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PROGRAMS FOR ATTRACTINGUNDER-I&J~~ESENTED MINORITY 
STUDENTS TO GRADUATE SCHOOL AND RESEARCH CAREERS IN 

COMPU'I;4TIONAL SCIENCE 

ABSTRACT 

.. _ . -  

Programs have been established at Florida A & M University to attract minority stu- 
dents to research careers in mathematics and computational science. The primary goal of 
the program was to increase the number of such students studying computational science 
via an interactive multimedia leaming environment One mechanism used for meeting this 
goal was the development of educational modules. This academic year program established 
within the mathematics department atFloridaA&MUniversity, introduced students to com- 
putational science projects using high-performance computers. Additional activities were 
conducted during the summer, these included workshops, meetings, and lectures. Through 
the exposure provided by this program to scientific ideas and research in computational 
science, it is likely that their successful applications of tools from this interdisciplinary 
field will be high 
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disclosed or represents that its use would not infringe privately-owned rights. 

2 



Recently, the department of mathematic; at Florida A & M University became 
engaged in a great deal of self-study. Of the new perspectives that emerged fi-om this 
self-examination, one is perhaps the most significant: The mathematics faculty must 
embrace the use of technology in the curriculum. Thus, an early product of this self- 
examination was-the implementation of several novel projects, one-of which will be 
delineated in this report. 

During the academic year 1996-97, a small group of mathematics faculty became 
dedicated to providing FAMU students with an interactive multimedia learning 
environment. This new environment has the potential of dramatically increasing the 
effectiveness and efficiency of instruction and learning at FAMU. At the heart of this 
new project was the development of educational modules on topics from computational 
science. These modules were meant to be more than just multimedia courseware. They 
were to play a central role in a comprehensive instructional solution designed to meet the 
practical requirements of faculty and students. 

As a participant in the Undergraduate Computational Engineering and Science 
(UCES) Project, the department and the university made a commitment to promoting the 
emerging field of computational science. This commitment is manifested by identifying 
and supporting excellence in computational science education at the undergraduate level. 
During the period of this award, the emphasis was on collecting, developing, and 
distributing to FAMlJ students a set of computational science educational materials. 
These materials are problem driven, modular in format, and interactive. Future plans 
include working with other UCES members to produce a set of fill "electronic classes", 
which could become available on-line from the UCES Web Server. 

The following topics have been developed as a preliminary state of educational modules: 

Computerized Tomography -This module is designed to give students an 
introduction to computerized tomography. A brief historical introduction is 
given. A mathematical model of a CT scan is described. Next, using tools 
from computational science, a discretized problem is formulated. This 
formulation used the backproj ection method and discrete Fourier transforms. 
The module ends by solving the discrete problem via an iterative 
reconstruction algorithm. . 

0 Design of a Computer-Based Presentation on Mathematical Modeling 
using Differentia1 Equations: Linear Dynamical Systems - This module 
will be developed for students who are moderately literate in undergraduate 
mathematics, but almost certainly have not taken a course in differential 
equations. The underlying thesis of this effort is that mithematical modeling 
can be introduced, understood, and mastered by such students if difference 
equations are used rather than differential equations. Such an approach does 
not, of course, preclude the eventual, or.even simultaneous, use of differential 
equations. . Holyever, the relative sixpEciPj of difference equations allows a 
student to concentrate on the modeling process, which is not the case n-ith the 
typical differential equation approach. 
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1. 
2. 
3. 
4. 

5. 

Topics 
Introduction to the Card Format. 
Modeling a Savings Account 
Theory of First Order Affine Systems 
Financial Applications 

a.) Certificates of Deposit 
b.) Annuities 
c.) How the Lottery Works 
d.) Loan Amortization 

Political Science Applications 
a.) Partisanship 
b.) Political Attention 
c.) Birth and Death of State Agencies 
d.) Unemployment and Incumbency 

0 Design of a Computer-Based Presentation on Mathematical Modeling 
using Differential Equations: Nonlinear Dynamical Systems - This module 
extends the approach of the above module to nonlinear dynamical systems 
focusing on models of population. 

Topics 
1. Logistic Equation Models 

a.) Limitations of Exponential Growth 
b.) Logistic Model 
c.) Logistic Model of Population Growth 
d.) Logistic Model of Belief Systems 

2. Equilibria and Cobwebbing 
3. Analysis of Logistic Models 

a.) Analysis of the Model of Population Growth 
b.) Analysis of the Model of Belief Systems 

Traffic Flow - This module is a spin-off from the FAMU High School 
Supercomputing Challenge. The traffic flow considered consists of cars 
moving on one side of a divided highway. Rules are developed to describe the 
behavior of a vehicle. These rules are then placed into a model using von 
Neumann and Moore neighborhoods. A simulation of the model is then given 
using cellular automation and Mathernatica. The last Isvo sections of the code 
model traffic flow in one direction on a two lane highway. This code can also 
be used to solve a maze, which is created to model a section of a city . 



Design of a Computer-B,ased 

I.. 

, *  

3 
t 

6.4 

Presentation 
on 

Mathematical Modeling I 

using 
Difference Equations 

Volume I. Linear Dynamical Systems 

Dr. Thomas W. Mason 
.Department of Mathematics 

Florida A&M University 
Tallahassee, FL 32307 

--I - .. . . .  - . . 1. . . . , ”_. . . .  . 



Volume I. Linear Dynamical Systems 
Table of Contents 

Introductory Remarks 
General Layout of a Card 
Dynamical Modeling 
Home 
Modeling a Savings Account 

Theory 
Practice 

Theory of First Order Affine Systems 
Financial Applications 

Certificates of Deposit 
Annuities 
How the Lottery Works 
Loan Amortization 

Political Science Applications 
Partisanship 
Political Attention 
Birth and Death of State Agencies 
Unemployment and Incumbency . 

. 

Volume 1. Linear Dynarnical Systems 

2 
3 
4 
5 
6 

10 
15 
22 
25 
26 
28 
30 
32 
34 
35 
38 
40 
42 



1 ;  7 Introductory Remarks 

.- I This volume - Linear Dynamical Systems - and its companion volume, 

moderately literate in undergraduate mathematics, but almost certainly has not 

1 
i 

i 
I 

I 
h : 

Nonlinear Dynamical Systems, are written for the audience of a student who is 

taken a course in difference equations. The underlying thesis of this effort is that 
mathematical modeling can be introduced, understood, and mastered by such 
students if difference equations are used rather than differential equations. Such an 
approach does not, of course, preclude the eventual, or even simultaneous, use of 
differential equations. However, the relative simplicity of difference equations 
allows a student to concentrate on - and participate in - the modeling process, 
which is not the case with the typical differential equation approach. 

* - k .  ’ 

The subject matter for the presentation has been chosen with the adolescent 
student in mind. It is the experience of the author that such students are primarily 
absorbed with matters focusing on either money or sex. Hence, Volume 1 presents a 
difference equation approach to linear dynamical systems concentrating on models 
of personal finance with a short venture into politics. Volume 2 extends the 
approach to nonlinear dynamical systems focusing on models of population. 

.. 

The presentation shows how the material could be presented to students . 
using a hypertext system of the genre of Hypercard@. However, the material does 
not currently exist in a hypertext medium. Therefore, the computer screen displays 
are simply representative of the sorts of options that students could be given as they 
study, explore, and master Linear Dynamical Systems. 

The material presented in this volume was excerpted from the following 
references: 

Hypercard Reference Manual, Apple Computer, Inc., 1993 
Discrete Dynainical Sysfenzs: TIzeoiy and Applicafiorzs, James ‘T. Sandefur, 1990, 

Mathematical Thinking About Politics: An Iizfroductioiz f o  Dismefe Time Sytenzs, 
Clarendon Press 

G. R. Boynton, 1980, Longman, Inc. 

Ifolrime 1. Linear Dynamical Systems page 2 



General Layout of a Card 

. .  

The presentation is given on a series of cards. The general layout of a typical 
card is shown above. At the top is a statement of the Topic under discussion. The 
discussion material for the card will be given in the blank space. This material may 
consist of sentences, diagrams, equations, pictures, or combinations of them all. For 
this report, pictures are excluded because the technology is not available. 

The triangles and rectangles in the bottom strip furnish the hypertext 
capabilities of the presentation. The triangular buttons represent the ability to move 
to the immediately-preceding or immediately-following card. The button labeled 
"Home" represents the ability for the student to transfer to the beginning of the 
entire presentation. The button labeled "Quit" represents the ability for the student 
to terminate the presentation. The' unlabeled buttons represent optional card 
locations that are dependent upon the context of a given card. 

In addition, words in the discussion material which are underlined have the 
same function as buttons in the ,bottom strip. Those words allow students to 
transfer to other cards while in the middle of the presentation to get "refresher" 
information relevant to the concepts being presented. After reading the "refresher" 
information, the student can return to his original location in the presentation. 

Volume 1. Liirear Dymmical Systems P a s  3 



Reality 
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Mathematics 
1 

Translate into a 
mathematical Something we want 

to understand better 

4 
Is the problem better understood? - 1  

I i I 1 1 

I Apply mathematical 

1 

.I-- *. . - 

transformations to 
get a "solution" 

Translate the "solution" 
into real-world terms 

I I I I 

We begin our discussion with a graphic presentation of the essential steps in 
dynamical modeling. 

V O ~ U ~  I. Linear Dynamical Systems 



WELCOME to a study of Linear Dynamical Systems. This is HOME! page. 

If this is your first use of this system, click on the triangle on the bottom 
that points to the right. It will start you on your first module. 

If you are returning for more study, click on one of the topics listed below: 

I 

Modeling; a Savings Account 
Theorv of First Order Affine Svstems 
Financial Applications 
Political Science Applications 

Whenever you want to stop, click on the "Quit" button. 

Although the "Home" page is not exactly the first page in our presentation, it 
serves as a traffic director. When the student begins, he will pass through this page 
and begin the first module - Modeling a Savings Account. On subsequent uses of 
the system, the student can jump immediately to the last module he was studying. 
At any time, the student can visit this page by clicking on the."Home" button at the 
bottom of the screen and be re-directed to ,any part of the presentation.. 

Volume 1. Linear Dynamical Systems 



Situation: 

1 ,  $1000 hl 
c 

5f 
Ls At the beginning of each year, the Bank 

increases the account by 10% of the 
current account balance. Problem: 

How much will we have 
in 10 years? 20 years? 

s 

We have identified the problem. Next, we will translate into a mathematical 
relations hip. 

i 

.-.I 

P I.- 

- ,  

f 
V O I U ~ E  I .  Linear Qynamical Systems 

L. J 



i ' t  

! I  

I 

g 

Translation: Let A h )  be flze amounf in our accounf a f  flie beginning of year n. 

A(0) is flze amount a f  time 0, 
A(0) = 1000 

Problem: 
How much will we have 
in 10 years? 20 years? 

A(10) = ? A(20) = ? 

At the beginning of each year, the Bank 
increases the account by 10% of the 
current account .balance. 

A(1) = 1000 + 0.1*1000 = 1000 + 100 = 1100 
A(2).= 1100 + 0.1*1100 = 1100 + 110 = 1210 

c I 

!I 
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I Translation: Let A(n) be the amount in our accounf at the beginning of yeur n. 

1 .  $1000 

A(0) is the amount at time 0, 
A(0) = 1000 

At the beginning of each ear, the Bank 
iriaeases the account by 0% of the 
current account balance. 

Y 
A(lzt-1) = A(Iz) + O.I*A(fz) = 1 .IA(iz) I 

Model: 
A(rzt-I) = l .lA(n), zuliere A(0) = 1000 

The model is complete. Note that a new button, ’Theory,” has been added. 
The student now has the option of clicking this button to begin to learn the 
terminology and theory associated with (linear) difference equations. If the student 
wishes, he may defer studying this information until specific terminology has been 
used. This ”just in time” approach to imparting information is one of the 
important strengths of hypertext presentations. 

I’olume I. Linear Qynamiral S.ysiems 
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Translation: 
Model: 

Lef A(n) be fhe amount in our accounf a f  fhe beginning of year n. 
A(n+l) = l.IA(n), where A(0) = 1000 

Mathematical Solution: 

To get a general solution, let's replace the factor of 0.1 (10%) by I. 
Thus, the bank adds 1001% of the account balance each year. 

We know that A(nd-1) = A(n) + I*A(n) = (1 +.I)A(n), so  let's take a few terms: 
A(1) = A(0) + I*A(O) = (1 + I)A(O) 
A(2) = A(1) + I*A(1) = (1 + I)A(1) = (1 + I)[(1 + I)A(O)] = (1 + I)2A(O) 
A(3) = A(2) + I"A(2) = (1 + I)A(2) = (1 + I)[(l+ I)2A(0)] = (1 + I)3A(0) 

Another button has been added, the Tractice" button. When the student 
exercises this option, he will be given modeling exercises with both hints and 
answers. 

All stacks subsidiary to a given main topic are listed after topic. Thus, on the 
following pages, you will find the card(s) for 'Theory" and "Practice," both of which. 
are tailored to the topic: Modeling a Savings Account. In future topics, the terms 
"Theory" and NPractice" could also occur, but those cards will be tailored to that 
particular main topic. 

Volume I .  Linear Dynamical Systems 



Suppose we have a function y = f(x). 

A first order discrete dynamical system is a sequence of numbers 
A(n) for n = 0,1,2, ... such that each number after the first one is 
related to the previous number by the relation 

A(n+l) = f(A(n)) 

For example, in Modeling a Savings Account, we developed the relati 

A(n+l) = (1 + I)A(n) 

n: 

This is the first example of a subsidiary stack. The next several cards discuss 
the terminology and theory appropriate to the model developed in "Modeling a 
Savings Account." In other modules, there will also be Theory stacks which will 
discuss the terminology appropriate to the models developed in those modules. 
The hypertext development system will keep the various Theory stacks separate 
even though I am using the same term on the button. 
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'1 
The order of a system is the number of initial values of A(n) that are 
needed for calculations. 

