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ABSTRACT

Multiresolutional decompositions known as spectral fingerprints are often used to extract spectral features from multispectral/
hyperspectral data. In this study, we investigate the use of wavelet-based algorithms for generating spectral fingerprints. The
wavelet-based algorithms are compared to the currently used method, traditional convolution with first-derivative Gaussian
filters. The comparison analyses consists of two parts:  (a) the computational expense of the new method is compared with
the computational costs of the current method and (b) the outputs of the wavelet-based methods are compared with those of
the current method to determine any practical differences in the resulting spectral fingerprints. The results show that the
wavelet-based algorithms can greatly reduce the computational expense of generating spectral fingerprints, while practically
no differences exist in the resulting fingerprints. The analysis is conducted on a database of hyperspectral signatures, namely,
Hyperspectral Digital Image Collection Experiment (HYDICE) signatures. The reduction in computational expense is by a
factor of about 30, and the average Euclidean distance between resulting fingerprints is on the order of 0.02.
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1.  INTRODUCTION

Spectral features are often extracted from multispectral/hyperspectral data using a multiresolutional decomposition known as
the spectral fingerprint. The spectral fingerprint can be used to provide features that are compact, quantitative, and
hierarchical.1 The method can be used to extract subtle features that are not readily detected visually, and these features have
been shown to be useful in separating major atmospheric radiance features from ground (or near-ground) surface radiance
features.1-3 While the spectral fingerprint method has proven to be quite powerful, it has also shown several shortcomings:
(a) its implementation requires multiple convolutions with Gaussian filters that are computationally expensive, (b) it requires
a truncation of the filter impulse response that can cause spurious errors, and (c) it provides information about the sizes and
areas of radiance features but not the shapes. It is proposed that a wavelet-based spectral fingerprint can overcome these
shortcomings while maintaining the advantages of the traditional method. Possible benefits of a wavelet-based method
include (a) its computational expense may be greatly reduced as compared to current methods; (b) it may be capable of
discriminating between various reflectance surfaces; and (c) it may lead to an optimized data compression scheme.

In this study, the authors investigated various methods, wavelet-based and traditional techniques, for computing spectral
fingerprints. The computational methods were implemented and applied to hyperspectral images. The images were obtained
from airborne hyperspectral remote sensors, namely, the HYDICE. The computational methods were compared in two ways:
(a) in terms of computational expense and (b) in terms of final output. For item (a), the computational expense of currently
used methods and new wavelet-based methods were analytically determined. Furthermore, both methods were benchmarked
for various state-of-the-art systems when applied to hyperspectral data. For item (b), the various methods' outputs, spectral
fingerprints, were compared. Metrics, such as signal-to-noise ratios and cross correlations, were used to determine and
analyze any differences that might exist between the traditional and wavelet-based outputs.

2.  MULTIRESOLUTIONAL DECOMPOSITION AND FEATURE EXTRACTION
For this study, the authors constructed a database of 100 hyperspectral signatures. The database was drawn from a set of four
HYDICE image cubes, provided by the Spectral Information Technology Applications Center. Each data cube is (320 pixels)
× (320 pixels) × (210 spectral channels). Figure 1 illustrates the data cube and the generation of the hyperspectral signature.



For each of the four data cubes, 25 signatures were randomly selected. The signatures were determined randomly by using a
two-dimensional, uniform distribution of dimensions 320 × 320:
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For each data cube, 25 points were drawn from the uniform distribution, and the coordinates within the distribution were used
as the coordinates of the signature within the hyperspectral cube.

2.1. Traditional methods

Traditional methods for computing spectral fingerprints require multiple convolutions with Gaussian filters.1,3 This can be

represented mathematically by letting )(xf  denote a hyperspectral curve and )( yGσ  denote a zero-mean Gaussian filter

with standard deviation σ > 0 :
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produces the smoothing of )(xf . Smoothing progresses as σ  increases. The symbol σ  is called the scale, and ),( σxF
is the scale-space image.4 Typically, a spectral feature refers to a hill or valley contained between two adjacent inflection
points. A scale-space contour refers to an image of the inflection points of the filtered curve for varying scales. As the scale
increases, the number of inflection points decreases. As a result, contours usually appear as an assemblage of closed arches,
each corresponding to a spectral feature of the curve.5 When this technique is applied to hyperspectral curves, the
characteristic shape of the contours leads to the nickname of “spectral fingerprints.” The exact locations of the arch closures
and the rate at which they close can provide important information about the spectral features.
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Figure 1.  Construction of hyperspectral signature database.



