that any such path must start and end at a terminal node (see
Figure 2, left), and must always include the lines [a;, by,] and [an,, b;]. Since a; and
b, cannot have both degree two in such a path, there are only two possibilities after
we orient the path as described before: Either the path starts at a; and b,, is the
second node or it starts at b,, and a; is the second node. For each node of degree
two in P a triangle is defined by considering the set of lines incident on the node and
contained within the two lines of the path. For example, if ..., ap,, bk, @n,, bisy, - - - 1S
part of such a path, then we consider, among others, the triangles T'(as,, ap,|br,) and
T(ap,|bky, bk, ). Let Ta(P) be the set of triangles defined by P with tip in the nodes
of V; having degree two in P. Similarly, let T5(P) be the set of triangles defined by
P with tip in nodes of V, of degree two in P. We define T'(P) as the union of all the
triangles defined by P, i.e. T(P) = T4(P)U Tp(P).

Theorem 2 A set Q) of lines is a mazimal clique in G, if and only if there ezists a
zigzag path P such that Q = T(P).

Proof (If) Let @ be a set of lines and P a zigzag path such that Q = T(P). Let
la;, b;] and [ag, bs] be two lines in T'(P). If [a;,b;] and [ag, bs] are in a same triangle
of T4(P) or Tg(P), then they cross. Otherwise, assume wlog a; < ax. Depending
on the two lines being in a triangle of T or Tp, there are four possibilities, which
can all be checked similarly. If [a;,b;] € Ta(P) and [ag,by] € Ta(P), then the path
contains a;,b,...,ax with b; > b and b, < b. Then b, < b; and so the lines cross.
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Figure 2: Left: A zigzag path P (bold) and the set T(P). Right: Same path after flipping
V2.

After checking similarly the remaining cases for being in T4 or T, we conclude that
T(P) is a clique. To show it is maximal, let [a,b] be any line not in T(P). Either
a > a; Or @ < Gn,. Assume the latter (a similar argument applies in the other case).
Let ay, by, a; be three consecutive nodes of the path such that ax < @ < a;. It cannot
be b = by, or else [a,b] € T(P). Now if b < by, the lines [a, ] and [as, b] do not cross,
while if b > by, the lines [a, ] and [ag, by] do not cross. Hence [a, b] cannot be added to
T(P) to still obtain a clique.

(Only if) Let Q be a maximal clique. Let a¥ < ... < a? be the nodes of 1} in Q.
Since Q is maximal, it includes the lines [a;, by,] and [an,, b1}, s0 a¥ = a; and af = ay,,.
For each ¢, let bf(zt) and bf;?(t) be in V3 N Q such that [af, bf(?t)] is the leftmost line out of
a? in @ and [auf2 , b?(t)] is the rightmost. For @ to be a clique it must be bf.?(t +y < bz%)
(or else the lines [af, bz%)] and [arQ(t +1)7 bf?(t +1y] do not cross), and to be maximal, it must
be in fact b?(t +1) = b%) (or else lines from agH or af to points between b?(t +1) and bf%t)

could be added). Now the union of all lines (a ,bl%)) and (a? ,bf_z(t)) defines a zigzag
path P, and @ C T(P) by construction. But T(P) is a cligue, and Q is maximal. So
Q = T(P). o

The inequalities z*(T(P)) < 1 for all zigzag paths P are therefore the strongest
clique cuts for this particular maximum independent set problem. We now show that
they can be separated in time O(n?). In order to make the following argument easier,
we first rename the nodes of V3 as {c1,...,Cs, }, 50 that the leftmost node c¢; is by,
and the rightmost, c,,, is b; (that is, we flip the nodes of V, with respect to the
usual drawing). Having done this, two lines were compatible (i.e. not crossing) in the
original drawing of W if and only if now they are strictly crossing. Furthermore, a
zigzag path P now looks as a path wich goes from left to right both in V; and V5.
We call such a path a leftright path. In Figure 2, right, we show the leftright path of

14




Figure 2, left, after flipping V5. A set @ was a clique in the original graph if and only
if () is now a set of triangles in which no two lines are striclty crossing.

