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PROGRAMS FOR ATTRA CTING UNDER-REPRESENTED MINORITY
STUDENTS TO GRADUATE SCHOOL AND RESEARCH CAREERS IN
COMPUTATIONAL SCIENCE

ABSTRACT

......

Programs have been established at Florida A & M University to attract minority stu-
dents to research careers in mathematics and computational science. The primary goal of
the program was to increase the number of such students studying computational science
via an interactive multimedia learning environment. One mechanism used for meeting this
goal was the development of educational modules. This academic year program established
within the mathematics department at Florida A&M University, introduced students to com-
putational science projects using high-performance computers. Additional activities were
conducted during the summer; these included workshops, meetings, and lectures. Through
the exposure provided by this program to scientific ideas and research in computational
science, it is likely that their successful applications of tools from this interdisciplinary
field will be high.

NOTICE

This report was prepared as an account of work sponsored by the United States Gov-
ernment. Neither the United States nor the United States Department of Energy, nor any
of their employees, nor any of their contractors, subcontractors,or their employees, makes
any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product or process
disclosed or represents that its use would not infringe privately-owned rights.
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Recently, the department of mathematics at Florida A & M University became
engaged in a great deal of self-study. Of the new perspectives that emerged from this
self-examination, one is perhaps the most significant: The mathematics faculty must
embrace the use of technology in the curriculum. Thus, an early product of this self-
examination was-the implementation of several novel projects, one of which will be
delineated in this report.

During the academic year 1996-97, a small group of mathematics faculty became
dedicated to providing FAMU students with an interactive multimedia learning
environment. This new environment has the potential of dramatically increasing the
effectiveness and efficiency of instruction and learning at FAMU. At the heart of this
new project was the development of educational modules on topics from computational
science. These modules were meant to be more than just multimedia courseware. They
were to play a central role in a comprehensive instructional solution designed to meet the
practical requirements of faculty and students.

As a participant in the Undergraduate Computational Engineering and Science
(UCES) Project, the department and the university made a commitment to promoting the
emerging field of computational science. This commitment is manifested by identifying
and supporting excellence in computational science education at the undergraduate level.
During the period of this award, the emphasis was on collecting, developing, and
distributing to FAMU students a set of computational science educational materials.
These materials are problem driven, modular in format, and interactive. Future plans
include working with other UCES members to produce a set of full "electronic classes",
which could become available on-line from the UCES Web Server.

The following topics have been developed as a preliminary state of educational modules:

e Computerized Tomography -This module is designed to give students an
introduction to computerized tomography. A brief historical introduction is
given. A mathematical model of a CT scan is described. Next, using tools
from computational science, a discretized problem is formulated. This
formulation used the backprojection method and discrete Fourier transforms.
The module ends by solving the discrete problem via an iterative
reconstruction algorithm.

o Design of a Computer-Based Presentation on Mathematical Modeling
using Differential Equations: Linear Dynamical Systems - This module
will be developed for students who are moderately literate in undergraduate
mathematics, but almost certainly have not taken a course in differential
equations. The underlying thesis of this effort is that mathematical modeling
can be introduced, understood, and mastered by such students if difference
equations are used rather than differential equations. Such an approach does
not, of course, preclude the eventual, or.even simultaneous, use of differential
equations. - However, the relative simplicity of difference equations allows a
student to concentrate on the modeling process, which is not the case with the
typical differential equation approach.




Topics
Introduction to the Card Format.

Modeling a Savings Account
Theory of First Order Affine Systems
Financial Applications
a.) Certificates of Deposit
b.) Annuities
c.) How the Lottery Works
d.) Loan Amortization
5. Political Science Applications
a.) Partisanship
b.) Political Attention
c.) Birth and Death of State Agencies
d.) Unemployment and Incumbency

el 2 S

Design of a Computer-Based Presentation on Mathematical Modeling
using Differential Equations: Nonlinear Dynamical Systems - This module
extends the approach of the above module to nonlinear dynamical systems
focusing on models of population.