In order to locate the inflection points, it is typical to use first-derivative or second-derivative Gaussian filters. This stems
from the fact that when one convolves a first-derivative Gaussian filter with a hyperspectral signature, inflection points will
produce extrema in the output curve (or spectral fingerprint). The extrema are tracked across the varying scales, and a plot of
the extrema forms the spectral fingerprint. If a second-derivative Gaussian filter is used, the inflection points will produce
zero-crossings in the output curve. Either way, the resulting spectral fingerprints are theoretically identical. For this research,
the first-derivative Gaussian filter is utilized. The scale-space image is computed by direct convolution. Figure 2 provides an
example of a scale-space image and spectral fingerprint for an extracted hyperspectral signature. Figure 3 shows the results of
using the traditional convolution method at scales 1 through 8, where the first-derivative Gaussian filter has been used.

2.2.  Wavelet-based methods

The scale-space image can be easily computed using wavelet transforms.5-7 The continuous wavelet transform (CWT) can be
defined as the following convolution:
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x
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where s is the scale and )(xsψ  is the scaled or dilated wavelet function. It is easy to see that if the wavelet function is the

first-derivative Gaussian function, this equation is identical to the traditional scale-space image implementation previously
described. When the mother wavelet (scale s = 1) has a variance of σ2, the scale factor s is equivalent to the standard
deviation of the Gaussian function. Note that certain mathematical restrictions apply to the choice of wavelet function, and
the first-derivative Gaussian functions satisfy those restrictions.
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Figure 2.  (a) Example hyperspectral signature, (b) scale-space image using first-derivative
Gaussian filter, and (c) spectral fingerprint.



Fast algorithms can be used for computing the wavelet transform in order to avoid the computational expense of direct
convolution. One such algorithm is described by Mallat and Zhong.7 It can be used for computing a discrete-wavelet
transform that uses dyadic scales (for integers k). For this algorithm, the wavelet function is characterized by two discrete

filters, H and G. The notation Hk and Gk denote the upsampling of filters H and G by the factor of 2
k
. The following algorithm

computes the discrete-wavelet transform, )(12
xfW k + , at scale 12 += ks  of the input signature )(xf :
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The computation of the wavelet transform is an iterative process where the input signature is decomposed into approximation
and detail signals. At each iteration, the approximation is then further decomposed into coarser approximation and detail

signals. For example, at each scale 2
k the current approximation signal, )(

2
xfS k , is decomposed into the next higher-scale
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Figure 3.  Results of traditional methods – direct convolution with Gaussian filters.
.



approximation signal, )(12
xfS k + , and a detail signal, )(12

xfW k + . Due to discretization, the wavelet extrema

corresponding to an inflection point in the original spectral curve do not have the same amplitude at all scales as they should
in the continuous model. The coefficients λk  compensate for this discrete effect, and they correspond to the filters H and G.
To avoid discontinuities at the boundaries, the endpoints of the original spectral curve are extended using mirror reflections.
Figure 4 provides an example of the application of this method to an extracted hyperspectral curve.

3.  COMPUTATIONAL EFFICIENCY ANALYSIS
The computational efficiency analysis of the radiance fingerprint methods can be divided into two portions:  (a) the analytical
assessment and (b) the experimental benchmarking. Two algorithms, the direct convolution with the first-derivative Gaussian
filter and the Mallat/Zhong wavelet algorithm, were analyzed. For thoroughness, two other wavelet methods were
analytically assessed. These included a standard CWT algorithm and a fast algorithm for computing the CWT at integer
scales.

