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Abstract

We discuss the effectiveness of branch and cut for solving large instances
of the independent set problem. Typical LP formulations, even strengthened
by clique inequalities, yield poor bounds for this problem. We prove that a
strong bound is obtained by the use of the so called “rank inequalities”, which
generalize the clique inequalities. For some problems the clique inequalities
imply the rank inequalities, and then a strong bound is guaranteed already by
the simpler formulation. This is the case of the contact map overlap problem,
which was proposed as a measure for protein structure alignments. We formalize
this problem as a particular, large independent set problem which we solve
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by integer programming. We strengthen our formulation by the use of clique
inequality cuts. Although there are exponentially many cliques, we show how to
separate over them in polynomial time. Unprecedented computational results
on real data show the effectiveness of our approach.
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1 Introduction

The Maximum Independent Set (MIS) is one of the classic problems in combinatorial
optimization. Both the cardinality version and the weighted version of MIS have been

studied. The literature on this problem –or its twin, the Ibftucimum Clique- is vaste
and dates back to the beginning of the field. Although its definition is nice and simple,
this problem is one of the toughest to solve exactly. Many papers over the years have
dealt with the exact solution of the maximum clique/independent set [20, 3, 6, 16].
The state of the art for this problem is that we cannot practically solve instances on
dense graphs of more than a couple hundred nodes [16]. The most successful approach
to the exact solution of combinatorial optimization problems is probably Integer Lin-
ear Programming, which has been applied profitably in very many cases [19, 7, 17].
The Integer Programming approach consists in formulating a problem as the maxi-
mization of a linear function of some integer variables and then solving it via branch
and bound, where the upper bound comes from the linear programming relaxation.
The LP relaxation is the same question, only that the variables are not restricted to
be integer, which makes it polynomially solvable. A formulation is as successful as
the strength of its LP bound. That is, if we can prove that the value of the objective
function over the relaxation is close to the value over the integers, then the bound,
and hence the pruning of the search space, will be effective. It is often the case that in
order to obtain better bounds, the formulation is reinforced by the use of additional
constraints, called cuts, and the resulting approach is known as branch and cut. Cuts
are constraints that do not eliminate any feasible integer solution, but make the space
of fractional solutions smaller, this way decreasing the value of the LP bound.

The maximum independent set has a natural, nice formulation as an integer pro-
gramming problem. Unfortunately, this formulation gives a terribly bad bound, e.g.
the bound can be as big as n/2 for an instance with optimal value of 1. The formula-
tion can be strengthened by the use of clique-inequalities cuts. These are constraints
that say that each clique can have at most one node in common with any independent
set. By using some concepts from Ramsey Theory, we will show that even with clique
inequalities the gap between the LP value and the optimum can be very bad. In this
paper we pinpoint the fundamental constraints for the Maximum Independent Set as
the “rank inequalities”. Their addition guarantees an O(logn) gap between the LP
bound and the optimum. This does not contradict the known complexity results for
MIS (stated in Section 2) since, in general, it is NP-complete to find all violated rank
inequalities. However, the theory we develop here can be also useful in practice, since
there are some fortunate cases in which a formulation implies the rank inequalities and
hence we know that the bound will be strong. This is the case for a particular problem

studied in this paper, namely the mam%nurn contact map overlap (CMO) problem.
A contact map is an undirected graph giving a concise representation of the 3D
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fold of a protein. Each residue of a protein is a node, and there is an edge (called
a contact) between two nodes if their euclidean distance is within a given threshold
when the protein is folded. The contact map overlap problem tries to capture the
similarity in the 3D folds of two proteins by comparing their contact maps. In this
sense, it is a new way of aligning 3D structures. The value of an alignment of the
residues of one protein vs. the other, is taken as the number of contacts in the first
contact map whose endpoints are aligned with residues that also share a contact in
the second contact map. The CMO, introduced in [9] and proved NP-hard in [12], is
emerging as the most important practical measure of protein structure similarity.

The CMO problem can be reduced to a very large MIS problem on a suitable
graph. In this paper we formulate the CMO problem as an Integer Program and use
clique-inequalities and some other cuts to strengthen the bound. Although we show
that there is an exponential number of different clique inequalities, we characterize
them completely and show how to separate over them in fast polynomial time. That
is, given a fractional solution, we can find in time O (n2) the most violated clique
inequality and add it to the LP formulation. Finding cliques in a graph is in general
a difficult problem. However, in our case we can solve it effectively since we will show
that the underlying graph is perfect. For this type of graphs, the clique inequalities
imply the rank inequalities, which gives a theoretical explanation of the practical good
performance of our algorithm. We have implemented our ideas in a computer program,
which has been run on some real data coming from the PDB protein data base. This
is the first time that exact solutions have been found for real instances of this problem.
We have been able to align optimally several pairs of proteins with contact maps of
50 to 100 residues/contacts. These values are typical of small and moderate-sized
proteins, of which there is in abundance in PDB.