For example, for A(n+l) = (1 + I)A(n), A(1) is calculated as 

A(1) = (1 + I)A(O) 

At this point we can now calculate A(2), and then A(3), etc. We only 
needed to know A(0) to get going. There is no way to calculate A(0) 
because o w  index n cannot be negative. 

. 

11. '1 

,f 
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How many initial values are needed for this dynamical system? 
A(n + 2) = 2A(n) 

To get A(2), we need A(0): A(2) = 2 A ( O )  
To get A(3), we need A(1): A(3) = 2A(1) 

Once we have A(2) and A(3), however, we can calculate 
all remaining terms: A(4) = 2A(2) 

A(5) = 2A(3) 
A(6) = 2A(4) 

Two initial values are'needed, so this is a SECOND order dynamical system. 

Volume 7. Linear Qyilarnical Sysfems p q e  12 
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. .  

The most general form of a first order linear dynamical systemis 
A(n+l) = rA(n), for n = 0, 1, ... 

A solution to a dynamical system is a function A(k) defined for all 
integers k 2 0 that satisfies the dynamical system 

A general solution satisfies the dynamical system and involves a 
constant c which can be determined once an initial value is given. 

A particular solution satisfies the dynamical system and, when k- 0, 
satisfies the equation A(O) = a,. 

Thus, the particular solution for the dynamical system given above is 
= aoric 

t 
! 

.. 

! 

. I  

!I 
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SUmmary: 
The most general form of a first order linear dynamical system is 

The particular solution for the first order linear dynamical system is 
A(n+l) = rA(n), for n = 0, 1, ... 

A&) = aork 
Note that the behavior of the solution of first order linear dynamical 
systems is determined by the size or sign of the constant r. 

If I r I (1, then the solutionA(k) goes to zero, either exponentially or 
in an oscillatoIy fashion. 

If I r I > 1, the solution goes exponentially to either positive or negative 
infinity. 

This is the end of the "Theory" stack for first order linear dynamical systems. 
At this point the student would either click "Practice," "Home" (to be directed to the 
next module), or "Quit." 

Volume I. Linear Qynamical Systems page I4 
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On the screens to follow, you will be given a problem statement. 
You are derive the system yourself (on a piece of paper), before 
moving to the next screen which will present the solution. 

At any point, you can go to 'Theory" to study the terminology and 
theory appropriate for this module, you can go "Home" to be 
directed to another module, or you can "Quit." 

Go to the next screen to begin. 

This is the second example of a subsidiary stack, a stack for giving practice 
exercises to the student. The first card gives the directions, and subsequent cards 
present the practice exercises with illuminating commentary. 
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--<-__Suppose a bank pays 5 per cent interest on its savings accounts, 
compounded annually. 

Let A(n) be the amount of money in the account at the beginning 
of year n. 

(a) Formulate a dynamical system for the amount in the account 
in year n+l using the amount in account in year n. 

(b) Given that the initial deposit is A(0) = 200, find the amount 
in the account after 1,2,3, and 4 years. 

(c) Find the general solution to the dynarnical system. 

And the solution: . 

Let A(n) be the amount of money inthe account at the beginning 
of year n. 

(a) amount in year r z+ l  = amount in year iz + interest from year iz 

A(n+l) = A(n) + 0.05A(n) 
A(n+l) = 1.05A(n) 

(b) A(l) = l.O5A(O) = 1.05(200) = 210 
A(2) = 1.05A(1) = 1.05(210) = 220.5 
A(3) = 1.05A(2) = 1.05(220.5) = 231.525 
A(4) = 1.05A(3) = 1.05(231.525) = 243.10125 

(c) A(k) = (1.05)kA(O) 

Volume I. Linear Qynamical S.ysiems Page 16 
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Suppose a broker charges a 2 per cent service charge on the money 
in your savihgs account each year. Further, this broker makes bad 
investments each year and you do not earn any interest on your account. 

Let A(n) be the amount of money in the account at the beginning 
of year n. 

(a) Formulate a dynamical system for the amount in the account 
in year n+l using the amount in account in year n. 

(b) Given that the initial deposit is A(0) = 500, find the amount 
in the account after 1,2,3, and 4 years. 

r, - _ _  
(c) Find the general solution to the dynamical system. 

Let A(n) be the amount of money in the account at the beginning 
of year n. 

(a) amount in year r z + l =  amount in year IZ - amount lost fromyear iz 

-A(n+l) = A(n) - O.O2A(n) 
A (n+l) = 0.98A (n) 

(b) A(1) = 0.98A(O) = 0.98(500) = 490 
A(2) = 0.98A(1) = 0.98(490) = 480.2 
A(3) = 0.98A(2) = 0.98(480.2) = 470.596 
A(4) = 0.98A(3) = 0.98(470.496) = 461.18408 

(c) A(k) = (0.98)kA(O) 
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Suppose a bank pay@ per cent each year on its checking accounts, 
but it also d e d u h  40 dollars per year as a service charge (after 
first adding on the interest). 

Let A(n) be the amount of money in the account at the beginning 
of year n. 

(a) Given that the initial deposit is A(0) = 1000 dollars, find the amount 
in the account after 1,2, and 3 years. (Assume no checks were 
written) 

(b) Formulate a dynamical system for the amount in the account . 
in yeai n?l using the amount in the account in year n. 

Let A(n) be the amount of money in the account at the beginning 
of year n. 

(a) A(1) = 1000 + 0.08(1000) - 40 = 1000 + 80 - 40 = 1040 
A(2) = 1040 + 0.08(1040) - 40 = 1040 + 83.2 - 40 = 1083.2 
A(3) = 1083.2 + 0.08(1083.2) - 40 = 1083.2 + 86.656 - 40 = 1129.856 

(b) amount in year n+1 = amount in year rz + interest for year n 
- service charge 

A(n+l) = A(n) + 0.08A(n) - 40 
A(n+l) = 1.08A(n) - 40 

Note: This is a first order system (how many initial values 
are needed?), but we don't yet know how to find the 

Volume 1. Linear ?ynamical Systems page 18 
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Suppose that you borrow 2000 dollars from a friend. You agree to 
add 1 per cent interest each.month to the amount of the load that 
is still outstanding and also to pay your friend 150 dollars each month. 
Your friend insists that the interest is first added on to what you owe 
and then your 150 dollar payment is subtracted. 

Let A(n) be the amount of money owed at the beginning of month n. 

(ajFormulate a dynamical system for the amount owed in month n+l 
using the amount owed in month n. 

. L. La*&-,.* . 

Let A(n) be the amount of money owed at the beginning of month n. 

amount owed in month n+I = amount owed in month IZ 
+ interest on amount owed in month It 
- payment to friend 

A(n+l) = A(n) + O.OlA(n) - 150 

A(n+l) = l.OlA(n) - 150 

Volume 1. Linear Dymmiu2Z Systems pQge 19 



Situation #1: :i .:Z. E? 

Suppose it costs 120 dollars plus 20 cents a d e  to rent a car 
for a week. Let A(n) represent the total cost for renting the car 
if you drive for a total of n miles. 

Situation #2: 
To make a telephone call to New York City costs 45 cents for 
the first minute and 33 cents for each additional minute. Let 
A(n) represent the cost of a call lasting for n minutes. 

For each Situation, you are to write a dynamical system 
relating A(n+l) in terms.ofA(n).. Before you write the general 
system, write expressions, for A(O), A(1), A(2), and A(3). 

Situation #1: A(n) is the total cost after driving n miles. 
A(0) = 120 
A(l) = A(0) + 20 
A(2) = A(1) + 20 
A(3) = A(2) + .20 . 

A(n+l) = A(n) + 20 (n = 0, ...) 

Situation #2: A(n) is the cost of a call lasting n minutes. 
A(0) = 0 
A(l) = 45 
A(2) = A(1) + 33 
A(3) = A(2) + 33 

Volume 1. Linear Dynamicnl Systems page 20 



Situation #1: 
Let A(n) be the number of gallons of gas left in a car after driving 
n miles. The car originally had A(0) = 12 gallons, and it goes 20 
miles per gallon of gas [Note: That is 0.05 gallons per mile driven.] 
Write a dynamical system describing the amount of gas left after 
driving n+l miles in terms of the amount of gas left after driving 
n miles. 

Situation #2: 
Suppose that a person takes a pill containing 200 milligrams of a 
drug every 4 hours, and assume that the drug goes into the blood- 
stream immediately. Also assume that every 4 hours the body . 
eliminates 20 per cent of the drug that is in the bloodstream. 

Situation #1: A(n) is the number of gallons left in a car after driving n miles 
when the car consumes 0.05 gaUons per mile driven 

A(0) = 12 
A(1) = A(0) - 0.05 
A(2) = A(1) - 0.05 
A(n+l) = A(n) - 0.05 (n = 0, ...) I 

Situation #2: A(n) is the amount of drug in the bloodstream after taking . 

the nth pill 
A(0) = 0 
A(1) = 200 
A(2) = 200 + 0.8A(1) 
A(3) = 200 + 0.8A(2) 
A(n+l) = 200 + 0.8A(n) (n = 1, ...) 

Volume I. Linear Dyilamical Systems page 21 



In the section Modeling a Savins Account you were introduced to the 
plain vanilla first order linear dynamical system 

A(n+l) = rA(n), 
which has the solution A&) = IkA(0). 

-1 

That system didn't have many realistic applications. Butnow with 
a minor modification, we have the first order A F m  dynamical system: 

A(n+l) = rA(n) + b (b is a constant). 

For example, you have a savings account with annual interest and you 
add a constant amount to -the account at the beginning of each year. 
That situation can be modeled with a first order affine dynamical system. 

. 

But models are no good if we can't get a solution. So, first we need the 
solution of: A(n+l) = rA(n) + b. 

'This section has no interaction, so two cards are displayed on each page. 

A real advantage of working with difference equations is that 
the mathematics is so accessible and the approach is so straight- 
forward. Now, how did we solve A(n+l) = rA(n)? We wrote some 
terms and saw a general pattern. Let's do the same thing for 

A(n+l) = rA(n) + b. 

A(1) = rA(0) + b 
A(2) = rA(1) + b = r[rA(O) -!- b] + b = rZA(0) + rb + b 

A(3) = rA(2) + b = r[rZA(O) + I% + b] + b 
= $A(O) i- r2b + ib + b 
= $A(O) -+ b(1 + r i r2) 

= SA(0) + b(1 + r) 
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Since A(3) = r3A(O) + b(l + r + $), we can see the form of A(k): 
, .  

, - _  
A(k)=rkA(O)+b(l+r+$+ ...+$-I). 

But, what can be done with that god-awful term in parentheses? 
Fortunately, a clever person noticed that: 

1 + r +  IC! + ... + (1 - &)/(I - r) 

Thus, A(k) = rkA(0) + b[(l - rk)/ (I - r)], which can be simplified to 

This form is not so bad, and it contains the repeating term, b/ (1-r). 

To see the significance of the repeating term, b/ (1-r), we must take a slight 
detour from our derivation of the solution of first order affine systems. 

A first order affine system, in fact any difference equation, is said to be in 
EQUILIBRIUM if every term has the same value -A(O) = A(1) = A(2) = ... 
Let the equilibrium value be a. Then, for A(n+l) = A(n) + b, both A(n+l) 
and A(n) will equal a. Thus 

a = r a + b  

a = b/ (1-r) 
(1-r)a = b 

Our repeating term is the EQUILIBRlTJM value for the fiEt order affine 
system. And note that the system has no equilibrium if r = 1. 
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f -? So we also need to consider the special case of the 
first order affine system with r = 1: A(n+l) = A(n) + b. 

A(1) =A(O) + b 
A(2) = A(1) + b = A(0) + b + b = A(0) + 2b 
A(3)=A(2)+b=A(O)+2b+b=A(O)+3b 

so, A(k) = A(0) + kb 

In other words, all we're doing in this system is adding the 
constant b at each step. 

Thus, the first order affine system: 
A(n+l) = rA(n) + b 

has one of the following solutions: 

when r # 1: 
A(k) = &[A(O) - a] + a 

where a = b/ (1-r) 

when r = 1: A(k) = A(0) + kb 
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In this section, we wiU use the first order affine dynamical system . ' 

to model the following applications: 

Certificates of Deposit 
Annuities 
How the Lotterv Works 
Loan Amortization 

The topics are independent of one another. Just click on the one 
you want. To return here, click on "Financial" at the 
bottom of the page. 

' I  

This page serves as the "home" page for all financial applications 

--, " , .  
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A Certificate of Deposit (CD) is a financial instrument where you 
give the bank a sum of money and they promise to give you a 
guaranteed percentage of interest in return. But, you can't get 
your money back in the interim. It's tied up for the lifetime of 
the CD. 

Relatively short term CDs are now paying 6%, so let's say we 
could get long term CDs paying 7%. Further, you have a long 
worklife ahead of you. 

So, if you deposited the same amount each compounding period 
(say, every quarter), and the CD is paying 7% interest, compounded 
quarterly, how much would you need to deposit every 3 months 
to have a million dollars in 20 years? in 30 years? in 40 years? 