3.1. Computational expense—analytical assessment

The order of complexity for direct convolution is

Od= O(N⋅ s
s

P

=
∑
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where N is the number of samples in the original spectral curve and P is the total number of scales utilized. At each scale, s, a
direct convolution must be performed. Let L be the length of the original, first-derivative Gaussian filter. At the first scale,
the operations required are (L multiples per sample of the spectral curve) and ((L-1) additions per sample of the spectral
curve). Therefore for the first scale, a constant of (C=2L-1) operations must be performed per sample. At each scale, the
filters are dilated by the scaling factor s, or σ. Thus, the length of the Gaussian filter becomes L ⋅ s. At scale s, the number of
operations per sample is (2Ls - 1), which becomes (2Ls) for very large scales. Thus, the number of operations per scale is
(2LsN). For the total P scales, the number of operations must be summed, such that the number of operations becomes
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Figure 4.  Results of wavelet-based method – Mallat/Zhong algorithm.
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The term (2L) is a constant, and thus the order of complexity becomes Od.

The order of complexity for the Mallat/Zhong wavelet algorithm is OMZ=O(N⋅logN), where N is the number of samples in the
original spectral curve. This is O(N) per scale with a total of log(N) possible scales. At each scale, a direct convolution must
be performed to compute the wavelet transform, )(12

xfW k +
, and a direct convolution must be performed to compute the

approximation signal, )(12
xfS k + . Let the length of the original spectral curve be N, the length of the original filter G be L,

and the length of the original filter H be M. At the first scale, the operations required are L + M multiples per sample of the
spectral curve and (L - 1) + (M - 1) additions per sample of the spectral curve. Therefore for the first scale, a constant of

(C=2L+2M-2) operations must be performed per sample. At each scale, the filters are upsampled by a factor of 2
p
. This

introduces 2
p
-1 zeros between each sample of the filters, which theoretically would increase the lengths L and M at each

scale. However, the algorithm can be implemented in an intelligent way so as to avoid the multiples/additions with the zero-
samples of the filters. For example, when implementing this algorithm on a DSP chip, one would use an indirect addressing
mode indexed by the amount of upsampling at each scale. In this way, the order of complexity is independent of the scale.
Thus for each scale, the order of complexity is (C⋅N), or O(N). Since this method uses dyadic scales, the total number of
utilized scales is log2N. As a result, the total order of complexity is O(N⋅logN).

For a standard CWT without the use of filter banks, the order of complexity is the same as for the direct convolution of a
first-derivative Gaussian filter

Ocwt=O(N⋅ s
s

P

=
∑

1

) (7)

where N is the number of samples in the original spectral curve and P is the total number of scales utilized. This stems from
the discussion in Section 2 about the similarities between the direct convolution and the CWT. At each scale, s, a direct
convolution must be performed. Let L be the length of the original wavelet function. At the first scale, the operations required
are L multiples per sample of the spectral curve and (L - 1) additions/sample of the spectral curve. Therefore for the first
scale, a constant of (C = 2L - 1) operations must be performed per sample. At each scale, the wavelet functions are dilated by
the scaling factor s. Thus, the length of the wavelet function becomes L ⋅ s. At scale s, the number of operations per sample is
(2Ls - 1), which becomes (2Ls) for very large scales. Thus, the number of operations per scale is (2LsN). For the total P
scales, the number of operations must be summed such that the number of operations becomes
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The term (2L) is a constant, and thus the order of complexity becomes Ocwt = Od.

A fast algorithm for the computation of the CWT at integer scales was also analyzed.8 The algorithm was developed by Unser
and Aldroubi, and the order of complexity was found to be OUA = O(N). The algorithm utilizes polynomial spline functions
for the wavelet functions. The spline functions can easily be used to approximate the first-derivative Gaussian filter. The
algorithm consists of three steps: (a) initialization, (b) iterated moving sum, and (c) zero-padded filtering. One can go through
these three steps and calculate the number of multiples and additions required per scale. The number of multiples required is
( 2sn ), where ns is the length of the kernel representing the B-spline coefficients of the wavelet function, )( xψ , that have

been upsampled by a factor of s, the integer scale. The number of additions required is ( 12 ++ snn ), where n is the degree

of the spline function representing the wavelet function, )(xψ . The number of total operations per scale is then