2 The Maximum Independent Set Problem

Given an undirected graph G = (V, E), IV] = n, a subset V’ c V of nodes is an
independent or stable set if no two nodes in V’ are joined by an edge. The Maximum
Independent Set problem consists in determining an independent set of maximal weight
or cardinality. Given a weight function c on the vertices (c := 1 in the cardinality
version), the standard LP formulation associates a binary variable Zv to each node
Vcv:

{ }
max ~~ZV\ZU +ZV<l V{U, V}CE, ZV~{O, l}Vv~V . (1)

VEV

The LP relaxation of the cardinality version of (1) has the optimal value [n/21,
achieved when xv = 1/2 for all v c V. This bound can be 0(n) times larger than the
true optimum: e.g. if G is a clique, the optimum is 1. Since any clique Q < V can have
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at most one node in common with any independent set, the following clique–inequality
constraints can be added to (1):

E Xv<l VQ clique in G (2)
VCQ

Adding constraints (2) presents two types of difficulites. First, findig cliques in a
graph is itself a hard problem. Second, there may be exponentially many different
cliques. We can overcome these difficulties if we have a separation oracle: that is a
black box that, given a solution to an LP with only some of the inequalities (2), tells us
if the solution is in fact feasible for all the inequalities (2), or else returns us a violated
clique inequality. In the next section we will argue that even in this case we are not
guaranteed that the LP relaxation of (1) and (2) will in fact be a good approximation
of the optimum.

The complexity theory results for the MIS paint a bleak picture as far as our ability
to approximate this problem. Since the maximum independent set in a graph is the
maximum clique in the complement graph, the complexity results are the same as those
for the maximum clique problem. If P # IVP, then MIS cannot be approximated to
within a factor of O(ne), where e is a fixed positive constant defined for MIS, [10, 2, 1].
Under stronger complexity assumptions, MIS cannot be approximated to within a
factor of 0(nO-5-6), [13]. The best approximation factor for MIS found so far is a mere

O(* ) for the cardinality version, [5].

2.1 Ramsey Theory and the Integrality Gap

We just saw that one cannot expect to ever be able to find a reasonable approxima-
tion for MIS. A tacit polyhedral combinatorics axiom is that if there is a reasonable
approximation for MIS, there should be an LP relaxation for MIS which is solvable
in polynomial time and has a reasonable size integrality gap. Such an LP relaxation
would not allow any of the clique inequalities to be violated by too large a factor. Call
the LP relaxation that consists of the clique inequalities for all of the maximal cliques
the clique relaxation. In order for this relaxation to be polynomially solvable, we need
an efficient separation algorithm for these exponentially many clique inequalities. Let
x* be our current fractional solution. With the vertices of G weighted by Z*, this
separation algorithm must be able to find a clique of weight more than 1 if such a
chque exists. Hence, our separation algorithm must be powerful enough to solve the
maximum weighted clique problem. However, maximum weighted clique is as difficult
to approximate as MIS.

Suppose we eliminated this obstacle to a small integrality gap by imagining we
have a separation oracle that finds a clique of weight more than 1 if such a clique
exists. What can we say then about the integrality gap? We argue here that the
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results from a branch of graph theory called Ramsey theory make it unlikely that the

gap is a constant even in this case.
Ramsey theory in part studies the occurrence of large cliques and large independent

sets in arbitrary graphs. An idea in Ramsey theory is that if a graph is large enough
and has no large cliques (independent sets), then it must have large independent sets
(cliques). More formally, there is a smallest integer R(k, 1) such that every graph with
at least I?(k, 1) vertices has either a clique of k vertices or an independent set of 1
vertices. This number is called the (k, i)-th Ramsey number.

Ramsey numbers are notoriously difficult to compute, and seem to grow reasonably
quickly. We are particularly interested in their growth when the clique number k = 3,
and conjecture the following.

Conjecture 1
R(3, 1)

;~: —
1

= 00. (3)

An integrality gap result follows as a corollary to this conjecture.

Corollary 1 If conjecture 1 holds, there is no constant zntegralitg gap between MIS
and the clique LP relaxation.

Proof Let r E N be given. We now produce a graph where the integrality gap exceeds
r/2. Choose ZTc N such that * > r. Choose a graph G. having R(3, 1,) – 1
vertices that has no clique of sizer 3 and no independent set of size lr. An optimal
solution to the clique LP relaxation is x! = 1/2 for all i ~ V,. The cost of this solution

is -. The MIS solution has cost 1. – 1. Hence, this integrality gap exceeds r/2,
as required. o

Ramsey theory thus shows that inequalities other than the clique inequalities are
needed in an LP relaxation for there to be a constant integrality gap. The analysis

above suggests which additional inequalities are needed: For each H c V, we have
the valid inequality

z(H) < r(H), (4)

where the rank function r(H) is the maximum size of any independent set contained in

H. These inequalities are called the rank inequalities of MIS. We call the LP relaxation
consisting precisely of all of the rank inequalities the rank LP relaxation.

Theorem 1 The integrality gap between weighted MIS and its rank LP relaxation is
at most log n + 1.

Proof Denote a maximizer for the rank LP relaxation by x“. We will demonstrate that
* is less than or equal to a convex combination of incidence vectors of independent
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sets of G. From an averaging argument, one of these independent sets costs more than
-, from which our integrality gap result follows. .

We first find the smallest integer k so that for every vertex v c V, z; = ~,
where lV ~ N. We will decompose X* into a linear combination of incidence vectors of
independent sets with linear multipliers ~. We start by having x* = y“ + Z“, where
go := z* and .z” := O. We successively form Vi, Zi for i = 1,2,... by taking ~ times an

incidence vector of an independent set away from Vi–l and adding it to .zi-l. Hence,

yi+z2=x* fori=l,2, . . .. We terminate our process at an integer lastwhen yZa’t= O

and z~~st = x*. We thus have #ast expressed as a linear combination of independent
sets. Define

~:={v GV:y~-l >O}fori=l,2, . . . .