Topics
1. Logistic Equation Models

a.) Limitations of Exponential Growth
b.) Logistic Model
c.) Logistic Model of Population Growth
d.) Logistic Model of Belief Systems
2. Equilibria and Cobwebbing
3. Analysis of Logistic Models
a.) Analysis of the Model of Population Growth
b.) Analysis of the Model of Belief Systems

Traffic Flow - This module is a spin-off from the FAMU High School
Supercomputing Challenge. The traffic flow considered consists of cars
moving on one side of a divided highway. Rules are developed to describe the
behavior of a vehicle. These rules are then placed into a model using von
Neumann and Moore neighborhoods. A simulation of the model is then given
using cellular automation and Mathematica. The last two sections of the code
model traffic flow in one direction on a two lane highway. This code can also
be used to solve a maze, which is created to model a section of a city .
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Volume I. Linear Dynamical Systems
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Department of Mathematics
Florida A&M University
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VolumeI. Linear Dynamical Systems
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Introductory Remarks

This volume — Linear Dynamical Systems — and its companion volume,
Nonlinear Dynamical Systems, are written for the audience of a student who is

“Mmoderately literate in undergraduate mathematics, but almost certainly has not

taken a course in difference equations. The underlying thesis of this effort is that
mathematical modeling can be introduced, understood, and mastered by such
students if difference equations are used rather than differential equations. Such an
approach does not, of course, preclude the eventual, or even simultaneous, use of
differential equations. However, the relative simplicity of difference equations
allows a student to concentrate on — and participate in — the modeling process,
which is not the case with the typical differential equation approach.

The subject matter for the presentation has been chosen with the adolescent
student in mind. It is the experience of the author that such students are primarily
absorbed with matters focusing on either money or sex. Hence, Volume 1 presents a
difference equation approach to linear dynamical systems concentrating on models
of personal finance with a short venture into politics. Volume 2 extends the
approach to nonlinear dynamical systems focusing on models of population.

The presentation shows how the material could be presented to students
using a hypertext system of the genre of HyperCard®. However, the material does
not currently exist in a hypertext medium. Therefore, the computer screen displays
are simply representative of the sorts of options that students could be given as they
study, explore, and master Linear Dynamical Systems.

The material presented in this volume was excerpted from the following
references:

HyperCard Reference Manual, Apple Computer, Inc., 1993

Discrete Dynamical Systems: Theory and Applications, James T. Sandefur, 1990,
Clarendon Press

Mathematical Thinking About Politics: An Introduction to Discrete Time Sytems,
G. R. Boynton, 1980, Longman, Inc.

Volume 1. Linear Dynamical Systems page 2
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General Layout of a Card

The presentation is given on a series of cards. The general layout of a typical
card is shown above. At the top is a statement of the Topic under discussion. The
discussion material for the card will be given in the blank space. This material may
consist of sentences, diagrams, equations, pictures, or combinations of them all. For
this report, pictures are excluded because the technology is not available.

The triangles and rectangles in the bottom strip furnish the hypertext
capabilities of the presentation. The triangular buttons represent the ability to move
to the immediately-preceding or immediately-following card. The button labeled
“Home"” represents the ability for the student to transfer to the beginning of the
entire presentation. The button labeled “Quit” represents the ability for the student
to terminate the presentation. The unlabeled buttons represent optional card
locations that are dependent upon the context of a given card.

In addition, words in the discussion material which are underlined have the
same function as buttons in the bottom strip. Those words allow students to
transfer to other cards while in the middle of the presentation to get “refresher”
information relevant to the concepts being presented. After reading the “refresher”
information, the student can return to his original location in the presentation.

Volume 1, Linear Dynamical Systems page 3
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i | Translate into a
Something we want X
to understand better I maﬂ'}emat'lcal
relationship

A

l
|
Is the problem better understood? |
|
|

Apply mathematical

Translate the "solution” .
into real-world terms < transformaﬁlons to
. l get a "solution”

We begin our discussion with a graphic presentation of the essential steps in
dynamical modeling.

Volume 1. Linear Dynamical Systems page 4
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WELCOME to a study of Linear Dynamical Systems. This is HOME page.

If this is your first use of this system, click on the triangle on the bottom
that points to the right. It will start you on your first module.

If you are returning for more study, click on one of the topics listed below:

Modeling a Savings Account

Theory of First Order Affine Systems
Financial Applications
Political Science Applications

Whenever you want to stop, click on the "Quit" button.