(( 12 2
3 ++ snn )⋅N). Thus, the order of complexity per scale is O(N). If we use this algorithm at dyadic scales, the order of

complexity is equivalent to that of the Mallat/Zhong algorithm, OUA = OMZ = O(NlogN). However, since this algorithm allows
for fast computation of the wavelet transform at integer scales, we are not restricted to dyadic scales. This could be of
importance when extracting spectral features from the spectral fingerprint. In general, the spectral fingerprint could be



computed at dyadic scales, but when important spectral content is detected, the integer-scale algorithm could then be used to
compute the spectral fingerprint over a more continuous range of scales.

3.2. Computational expense—experimental assessment

The experimental determination of the computational expense of the spectral fingerprint methods was completed by
computing the number of floating-point operations during the computation of the scalar decompositions, or scale space
images. Note that the Mallat/Zhong algorithm could be implemented in such a way that the zero-multiples are not computed.
Thus a special program was written to compute the total number of the floating-point operations. As a result, for the method
of the direct convolution with Gaussian filters, approximately the total number of addition operations, with respect to a total
of log(N) possible scales, was (386,325), and the total number of multiply operations, with respect to a total of log(N)
possible scales, was (390,144). Similarly, for the Mallat/Zhong algorithm, there were approximately a total of (10,901)
addition operations and a total of (18,776) multiply operations, corresponding to a total of log(N) possible scales. For a
practical view of the difference of the computational expense between the traditional method and the Mallat/Zhong wavelet
method, typical microprocessor chips were chosen to evaluate the computational efficiency based on the criteria of time
costs. For DSP56002 and TMS320C30 chips, it takes 60ns to implement a floating-point addition or a floating-point
multiply. For 333MHz Pentium II and 333 MHz UltraSPARC-IIi chips, it takes 3ns to finish a floating-point addition or a
floating-point multiple. Table 1 shows some experimental results of the computational expense, and Figure 5 illustrates the
contrast of the computational efficiency.

Table 1.  Experimental results of computational expense
"Traditional" method Wavelet-based method

386,325 adds 390,144 muls 10,901 adds 18,766 muls
60 ns/add

DSP56002 60 ns/mul 46.59 ms 1.78 ms
60 ns/add

TMS320C30 60 ns/mul 46.59 ms 1.78 ms
3 ns/add333 MHz

Pentium II 3 ns/mul 2.33 ms 0.09 ms
3 ns/add333 MHz

UltraSPARC-IIi 3 ns/mul 2.33 ms 0.09 ms

4.  COMPARISON ANALYSIS OF TRADITIONAL AND WAVELET-BASED METHODS

Various methods were implemented for comparing the outputs of the algorithms. These methods were designed to determine
and analyze any differences that might exist between the methods' resulting spectral fingerprints. The two algorithms being
compared were the traditional, first-derivative Gaussian-filtering method and the Mallat/Zhong algorithm. The methods for
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comparison included normalized cross correlation and normalized Euclidean distance measures. The comparison was
performed at each level of the decomposition (each scale of the scale-space image). The comparison analysis was not
conducted on the actual spectral fingerprint. In order to create a spectral fingerprint from the scale-space image, the maxima
(or zero-crossings) of the image must be tracked across the varying scales. The technique used to go from the scale-space
image to the spectral fingerprint is the same regardless of the method used to obtain the scale-space image. Furthermore, in
most spectral fingerprints only the maxima (or zero-crossings) are retained; i.e., the fingerprint is a plot of the maxima (or
zero-crossings) locations. By comparing the outputs of the two methods before converting to a fingerprint, a more
conservative measurement of the errors will be made.