Since to define a leftright path we may pick any k internal (i.e. non terminal) nodes
in one graph and k or k+ 1 in the other, there are O(22") such paths. However, there
is an algorithm for finding the leftright path P with largest z*(T°(P)) which is not just
polynomial, but of very low degree, making separation of this class of inequalities very
effective in the practical solution of the problem. With respect to the new drawing of
W, orient each line in the two possible ways and define the length for each arc thus
obtained as follows.

l{a,c) = z*(T(a|1,¢)) — z*(T(1, alc)) (10)
and
l(c,a) = 2" (T(1,alc)) — z*(T'(al1,c)). (11)

The lengths of four special arcs are defined separately, as {(a1,¢1) = l(c1,a1) =0,
l(anlacnz) = x*(T(a’mIla cnz)) and l(cnwa'm) = x*(T(la amlcnz))'

Now, consider a leftright path P starting with either the arc (a1, ¢1) or (c1, 1) and
ending with either the arc (an,, ¢,) OF (Cny, @n, ). Call I(P) the standard length of this
path, i.e. the sum of arcs lengths. We then have the following lemma.

Lemma 2 For a leftright path P, l(P) = z*(T(P)).

Proof Suppose e.g. that P = (a1,Ch, = C1,aj,,Chyy - - -, Bj; = Gny, Ch, = Cpp)- A similar
argument applies in the other three cases. From tedious but simple algebra, we have
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Z(P) = (a1, c1) + Zi;% (cht’ a](¢+1)) + Zt—Z l<a’.7(t+1)’ ch(¢+1)) + {(@n; ; €n,)

= 0 '+‘ Ziii (:E (T(l a’J(z+1)]cht)) -z (T(aj(t-i-l)ll’ cht))) +
t~2 (.’L' (T(G’Jt‘l cht)) -z (T(l’ ajtlcht))) + x*<T(an1 ‘la Cn2))

= Yz (T (1, 05lch)) = zt:lx (T(@jprny 115 cn))+
Et—2x*(T(a’Jt!1 Ch,)) — t—2~'5 “(T(1, ajlen,)) + 2 (T (@ny (1, Cny))

=z (T(l a]zlchl)) +Et—2$ (T(l a‘](t+1)]cht)) ft;% x*(T(aj(t+1)l1’cht>)+
~z (T(G'lel Chyy)) + =3 % (T (az,|L, cn,))+
— S5 27 (T(1, azlen)) + 2*(T(am |1, o))

= z*(T(1, ajzlchl)) + Zt—zm (T(G'Jt +1 a](t+1)lchi))
tzzm*(T(aJtll Chs_1) +1, chz)) ( (anll ch(l—l))) +:c*(T(a,n1|1,cn2))

=T (T(l a.‘)2lch1)) +Zt~—2$ (T(a:it +1 aJ(t+1)(Cht))
t—2 x*(T(%H Chp-y T Len)) ta (T(a’mlch(z n T 1, ¢ny))

= z/(T(P))

The same kind of computations can be carried for the other three possibilities for
starting/ending arcs, and are omitted at this point. o

Theorem 3 There is an O(n?) algorithm for finding the longest leftright path in a
complete bipartite oriented graph.

Proof We use dynamic programming to find such a path. Call V' (3, 7, \) the length of
a longest leftright path starting at a; and using nodes of V; only within ¢;, ¢j11, .. ., Cn,-
Also, call V'(3,7, /) the length of a longest zigzag path starting at c; and using nodes
of V1 only within a;, 6;+1,...,0,,.- We have the following recurrences:

V(i,5,\) = max{l(a;,¢;) + V(i+ 1,5, ), V(i +1,\)}
V(i,j, /) = max{l(cj,a;) + V(5,5 + 1,\), V(i+ 1,5, )}