Consider a maximum cardinality indepent set xi for G[~]. Define

Ii
Y~:=Y~-l –~x, z~:=z~-l+;x~ fori= 1!2>” ”””

Because x* satisfies the rank inequalities for the vertex sets ~, we have that

z*(V~) < 2+(K) for i = 1,2, . . . .

We can now determine a lower bound on how much yi decreases in each iteration, and
thus an upper bound on how many terms are in our linear decomposition of Z* into
independent sets. We have

We determine inductively that

Hence, we have

Yk
klogn < ~-log{n ~ 1. “

Y–

(1 - yyo(v) = (1 - ;)Z*(V)
(1- ~)n.

< (1 – +)% <:,

After at most k log n iterations have been done, we are very nearly done. It is easy

to see that at most k more iterations are needed to reach the integer last satisfying

Y‘“t = O. This means that last < k(log n + 1). Hence, we have

x* < /cx* ~ last ,
——

logn + 1 – last x= last i=l ““

As previously discussed, by an averaging argument, one of these Zi’s will cost at least
as much as *, which establishes our theorem. o
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3 Subgraph Isomorphism of Sorted Graphs and The
Contact Map Overlap Problem

We are given two undirected graphs G1 = (Vl, El) and G2 = (V2, 172). Let n~ = IV I
and rni = Il?i \, for i = 1,2. The graphs are sorted i.e. a total order is defined on
Vl={al,..., an, }and V2={bl, bn, },n, }, sothatal <... <a~, and bl <...< b~,.
Because of this total ordering, we may identify ~ with {1,..., ni} for z = 1,2, and
resort to ai and bi notation only when there is a possible confusion for a node z being in
VI or V2. It is customary to draw a sorted graph with the vertices arranged increasingly
on a line. Although the graph is undirected, we distinguish a tail and a head for each
edge {i, j}, where the tail is the left endpoint (i.e. min{i, j}) and the head is the right
endpoint (i.e. max{i, j}). Therefore, we will denote an edge by an ordered pair (i, j)
where i is the tail and j the head of the edge.

A non-crossing map of V1 in V2 is defined by two subsets of the same size k,
{i~, . . . ,i~}g Vland{ul,..., uk} ~ V2, where Z1 < iz . . . < ik and similarly for the
uh’s. In this map, uh is the image of ih for 1 ~ h < k. Two edges (i, j) ● El and
(u, v) 6 E2 are shared by the map if there are 1,t < k s.t. i = il, j = Zt, u = U1and—
v = ut (see Figure 1).

Each pair of shared edges contributes a sharing to the objective function. The
maximum subgraph isomorphism for sorted graphs. consists in finding the non–crossing
map which maximizes the number of sharings. This problem is closely related to
the maximum edge-induced common subgraph problem [11, 8], with the additional
constraint that the isomorphism of the subgraphs must preserve the ordering of the
nodes.

Also, a similar problem is the RNA sequence structure alignment, to which Lenhof,
Reinert and Vingron applied and 1P approach in [18]. Note that non–crossing maps are
in one-to-one correspondence with non-crossing matchings in the complete bipartite
graph W having vertex sets V1 and V2 and edge set V1 x V2. The complete bipartite
graph W will be extensively referred to in the arguments to follow.

The problem is largely motivated by its application to computational biology
named in the introduction, i.e. the maximum contact map overlap problem. A contact
map is a graph giving a concise representation of the 3D fold of a protein: for each
residue there is a node, and there is an edge (called a contact) between two nodes if
their euclidean distance is within a given threshold when the protein is folded. The
value of an alignment of the residues of one protein vs the other, is the number of
contacts in the first contact map whose endpoints are aligned with residues that also
share a contact in the second contact map. Since an alignment must preserve the or-
der of the residues, to find the best alignment one has to solve a Maximum Subgraph
Isomorphism of Sorted Graphs.

8



G1

G2

Figure 1: A noncrossing map of value 5

4 Integer Programming Formulation

We denote by y.i a
and ~ are a sharing

The sharings (el,

binary variable for e E El and ~ c .E2, which is 1 iff the edges e
in a feasible solution. The objective function is then

.fI) and (e2,.h) can be both achieved by a noncrossiwmap if and
only if they are compatible, i.e. no two of the lines betweens the tails of el and ~1,
the tails of e2 and f2, the heads of el and jl and the heads of e2 and ~2 do intersect
at a single point (or, as we will say, cross). Then the constraints for the problem are
simply

‘Yelfl + Ye2f2 S 1 Vel, e2 c El, ~1, fz G E2 : (el, ~1), (e2, f2) are not compatible.
(6)

Although it would be possible to list all pairs of incompatible sharings and solve
the corresponding 1P with this formulation, there are two reasons why we choose not
to proceed this way. First, the LP bound is very weak (see the preceding discussion
on the independent set problem) unless we strengthen it with cuts, which are not
easy to deal with in the space of only y variables. Second, throwing in all the pairs
of incompatible sharings may result in too many constraints, which will slow down
unacceptably the solving algorithm.