Model: 
the amount in quarter n+l = amount from quarter n 

+ quarterly interest on amount from quarter n 
+ deposit for quarter n+l 

A(n+l) = A(n) + (0.07/4)A(n) + b 
A(n+l) = 1.0175A(n) + b 

Solution: 
a = b/ (1-r) = b/ (1 - 1.0175) = b/ (-0.0175) = - 57.14 b 
A(0) = b 
A&) = $[A(O) - a] .+ a = (1.0175)k[b - (-57.14 b)] - 57.14 b 
AQ = (1.0175)k[58.14 b] - 57.14 b 
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If we want $1,000,000 [this will be A&)] in 20 years (k is 
20 x Qquarters = 80 quarters): 

1,000,000 = (1.0175)m[58.14 b] - 57.14 b 
1,000,000 = 175.79 b 

b = $5,688.55 (or $22,754.20 annually) 

For 30 years: 
1,000,000 = (1.0175)QO[58.14 b] - 57.14 b 
1,000,000 = 409.1 b 

b = $2,444.42 (or $9,777.68 annually) 

For 40 years: 
2 L J .  1 000,000 .-- = (1.0175)160[58.14 b] - 57.14 b 

1,000,000 = 876.08 b 
b = $1141.45 (or $4,565.80 annually) 'I 

I 

._*. 

1 
,I 
1 

A , , ,  
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Let's say you now have the $1,000,000 that you saved for for 40 years and 
you're now 65 years aid. Further, let's say that you can get a guaranteed 
5% at the bank (remembr;i;'you can't touch the money if it's in CDs). 

You could live off the annual interest of $50,000 or you could take $50,000 out 
of the million and put the rest into 1-year CDs at say 6% and get $57,000. 
The nice thing here is that when you die, you would be leaving the whole 
million to your kids. 

On the other hand, SCREW THE KIDS! In fact, you want $75,000 per year 
because YOU HAVE NEEDS that have been deferred by saving $5,000 per 
year for 40 years. 

Don't go to the nexf p5gSuntilyou have written and solved a first order 
affine dynamical system model to determine how long the million will last. 

Model: 
We assume that we start with A(0) = 1,000,000 and receive an 

annual interest of 5%. Further, we are taking a lump s u m  of $75,000 
each year. (The calculations are nicer if we forego the first year.) 

If A(n) is the amount of money in our account at the beginning of 
year n, we want to know the value of k such that A(k) = 0. 

amount in year n + 1 = amount in yearn 
+ interest for year n 
- withdrawal of $75,000 

A(n+l) = A(n) + O.O5A(n) - 75000 = 1.05A(n) - 75000 
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Solution: A(k) = &[A(O) - a] + a 

r = 1.05 
" 2 ~ ' - , - .  l[ir , I 

A(0) = 1,000,000 
b = -75,000 
a = b/ (1-r) = (-75000)/ (1 - 1.05) = 1,500,000 

A&) = (1.05)k[1,000,000 - 1,500,000] + 1,500,000 = 0 
500,000(1.05)k = 1,500,000 
(1.05)k = 3 

At this point you can use logarithms, calculators, spreadsheets, whatever 
to find that k is between 22 and 23. In other words, you better kick the 
bucket about 87 or your kids will do the job themselves! 
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Let's now look at another annuity - the State Lottery. This again is an 
annuity. A lump s u m  of money is put in an interest-bearing account 
and the interest (and part of the principal) is disbursed over a period of 
years. In this case, it's a fixed number of years - 20. 

Our interest is in flnding out how much the State "makes" on the Lottery 
money. That is, does all of the money go to the winners? 

So, now your task is to write a first order affine dynamical system to 
determine how much money should be put in an account yielding 8% 
annual interest (the State can get a good deal!) and be depleted after 20 . 
annual payments of $50,000 each (that's a million-dollary lottery win). 

Model: 

yield an annual interest of 8%. Further, we are taking a lump sum of 
$50,000 each year. (The calculations are nicer if we forego the first year.) 

If A(n) is the amount of money in our account at the beginning of 
year n, we want to know the value of k such that A(k) = 0. 

We are looking for the starting amount, A(0). That amount will 

amount in year n + 1 = amount in year n 
+ interest for year n 
- withdrawal of $50,000 

A(n+l) = A(n) + 0.08A(n) - 50000 = 1.08A(n) - 50000 
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Solution: A&) = &[A(O) - a] + a .  
1 <  

r = 1.08 
k=20 
A(0) =?  
b = -50,000 
a = b/ (1-r) = (-50000)/(1- 1.08) = 625,000 

A&) = (l.O8)2O[A(O) - 625,OOOJ + 625,000 = 0 
4.66A(0) - 2,912,500 + 625,000 = 0 
4.66A(0) = 2,287,500 
A(0) = 490,879 

< > . .- ._ 
In other words, the state gets about half of the money for itself! Does this 
begin to explain why state lotteries are so attractive to politicians? 
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You got a student loan at 10%. At the time you graduate, you owe $15,000. 
You're given 3 options: 5 years, 10 years, or 15 years. Which should you 
take? 

You should be getting pretty good at this. Write a linear affine dynamical 
system model to determine the monthly payment. Use a monthly interest 
rate of O.l/ 12. 

Model: 

A(n) is the amount of money that we owe at the beginning of each month, 
and we want to know the value of b such that A(k) = 0 for k = 60,120, or 180. 

amount owed in month n + 1 = amount owed in month n 
+ interest on amount owed in month n 
- monthly payment 

A(n+l) = A(n) i 0.0083A(n) - b = 1.0083A(n) - b 

1 Financial 
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A Q  = (1.0083)~[15,000 + 120.5 b] - 120.5 b = 0 

k = 60: b = $318.38 total amount paid = $19,102 
k = 120: b = $197.88 total amount paid = $23,746 
k =  180: b = $160.80 total amount paid = $28,944 

I Pay the loans, but make the saqjfice, if you can, and pay it quickly. 

Solution: A&) = &[A(O) - a] + a 

r = 1.0083 
k = 60,120, or 180 (Ill show the details for k = 60) 

2. > *- . 

A(0) = 15,000 
b = ?  
a = b/ (1-r) = b/(l - 1.0083) = -120.5 b 
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As one might imagine, the applications of dynamical systems to be found 
in political science are much wordier than those of financial applications. 
Therefore, these applications tend to drone on from page to page. Please 
be patient, though, because the material may seem old familiar but the 
treatment is quite novel. 

I have extracted applications on: 
Partisanship 
Political Attention 
Birth and Death of State Agencies 
Unemplovment and Encumbencv 

At any point the "PoliSci" key will return you to this page, from which your 
can click onto another application. "Home" and "Quit" are always available. 

This is the "home" page for the Political Science'Applications. The first 
application, "Partisanship," is carried through to a model and its solution. The 
other applications are modeling opportunities for the students as data is not 
available to create an actual model. One of the intriguing elements of Boynton's 
work in the application of dynamical systems to political science is his use of models 
for qualitative analysis. 

I 
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A fact about American politics that is part of the general lore is that 
individuals divide themselves into Democrats and Republicans. We call 
this partisanship. 

The strength of partisanship varies; some people think of themselves as very 
strong Democrats or Republicans, and some as not so strong Democrats or 
Republicans. 

One might think that strength of partisanship is related to age. That is, 
younger adults (18 - 35) are less likely to think of themselves as strong 
partisans than are older adults (55 - 70). 

It is also known that partisans of one party are more likely to vote for 
candidates of that party than they are to vote for candidates of the other 
party. After all, that's what "partisan" means. 

But all studies of partisanskpamong children show that partisanship has 
its beginnings well before the first vote, and that the partisanship of 
children is directly linked to the partisanship of their parents. 

In the 1950s research was conducted in the United States and France on 
partisanship in the respective adult populations. The level of partisanship 
was vastly different in the two countries. In the United States, 75% of the 
adult population thought of themselves as partisans of one or the other party. 
In France, only 24% of the population felt similar partisan attachments. 
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The individuals interviewed were also asked about the partisan attachments 
of their parents. In the U. S., 76% of those interviewed could remember the 
partisan attachment of their parents; in France, only 25%. 

But when the data was analyzed, an unexpectedly similar pattern of political 
learning in the two countries is revealed: 

Know Father's Party 
France us France us 

Don't Know Father's Party 

Partisan 79% 82% a% 51% 
Not partisan 21% 18% 52% 49% 

Of those who could remember their father's party, 80% (regardless of country) 
.were themselves partisan; of those who could not remember, 50% were partisan. 

. . . . . . . . . . . . .  . . . . . . . 

What is needed is a formal representation of this learning process which will 
provide insight into the way levels of partisanship will change over time. 

Let A(n) represent the proportion of partisans in the current generation. Then, 
A(n-1) is the proportion of partisans in the previous generation, the generation 
of their parents. Further, [l - A(n-l)] is the proportion of the previous gene- 
ration who were not partisans. 

Then, from the data given on the previous card, we know that 80% of the 
parents who were partisan will have Children who are partisan, and 50% of 
the parents who were not partisan will have children who are partisan. 

Thus, A(n) = 0.8A(n-1) + 0.5[1- A(n-l)] = 0.3A(n-1) + 0.5 
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, From the presentation given in Theorv of First Order Affine Svstems, we 
know how to solve this system: 

A(n) = 0.3A(n-1) + 0.5 

We are, however, used to seeing such systems advanced one period 
A(n+l) = 0.3A(n) + 0.5 

Solution: r = 0.3 
a = b/ (1-r) = 0.5/ (1-0.3) = 0.714 
A(k) = &[A(O) - a] + a 
AB) = (0.3)k[A(O) - 0.7141 + 0.714 

""As k gets large, (0.3)k will go to zero, leaving A(k) to apprach 0.714. Thus, 
our model predicts partisanship will increase in France and drop in the US. 

J 

L ,  1 

= -.-. 
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There was a time whenmost of the food consumed was produced either by 
the individual family unit or by one's neighbor. Bread was baked each day. 
by the local bakery. Meat was grown and slaughtered locally. In general, 
food production was a small-scale local operation. 

As that changed, farms became larger, food was transported over longer and 
longer distances, and buyers and sellers became more concerned about the 
appearance of the food product. In order to make farmingmore productive, 
chemical fertilizers were used and poisons developed and used to kill bugs, 
diseases, etc. Chemicals were added to foodstuffs to preserve them and make 
them more attractive. 

Then itcwas discovered that fnany additives, chemicals, and poisons are 
potentially harmful to those who eat the food. 

. .  

Over the past thirty years there has been increasing political attention devoted 
to this problem 

If political attention to chemicals in the food is the output of the system, then 
the amount of chemicals in food can be thought of as the input. 

When political officials compete for office through elections, they are concerned 
about the problems of interest to their constituents. This can be represented 
by a constant multiplied by the input; the constant represents atizen concern 
about health. 

There is, however, a limit on the amount of time that government can devote 
to any given problem There are many problems; attention has to be spread 
around. The press of other business caribe represented by a constant 
multiplied by attention to chemicals in food in the past. 
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summariz$g. as, follows: 

The rule that transforms the amount of chemicals in food (the input) into 
the political attention to Chemical in food (the output) can be summarized as: 

current political attention is produced by the concern of citizens about health 
times the current amount of chemicals in food plus the press of other business 
times the attention given to this problem at the immediately past time period. 

Use &e following definitions to formulate this model: 
A b )  amount of political attention to chemicals in food in period n 
u(n) amount of chemicals in food in period n 
a press of other business 
B public concern about health 

A h )  
u(n> 
a press of other business 
B public concern about health 
current politicd attention [A(n)] is produced by [=] 
the concern of citizens about health [PI 

the press of other business [a] times 
problem at the immediately past time period [A(n-l)]. 

amount of political attention to chemicals in food inperiod n 
amount of chemicals in food in period n 

times the current amount of chemicals in food [u(n)] plus [+I 
the attention given to this 

A(n) = Bu(n) + aA(n-1) 
Note that unless we are willing to make u(n) a constant, we cannot solve this 
modeL This model is a type known as nonhomogeneous. 
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The sunset laws are one answer to big government and red tape. Sunset laws 
are laws that set up executive agencies for a specified period of time. When 
that time has elapsed, the governor and the legislature review the work of 
the agency to determine if there continues to be a need for the agency. It is 
assumed by the proponents of these laws that at least some agencies will, 
through this process, go out of existence. 

The input is the number of new agencies set up in a given year. The number 
of new agencies is added to those agencies already in existence, that is, all 
agencies that existed in the previous year. From this is subtracted those 
agencies for which the death knell sounds after their review (say 7 years), but 
since this is not likely to be all agencies, this tern must be multiplied by a 
constant representing the proportion that are not continued. 

Model this situation given the following definitions: 
A(n) 
u(n) 
a 

number of executive agencies in year n 
number of agencies established in year n 
proportion of reviewed agencies which go out of existence 

The input is the number of new agencies set up in a given year. The number 
of new agencies is added to those agencies already in existence, that is, all 
agencies that existed in the previous year. From this is subtracted those 
agencies for which the death knell sounds after their review (say 7 years), but 
since this is not likely to be all agencies, this term must be multiplied by a 
constant representing the proportion that are not continued. 
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Model this situation given the following definitions: 
A(n) 
u(n) 
a 

number of executive agencies in year n 
number of agencies established in year n 
proportion of reviewed agencies which go out of existence 

[A(n+l)] = 
The number of new agencies is added to those agencies already in existence, 
that is, all agencies that existed in the previous year. 
From this is subtracted those agencies for which the death knell sounds after 
their review (say 7 years), but since this is not likely to be all agencies, this 
term must be multiplied by a constant representing the proportion that are 
not continued. [- aA(n-7)] 

The input is the number of new agencies set up in a given year. 

[u(n+l) + A(n)] 

A(n+l) = u(n+l) + A(n) - aA(n-7) 
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In the past 60 years the public has come to assign principal responsibility for 
managing the performance of the economy to government. As a result, 
fluctuations in unemployment have consequences for election outcomes. 