In figure 3 we draw a directed graph in which each node represents a cell of matrices
V(-,-,\y) and V(-,+, /), and it has an arc incoming from each cell on which its value
depends. From this drawing it’s clear that the only boundary conditions we need are
the values of V(nq,n9, ) and V(ny,n,, ), which are easily set to V(ny, ns,\,) =
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Figure 3: V(-,-,\|) white, and V(-,-, /) black

l(an,, Cny) and V(ny,n2, /) = l(Cny, Gn, ). The recurrence can be then solved backwards
from (n1, ng), in time O(n?). At the end, V(1,2,) is the length of the longest leftright
path starting with arc (¢;,a;) and V(2,1, ) is the length of the longest leftright path
starting with arc (a;, ¢;). The maximum of the two is the longest leftright path. ¢

Corollary 2 There is an O(n?) algorithm for separating the class of all mazimal clique
inegualities.

Proof From theorem 2, a clique inequality is violated if and only if there is a zigzag
path P such that 2*(7T(P)) > 1. Since a zigzag path corresponds to a leftright path
via lemma 2, we can simply find the longest leftright path and check if it has length
> 1. By lemma 1, we can compute in time O(n?) the lengths [ for all the arcs of
the complete bipartite oriented graph since each arcs requires the value of only two
triangles. Together with theorem 3, this concludes the proof. o

6 Cliques in the Y variables

Consider two edges both in the same graph, say G; (the same conclusions and inequal-
ities will apply to G, as well). They can either have no endpoint in common and not
intersect (cases Al and A2 in figure 4), or have one common endpoint (cases B1, B2,
B3) or no endpoint in common and intersect (case C). For an edge e and R one of
Al, A2, A3, B1, B2, C, call R(e) the set of edges which are in the relation R with e
(actually, for a fixed edge e, each case leads to two relations, depending on which of the
two edges in the drawing is e. To keep notation simple, we will omit this distinction).
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Then, in any feasible solution in which e is mapped into ¢’ and f is mapped into f/,
f' must be in the same relationship to ¢ as f is to e. That is, if f € R(e) then the
set {{e, f}}U{{€¢, g} : g ¢ R(¢')} is a clique in G,,. Hence the following inequality is
valid:

Z Yerg + Yef < 1 VR = Al, A2, A3,B1,B2,C, e,f € By, f € R(e)
9¢R(e")

It can be easily proved that the clique inequalities relative to the cases B1, B2, B3
and C are implied by the activation constraints together with the matching constraints
for the nodes, and hence cannot be used as cuts in our formulation. The remaining
inequalities however are not implied. Consider for instance the case e = (2,3) € Ey,
matched with ¢/ = (2,5) € E,. The edge f = (1,4) € E; is in relation A2 with e.
However, fi = (1,4) € E; and f, = (3,6) € E,, are not in the relation A2 with €.
The solution Yee! = Usfy = Yffo = 1/2 and T1] = T13 = 92 = T35 = T44 = T4 = 1/2
is feasible for all the activation and z-clique constraints, but violates the y—clique
constraint. It is possible to describe a similar example for the case R=A1l. Our
computational experiments have shown that these clique inequalities in the y variable
are actually very weak, and very seldom does their use give an improvement to the
bound value. For instance, in the above example, adding the clique inequality does
not change the objective function value (3/2) but simply the solution, which becomes
Ty = Tos = Ta; = g5 = 1/4dfori=1,2,3 and j = 4,5,6, and Yoy, = Yef, = Yoo =
Y, = Ysf» = Yre = 1/4. This solution is now feasible for all cliques in both z and y
variables. .

7 On the Strength of the Relaxation

The odd-holes inequalities for the independent set problem say that for any odd-hole
C there can be at most ||C|/2) nodes in an independent set. The fact that we can find

18




(weighted) cliques in G, in polynomial time hinted us to proving that G is in fact
perfect. In this case, G, has no odd holes. A graph G is weakly triangulated if neither
G nor G° have (induced) chordless cycles of length greater than four Note that in G,
there may be holes of size 4 (G is not chordal); e.g. [ai, b3], [a2, ba], [as, b1] and [a4, bo]
define a chordless cycle. A result by Hayward ([14]) states that weakly triangulated
graphs are perfect. We show that G, is perfect by proving the following theorem.