Therefore we decide to introduce a new set of binary variables ZZUfor i c VI and
u G V2, which represent the actual map, and constraints such that the support graph
of z must be a non-crossing matching. Instead of using the predicate PC we then
bound the y variables by means of the z variables. That is, the edges (i, j) and (u, v)
can be shared only if i is mapped to u and j to v :
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I.@)(tt,v) s mu and Y(i,j)(u,v)< xjv (7)

We can immediately strengthen considerably these constraints as follows: For i c
VI (and analogously for i ~ V2), denote by d+(i) the set {j c z+ 1,..., nl : (z, j) ~ El}
of heads of edges of which z is the tail. Similarly, 6– (i) = {j ● 1,.. ., i – 1: (j, i) E El}
are the tails of edges with head in i. Then, in place of (7), we can write the following
constraints:

x ?(wu,v) <%J and ~ tqj,i)(~,v) < zi~ vi c VI, (ZJ,v) E J% (8)
j~d+(i) j@-(i)

and of course analogous constraints for i c V2 and (u, u) c El. We call these
activation constraints.

The noncrossing constraints are of the form:

IYoncrossing and activation constraints are sufficient to model completely the prob-
lem. Note that we can define a relation of compatibility for the z variables in a similar

way as we did for the y. A matching in W can be seen as a set of lines connecting
nodes of V1 and V2 in the usual drawing of W in which V1 is drawn on the top and
V2 is drawn on the bottom. We denote such a line for i e VI and j ~ V2 by [i, j]. We
say that two lines cross if their intersection is a point, and that they strict~y cross if
they cross at a point other than an endpoint. Two lines are compatible if they do not
cross. A set of sharings is ~easitde if they are all mutually compatible, otherwise it
is infeasible. Similarly we define a feasible and infeasible set of lines. If we draw the
lines connecting the endpoints of an infeasible set of sharings, we have an infeasible
set of lines. In the following section we will show that there is a very effective way
of finding infeasible sets of lines in W. This sets will correspond to cuts in the 1P
which will in turn bound the infeasible sets of sharings. There is a well known notion
in combinatorial optimization for finding a set of compatible elements, which is the

stable set, or independent set problem.

4.1 The max independent set problems

We define two new graphs G. and GV as follows. In G. there is a node NiU for each
line [i, u] with i c VI and u ~ V2 and two nodes NiU and NjV are connected by an
edge iff [z,u] and [j, v] cross. Similarly, in Gv there is a node Nef for each e ● El and
j ~ 172 and two nodes N.f and N.lf, are connected by an edge iff the sharings (e, ~)
and (e’, ~’) are not compatible.
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Then a selection of z variables feasible for all noncrossing constraints corresponds

to an independent set in GZ and a feasible set of sharings is an independent set in

GV. The maximum independent set in GV is the solution sought after. Hence, all
cuts which are valid for the independent set problem can be applied to the z and y
variables. The use of these cuts is vital in this problem. Without them, it is easy
to build a trivial solution in which all fractional values are 1/2 and which achieves
the useless bound of min{nzl, m2}. The most notable cuts for the independent set
problem are the clique inequalities: An independent set and a clique can share at
most one element. Therefore, we want to determine cliques in G. and GV. Another
class of inequalities for the max independent set is the odd-holes. We will show that
GZ has no odd holes, while GV may contain them.

In the remainder of the paper, we will describe a very fast method ((0(n2)) for
separating over the exponentially large (O(22n)) set of all cliques in the x variables.
Although we cannot characterize all cliques for the y variables, we identify several
classes of cliques in GV and show that satisfying the clique inequalities for the x
variables implies also satisfying the clique inequalities for the y variables for all but two
classes of cliques. Furthermore, the cuts for z-cliques will be so strong that adding the
two non-implied classes of cliques for the y variables yields only a tiny improvement in
the bound, while incrasing the running time in a way that makes their use dispensable.
We will elaborate on this in the section on computational results. For all these reasons,
we will focus primarily on cliques in the z variables, i.e. sets of lines in the bipartite
graph W which are all mutually crossing. Note that the usual matching constraints
are just some such cliques (all lines share an endpoint) :

Instead of separating on the O(n) matching constraints, we would like to have them
in our basic formulation. However they are not maximal and can be strengthened. We
will show that each maximal clique in W will correspond to a path which we call
zigzag. Let 22 be the set of all zigzag paths and ZZ(k) be the zigzag paths with k
internal nodes. The matching constraints are then contained in the set of zigzag paths
with only one internal node. 22(2) and 22(3) will also turn out to be useful, since it
appears from our computational experiments that separating over 22(2) and 22(3)
first and only after failure looking at all cliques in 22 results in a faster branch and
bound algorihtm in practice.

4.2 The final 1P formulation

Our final 1P formulation for the max subgraph isomorphism of sorted graphs is as
follows:
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.2 = mm ~e~E1,fEE2 !Jef

V(i,j) E-q,uGV2
V(i,j) < El, v c v’
V(ZJ,v) e E2, z G VI
V{u, v) c E2, j G VI
VQZ clique in GZ
for some QV clique in GV
VOU odd holes in GV

Vi~V1, j~V2, ecE1, f~E2

The remainder of the paper is organized as follows:

5 Cliques in the X variables

In this section we study the problem of characterizing all cliques of GZ, i.e. sets of
lines in the bipartite graph W which are all mutually crossing.