The Democrat party is believed by much of the public to be more effective in 
producing "good times" than is the Republican party. Thus, when unemploy- 
ment increases, the public is likely to vote in Democrats and vote out Repub- 
licans. When unemployment decreases, the electoral prospect of Democrats 
is diminished and the prospects for Republicans brightens. 

e 0- . 

. . . .  . . . .  . . . . . . . . . . . .  . .  

This argument can be formalized by treating the proportion of Democrats 
elected to Congress as the output of the system. 

The input is change in unemployment - not the level of unemployment, but 
the change in the level of unemployment. Change in unemployment can be 
represented as the current level of unemployment from which is subtracted 
unemployment at the immediately pas period. 

Once a Congressman is in office, his or her chance of being reelected is rather 
good. There is advantage in incumbency. The advantages that a c m e  to 
incumbents can be represented by a constant, which is multiplied by the 
proportion of Congressmen who were elected at the last election. 

Finally, there must be a constant which represents citizen concern about 
change in unemployment. 

- ~ . . . .  . . . . . . . . . . . . .  .. 
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Thus, the currentproportion of Congressment who are Democrats is produced 
by the advantage of incumbency multiplied by the proportion of Democrats 
elected in the last election plus the concern of citizens about change in 
unemployment multiplied by unemployment now, from which is subtracted 
unemployment at the last time period. 

Model this description of the situation using the following definitions: 

A b )  

a advantage of incumbency 

proportion of Congressmen who are Democrats in session n 
unemployment at the time of the election for session n 

citlzen-concern about change in unemployment 
<- -1. ---... 

A(n) 
u(n> 
a advantage of incumbency 
s 
Thus, the current proportion of Congressment who are Democrats is produced 
by = I the advantage of incumbency multiplied by the 
proportion of Democrats elected in the last election 
plus [+I the concern of citizens about change in unemployment 
multiplied by unemployment now, from which is subtractedunemployment 
at the last time period. 

proportion of Congressmen who are Democrats in session n 
unemployment at the time of the election for session n 

citizen concern about change in unemployment 

[aA(n-l)] 
[$] 

[u(n) - u(n-l)] 

A(n) = aA(n-1) + P[u(n) - u(n-1)J 
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Introductory Remarks 

This volume - Nonlinear Dynamical Systems - and its companion 
volume, Linear Dynamical Systems, are written for the audience of a student who is 
moderately literate in undergraduate -mathematics, - but almost certainly has not 
taken a course in difference equations. The underlying thesis of this effort is that 
mathematical modeling can be introduced, understood, and mastered by such 
students if difference equations are used rather than differential equations. Such an 
approach does not, of course, preclude the eventual, or even simultaneous, use of 
differential equations. However, the relative simplicity of difference equations 
allows a student to concentrate on - and participate in - the modeling process, 
which is not the case with the typical differential equation approach. 

The subject matter for the presentation has been chosen with the adolescent 
student in mind. It is the experience of the author that such students are primarily 
absorbed with matters focusing on either money. or sex. Hence, Volume 1 presents a 
difference equation approach to linear dynamical systems concentrating on models 
of personal finance with a short venture into politics. Volume 2 extends the 
approach to nonlinear .dynamical systems focusing on models of population. 

The presentation shows how the material could be presented to students 
using a hypertext system of the genre of H y p e r c a r p .  However, the material does 
not currently exist in a hypertext medium. Therefore, the computer screen displays 
are simply representative of the sorts of options that students could be given as they 
study, explore, and master Linear Dynamical Systems. 

The material presented 'in this volume was excerpted from the following 
references: 

Hypercard Reference Manual, Apple Computer, Inc., 1993 
MacMath 9.2: A Dyrzamical Systems Sofhoare Package for the MacintoshTM , 

Discrefe Dynamical Systems: Theory and Applications, - James T. Sandefur, 
Hubbard and Beverly West, 1993, Springer-Verlag 

Clarendon Press 

To hn 

1990, 

Differential Equations and Their Applications, Martin Braun, 1993, Springer-T erlag 
Growth and diffusion Phenomena: Mafhemafical Frameworks and Applicafions, 

Robert Banks, 1994, Springer-Verlag 
1 

1 .. 
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7 General Layout of a Card 
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The presentation is given on a series of cards. The general layout of a typical 
card is shown above. At the top is a statement of the Topic under discussion. The 
discussion material for the card will be given in the blank space. This material may 
consist of sentences, diagrams, equations, pictures, or combinations of them all. For 
this report, pictures are excluded because the technology is not available. 

The triangles and rectangles in the bottom strip furnish the hypertext 
capabilities of the presentation. The triangular buttons represent the ability to move 
to the immediately-preceding or immediately-following card. The button labeled 
"Home" represents the ability for the student to transfer to the beginning of the 
entire presentation. The button labeled "Quit" represents the ability for the student 
to terminate the presentation. The unlabeled buttons represent optional card 
locations that are dependent upon the context of a given card. 

In addition, words in the discussion material which are underlined have the 
same function as buttons in the bottom strip. Those words allow students to 
transfer to other cards while in the middle of the presentation to get "refresher" 
information relevant to the concepts being presented. After reading the "refresher" 
information, the student can return to his original location in the presentation. 
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Something we want 
mathematical 
relationship 

I 
Is the problem better understood? 

I 
I I 

Translate the "solution" 
into real-world terms 

I I I get a "solution" 

We begin our discussion with a graphic presentation of the essential steps in 
dynamicaI modeling. 

- I *  
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I WELCOME to a study of Nonlinear Dynamical Systems. This is HOME page. 

If this is your first use of this system, click on the triangle on the bottom 
that points to the right. It will start you on your first module. 

If you are returning for more study, click on one of the topics listed below: 

Lonistic Equation Models 
Equilibria and Cobwebbing 
Analysis of the Lopistics Models 

I Whenever you want to stop, click on the "Quit" button. 

Although the "Home" page is not exactly the first page in our presentation, it 
serves as a traffic director. When the student begins, he will pass through this page 
and begin the first module - Logistic Equation Models. On subsequent uses of the 
system, the student can jump immediately to the last module he was studying. At 
any time, the student can visit this page by clicking on the "Home" button at the 
bottom of the screen and be re-directed to any part of the presentation. 

. -  . .. 
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In this section, we will first explore the limitations of exponential 
growth (the Malthusian model) and then consider models of 
constrained .growth (the Logistic model): 

Limitations of Exuonential Growth 
Logistic Model 
Logistic Model of Population Growth 
Logistic Model of Belief Svstems 

The topics should be viewed in the order they are given. Just click 
on the one you want. To return here, click on "Logistic" at the 
bottom of the page. 

This is the "home" page for the section developing logistic models. The 
student is first shown the need for such models by considering limitations of the 
predictive power of models based solely on exponential growth. Although logistic 
models are usually associated with population models, I have also included 
discussion of models in which logistic modeling was used to show how rumors or 
"beliefs" spread within a population. 

. -  
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Let A(n) be the population size at time period n. Assume that the number 
of births in a given time period is proportional to the size of the population 
in that period, and the proportionality factor is b - the birth rate. 

births in period n = bA(n) 

Further, assume &I a like manner that the number of deaths in a given 
time period is proportional to the size of the population in that period, and 
the proportionality fador is d -the death rate. 

deaths in period n = dA(n) 

Then, 

A(n+l) = A(n) +bA(n) - dA(n) 
A(n+l) = (1 + b - d) A(n) 

A(n+l) = (1 + r) A(n), 
.-. - 

where r = b - d = net growth rate 

From the material in Linear Dynamical Systems, we know that the solution 
to this system is 

A&) = (1 + r)k A(0) 

This is the Malthusian model of exponential growth, from which he predicted 
a world-wide catastrophe. 

I 

I( 
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A(n+l) = A(n) +bA(n) - dA(n) 
A(n+l) = (1 + b - d) A(n) 

A(n+l) = (1 + r) A(n), 
where r = b - d = net growth rate 

From the material in Linear Dynamical Systems, we know that the solution 
to this system is 

AQ = (1 + r)k A(0) 

This is the Malthusian model of exponential grow&, from which he predicted 
a world-wide catastrophe. 

- ... 
A(n + 1) = (1.03)kA(O), where A(0) = 4 I 

t 
0 
10 
20 
30 
40 
50 
60 

N 
4 
5 
7 
10 
13 
17 
23 

Pred 

5 
7 
10 
13 
18 
24 

t 
70 
80 
90 
100 
110 
120 
130 

N 
31 

50 
63 
76 
92 
106 

39 - 

Pred 
32 
43 
57 
77 
103 
139 
187 

-. _--- t 
140 
150 
160 
170 
180 
190 

N 
123 
132 
151 
179 
203 
226 

Pred 
251 
337 
453 
609 
818 
1099 

We see that the predicted values (Pred) are initially accuxate but eventually 
grossly inflated. 

i l  

, 

I t 
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The predicted values for the late 1800's were 10% or more in error, 
and the 1930 prediction is double the actual value. 

Clearly, the exponential growth model, which seemed so promising 
for the first 100 years or so, is not a model adequate to predict the 
population of the United States. I 

Furthennore, data from animal populations also suggest that the 
model is satisfactory only as long as the population is not too large. 

Malthus made his prediction of a population catastrophe in 1798: 

"Population when unchecked increases in a geometrical ratio. 
Subsistence increases only in an aiithmetic ratio. A slight 
acquaintance withnumbers will show the immensity of the 
first power in comparison of the second." 

In fact, Malthus had the irigredients of a correct interpretation. 
recognized that there were limits to the growth of a population. He 
did not recognize, however, that those limits could have a moderating 
influence on the population long before catastrophe is on the horizon. 

That insight is the germ of the Logistic Equation and a Dutch biologist 
named Verhulst (1837). 
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Our aim is to change the exponential model, which had a fixed growth 
rate, to one in which the growth rate is a function of the population 
size for a given time period. 

Further, we saw that the problem with the exponential model was that 
the predictions .were too large. So clearly, the growth rate must 
DECREASE with increasing population size. 

Thus, something affects big populations that doesn't affect small ones 
and that something is competition! The population numbers are 
confronting the stark reality of finite resources that areinsufficient 
for everyone to survive. 

,. - 

Thus, our new model, called the Logistic Model, starts 
with the assumption that the environment of the population 
can only support a certain number, say L, of the species. 

That number Lis called the CARRYING CAPACITY of the 
environment. 
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The (restrained) growth rate should relate to the carrying capacity as follows: 

When the population is MUCH LESS than the carrying capacity, 
there is plenty of food for the population and the growth rate 
should be close to the unrestricted growth rate, r. 

When the population is LESS than the canying capacity, there is 
sufficient food for'the population and the growth rate should be 
positive but not as large as the unrestricted growth rate, r. 

When the population EXCEEDS the carrying capacity, there is not 
enough food and the growth rate should be negative. 

Satisfy yourself that these conditions are met by: 
.-, 

restrained growth rate = dl - (A(n)/L)1 

Our model now becomes: 

A(n + 1) = A(n) + r[l - (A(n)/L)]A(n) 

which simplifies to: 

A(n + 1) = (1 + r) A(n) - b A2(n), 

where b = r /  L. 

This is the Logistic Model and the "- b AZ(n)" tern is called a damping 
term because its effect is to dampen or suppress the growth of the 
population. 

:I 
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In 1920 R. Pearl and L. J. Reed derived a logistic model and applied it to the 
United States using a carying capacity of 200,000,000: 

t N Pred 
0 4 
10 5 5 
20 7 7 
30 10 10 
40 13 13 
50 17 17 
60 23 22 

t N Pred t N Pred 
70 31 29 140 123 125 
80 39 37 150 132 141 
90 50 48 160 151 155 
100 63 6.0 170 179 167 
110 76 74 180 203 177 
120 92 91 190 226 184 
130 106 108 

As you see, the pndictions are excellent until we get near the carrying 
capacity. The Achilles heel of the Logistic Model is knowing the carrying 
capacity. 

In Diflerenfial Equations and Their Applications, Martin Braun makes the 
following observation as a consequence of a logistic model application: 

"In 1845 Verhulst prophesied a maximum population for Belgium of 
6,600,000. Now, the population of Belgium in 1930 was already 8,092,000. 
This large discrepancy would seem to indicate that the logistic law of 
population growth is very inaccurate, at least as far as the population of 
Belgium is concerned. 

However, this discrepancy can be explained by the astonishing rise of 
industry in Belgium, and BY THE ACQUISITION OF THE CONGO 
WHICH SECURED FOR THE COUNTRY SUFFICIENT ADDlTIONAL 
WEALTH TO SUPPORT THE EXTRA POPULATION." 

Mathematical models can yield unexpected insights. 

t 

il 
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The following model is due to J. Sandefur as published in Discrefe 
Dymmical Systems: Theory and Applications: 

In the popular Star Trek series, the Federation's Prime Directive was 
that the Enferprise crew could not interfere in any world that had 
not had contact with other worlds. The fear was that any contact 
from anotherworld could alter the course of history on a developing 
planet. 

Suppose, then, that Earth is actually being watched by intelligent 
creatures from another planet. These aliens wish to study us . 
without having us know they are there or at least they want most 
of us not to believe they exist. 

The aliens might reason as follows: 

Let A(n) be the fraction of people on Earth that believes in flying saucers 
at time n. Then A(n) is some number between 0 and 1. 

Thus, 1 - A(n) is the fraction of people on Earth who, at time n, do not 
believe in flying saucers. 

The aliens assume that in each time period the believers convince a certain 
proportion of the nonbelievers that flying saucers do exist. That proportion 
depends on the interaction of believers and nonbelievers, which can be 
modeled by the product A(n)[l - A(n)]. 

When a population is broken into two parts, A(n) and 1 - A(n), their product 
is called the contact ratio and is used extensivelv in the studv of eDidemics. 