Theorem 4 The graph G, is weakly triangulated.

Proof We have to prove that there are no chordless cycles of length > 5 in (3) G,
and (77) G¢.

() Consider a cordless cycle of length k£ > 5 in G,. It corresponds to aset I1,...,l
of lines in W, such that [; crosses /;_; and [;;; only. Since !/; does not cross I3, wlog
assume [3 lies completely to the right of /. We distinguish two cases. If k¥ > 6, for
i=4,...,k~—1, since l; crosses /;_, but does not cross /;, also /; lies completely to the
right of /;. Use the same argument starting from I;_; and knowing that [; is completely
to its left. Then for ¢ = 2,...,l;_3 we deduce that the line /; is completely to the left
of lx—1. Hence the nonempty set L = {l3,...,...,lx-3} lies completely within the lines
l, and I;_;. But [} crosses both [; and l;_; and so it must cross all the lines in L. So
lr cannot have degree 2 in the cycle. If £ = 5 we reason as follows. !; does not cross
I3, I3 does not cross I but l5 crosses [;. So I3 is to the right of both I, and [5, written
3 € R(1,5). Then, since l5 does not cross I, nor I3 but Iy crosses I3, I5 is to the left
of both {5 and I3, i.e. 5 € L(2,3). Continuing we get 2 € R(4,5), 4 € L(1,2) and
1 € R(3,4). A contradiction, since we started with /3 to the right of /; and ended with
I, to the rigth of I3. '

(#2) We now show that G, has no antiholes of size 5 or more. First make precise
how G is created. We start by embedding the contact maps of each of the two proteins
into the plane as follows. The vertices of the first protein V; are placed on a horizontal
line according to their order, with the first amino acid in the protein being the left-
most vertex. The contacts between vertices are then drawn in as curved edges, but
do not affect G,. The vertices of the second protein V5 are placed on a horizontal line
below this first line and also according to their order in the protein.

The vertices of G, correspond exactly to the edges in the embedded complete
bipartite graph K, »,. Two vertices in G, are adjacent whenever their corresponding
edges cross. We wish to eliminate the case where the edges intersect at a point (i.e.
do not strictly cross) to make our analysis easier.

We do this by constructing a graph isomorphic to G, from a non-complete bipartite
graph Gy, », with more vertices than K, ,, as follows. Make a group of nodes for each
vertex in V; that consists of ny copies of that vertex in V;, and likewise form a group
of n, copies of a vertex for each vertex in V5. We do not overlap any of these vertex
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groups and maintain the order of these vertex groups on the line. Then an edge ¢j
in Ky, », which is the k;st edge from the left incident to ¢ and is the k;nd edge from
the right incident to j is assigned the new endpoints of the kist rightmost copy of ¢
and the kond leftmost copy of j. Then the graph isomorphic to G, is obtained by
considering the crossing edges of G, ,, analogously as in our first construction of G.

After having constructed G, from the bipartite graph G, »,, as discussed before,
let an antihole of size 5 or more be given. Denote the vertex in this antihole whose
corresponding edge has the leftmost endpoint in V; by [. Denote its neighboring
vertices by ! — 2,1 — 1,1+ 1,1 + 2 consistently with the order that these 5 vertices
appear in this antihole. The vertices [,1+1, etc. correspond to edges in G, »,, whose
endpoints in V; and V; are denoted by ly,15, (I + 1)1, (I + 1)2, etc.

Since the edges for [ and ! + 2 must intersect, and the edge for [ + 1 must not
intersect either of these, the left-to-right order in V; for I3, (I + 1)1, (I + 2); must
be I3, (I + 2)3, ({ + 1);. Also, the left-to-right order of the endpoints in V5 must be
(I+2)2,15, (I +1)y. The edge for | — 1 must intersect the edges for + 1 and [+ 2, but
not the edge for {. Hence, the new left-to-right orders are Iy, (I — 1), (1 +2)1,({ + 1)1
and ({4+2)g,l5, (I4+1)2, (I—1),. The edge for [ —2 is required to intersect the edges for
and [+ 1. As a result, this edge will also intersect the edge for { — 1, which contradicts
the definition of an antihole. o

Since G, is perfect, it is no surprise we could find weighted cliques in polynomial
time. In fact, there are algorithms for finding a max weighted clique in a weakly
triangulated graph of time O(|V[°), due to Hayward, Hoang, Maffray [15] and Raghu-
nathan [21]. Our O(n?) result for this specific graph makes a huge difference in the
practical solution of the problem. Finally, we note that since G, is perfect, the clique
inequalities and non-negativity provide a complete polyhedral description for the non-
crossing bipartite matching polytope that the z variables are constrained to be in.