We define the following notion of a triangle in W. T(i, j[u) := {[i, u], [i+l, u],..., [j–

l,u], [.j,u]} where i S j c Vi and u c Vz, and T(ilj, u) := {[i, j], [i,j + l],..., [i,u –
1], [z,u]} where i E V1 and j s u ~ V2 Clearly a triangle corresponds to a clique, so
that

x(T(i, jlu)) ~ 1 and x(T(i]j, u)) <1

are valid inequalities for each i, j and u. These includes the standard matching
constraints, which are just Z’(i\ 1, n2) and 2’(1, nl /u).

Lemma 1 Given a fractional LP solution x*, we can compute the value of any t
triangles in time 0(rz2 + t).

Proof We start with a preprocessing in which we compute x*(T(z[l, v)) and x*(Z’’(1, ilv))
for each i c VI and v ~ V2 in total time 0(n2). This is done by first iixing Z, letting
$“(1’’(ill, 1)) = Xjl and noticing that z*(Z’(ill, v)) = x*(T’(zI1, v – 1)) + x~V(and simi-
larly we obtain all Z*(2!’ (1,ilv))). Now, given say any il <22 c V’ and u ● V2, we get
x*(T(21, 2z[u)) = x*(T(l, izlu)) – S*(T(l, il – Ilu)) in time O(l). o

We call the algorithm computing the 0(n2) basic triangles of the proof SETUP.
It will be the preliminary step to the fast separation algorithms for the classes of
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inequalities described later. Note that there are only a polW”omial number of triangles

(O(n3)) overall so that their value can trivially be computed in polynomial time.
However it would cost O(tn) to compute the value of any -t triangles in a direct way,
so that the lemma gives us an O(n) speed-up factor for -t ~ n2, which is going to be
the case (e.g. some inequalities will be defined –implicitely– over O(n3) triangles, and
the separation could take time 0(n4)). Going from n2 to n3 and n4 makes a huge
practical difference in running times. We will show that all our separation algorithms
have complexity O(n2), i.e. are very efficient.

5.1 Polynomial Separation of all Maximal Cliques

Callal, a~,, h, and b~, the set of terminal nodes. Consider a simple (i.e. without
repeated nodes) path P which passes through all the terminal nodes, and alternates
nodes of V1 and V2 in a zig–zag fashion: That is, we can orient the path so that al
if the first of the nodes of VI visited by the path, and if a~ has been visited by the
path, then all of the nodes in VI visited after ak are “to the right” (i.e. larger) of ak.
Similarly, bn, is the first of the nodes of V2 visited by the path, and if bh has been
visited by the path, then all of the nodes in V2 visited after b~ are “to the left” (i.e.
smaller) of bh. Note that any such path must start and end at a terminal node (see
Figure 2, left), and must always include the lines [al, bnt] and [an,, bl]. Since al and
bn, cannot have both degree two in such a path, there are only two possibilities after
we orient the path as described before: Either the path starts at al and bn2 is the
second node or it starts at bn2 and al is the second node. For each node of degree
two in F’ a triangle is defined by considering the set of lines incident on the node and
contained within the two lines of the path. For example, if . . . . a~l, bkl, a~2,bk2,. . . is
part of such a path, then we consider, among others, the triangles T(a~l, ak, lb~,) and

T(a~, lb~,, bk,). Let TA(~) be the set of triangles defined by P with tip in the nodes
of VI having degree two in P. Similarly, let TB (P) be the set of triangles defined by
P with tip in nodes of V2 of degree two in P. We define T(P) as the union of all the
triangles defined by P, i.e. T(P) = T~(P) U T’(P).

Theorem 2 A set Q of lines is a maximal clique in G. if and only if there exists a
zigzag path P such that Q = T(P).

Proof (If) Let Q be a set of lines and P a zigzag path such that Q = T(P). Let
[ai, bj] and [a~, bh] be two lines in T(P). If [ai, bj] and [a~, b~] are in a same triangle
of TA(P) or TB (P), then they cross. Otherwise, assume wlog aj < a~. Depending
on the two lines being in a triangle of TA or TB, there are four possibilities, which
can all be checked similarly. If [az, bj] c TA(P) and [a~, bh] 6 TA(P), then the path
contains ai, b, ..., a~ with b~ > b and bh < b. Then bh < b~ and so the lines cross.
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b
1
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n.

al

c’
1

1

Figure 2: Left: A zigzag path P (bold) and the set Z’(P). Right: Same path after flipping
V2.

After checking similarly the remaining cases for being in TA or TB, we conclude that
T(P) is a clique. To show it is maximal, let [a, b] be any line not in T(P). Either
a>a~ora<amz. Assume the latter (a similar argument applies in the other case).
Let a~, b~,at be three consecutive nodes of the path such that a~ ~ a < at. It cannot

be b = b~ or else [a,b] < T(P). Now if b < b~ the lines [a, b] and [at, b~] do not cross,
while if b > b~ the lines [a, b] and [ak,b~]do not cross. Hence [a, b] cannot be added to
T(P) to still obtain a clique.