.I .I I 
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So, in the absence of flying saucers, A(n) would satisfy the dynamical 
system 

A(n + 1) = A(n) + kA(n)[l- A(n)] 

If k =- 0, then there is a tendency to believe, while if k c 0, there is a 
tendency to not believe in flying saucers. 

Let's assume the aliens have determined through their studies that 
k = -0.01. 

. . .  

Let's also assume that flying saucers do land in certain areas and b 
per cent (as a fraction) of the people see them each time period. 

Then we have (up to) 100b per cent of new believers and our 
dynamical system model becomes: 

A(n + 1) = 0.99A(n) + O.OlAZ(n) + b 

Our aliens must ask themselves: 

How large can b become without having everyone believe in 
flying saucers? In other words, they are willing to have some 
people believe since, if most people do not believe, Earths 
behavior will not change. 

... . 

Volume I. Linear 13l/namical Systems Page 57 



This is as far as we can currently pursue this model because we 
have no provisions for analysis. That is, what are the fixed 
points or equilibria of these models? 

That subject is taken up in the next section, 

Eauilibria and Cobwebbing. 

- .  
I -  L 
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In Theorv of First Order Affine Svstems, we said that any difference 
equation is said to be in EQUILIBRIUM if every term has the same 
value - A(0) = A(l) = A(2) = ... 
We let that equilibrium value be a, we substituted a for all "A(?)" terms 
in the difference relation, and then solved for a. 

Find the equilibrium value(s) for the logistic equation: 

A(n + 1) = (1 + r)A(n) - bAZ(n) 

.. . .  

Given the logistic equation: 

A(n + 1) = (1 + r)A(n) - bA2(n) 

and substituting a as the equilibrium value yields: 

a = (1 +r)  a - ba2 
ba2- ra = 0 

(r/L)a2- ra = 0 
ra[(a/L) - 11 = 0 

Solution: a=O or a =  L 

This says that the population becomes extinct or it "maxes out" 
at the carrying capacity limit Which is it going to be? 
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Although h e  analysis can be done algebraically, it is far more 
interesting to use the analysis technicpe known as 

Cobwebbing 

Cobwebbing is a graphical procedure which allows you 
to see the progression of A(n)s from one period to the 
next. 

What we will be seeing is that some values seem to attmct 
successions of A(n)s and other values seem to repel these 
successions. 

Those attrading points are called attracting equilibria, and 
the points which repel are called repelling equilibria. Note 
that repelling equilibria are still equilibria because if that any 
A(n) every assumes that exact value, all successive A(n) will 
also remain there. But the "hit" must be the exact value. Just 
the smallest deviation will lead to repulsion. . 
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Let’s take the logistic dynamical system: 

A(n -t 1) = (1 -+ r)A(n) - bA2(n) 

and 1et.r = 1.4 and L = 10. 

A(n + 1) = 2.4A(n) - 0.14AYn) 

We know that the equilibria are 0 and 10. But what does 
the cobweb diagram show us? 
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This cobweb diagram shows what happens when the initial value is close to a 
repelling fixed point, namely zero. The parabola is the characteristic equation (from 
which we calculated the value of a). 

Take the first point, just to the right of the small tic mark. That is A(0). Its 
intersection with the parabola determines A(1). Now we need to get to the 
corresponding position for A(l) on the x-axis. The diagonal line (y = x) allows just 
that. Draw a horizontal h e  from the position on the parabola to the diagonal and 
you have the x-position for A(1). Then, repeat the process. Draw a vertical line to 
the parabola to get A(2), etc 
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This cobweb diagram shows the succession of values when the initial value is 
close to the attracting fixed point, 10. By the way, 10 was also the attracting point 
when the initial value was close to the repelling fixed point, 0. 
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This cobweb diagram shows that even when the initial value is past the 
attracting fixed point - in this case, 10 - the dynamical system brings the values 
back to the attracting fixed point. 

: .L c. 1 - c .  
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This cobweb diagram is for the dynamical system 

A(n + 1) = 3.2A(n) - 0.8A2(n) 

The fixed points are 0 and 2.75. The diagram shows clearly that zero is a repelling 
fixed point. However, to our surprise, we see that the system does not home in on 
the fixed point of 2.75, but rather cycles about this fixed point. This is called a 2-cycle 
system. 

Systems c m  have cycles with more than 2 elements. It is not clear whether 
such systems actually exist in real-life. 
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1 Again, this cobweb diagram shows that even when the initial value is close to 
the fixed point of 2.75, the system adopts a 2-cycle as its terminal behavior. 
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In this section, we will analyze the two logistics models 
that were developed in an earlier section: 

Analvsis of the Model of Powlation Growth 
Analysis of the Model of Belief Svstems 

The topics should be viewed in the order they are given. Just click 
on the one you want. To return here, click on "Analysis" at the 
bottom of the page. 

.-.. 
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We alIeady know that the logistics model yields an S-shaped curve 
(called sigmoid) and the fixed points are zero and the carrying 
capacity. 

Therefore, our analysis of the logistics model of population growth 
will focus on another aspect of population. We are concerned with 
the problem that faces all state agencies associated with wildlife - 
How much huntingshould be allowed? 

To simplify the results, we will choose units such that the canying 
capacity equals one unit For example, one unit could equal 10,000 
deer. Further, let's assume that r, the unrestricted growth rate, is 0.8. 

. 

season, where b is a fraction of a unit (which we're saying is 10,000 deer). 

$- 1) = 1.8A(n) - 0.8AXn) - b 

Let b = 0.072 (720 deer are killed each year if one unit equals 10,000 deer). 

The dynamical system is: 

+ 1) = 1.8A(n) - 0.8AXn) - 0.072 

and the fixed points are 0.1 (1,000 deer) and 0.9 (9,000 deer). 

Let's look at the cobweb. 
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Remember that the fixed points are 1000 and 9000 deer. Even if the 
population is close to, but above, 1000 deer and 720 deer are killed per year, the 
population will survive and eventually reach the attracting fixed point of 9000 deer. 
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If by some chance, the population of deer exceeds the carrying capacity of the 

environment, the harvest helps reduce the population to the attracting fixed point 
of 9000 deer. 
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However, if the population falls below the repelling fixed point of 1000, the . 
harvest will serve to hasten the extinction of the population. 
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Now, let's show what happens when the kill (oops, sorry), when the 
harvest is too large. 

Let b = 0.24 (2400 deer are killed each year ). 

The dynamical system is: 

A(n + 1) = 1.8A(n) - 0.8Aqn) - 0.24 

Here's the cobweb. 

f 
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Regardless of the size of the population, a harvest of 2400 deer is more than 
the population can survive given its parameters for reproduction. 
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An alternative strategy is to havest a fixed proportion of the population. 
Let b now represent the proportion of the population to be removed. 
Then the total number of deer killed will be bA(n) 

A(n + 1) = 1.8A(n) - 0.8AYn) - bA(n) 

A(n + 1) = (1.8 - b)A(n) - 0.8AZ(n) 
or 

We will take representative values forb and look at the cobweb. 
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This cobweb is for a value of b = 0.4, which shows a stable population. 
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This cobweb is for b = 0.9. It shows that the population will be driven to 
extinction. ' I  
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T h i s  cobweb is for b = 0.7 and shows a sustainable population. It turns out 
that b = 0.8 is the critical point between sustainability and extinction 
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This was o& model: 
Let's also assume that €lying saucers do land in certain areas and b 
per cent (as a fraction) of the people see them each time period. 
Then we have (up to) 1OOb per cent of new believers and our 
dynamical system model becomes: 

. A(n + 1) = 0.99A(n) + O.OlAZ(n).+ b 

Our aliens must ask themselves: 

How large can b become without having everyone believe in 
flying saucers? In other words, they are willing to have some 
people believe since, if most people do not believe, Earths 
behavior will not change. 

As before, let's take some representative values for b 
and look at the cobweb. 
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Well, this shows the limitation of cobwebbing for analysis. The parameter 
used was b = 0.005. For that situation, eventually all would believe in flying saucers. 
The critical value for b turns out to be 0.0025. 
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Traffic Flow 

The traffic flow that we considered is that of the cars moving on one 

side of a divided highway. Since the behavior of a vehicle is influenced by 

the cars around it, we can predict the movement of the vehicle through CA. 

A car can move forward one space, sideways, or it can be at a stand still. h 
the figure 4 the number. corresponds to the site. For instance, the initial 

site is one, the site ahead is site two, the site adjacent is site four and etc. 

161 141 151 -> 
131 111 PI -> 

Each site is represented by a one (1) when occupied by a car and zero (0) if 

it is empty. To determine the movement of the cars we define the Moore 
neighborhood for our boundary conditions and invoke CA with the 
following rules. 

il 



Rules 

Rule #I 
An occupied site [l] becomes empty when the site aheadaof the site 

driveWithObstacle[l, 0, --I --I -I J = 0 

[2] is empty. 

Rule # 2 
An occupied site [l] that is blocked by either a car or an obstacle in 

the site ahead of it, switches lanes when there is a n  adjacent empty space at 
site [4] and behind the adjacent site [6] is empty or has an obstacle. 

driveWithObstacle[l, 1 I c, 0, _. ) I c] = 0 

Rule # 3 

site [2] and the adjacent site [4] are both occupied or contain obstacles. 

. 
An occupied site [l] remains occupied when the sites ahead of the 

driveWithObstacle[l, 1 I c, 1 I c, a J = 1 

Rule # 4 
An empty site [l] that is followed by a car becomes occupied by that 

driveWithObstacle[O, 

C a r .  

1, --I a J = 1 

il 
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Rule # 5 
An empty site [l] that is followed by an empty space or obstacle in 

site [3] and is next to a car that is blocked by a car or obstacle ahead of it 
becomes occupied as the car changes lanes. 

driveWithObstacleE0, a 0 I c, 1,l I c, J = 1 

Rule # 6 
h sibations other than those given above, empty sites remain empty 

and occupied sites and obstacles remain in place. 

driveWithObstacle[xa a a a a J := x 

Now to start the keepOnMoveingOn code in the following way to show the 
path of the traffic when the obstacles occur at random positions. 

* 

In [5] := indytiOO[n, pa t J := 
Module [{roadWi thOb s tacle, drive WithOb s tacle}, 

t roadWithObstacle = 
ReplacePart[Table[Floor[p + Random[]],{2}, {n}], c, 

{Random[ Integer,{ 1,211, Random[Integer,{l, n}]}]; 
driveWithObstacleC1, 0, a 

driveWithObstacle[l, 1 I c, a 0, 
driveWithObstacle[l, 1 1 c, 
driveWithObstacle[O, a 1, a a J = 1; 
driveWithObstacle[O, 
driveWithObstacleCx, a 

J = 0; 
I c] = 0; 

1 I c, a J = 1; 

0 I c, 1,l I c, J = 1; 
a a J = x; 1 

NestList[MapThread[driveWithObstacle, {#, 
RotateRight[#, (0, -1}] 

RotateRight[#, (0,- 111, RotateRight[#, (1, l}]}, 
2]&, roadWithObstacle, t]] 



Test the indy500 function by assigning numbers to the three variables. We 
must not forget to assign the obstacle "c" a color value. 

test = indy500[30, ,.7,341; 
Map [ S how[ Grap hics [Ras terArray [# /. 

(0 -> RGBColor[0.7,0.7,0.7], 
1 -> RGBColor[O, 1,0], 
c -> RGBColorCO, 0,11)11, 

AspectRatio -> Automatic]&, 

test]; 



Definitions 
von Neumann neighborhood - consist of the site and the four nearest 

neighbors, north (above) east (right), south (below), and west (left) of the 

site is represented in the diagram below. 
von Neumann neighborhood 

Moore (neighborhood) - consists of fhe site and the eight nearest neighbor 
sites, north, northeast, east, southeast, south, southwest, west, and 

northwest. 
Moore neighborhood 



cellular automaton - consists of a system sites having various initial values. 

The sites evolve in time steps as each site assumes a new value based on 

the values of some local neighborhood of sites. To incorporate a cellular 

automata models the lattices needs to be well defined for the 

neighborhoods of sites for various boundary conditions. 

lattice - a matrix consisting of n rows and m columns. 

maze - a confusing network of passages. The maze's code is' defined by 
rectangular lattice consisting of sites with value 1 (a wall site), 0 (a path 
site). AIl turns in the paths and the walls are at ninety degrees. 

mathematica - a high lever programming language 
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* Code for the Traffic 
Simulation 

The last two sections of code modeled the traffic going in the same 
direction on a two lane highway. This was most interesting'because we 

were able to animate our results. The traffic followed the six drive rules 

outlined earlier. We were able to observe the traffic in normal conditions 

and when an obstacle was introduced. We could also observe and graph 
the average velocity when we increased the probability of cars on the road. 