Although the “Home” page is not exactly the first page in our presentation, it
serves as a traffic director. When the student begins, he will pass through this page
and begin the first module — Modeling a Savings Account. On subsequent uses of
the system, the student can jump immediately to the last module he was studying.
At any time, the student can visit this page by clicking on the “Home"” button at the
bottom of the screen and be re-directed to any part of the presentation..

Volume 1. Linear Dynamical Systems page 5
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Situation:

$1000

Problem:
How much will we have
in 10 years? 20 years?

Y

At the beginning of each year, the Bank
increases the account by 10% of the
current account balance.

We have identified the problem. Next, we will translate into a mathematical

relationship.

Volume 1. Linear Dynamical Systems
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Translation:

Let A(n) be the amount in our account at the beginning of year n.

]$1000 ’]

Y

A(0) =1000

" Problem:

A(0) is the amount at time 0, -

How much will we have
in 10 years? 20 years?
A(10)=? AQ20)=7? A(2)

At the beginning of each year, the Bank
increases the account by 10% of the
current account-balance.

A(1) =1000 + 0.1*1000 = 1000 + 100 = 1100

i
1 =
1
S
S
+
1o
]
*
3
Iy
1 o
S
HI
Pl
3
S
S
+
-
=~
(=
]
=~
N
=2
()
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Translation:

Let A(n) be the amount in our account at the beginning of year n.

$1000 n R
A(0) is the amount ﬁt time 0, oo e

At the beginning of each _Year, the Bank
increases the account by 10% of the
current account balance.

An+l)=AMn) + 0.1°A(n) =1.1A(n)

Model:
A(n+1) =1.1A(n), where A(0) = 1000

The model is complete. Note that a new button, “Theory,” has been added.
The student now has the option of clicking this button to begin to learn the
terminology and theory associated with (linear) difference equations. If the student
wishes, he may defer studying this information until specific terminology has been
used. This “just in time” approach to imparting information is one of the

important strengths of hypertext presentations.

Volume 1. Linear Dynamical Systems page 8§
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Translation:  Let A(n) be the amount in our account at the beginning of year n.
Model: A(n+1) = 1.1A(n), where A(0) = 1000

Mathematical Solution:

To get a general solution, let's replace the factor of 0.1 (10%) by L.
Thus, the bank adds 1001% of the account balance each year.

A1) = A(0) + T*A(0) = (1 + D) A(0)
AQ)=AQ)+TPAQ) =1 +DAQ) = (1 + D[ + DAO)] = (1 + I)2A(0)
AB)=AQ)+T*AQ2)=(1+DAQR) = 1 + D1 + D2AWO)] = 1 + D)3A(0)

A.(.l.<) =(1

We know that An+1)=Am) +I*An) =1 +DA(m), so let's take a few terms:

Another button has been added, the “Practice” button. When the student
exercises this option, he will be given modeling exercises with both hints and
answers.

All stacks subsidiary to a given main topic are listed after topic. Thus, on the
following pages, you will find the card(s) for “Theory” and “Practice,” both of which .
are tailored to the topic: Modeling a Savings Account. In future topics, the terms

[ T e

—

“Theory” and “Practice” could also occur, but those cards will be tailored to that

particular main topic.

Volume 1, Linear Dynamical Systems page 9
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Suppose we have a function y = {(x).

A first order discrete dynamical system is a sequence of numbers
A() forn=0,1,2,... such that each number after the first one is
related to the previous number by the relation

Am+1) = f(A(n))

For example, in Modeling a Savings Account, we developed the relation:

An+1) =1 +DAM)

Practice

This is the first example of a subsidiary stack. The next several cards discuss
the terminology and theory appropriate to the model developed in “Modeling a
Savings Account.” In other modules, there will also be Theory stacks which will
discuss the terminology appropriate to the models developed in those modules.
The hypertext development system will keep the various Theory stacks separate
even though I am using the same term on the button.

Volume 1. Linear Dynamical Systems page 10
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The order of a system is the number of initial values of A(n) that are
needed for calculations.

For example, for A(n+1) = (1 + DA(n), A1) is calculated as
A1) =1 +1DA(0)
At this point we can now calculate A(2), and then A(3), etc. We 6n1y

needed to know A(0) to get going. There is no way to calculate A(0)
because our index n cannot be negative.