(Only if) Let Q be a maximal clique. Let a? <... < a$ be the nodes of U in Q.
Since Q is maximal, it includes the lines [al, b.~l and [an,, bl], so a? = al and a? = an,.
For each t, let .?$J and 1$, be in V2n Q such that [as, b$)] is the leftmost line out of

a: in Q and [a?, b~(~)]is the rightmost, For Q to be a clique it must be b~t+l) s b~t)

(or else the lines [a?, b~,l] and [a~t+l), b~t+l)] do not cross), and to be maximal, it must

be in fact b~t+ll = b~tl (or else lines from afil or a? to points between bfit+ll and l$t)

could be added). Now the union of all lines (a?, b$)) and (a?, b?(t)) defines a zigzag
path P, and Q c T(P) by construction. But ‘T(P) is a clique, and Q is maximal. So
Q = T(P). o

The inequalities Z*(T(P)) < 1 for all zigzag paths P are therefore the strongest
clique cuts for this particular maximum independent set problem. We now show that
they can be separated in time O (n2). In order to make the following argument easier,
we first rename the nodes of V2 as {cl, . . ., ~z }, so that the leftmost node c1 is bnz

and the rightmost, ~z, is bl (that is, we flip the nodes of V2 with respect to the

usual drawing). Having done this, two lines were compatible (i.e. not crossing) in the
original drawing of W if and only if now they are strictly crossing. Furthermore, a
zigzag path P now looks as a path with goes from left to right both in VI and V2.

We call such a path a leftright path. In Figure 2, right, we show the leftright path of
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Figure 2, left, after flipping V2. A set Q was a clique in the original graph if and only
if Q is now a set of triangles in which no two lines are striclty crossing.

Since to define a Ieftright path we may pick any k internal (i.e. non terminal) nodes
in one graph and k or k + 1 in the other, there are O (22’”)such paths. However, there
is an algorithm for finding the leftright path P with largest x* (T(P)) which is not just

polynomial, but of very low degree, making separation of this class of inequalities very
effective in the practical solution of the problem. With respect to the new drawing of
W, orient each line in the two possible ways and define the length for each arc thus
obtained as follows.

i(a, c) = x*(’T(all, c)) – z*(T(l, ale)) (lo)

and
l(c, a) = Z*(T(l, ale)) – Z*(Z’(all, c)). (11)

The lengths of four special arcs are defined separately, as J(al, cl) = l(cI, al) = O,

Z(anl, CJ = x*(7’(a~l /1, %Z)) and l(c~z,a~l) = z*(Z’(1, a~ll%z)).
Now, consider a leftright path P starting with either the arc (al, cl) or (cl, al) and

ending with either the arc (anl, ~z) or (cn2, anl ). Call J(P) the standard length of this
path, i.e. the sum of arcs lengths. We then have the following lemma.

Lemma 2 F’ora leftriglztpath P, 1(P) = z*(Z’(P)).

Proof Suppose e.g. that F’ = (al, c~l = cl, aj,, Chz,. . . . ajJ = an,, c~l = cJ. A similar
argument applies in the other three cases. From tedious but simple algebra, we have
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,

The same kind of computations can be carried for the other three possibilities for
starting/ending arcs, and are omitted at this point. o

Theorem 3 There is an 0(n2) algorithm for jinding the longest lefiright path in a
complete bipartite oriented graph.

Proof We use dynamic programming to find such a path. Call V(Z, j, >) the length of
a longest leftright path starting at ai and using nodes of V2 only within cj, Cj+l, ..., ~z.

.

Also, call V(i, j, ~) the length of a longest zigzag path starting at cj and using nodes
of VI only within ai, ai~l, ..., anl. We have the following recurrences:

V(Z, j, >) = max{l(a~, cj) + V(i + l,j, ~), V(i, j + 1, \)}

V(i, j, ~) = IIlaX{l(Cj, a;) + V(i, ~ + l,\), V(i + 1,~, >)}

In figure 3 we draw a directed graph in which each node represents a cell of matrices

V(., ”,\) and V(., ”,~), and it has an arc incoming from each cell on which its value
depends. From this drawing it’s clear that the only boundary conditions we need are
the values of V(nl, n2, \) and V(nl, n2, ~), which are easily set to V(nl, nz, \) =
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1

n_l

1

Figure 3: V(,., \) white, and V(,., >) black

l(a~l, ~,) and V(TLI,nz, 7) = 1(%,, a.,). The recurrence can be then solved backwards
from (nl, n2), in time O (n2). At the end, V(I, 2, \) is the length of the longest leftright
path starting with arc (cl, al) and V(2, 1, ~) is the length of the longest leftright path
starting with arc (al, c1). The maximum of the two is the longest leftright path. o

Corollary 2 There is an 0(n2) algorithm for separating the class of all maximal clique
inequalities.

Proof From theorem 2, a clique inequality is violated if and only if there is a zigzag

path P such that X*(T(P)) >1. Since a zigzag path corresponds to a leftright path
via lemma 2, we can simply find the longest leftright path and check if it has length

> 1. By lemma 1, we can compute in time 0(n2) the lengths 1 for all the arcs of
the complete bipartite oriented graph since each arcs requires the value of only two
triangles. Together with theorem 3, this concludes the proof. o

6 Cliques in the Y variables

Consider two edges both in the same graph, say G1 (the same conclusions and inequal-
ities will apply to G2 as well). They can either have no endpoint in common and not
intersect (cases Al and .42 in figure 4), or have one common endpoint (cases B1, B2,
B3) or no endpoint in common and intersect (case C). For an edge e and R one of
Al, A2, A3, Bl, B2, C, call R(e) the set of edges which are in the relation R with e
(actually, for a fixed edge e, each case leads to two relations, depending on which of the
two edges in the drawing is e. To keep notation simple, we will omit this distinction).
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Figure 4: RelationsKlps between edges