(roadTest= {(a, 6,4,5, b), 
{c, 3,1,2, d}})//TableForm 

MapThread[rule, RotateRight[#, {0, -1}], 
RotateRight[#, {0, l}], 
RotateRight[#, 11, O)], 

RotateRi t[#, (1, I)]}, 
RotateRight[#, 11, -I)], 

!$&[roadTest][[2,3]] 

keepOnMovhp[n, p-, tJ := 
Mod e[{road, drive), 

road = Table[Floor[p + Random[]],{2],{n)]; 
drive[l, 0, , , , -1 = 0; 
drive[ 1,1, , 0, , 0 J = 0; 
drive[l, 1, - 1, -, -1 = 1; 
drive[O,,l,,,_j =l; 
drive[O, , 0, 1,1, -1 = 1; 
drive[x, , , - , -] := x; 

road = Table[Floor[p + Random[]],{2],{n)]; 
drive[l, 0, , , , -1 = 0; 
drive[l, 1, , 0, , 01 = 0; 
drive[l, 1, - 1, -, -1 = 1; 
drive[O,,l,,,_j =l; 
drive[O, , 0, 1,1, -1 = 1; 
drive[x, , , - , -] := x; 

Map[Show[Gra hics[RasterArra # /. 
(0 ->I;(GBCoior[0.7,0. 9 ,0.7], 

1 -> RGBColor[O, 1, O])]], 
AspectRatio -> Automatic]&, 
keepOnMovingOn[lO, .5, lo]]; 



(roadTest‘= ({af6:’4,5, b), 
{c, 3,1,2, d)))//TableForm 

MapThread[rule, , RotateRight[#, (0, -1)], 
RotateRighW, IO, 111, 
RotateRight[#, {I, 0) , 
RotateRight[#, 11, -111 
RotateRi t[#, {I, l)]}: 

!$&[roadTest][[2,3]] 

keepOnMoveing On[n, t-] := 
Module[{road, rkve), 

road = Table[Floor[p 
drive[l,O, -I -I -1 = 
drive[l, 1, , 0, 01 = 
drive[l, 1, , 1, , - = 
drive0,,1,,,-1= 
drive[ 0, , 0,1,1, -1 = 

1; 
1; 
1; 

drive[x, , , , , -1 := x; 

NestList[Ma Thread[drive, 
{#, gotateRight[#, {O, -l}], 

RotateRight[#, (0, l)], 

Map[Show[Gra hics[RasterArra # /. 
(0 ->%GBColor[O, 1,lf 

- 
1 -> RGBColor[O, 0,1], 
c -> RGBColor[l, 0, l])]], 
AspectRatio -> Automatic]&, 
tesi]; 

test = indy500[30, .6,10]; 

indy5OO[n, pJ tJ := 
Module[ {roadwithobstacle, drivewithobstacle), 
roadwithobstacle = Re lacePart[Table~oor[p + 
RandomFteger,Il, n)l)l; 
Random[ll,{2), (n)l, c, &ndomFteger,Il, 211, 

driveWithObstacle[l, 0, , , , J = 0; 
driveWithObstacle[l, 1 I c, , 0, , 0 I 
driveWithObstacle[l,l I c,,l I c,, 
driveWithObstacle[O, , 1, , , -1 = 1; 
driveWithObstacle[O, , 0 I c, 1,l I c, J 
driveWithObstacle[x, , , --I , -1 = x; 

= 0; 
= 1; 

= 1; 

NestList[MapThread[driveWithObstacle, {#, 
RotateRight[#, {0, -I)], 

RotateRight[#, 11, -l)], Rotat&ght[#, 11, l)]), 
RotateRight[#, {O, l)], Rotat&@[#, (1, O)], 

2]&,roadWithObstacle,t]] 

i ..- . . 



Code and Results 
I .  

i. ' I .- 

We used the following code to solve the maze we created to 

represent a section of a city with many cul-de-sac's and dead end roads. 

This code invoked cellular automation with the von Neumann 
neighborhood as &e boundary conditions . This code can be very useful to 

traffic engineers when they need a n  alternate path to get around road 
work. 

1 

\ -. 
- .  

Sh  graphics [RasterArray[Reverse[maze]/. { - RGBCol 
1 -> RGBColor[l,O,O],O ->RGBColor[l,l,O]}]], 
AspectRatio -> Automatic]; 

PathToEnlightenment[ maze J := 
Module[ {mazeSolve, VonNeumannValues}, 

mazeSolve[O, 1,1,1,0] :=I; 



mazeSolve[O, 1,1,0,1] :=l; 
mazeSolve[O, 1,0,1,1] :=l; 
mazeSolve[O, 0,1,1,1] :=l; 
mazeSolve[O, 1; 1;. 1,4] :=l; 
mazeSolve[x, --I --I _J :=x; 

VonNeumannValues[func, lat J := 
MapThread[func, {#, 

Rotatefight[#, {0,1}], 
RotateRight[#, {I, O}], 
Rotatefight[#, (0, -1}], 
Rotatefight[#, {-1, O}]}, 

21 &[lat] ; 

FixedPoint~onNeumannValues[mazeSolve, #I&, 
maze]] 

Show [Graphics Arr ay[Map [Show [ 
Graphics[RasterArray [Reverse[#] /. 

{e -> RGBColor[O, 1,0], 
1 -> RGBColor[l, 0, 01, 
0 -> RGBColor[l, 1, O]}]], 
AspectRatio -> Automatic, 
DisplayFunction -> Identity]&, 

{#,PathToEnlightenment [#]}&[maze]]]]; 



Show [Graphics [RasterArray [Reverse [maze] /. 
{e -> RGBColor L O ,  1,0l, 
1 -> RGBColor [l,O,OI, 0 ->RGBColor [1,1,Ol}l I ,  
AspectRatio -> Automatic]; 
PathToEnlightenment[.maze I := 

Module [ {mazesolve, VonNeumaGValues}, 

mazeSolve[O, 1, 1, 1, 01 :=l; 
mazeSolvel0, 1, 1, 0, 11 :=I; 
mazeSolveC0, 1, 0, 1, 11 :=I; 
mazeSolveC0, 0, 1, 1, 11 :=I; 
mazeSolveC0, 1, 1, 1, 11 :=I; 
mazesolve [x , , -, -, -3 : =x; 

MapThread [func, { #, 

- -  
VonNeumannValues Cfunc-, lat I : = - 

RotateRight[#, 
Rot at eRight [ # , 

RotateRight [#, 10, -1j1, 
RotateRight[#, -1, 0 I}, 

21 & [latl ; 

Fixedpoint [VonNeumannValues [mazesolve, #I &,maze1 I 
Show [GraphicsArray [Map [Show [ 

Graphics [RasterArrayIReverse [#I /. 
{e -> RGBColor[O, 1, 01, 
1 -> RGBColorCl, 0, 01 
0 -> RGBColor[l, 1, O]}] 1 , 
AspectRatio -> Automatic, 
DisplayFunction -> Identity]&, 

{#, PathToEnlightenment [#I }& [maze] 1 1 1 ; 
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Show [Graphics [RasterArray [Reverse [maze] /. 
{e -> RGBColor[O,l,O], 
1 ->  RGBColor[l,O,Ol,O ->RGBColor[l,l,Ol}ll, 
AspectRatio ->  Automatic] ; 
PathToEnlightenment [ maze-] : = 

Module[ {mazesolve, VonNeumannValues}, 

mazeSolveC0, 1, 1, 1, 01 :=I; 
mazeSolveC0, 1, 1, 0, 11 :=I; 
mazeSolveC0, 1, 0, 1, 11 :=I; 
mazeSolveC0, 0, 1, 1, 11 :=I; 
mazeSolveC0, 1, 1, 1, 11 :=I; 
mazesolve Cx - -  , , -, -, -1 : =x; 

VonNeumannValues [func , lat-1 : = 
MapThreadCfunc, {g, 

Rota teRight [ # , 

Rota teRight [ # , 
RotateRight[#, 

RotateRight[#, 
21 & [latl ; 

Fixedpoint [VonNeumannValues CmazeSolve, #I &,maze1 1 
Show [GraphicsArray [Map [Show [ 

Graphics [RasterArray [Reverse [#I /. 
{e -> RGBColorCO, 1, 01, 
1 -> RGBColor[l, 0, 01, 
0 ->  RGBColor[l, 1, 01}11 , 
AspectRatio -> Automatic, 
DisplayFunction -> Identity] &, 

{#, PathToEnlightenment [#I }& [maze] I I I ; 

il 

il 
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Show [Graphics [RasterArray [Reverse [maze] /. 
{e -> RGBColor[O,l,OI, 
1 -> RGBColor [l, 0,Ol ,O ->RGBColor [l, 1,Ol }I 1 ,  
AspectRatio -> Automatic] ; 
PathToEnlightenment [ maze 1 : = 

Module [ {mazesolve, VonNeumaGValues}, 

mazeSolve[O, 1, 1, 1, 01 :=I; 
mazeSolve[O, 1, 1, 0, 11 :=I; 
mazeSolveC0, 1, 0, 1, 11 :=I; 
mazeSolve[O, 0, 1, 1, 11 :=I; 
mazeSolveC0, 1, 1, 1, 11 :=I; 
mazeSolveCx-, -, -, -, - 3 :=x; 

VonNeumannValues [func , lat-1 : = 
MapThread [ f unc , { F, 

RotateRight[#, 1, 0 1 ,  
RotateRight [ #, 

RotateRight [#, 10, -1j1, 
RotateRight[#, -1, 0 I}, 

21 & [lat] ; 

FixedPoin$ [VonNeumann'Values [mazesolve, #I &,maze1 I 
Show [GraphicsArray [Map [Show 

Graphics [RasterArray [Reverse [#I /. 
{e -> RGBColor[O, 1, 01, 
1 -> RGBColorEl, 0, 01, 
0 -> RGBColor[l, 1, 0]}11, 
AspectRatio -> Automatic, 
DisplayFunction -> Identity1 &, 

{#, PathToEnlightenment [#I }& [maze] 1 I I ; 
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1. An Introduction to Computerized Tomography 

The word tomography derives from the Greek word tomos meaning “slice” 
plus graph meaning “picture”. The method of tomography examines the in- 
side of a three-dimensional object by creating two-dimensional images of 
cross-sections of the object. Each image is created by passing radiation 
through one plane of the object, measuring its attenuation, and using that 
attenuation to map the density of the object in that plane. Because com- 
puters are used to create the image from the measured data, tomography 
is often called computerized tomography (CT). Originally, the abbreviation 
CAT stood for Cross-Axial Tomography, but now it is interpreted as Com- 
puter Aided Tomography, we will simply use CT. 

In the 1970s, computerized tomography revolutionized diagnostic radiology. 
In the brain, for example, CT can readily detect tumors and internal bleeding 
without the need of exploratory surgery. The 1979 Nobel Prize in Medicine 
was awarded for work in computerized tomography. 

For a CT scan, a patient sits or lies inside a ring mounted with an X-ray 
source directly opposite an X-ray detector. Figure 1 sketches a possible setup 
for a CT scan. A set of parallel rays of X-ray photons is directed through the 
patient’s body. When a ray passes through a body part, some X-ray photons 
are absorbed, with dense materials such as bone and tumors absorbing more 
than soft muscles and skin. The detector measures the number of photons 
passed through the body and so determines how much the ray was attenuated 
by absorption. The average density of the body along the path of each ray can 
then be determined by comparing the incident and transmitted intensities of 
the ray. 
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By rotating the ring around the patient, rays can be sent along any number 
of paths in one plane of the body. Using the attenuation readings for all of 
the rays, it is possible to create an approximate map of the density of the 
object within the plane, translating the ring along the body and repeating the 
procedure builds a sequence of two-dimensional images that together form a 
rough three-dimensional image of the interior of the object. 

Because we pass only a finite number of rays through the body, we cannot 
find an exact or continuous map of the density throughout the slice. In- 
stead, to reconstruct the cross-sectional image from the thousands of recorded 
beam measurements, the reconstruction region is subdivided into n x n small 
squares, called pixels (from “picture elements”). This set of pixels form what 
is often referred to as a grid. The ‘width of each pixel is chosen according to 
the width of the detectors and/or the width of the X-ray beams. This sets 
the resolution of the image. The General Electric CT/T system uses 102,400 
pixels in a 320 x 320 array. To each pixel there is associated a number, 
called its CT number, or its X-ray density number. This number is a mea- 
sure of photon attenuation as the beam of X-ray photons passes through the 
pixel; it will be defined more precisely in what follows. The determination of 
these pixel CT numbers is the basic mathematical problem of computerized 
tomography. 

Once these numbers have been determined, the cross-sectional image can be 
displayed on the video monitor, since from the CT number of each pixel, a 
“grayness” value can be assigned, and an image constructed that is made of 
varying shades of gray. Different structures within the body have different 
X-ray densities and thus can be distinguished in the image. 

If r rays are passed through a f i  x f i  grid with T > n, we are required 
to solve an overdetermined linear system, with a T x n coefficient matrix, 
to produce a digitized image of the object in one plane. An overdetermined 
system is one with more equations then unknowns, see figure 3. Such a sys- 
tem typically does not have an exact solution, so the image is reconstructed 
from the best approximate solution. The mathematical details of how to 
reconstruct the image from the data will be covered later. 
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The first published description of CT was authored by Sir Godfrey Hounsfield 
of EM1 Ltd. in London and appeared in 1973. Hounsfield’s scans used X-rays 
of very low intensity, and it took many hours of exposure to gather the data. 
An eight by eight grid was superimposed on the object, and the attenuations 
of sixty four rays were measured. The resulting 64 x 64 system took hours 
to solve on EMI’s then state-of-the-art computer. 

Present day problems are much larger but take less time to solve. The reso- 
lution desired for modern CT scans demands that the grid boxes be at most 
1-3 mm on a side. This means that a 148 x 148 or greater grid is used for 
a typical brain scan. The radiation source is moved to pass X-rays through 
each row of the grid at many different angles of incidence. When 148 rays are 
passed at each of 180 different angles, a total of 26,640 rays are passed. This 
translates into a 26,640 by 21,904 linear system. Recorded intensities from 
each ray are sent directly to the computer where the image is reconstructed. 

In these Modules we will consider an iterative reconstruction technique used 
in CT. The “Solution” of a large system of linear equations is involved. 

The Model 

We now concentrate on reconstructing an image via a CT scan. Recall that 
for a CT scan, X-rays are passed through one plane of an object from yarious 
angles. The intensity of each ray is measured before and after it passes 
through the object. In this section, we review the mathematical fundamentals 
of the process of mapping the density of the object from the measured ray 
attenuations. 
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If we introduce a variable s that measures the distance from the source along 
a ray, we can write down an expression for. how the intensity of a ray changes 
as it passes through an object assuming that the ray travels in the zy-plane. 
Specifically, the intensity I changes with respect to the distance s according 
to 

where ,u(x,y) is the density of the object. Because the density and intensity 
must always be nonnegative, the negative sign in equation 1.1 shows that, if 
the intensity changes, it decreases with inqeasing distance s. 