The situation is different as far as the graph G, is concerned. In fact, G, can con-
tain odd holes. Take for instance Ey = {es,...,e5} = {(1,8),(2,5),(3,7),(1,4),(6,7)}
and E» = {f1,...,fs} = {(1,7),(2,5),(3,8),(2,4),(5,6)}. Consider the sharings
s; = (e, f;) for i = 1,...,5. Then it can be checked that (sy, s, 83,34, 85,31) 1S a
chordless cycle in Gy, i.e. each sharing is not compatible with the two adjacent ones
but is compatible with anyone else. There is a known polynomial time algorithm for
separating odd-holes ([19]), which we used in our code.

8 Computational results

We have implemented our branch and cut in C, and run it on a Pentium PC, with Linux
RedHat 6.0, using the branch-and—cut framework ABACUS 2.3. Feasible solutions
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1knt-4.0.cm: 55 residues with 43 contacts.

31 shared contacts.

‘1bphd4.0.cm: 58 rasidues with 53 contacts,

Figure 5: Alignment of the 4A contact maps of proteins 1bpi and 1knt.

were obtained by two greedy local search algorithms (which we do not have space
to describe here), run for many iterations. The real data was obtained from the
Protein Data Bank (PDB, [4]). The contact maps were computed by using the software
tortilla which is being developed at Sandia National Labs. Here we report only
some preliminary results, which are already very promising. A more complete version
of this paper will follow in which we compare all proteins of less than 100 residues
versus each other. These comparisons will be used to cluster the proteins in families of
similar structure. In Table 1 we report the optimal alignment for ten pairs of proteins
from PDB. The contact maps are relative to a 4 A threshold. Columns NR and NC
report the (joint) number of residues and contacts respectively. For each instance we
report the size of the starting LP (rows x columns), the number of cuts generated and
an estimate of the —-implicit— number of cuts considered, the total number of LPs and
the running times in seconds, for the whole algorithm and its LP solver part (which is
more than 90% of the total). All these problems were solved to optimality in less than
15 minutes. This is the first time that provably optimal solutions are found for contact
map alignment of real proteins. Finally, a nice feature of branch and cut is that, for
instances too large to be solved exactly, the procedure can return approximate feasible
solutions and a bound on the maximum error. We expect solutions provably close to
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proteins value NR NC  startsize cuts cut space tot LPs time
Gpti-ibpi 49 116 126 8650 x 7233 72 781 x 10° 4 320 (293)
Spti-2knt 36 116 118 7888 x 6649 554 781 x 10%° 14 760 (743)
Spti-iknt 34 113 116 7585 x6329 682 95x10%0 - 22 934 (918)
1bpi-2knt 32 116 98 5988 x 5749 440 781 x 10%° 12 423 (410)
ibpi-1knt 31 113 96 5757 x 5469 300 95 x 10%° 7 331 (319)
2knt-1knt 43 113 88 5215 x 5125 0 95x10% 1 52 (36)
3ebx-6ebx 46 124 122 7490 x 7556 99 193 x 10%° 4 388 (358)

7

5

0

3ebx-lera 37 124 108 5924 x 6744 282 193 x 10°3 487 (463)
Gebx-lera 39 124 114 6474x 7044 230 193 x 10% 467 (445)
ivii-icph 5 57 28 512x903 437 238 x 102 103 12 (11)

Table 1: Optimal alignments for some PDB proteins.

optimum to be already effective in classifying proteins according to their 3D structure.
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