Then, in any feasible solution in which e is mapped into e’ and ~ is mapped into ~’,

f’ must be in the same relationship to e’ as f is to e. That is, if f c R(e) then the

set {{e, ~}} U {{e’, g} : g @ I?(e’) } is a clique in GV. Hence the following inequality is
valid:

E w,+ $@ <1 VR = Al, A2, A3, Bl; B2, C,— e,f < El, f ~ R(e)
g@R(e’)

It can be easily proved that the clique inequalities relative to the cases Bl, B2, B3
and C are implied by the activation constraints together with the matching constraints
for the nodes, and hence cannot be used as cuts in our formulation. The remaining
inequalities however are not implied. Consider fox instance the case e = (2,3) E J!31,
matched with e’ = (2, 5) E l?2. The edge ~ = (1,4) c El is in relation A2 with e.
However, fl = (1,4) c 132 and fz = (3,6) c E2, are not in the relation A2 with e’.
The solution ye~ = y~~, = y~~, = 1/2 and zu = x13 = 222 = zw = x44 = ~46 = 1/2
is feasible for all the activation and z-clique constraints, but violates the y–clique

constraint. It is possible to describe a similar example for the case R=Al. Our
computational experiments have shown that these clique inequalities in the g variable
are actually very weak, and very seldom does their use give an improvement to the
bound value. For instance, in the above example, adding the clique inequality does
not change the objective function value (3/2) but simply the solution, which becomes
xl~ = xz~ = Xsj = XAj = 1/4 for i = 1,2,3 and j = 4,5,6, and ~e~l = Ye~, = yee( =

Yffl = !Jff2 = y$e~ = 1/4. This solution is now feasible for all cliques in both x and y
variables.

7 On the Strength of the Relaxation

The odd-holes inequalities for the independent set problem say that for any odd–hole

C there can be at most llC1/2] nodes in an independent set. The fact that we can find
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(weighted) cliques in GZ in polynomial time hinted us to proving that G= is in fact

perfect. In this case, Gz has no odd holes. A graph G is weakly triangulated if neither
Gnor Gc have (induced) chordless cycles oflen@h greater than four Note that inGZ
there may beholes ofsize4(GZ isnotchordal); e.g. [al, &], [a2, bA], [a~, bl]and[aA, b2]
define achordless cycle. A result by Hayward ([14]) states that weakly triangulated
graphs are perfect. We show that G. is perfect by proving the following theorem.

Theorem 4 The graph G= is weakly triangulated.

Proof We have to prove that there are no chordless cycles of length 25 in (z) G=
and (ii) G:.

(i) Consider a cordless cycle of length k >5 in GZ. It corresponds to a set 11,..., .J~—
of lines in W, such that ii crosses li_l and l;+l only. Since 11 does not cross 13, wlog
assume /3 lies completely to the right of 11. We distinguish two cases. If k 2 6, for
i= 4>..., k – 1, since Ji crosses ii-l but does not cross 11, also /j lies completely to the
right of 11. Use the same argument starting from 1~–1and knowing that 11is completely
to its left. Then for i = 2, ..., Z&a we deduce that the line li is completely to the left
of i~–l. Hence the nonempty set L = {13, . . . ,..., Z&_s}lies completely within the lines
ZI and Z&~. But lk crosses both il and lk-~ and so it must cross all the lines in L. So
zk cannot have degree 2 in the cycle. If k = 5 we reason as follows. ZI does not cross
13, 13does not cross 15 but 15 crosses 11. So 13is to the right of both 11 and 15, written
3 c R(I, 5). Then, since i5 does not cross 12 nor 13 but 12 crosses /3, 15 is to the left
of both 12 and 13, i.e. 5 G L(2, 3). Continuing we get 2 G R(4, 5), 4 E L(I, 2) and
1 c R(3, 4). A contradiction, since we started with 13to the right of 11 and ended with
11 to the rigth of ls.

(ii) We now show that G. has no antiholes of size 5 or more. First make precise
how GZ is created. We start by embedding the contact maps of each of the two proteins
into the plane as follows. The vertices of the first protein V1 are placed on a horizontal
line according to their order, with the first amino acid in the protein being the left-
most vertex. The contacts between vertices are then drawn in as curved edges, but
do not affect G.. The vertices of the second protein V2 are placed on a horizontal line
below this first line and also according to their order in the protein.

The vertices of G. correspond exactly to the edges in the embedded complete
bipartite graph Knl,n,. Two vertices in GZ are adjacent whenever their corresponding
edges cross. We wish to eliminate the case where the edges intersect at a point (i.e.
do not strictly cross) to make our analysis easier.

We do this by constructing a graph isomorphic to GZ from a non-complete bipartite

graph G~l,~z with more vertices than K ~1,nz as follows. Make a group of nodes for each
vertex in V1 that consists of n2 copies of that vertex in V1, and likewise form a group
of nl copies of a vertex for each vertex in V2. We do not overlap any of these vertex
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groups and maintain the order of these vertex groupson the line. Then an edge ij

in K~l ,~z which is the klst edge from the left incident to i and is the k2nd edge from
the right incident to j is assigned the new endpoints of the klst rightmost copy of i
and the k2nd leftmost copy of j. Then the graph isomorphic to GZ is obtained by
considering the crossing edges of Gnl ,nz analogously as in our first construction of GZ.