To relate the initial and transmitted intensities of the ray to the density, 
we must group all terms involving the intensity and integrate-the resulting 
equation 

(1.2) 
dI 
I - = --/1(x,y)ds. 

The left-hand side is a definite integral in terms of I .  If Io is the initial 
intensity of the ray and I -  is its h a 1  intensity, 

lo 

To integrate the right-hand side of 1.1, we must integrate a function of x and 
y with respect to the variable s. This is not inconsistent because the distance 
s along the ray is itself a function of 3; and y. If the beam originates at the 
point (xo,yo) and distance so from the origin, the length from that point to 
any other point (x,y) on the ray is 

s - so = d(x - xo)2 + (y - yo)? (1.4) 
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To integrate the right-hand side we must use a special sort of integral known 
as a line or path integral. If o denotes the line in the zy-plane followed by 
the ray, the line integral is written 

b 

a 
The usual definite integral Sf(z)dz measures the area beneath the cUn;e of 

the integrand between z = a and z = b by summing infinitesimally small 
increments of area between those points. In contrast, a line integral measures 
the “weight” of the curve itself. For example, if the object is of constant 
density p(zcly) = y and the ray is of length ST, the line integral is just the 
length of the line times the density of the object 

Integrating equation 1.2 

c 

U 

then tells us how the ratio of the initial and transmitted intensities of a ray 
is related to the amount of material through which the ray passes. When 
the density of the object depends explicitly on 2 and y, we must rewrite the 
integral to remove the dependence on s before we can evaluate the integral. 
Details of this procedure are presented in most calculus books. Line integrals 
arise in many problems in mathematics and physics, and the path over which 
one integrates need not be a straight line. 
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The Discretized Problem 

When recreating an image by tomography we do not evaluate the line integral 
of equation 1.7. Indeed, the density p(z,y) is the unknown quantity we are 
trying to find. In 1917, Radon showed how t o  extract the density from the 
right-hand side of equation 1.7 by transform methods, gut his formulas are 
based on continuous projection data instead of the fbite set of measurements 
produced in an actual scan. They are inaccurate when applied to fhite data 
sets, especially those subject to some experimental error. In addition, his 
formulas do not lend themselves to an efficient computational algorithm. 
Hence, subsequent research has focused on developing a good computational 
algorithm. In these modules, we will develop a discretized formulation of the 
image reconstruction problem that can be solved on a computer. We show 
how the problem translates into an overdetermined system. We will derive 
a method that is typically used to solve the resulting discretized problem in 
medical and other image reconstruction applications. 

Because we use a finite number of rays, we cannot obtain a continuous ap- 
proximation for the density p = p(z,y) over the entire grid, so we instead 
approximate the density in all boxes of the grid. If we are studying a f i x  fi 
grid, we assume that the density is constant within each box. Denoting the 
density in box Bi by pi, for i = 1, ..., n, we then compute an approximation 
.to p of the following form: 

. p M plin B1 and pg in B2 and ... and p,, in B,,. (1.8) 

To make this approximation easier to work with, we introduce a new function 
Si which equals 1 inside box i but equals 0 in any other box. Rewriting the 
grid itself as a matrix allows us to represent the discrete problem as a system 
of linear equations. For the 3 x 3 example, we can write the approximate 
density in the grid in matrix form as follows 

(i.9) 
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1 0 0  0 0 0  
= pl(; ; , ) + . . . + p 9 ( ;  ; ;) 
= p161+ p2S2 + ... + pgScJ. 

For a grid with n boxes, we can write 

= &l&. 

i=l 

For ray aj, the path integral &om equation 1.7 then becomes 

If the measured attenuation for ray S j  is denoted 

then we may define the relations 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

If we make r attenuation measurements p j ,  j = 1, ..., r ,  equation 1.15 defines 
a rectangular system of equations 

M p  = P ,  (1.16) 

where the T x n coefficient matrix has elements Mji = J Si for j = 1, ..., r and 

i = 1, ..., n. The vector p on the right-hand side has r elements p (  j) = p i ,  
and the solution vector p has n elements p(i )  = pi. 

uj 
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2. An Introduction to Backprojection 

Backprojection is a mechanism for deducing the density of an object from 
measured ray attenuations. How can one recreate an image from measured 
data? One may use a two-dimensional grid with its boxes colored either black 
or white and attempt to determine the coloring of each box by passing rays 
vertically or horizontally through the grid. At its origin, a ray is assigned a 
value of zero. When it emerges from the grid, it has an integer value equal 
to the number of black boxes through which it has passed. In this module 
we will examine this method for 3 x 3 grids. 

Figure 1 shows the values that would be measured by passing three rays 
horizontally through the given 3 x 3 grid. To make the source of the mea- 
surements clearer, the black and white boxes are also shown. The rays passed 
through the first and last rows of the grid have the value 3. Thus, all three 
boxes in those rows must be black. The ray passed through the second row 
has value 2 and this tells us only that two of the three boxes in that row are 
black. To determine its exact structure, we must pass more rays through the 
grid. Figure 2 shows the measured values for three vertical rays. These data 
tell us that the first and third columns of the grid are colored black. Because 
the first and third rows are also black, the center vertical measurement 2 
means that the center square must be white. 

It is not difficult to devise an example for which this simple deductive algo- 
rithm fails. Figure 3 shows horizontal and vertical measurements, we can be 
certain only that the center row of the grid has three white boxes. Either of 
the two configurations in figure 4 would give the s m e  readings. In this 3 x 3 
case, we can discern the correct pattern by sending one more ray diagonally 
through the grid from upper left to lower right. This single diagonal ray 
when passed through the grid on the left in figure 4 will pass through two 
black boxes. On the other hand, a disganal ray passed through the grid on 
the right in figure 4 will pass through only one. 

, 
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Figure 1: The result of passing horizontal rays through the grid. 
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Figure 2: The result of passing horizontal and vertical rays through the grid. 
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Figure 3: The result of passing horizontal and vertical rays through the unknown 
grid. 
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Figure 4: The two possible colorings of the grid. 



An alternative to this precise deductive process is to produce a gray scale 
coloring of the grid. In this case, a ray's value upon exit is divided by the 
number of boxes through which it passes. All boxes in the ray's path are 
then colored the same shade of gray defined by that value. In this way, 
the measured value of the ray is backprojected along its path. Repeating 
this process for many rays produces a rough approximation to the black and 
white image in varying shades of gray. 

The gray scale coloring of the grid of figure 2 is sho- at the top in figure 5. 
In this case, the horizontal rays assign values of 1, 2/3, and 1 to the boxes in 
the fist ,  second, and third rows, respectively. The vertical rays give values of 
1, 2/3, and 1 to the boxes in the fist ,  second, and third columns. Thus, each 
box has been assigned two values -one from the horizontal ray and one from 
the vertical ray. Swnming these values and dividing by the number of rays 
per box gives the average value per ray. The shade of gray corresponding to 
each value appears on the grid in figure 5. While the black bordering rows and 
columns of the grid are not exactly resolved by this process, the center box 
correctly appears lighter than the surrounding ones. A better representation 
could be obtained by passing more rays through the grid or by combining 
the gray scale and deductive algorithms to recognize such features as a fully 
blackened row or column. 

These procedures give the most fundamental idea behind the process of back- 
projection. In order to accurately reproduce larger and more complicated 
images, however, it is necessary to turn to the more sophisticated procedure 
that is the subject of the next module. 

The Filtered Backprojection Method 
To present a mathematical formulation of filtered backprojection, we first 
assign unique angle and distance parameters to each ray as shown in figure 
8. The origin is located at the center of the grid overlaying the object. The 
line L runs through the origin in the same direction as the rays. The ray aj 

is identified by its perpendicular distance t j  from L and the angle 8 that the 
perpendicular to the ray makes with the z-axis. The measured attenuation 
of aj after it passes through the object is denoted by 
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Figure 5: A gray scale rendering of Fi-me 2 



Our goal is to  derive a mathematical relationship between the measured 
attenuations p j  and the density ,u (2, y)that we are trying to determine. 

To reproduce the image, we need to measure the attenuations of a large 
number of rays. We organize the attenuations by passing K equally spaced 
parallel rays a,, ..., a~-1 through the object at-each of q equally spaced an- 
gles Bo, ..., OS-1 for a total of T = qK attenuation measurements. For exam- 
ple, at each angle 0, we send K rays at distances from the line L equal to 
to, t l ,  ..., t K - l  with t j  = to + jAt. 

The collection of attenuation values measured for one set of the parallel lines 
comprises a parallel projection. 

The projection data and the density are related via Fourier transforms. In 
the next module we will develop this relationship. 

I 
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3. The Fourier Transform and Its Inverse 

I 

The Fourier Transform is a way to convert a continuous'function of one 
variable to a continuous function of the frequency of that variable. For 
example, a function of space is transformed to a function of spatial frequency, 
and a function of time is transformed to a function of temporal frequency. 
The Fourier transform is generally applied when it is more convenient to do 
a computation in the frequency domain, and we will see that this is indeed 
the case for backprojection. 

* 

If f (2) is a continuous one-dimensional function of distance x and 

then Fourier transform of f(z) is defined by 

F(u)  = 1 f(z)e-2TiU2dx, 
-co 

where F(u) is a one-dimensional function of spatial frequency. We can extract 
the function f (2) from its Fourier transform by means of its inverse Fourier 
transform 

+oo 

f(z) = / F(u)emimdu. 
-co 
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The Fourier transform can be also be applied to higher-dimensional functions. 
The two-dimensional Fourier transform of the function f(z, y) is 

and the inverse Fourier transform of F(u,v) is 
, .,. 

A two-dimensional function can also be transformed in only one of its vari- 
ables. For example, the two-dimensional function f(z, y) can be transformed 
in the z dimension alone as 

\ 

' or in th  

+co 

--co 

y dimension alone as 

+aJ 

-co 

This property implies that we can actually replace a two-dimensional Fourier 
transform by a pair of one-dimensional Fourier transforms taken in turn. One 
possible organization is as follows: 
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+W 

-co 

Alternatively, we can transform the function f ( x ,  y) first in the variable y 
and then in x to form 

+co 

~ ( u ,  v) = J F ( X ,  v)e-2niusdx. 
-co 

In addition, the Fourier transform it not confined to the Cartesian coordinate 
system. For instance, a function g ( 0 , t )  expressed in polar coordinates can 
be transformed in the angular variable 0 or the radial variable t or in both 
by integrating over the full ranges of those variables: 

In some cases, we need to take the Fourier transform not of one function but 
rather of the special integral of the product of two functions called convolution 
and defined in one dimension by 

f * g = -7 f ( a ) g ( x  - Q)da.  (3.8) 
--co 

The Fourier transform of a convolution is the product of the Fourier trans- 
forms of the functions used in that convolution. Thus, if the Fourier trans- 
forms of f ( x )  and g ( x )  are available, the process of taking the Fourier trans- 
form of f * g reduces to a simple multiplication in frequency space. 
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1 (f * g)e-2ni"dz = F(u)G(u) (3.9) 
-cm 

= r f ( z ) e - - -d . )  r g  (z) e-2Tmdz) (3.10) 

This result is a statement of the - -.. Convolution . Theorem. Taking the inverse 
Fourier transform of both sides of equation (3.14) gives an alternative defin- 
ition of the convolution 

f * g ~F'(u)G(u)e2Tuxdu. (3.11) 
--co 

In the case of filtered backprojection, the functions with which we work rep- 
resent an image or its Fourier transform. The image p(f3,t) is a map of the 
density in the xy-plane expressed in terms of polar coordinates. Its Fourier 
transform U(f3,p) is thus a function of spatial frequency, also expressed in 
polar coordinates. An image for which U(f3,p) is large when p is large is 
one with rapid variation in density across the q-plane. If this variation 
is not actually a property of the depicted object, such an image is termed 
noisy. The Convolution Theorem gives an easy way of improving the quality 
of noisy images. For example, a function g(z - a) can be constructed so that 
the convolution of U(B, p) and g either removes or enhances the contribution 
to the image p(z, y) of certain frequencies. Thus, the Fourier transform G(p) 
of the filter function g acts as a filter in frequency space. Filters are also a 
necessary part of the most basic backprojection algorithm. 

A Continuous Formulation of Backprojection 

Now that the basic tools of the backprojection algorithm have been defined, 
we can return to the problem of how to produce a discrete approximation of 
the density 

. .  
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n 
~ ( z ,  Y) M pjbj (3.12) 

from the measured projection data po,  . . . , p ~ - l .  While these data are clearly 
discrete, it simplifies the derivation of the backprojection method to assume 
first that we instead have a continuous parallel projection for a given angle 
8. This corresponds to passing an infinity ( K  + co) of rays through the 
object at the angle 8 and collecting their attenuations p i ,  j = 0, ..., +m, to 
form a continuous function p(8 , t ) .  In this case, t is a continuous variable 
measuring the perpendicular distance from the line L through the origin to 
the ray. Although t varies continuously from -m to +m, the projection 
can have nonzero values only for those values of t within the confines of the 
object. The full range of t is included only for convenience in the derivation. 

j=1 

~ 

We construct the relation between the continuous projection and the density 
by first considering the special case of 8 = 0 and then generalizing that result 
to hold for any value of 8. Both the special and general cases rely upon the 
Fourier transform and inverse Fourier transform. 