The normalized cross correlation at each scale is defined as
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T is the traditional Gaussian-filtered signal and W is the result of the Mallat/Zhong wavelet algorithm. Note that if the two
signals are identical, 1)0( =ϕ . If the two signals are identical except for a linear shift by k samples, )()( kyWyT += ,

then 1)( =kϕ . For this research, the entire cross correlation is computed, and the maximum value and its shift, k, is

recorded. Figure 6 shows a plot of the maximum cross correlation values for various scales; the results are for a hyperspectral
signature selected at random from the database of 100 signatures.
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One can view the scale-space image as a collection of vectors, one for each scale. As a result, vectorial distances can be used
to measure the difference between the results of the two methods. For this study, a normalized Euclidean distance measure is
utilized to compare the outputs of the two methods at each scale. This measure is defined as
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where T is the traditional Gaussian-filtered signal and W is the result of the Mallat/Zhong wavelet algorithm. The Euclidean
distance is measured for each scale. Furthermore, it is computed for various linear shifts in W. Thus, it is similar to the
normalized cross correlation, except that the Euclidean distance is minimized to zero when the two methods produce identical
results. Figure 7 shows an example plot of the minimum Euclidean distances for various scales; the results are for a
hyperspectral signature selected at random from the database of 100 signatures.

For this study, the error measures discussed in the above paragraphs were applied to the 100 hyperspectral signatures in our
database. For each error measure, the mean, µ, and variance, σ 2, of the 100 errors were computed. The resulting means and
variances are listed in Table 2, where µCorr and σ 2

Corr refer to the normalized cross correlation mean and variance,
respectively. Likewise, µEuc and σ 2

Euc refer to the normalized Euclidean distance mean and variance, respectively. It can be
seen that relatively little error is induced by using the Mallat/Zhong algorithm while the computational expense is greatly
reduced.

Table 2. Error analysis for 100 randomly extracted hyperspectral signatures

Scale Corrµ
2
Corrσ

)10( 3−×
Eucµ

2
Eucσ

)10( 3−×
1 1.0000 0.0000 0.0000 0.0000
2 0.9966 0.0061 0.0263 0.5183
3 0.9986 0.0002 0.0120 0.0546
4 0.9972 0.0023 0.0155 0.0636
5 0.9984 0.0013 0.0111 0.0259
6 0.9984 0.0021 0.0081 0.0206
7 0.9945 0.0080 0.0154 0.0198
8 0.9641 0.2088 0.0382 0.0438

Average 0.9935 0.0286 0.0157 0.0997

5.  CONCLUSIONS

The results of this preliminary study indicated that a wavelet-based method is feasible and practical for the analysis of
hyperspectral imagery through the radiance fingerprint. Furthermore, the results indicated that wavelet-based methods can be
computationally efficient as compared to traditional, first-derivative Gaussian-filtering methods. From the experimental
assessment of the two methods, it was clear that the computational expense was greatly reduced. Utilizing the Mallat/Zhong
wavelet-based method, the computational expense was reduced by a factor of about 26. This conclusion also coincided with
the result of the analytical assessment, where the reduction was by a factor of about 30. In this research, the number of
sampling points of each hyperspectral signature was 210, since HYDICE data were used. When using dyadic scales for the
wavelet-based method, the total number of utilized scales was 8. If the signatures were longer (more spectral channels), the
number of utilized scales would increase. With an increase in scales, the computational efficiency gained from using the
wavelet-based algorithms would also increase.

The final outputs (spectral fingerprints) of the traditional and the Mallat/Zhong wavelet-based methods were compared. This
was to ensure that the "fast" algorithms did not cause any major errors in the spectral fingerprints. The outputs of the two
methods were compared at each scale and across all scales. The comparison was conducted using normalized cross-



correlations and normalized Euclidean distances. It was concluded that some differences exist between the traditional, first-
derivative Gaussian-filtering method and the Mallat/Zhong algorithm; however, the induced errors were relatively small.
While a small error was induced, the computational expense was greatly reduced.
Future research in this area includes the use of wavelet-based features extraction from the hyperspectral signatures. With the
use of the wavelet-based algorithms, spectral features can be extracted by the modulus-maximus method. These can quantify
the magnitude, variance, location, and Lipschitz order of spectral features within the signatures. These features are being
investigated for their ability to discriminate between classes of critical signatures.
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