After having constructed G. from the bipartite graph Gnl,n,, as discussed before,

let an antihole of size 5 or more be given. Denote the vertex in this antihole whose

corresponding edge has the leftmost endpoint in VI by 1. Denote its neighboring
vertices by 1 – 2, J – 1, t + 1,1 + 2 consistently with the order that these 5 vertices
appear in this antihole. The vertices t, 1+1, etc. correspond to edges in Gnl,nz, whose

endpoints in VI and V2 are denoted by 11,12, (1 + 1)1, (1+ 1)2, etc.
Since the edges for Z and 1 + 2 must intersect, and the edge for 1 + 1 must not

intersect either of these, the left-to-right order in VI for tl, (1 + 1)1, (Z + 2)1 must
be 11,(1+ 2)1,(1 + I)l. Also, the left-to-right order of the endpoints in V2 must be
(1+ 2)2, /2, (1+ 1)2. The edge for 1– 1 must intersect the edges for 1+ 1 and J +2, but
not the edge for 1. Hence, the new left-to-right orders are 11, (Z– 1)1, (1 + 2)1, (1 + 1)1
and (1+ 2)2, 12, (Z+ 1)2, (i – 1)2. The edge for 1– 2 is required to intersect the edges for 1
and 1+1. As a result, this edge will also intersect the edge for 1– 1, which contradicts
the definition of an antihole. o

Since G. is perfect, it is no surprise we could find weighted cliques in polynomial
time. In fact, there are algorithms for finding a max weighted clique in a weakly
triangulated graph of time O(\V15), due to Hayward, Hoang, Maffray [15] and Raghu-
nathan [21]. Our O (n2) result for this specific graph makes a huge difference in the
practical solution of the problem. Finally, we note that since GZ is perfect, the clique
inequalities and non-negativity provide a complete polyhedral description for the non-
crossing bipartite matching polytope that the x variables are constrained to be in.

The situation is different as far as the graph GV is concerned. In fact, GV can con-
tain odd holes. Take for instance El = {cl, . . .
and 132 = {fl

,e5} = {(1,8),(2,5),(3,7), (1,4), (6,7)}
,..., .fs} = {(1,7), (2,5), (3,8),(2,4), (5,6)}. Consider the sharings

s~ = (e~,~~) fori = 1,..., 5. Then it can be checked that (sl, S2, S3, S4, S5, Sl) is a
chordless cyc~e in GU, i.e. each sharing is not compatib~e with the two adjacent ones
but is compatible with anyone else. There is a known polynomial time algorithm for
separating odd-holes ([19]), which we used in our code.

8 Computational results

We have implemented our branch and cut in C, and run it on a Pentium PC, with Linux

RedHat 6.0, using the branch–and–cut framework ABACUS 2.3. Feasible solutions
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Figure5: Alignment of the4~contact maps ofproteins lbpiandlknt.

were obtained by two greedy local search algorithms (which we do not have space
to describe here), run for many iterations. The real data was obtained from the
Protein Data Bank (PDB, [4]). The contact maps were computed by using the software
tortilla which is being developed at Sandia National Labs. Here we report only
some preliminary results, which are already very promising. A more complete version
of this paper will follow in which we compare all proteins of less than 100 residues
versus each other. These comparisons will be used to cluster the proteins in families of
similar structure. In Table 1 we report the optimal alignment for ten pairs of proteins
from PDB. The contact maps are relative to a 4 ~ threshold. Columns NR and NC
report the (joint) number of residues and contacts respectively. For each instance we
report the size of the starting LP (rows x columns), the number of cuts generated and
an estimate of the –implicit– number of cuts considered, the total number of LPs and
the running times in seconds, for the whole algorithm and its LP solver part (which is
more than 9070 of the total). All these problems were solved to optimality in less than
15 minutes. This is the first time that provably optimal solutions are found for contact
map alignment of real proteins. Finally, a nice feature of branch and cut is that, for
instances too large to be solved exactly, the procedure can return approximate feasible

solutions and a bound on the maximum error. We expect solutions provably close to
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proteins value NR NC start size cuts cut space tot LPs time
5pti-lbpi 49 116 126 8650x7233 72 781x1030 4 320 (293)
5pti-2knt 36 116 118 7888x6649 554 781x 1030 14 760 (743)
5pti-lknt 34 113 116 7585x6329 682 95X103O 22 934 (918)
lbpi-2knt 32 116 98 5988x5749 440 781x1030 12 423(410)
lbpi-llmt 31 113 96 5757x5469 300 95xlo30 7 331 (319)
21ult-lkIlt 43 113 88 5215x5125 O 95X1030 1 52 (36)
3ebx-6ebx 46 124 122 7490x7556 99 193X1033 4 388 (358)
3ebx-lera 37 124 108 5924x6744 282 193x1033 7 487 (463)
6ebx-lera 39 124 114 6474x7044 230 193x1033 5 467 (445)
Ivii-lcph 5 57 28 512 X903 437 238 x1012 103 12 (11)

Table 1: Optimal alignments forsome PDB proteins.

optimum tobe already effective in classifying proteins according to their 3D structure.
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