The special case 8 = 0 

We first relate the density and the projection for a continuous projection 
taken parallel to the y-axis. The angle of this projection is 8 = 0, and the 
line L running through the origin at angle 6 = 0 is the y-axis itself. This 
means that the perpendicular distance t from the ray to the line L is just the 
z-coordinate of that ray. That is, t = z, and 

The distance along the ray from its starting point is 

s - so = J ( x  - zJ2 + I? .  (y - yJ2. (3.14) 
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However, when t = x ,  this distance varies with y alone so that ds = dy. 
Thus, when B = 0, the line integral along the path of the ray can be written 
as the definite integral in y 

+oo 

p(6  = 0, t)  = P(B = 0 , x )  = / A x 2  Y)dY = J P(Z, Y)dY. (3.15) 

Again, we include the full range of y for convenience even though only those y 
values between the emitter and detector can actually contribute to the value 
of the integral. 

U -W 

It is not immediately clear how to obtain an expression for the density from 
the above equation, but the Fourier transform provides the key. To see this, 
we first write the two-dimensional Fourier transform of the density 

+co I-co 

Y- (3.16) 

If we then consider the case v = 0, we are left with a two-dimensional Fourier 
transform of the density along the u-axis in frequency space 

w-4 = / J P(x,Y)e -%i('"+"Y)&.d 

-co -co 

(3.17) 

Notice that the expression in the square brackets in this equation is just 
p(B = 0 , x )  so we actually have the important result 

+W 

(3.19) ~ ( u ,  01 = J p(6  = 0, x ) e  -2TiUX dx.  - - -  

-co 

. . 



That is, taking the one-dimensional Fourier transform of the projection p(8  = 
0,z) along the y-axis gives us one line in frequency space (namely, the 
u-axis) of the two-dimensional Fourier transform of the density, 

Thus, we can extract one line (t = z) of the density p(z, y) by taking the one- 
dimensional Fourier transform of U(u,  0). This operation backprojects U(u ,  0) 
from frequency space onto the line t = z in the spatial domain. If we could 
generalize this result to produce any line of U(u ,  v), we could use it to h d  
U(u,v)  in all of frequency space. By taking the inverse Fourier transform of 
that representation of U(u ,  v) for all u and v, we could determine the density 
p(z,y) for all 2 and y. 

' 

Using any old 8 

As it turns out, our equations are easily modified to apply to any angle 8. 
With the simple matrix operation known as the Jacobi rotation, we can get 
other lines of the Fourier transform of the density p(z,y) from projections 
taken at arbitrary angles 8. 

A Jacobi rotation S is defined by a 2 x 2 matrix function of an angle 8. 
Applying this matrix to a vector in the zy-plane rotates the vector about 
the angle 8 in that plane as follows: 

sin8 ) (;) = ( zcos8+ysin8 ) = ( i )  
-zsinB + ycos8 

(3.20) 
The Jacobi rotation lets us rotate the q-coordinate system into the ts-coordinate 
system. This means that we can treat a projection taken at an angle 8 in 
the zy-plane as a projection taken at an angle 0 in the ts-plane. The 
ts-coordinate system is a natural one to use for our problem as the vari- 
able t represents the distance of the ray from the line L through the on- 
gin, and the variable s represents the distance travelled along the ray from 
its source. For example, the point at location (zo,yo) in the figure below 
has s- and t-coordinates so and to, where so = -z0sin8 + yocos8 and 
to = xo cos 8 + yo sin 8. 
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Following the same steps as we used in the q-coordinate system to derive 
equation (3.14), we can mite  down the equation for a parallel projection in 
the ts-plane running parallel to the s-axis: 

Its one-dimensional .. . . -, Fourier transform is 

-cn 

--03 --co 

Rewriting this in xy-coordinates gives us 

+cx, +cn 

z d y  = 'U(e ,p ) .  -%ip(z cos 8+ysin8)d m P )  = J J l l (z ,y)e . 
-co -w 

Discrete Filtered Backprojection 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

Earlier we defined the Fourier Transform method, which gives us a relation- 
ship between the projections and the density of the object. The projection 
measured at a given angle is a collection of values denoted 

. P = (Po,Pl, . . .I  PK-1) T - (3.25) 

We repeat this measurement for 4 different angles eo, ..., 8,-1. We then show 
how to discretize both the Fourier transform and the filtered backprojection 
algorithm to operate on the discrete data. 

The Discrete Fourier Transform and Its Inverse 
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The discrete Fourier transform is a mechanism for transforming a set of 
measurements of the spatial function f(z) to a set of values of a function of 
spatial frequency F(u). 

We assume that we have an even number of measurements of the continuous 
function f ( x )  taken at the equally spaced z-values so that zo, ..., Z K - ~ .  That 
is, f (z j )  = f j  for J = 0, ..., K - 1. We also assume that the function f(z) 
is zero outside of the range [ z 0 , z K - 1 ]  SO that our samples f j  represent all 
important parts of f(z).-The sum 

K-1 

f i  = F ( q ) / A x  fje-2"i'j/K (3.26) 
j = O  

defines the discrete Fourier transform of these data at frequency u1. 

Note that the terms of the sum form a periodic series in 1. This is, because 
e-2aij = 1 for all integers values of j, F-1 = FK-I.  In particular, F-K/2  = 
F K / 2  , so we need only compute the K values F - K ~ ,  ..., F~12-1 to have all 
information about F.  The K data values fo, ..., f ~ - l  thus actually lead to K 
distinct Fourier transform values F - K / ~ ,  ..., F'/2-1. 

Similarly, for J = 0, ..., K - 1, 

(3.27) 

defines the discrete inverse Fourier transform at Z j  of values F,, ..., FK in 
frequency space. 
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The convolution f * g  has the K elements 

K-1 
hi = (f * d l  = f ( j ) g ( l -  j ) .  (3.28) 

This convolution is well-defined for I = 0, ..., K - 1 when the data f and g 
are assumed periodic with period K. In that case, the elements of g with 
negative indices are evaluated by the relation g(-m) = g(k - m). This sort 
of, convolution is termed a perjodic,.convolution. 

Applying a periodic convolution directly to aperiodic data results in an incor- 
rect result as the terms involving elements g-(K-1):1 contribute incorrectly to 
the result. This interperiod interference is remedied by &ng zero elements 
to the data vectors. 

j=O 

The convolution is related to the Fourier transform of f and g by 

Kl2-1 

(3.29) 
j=-K/2 

for I = - K / 2 ,  ...7 K / 2  - 1. 

The discrete Fourier Transform can also be applied in two dimensions. The 
. two-dimensional discrete Fourier transform of the function f ( x ,  y )  for samples 

taken at f j k  = f ( x j , Y k )  for j, IC = 0 ,  ..., K - 1 is 

K-1 K-1 
(3.30) 

j=O p=O 

The two-dimensional discrete inverse Fourier transform is 

K/2-1 K/2-1 

f j k =  (1/K) &me -%i(l j/K+mk/ K )  (3.31) 

As in the continuous case, the 2D discrete Fourier transform can be written 

I=- K/2 E- K/2 

as a pair of one-dimensional discrete Fourier transforms: 
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I 

I 

(3.32) 

Continuous Backprojection in a finite frequency Domain 

One can developed a continuous formulation of filtered backprojection by 
relating the density p(zl y) of the object to the projection data as follows: 

0 

where the transform 

+co 

C(B,t) = / P(B,t) lpl e-2'ITiPtdp (3.34) 
-W 

defines a filtered projection. 

Discrete Formulation 

(3.35) 



4. Iterative Reconstruction Technique 

! 

I It is known that, as an X-ray beam passes through an object, some of the 
photons of the beam are absorbed by the object (photon attenuation). With 
this in mind, consider a line of n pixels, through which an X-ray beam passes 
squarely (See the figure below) 

I 

Suppose that the fmt pixel transmits a fraction f1 of the incident photons, 
the second pixel a fraction- f2 of the photons incident to it, and so on, to the 
nth pixel, which transmits a fraction f n  (ie., fi equals the number of photons 
entering the ith pixel divided by the number of photons leaving). 

The total fraction, f, transmitted through this line of pixels will be given by 

or equivalently, 

- Inf=-Inf l . - Inf2-Inf3- . - - -  lnfn- (4-3) 
The positive quantity - In f1 is called the CT number (X-ray density) of 
the first pixel and will be denoted by 1-11. Similarly, 1-12 - h f 2  is the CT 
number of the second pixel, etc., with - In f as the total X-ray density of 
the beam. This last quantity is called the ray sum of the beam and will be 
denoted by s. 

Thus, if the i* beam, with ray sum, si, passes squarely through a line of n 
pixels, whose pixel numbers are j 1 ,  j 2 ,  ...: &,then 
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where si is known from the actual and calibration measurements, and the 
pjl, pj2, ..., pin are to be determined. 

However, not all beams of a scan pass squarely through a line of pixels. 
Instead, the iuL beam may pass “diagonally” through the pixel in its path. 
In this case, we have 

* where wij is a weighting factor that represents the contribution of the j t h  
pixel-to the ith ray sum, and N = n2 (the total number of pixels). 

If the beam width is the same as the pixel width, then theoretically wij equals 
the ratio of the area of intersection of the iuL beam with the j th  pixel to the 
area of the j th  pixel. However, due to the computational difficulty of finding 
the area of intersection of the bearn and the pixel, other definitions of wij 
are sometimes used. Two such definitions are: 

1. wij = 1 if the ith beam passes through the center of the j th  pixel, and 
wij = 0, otherwise. 

2. wij = length of the center line of the ith beam that lies in the j t h  pixel, 
divided by the width of the juL pixel. 

The first definition of wij is easier to use than the second but is less accurate. 
Either of these definitions gives rise to the following system 

Mp = S. 

There are various methods for solving linear systems -Gaussian elimination, 
matrix inversion, the Gauss-Seidel method, etc. However, because of the 
nature of the applied problem under consideration here, which gives rise to 
the above system, the following points must be taken into account in solving 
the system: 

0 The ray sums so, ..., S K - ~ ,  which form the right-hand side of the system, 
carinot be measured exactly. There will always be experimental error 
in the data collected. Hence the system is usually inconsistant, and 
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the best one can hope for is some “approximate solution.” Methods of 
solution which assume that the system is consistent cannot, in general 
be used. 

0 In computerized tomography, the number of scans taken in the data 
collection process forces the system to be overdetermined, Le., so that 
M > N. Methods of solution which assume that M = N, therefore, 
cannot be used. 

0 Our system can be so large that direct methods of solution are not 
feasible, due to computer requirements on storage and time. 

Many mathematical approaches are being tried in the area of image recon- 
struction in computerized tomography. We next describe one such approach, 
an iterative reconstruction technique, which produces approximate solutions 
to the linear system. 

To understand the Iterative Reconstruction Technique, let’s first consider the 
following system of three linear equations in two unknowns: 

Geometrically, this system determines three straight lines Ll, &,and & in 
the p1p2-plane. These lines do not have a common intersection point, i.e., 
the system is inconsistent. However, points on the triangle ABC formed by 
the three lines can be considered as “approximate solutions” of the system. 
(If the system were consistent, the triangle would sh r ink  to a point, the 
solution of the system). 

The following is an iterative procedure that generates points on the triangle 
ABC (“approximate solutions” of the system): 

Choose an arbitrary point Po in the plpp-plane. Project Po orthogonally 
onto L; tomget the point-Pil). Project Pi” orthogonally onto &,-to get P ! )  
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orthogon4ly onto & to get Pi1) . The first iteration is now complete and 

Now use P-f) as Po, etc., to obtain three sequences of points: 

results in the points Pl (1) , P2 (1) , and P,(’)on lines L1, La, and &. 

These sequences converge to points P’, P;, and P;, say, on lines L1 , L2, and 
L3; and the three limiting points are independent of the starting points as 
long as the three lines are not all parallel. 

We need a formula for the orthogonal projection of a point onto a line. 

onto the line L in the plp2-plane described by wlpl+ w2p2 = s. 
Suppose that Q(q1,qz) is the orthogonal projection of the point P(pl,p2) ! 

Using vector notation and dot products with i 

Then the projection point is given by 

(4.13) 

HOMEWORK 

(1) Applying the iterative procedure to our 3 x 2 system with Po = (2,3). 
Doing four iterations. 

Iterative Reconstruct ion Technique Algorithm I 
i 

If we set j? = (~1,112, ..., pn) and 3 = (wil,w;2 ,..., w i ~ ) ,  i = 1,2  ,..., M, 

form, the steps of the iteration are: 

! 

i 
I 
i 
I 

then the system can be expressed as 3 .  ii’ = si,i = 1,2, ... M. In algorithm 
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1. Choose Po, or in vector form, j#l) 

2. Set T = 1, for the first iterate. 

3. Compute 

(4.14) 

for k = 1,2, ..., M.(r = iteration count, M = # of hyperplanes) 

4. Set Z(l) = p>('). 

5. Increase the iterate number T by 1 and return to step 3. 

From this, M sequences of points are obtained: 

P!" , Py) , PPI , . . . on the first hyperplane, (4.15) 
(4.16) 

.... (4.17) 
PE), P:) PE' , . . . on the Mth hyperplane; (4.18) 

P2 (1) , P2 (2)  , p(3) 2 , ... on the second hyperplane, 

and it can be shown that these sequences converge to points P:,P., ..., P&, 
say, on the M hyperplanes, and that the limitingpoints are independent of 
the starting point Po, as long as the vectors z, w2, ..., w; span RN. 
One of the points P ~ ) , P ~ ) , . . . ,  P i ) ,  with T sufficiently large (depending on 
the desired accuracy), is used as an approximate solution of the system and 
hence used in the cross-sectional image reconstruction. The decision of which 
approximate solution to use is based on different kinds of secondary criteria, 
which are beyond the scope of our modules. 

, 
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