Practice

Volume 1. Linear Dynamical Systems page 11
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How many initial values are needed for this dynamical system?
An+2)=2Am)

To get A(2), we need A(0): A(2) =2A(0)
To get A(3), we need A(1): A(3) =2A(1)

Once we have A(2) and A(3), however, we can calculate

all remaining terms: A@) =2A(2) :
AB) =2A(3) .
A(6) =2A(4)

Two initial values are' needed, so this is a SECOND order dynamical system.

Volume 1. Linear Dynamical Systems page 12
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The most general form of a first order linear dynamical system is
A@+l)=rAMm), forn=0,1,..

integers k > 0 that satisfies the dynamical system.

A general solution satisfies the dynamical system and involves a

satisfies the equation A(0) = a,.

AK) = agk

A solution to a dynamical system is a function A(k) defined for all

constant ¢ which can be determined once an initial value is given.

A particular solution satisfies the dynamical system and, when k= 0,

Thus, the particular solution for the dynamical system given aboveis

; Practice [

Volume 1. Linear Dynamical Systems

page 13
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Summary:
The most general form of a first order linear dynamical system s
AMm+1)=rAm), forn=0,1, ..
The particular solution for the first order linear dynamical system is
A(K) = agk

Note that the behavior of the solution of first order linear dynamical
systems is determined by the size orsign of the constantr.

. If | rl <1, then the solution A (k) goes to zero, either exponentially oi-
in an oscillatory fashion.

If || > 1, the solution goes exponentially to either positive or negative
infinity.

; Practice l

This is the end of the “Theory” stack for first order linear dynamical systems.
At this point the student would either click “Practice,” “Home” (to be directed to the
next module), or “Quit.”

Volume 1. Linear Dynamical Systems page 14
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On the screens to follow, you will be given a problem statement.
You are derive the system yourself (on a piece of paper), before
moving to the next screen which will present the solution.

At any point, you can go to "Theory" to study the terminology and
theory appropriate for this module, you can go "Home" to be
directed to another module, or you can "Quit."

Go to the next screen to begin.

This is the second example of a subsidiary stack, a stack for giving practice
exercises to the student. The first card gives the directions, and subsequent cards
present the practice exercises with illuminating commentary.

Volume 1. Linear Dynamical Systems page 15
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.+...Suppose a bank pays 5 per cent interest on its savings accounts,
compounded annually.

Let A(n) be the amount of money in the account at the beginning
of year n.

(a) Formulate a dynamical system for the amount in the account
in year n+1 using the amount in account in year n.

(b) Given that the initial deposit is A(0) = 200, find the amount
in the account after 1, 2, 3, and 4 years.

(c) Find the general solution to the dynamical system.

And the solution:

Let A(n) be the amount of money inthe account at the beginning
of year n.

(a) amount in year n+1 = amount inyearn -+ mterest from year n
An+1) =A®m) + 0.05A(n)
A(n+1) =1.05A(n)

(b) A(1)=1.05A(0) = 1.05(200) =210
A(2) =1.05A(1) = 1.05(210) = 220.5
A3) =1.05A(2) = 1.05(220.5) = 231.525
A(4)=1.05A(3) = 1.05(231.525) = 243.10125

(© A® = (1.05kA(0)

Volume 1. Linear Dynamical Systems page 16
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Suppose a broker charges a 2 per cent service charge on the money
in your savings account each year. Further, this broker makes bad
investments each year and you do not earn any interest on your account.

Let A(n) be the amount of money in the account at the beginning
of year n.

(a) Formulate a dynamical system for the amount in the account
in year n+1 using the amount in account in year n.

(b) Given that the initial deposit is A(0) = 500, find the amount
in the account after 1, 2, 3, and 4 years.

4

(c) Find the general solution to the dynamical system.

Let A(n) be the amount of money in the account at the beginning
of year n.

(a) amount in year n+1 = amount in year n - amount lost fromyearn
"A(n+1) = A(n) - 0.02A(n)
A(n+1) =0.98A(n)

(b) A(1)=0.98A(0) = 0.98(500) =490
A(2) =0.98A(1) = 0.98(490) = 480.2
A(3) =0.98A(2) = 0.98(480.2) = 470.596
A4)=0.98A(3) = 0.98(470.496) = 461.18408

() A = (0.98)kA(0)

Volume 1. Linear Dynamical Systems page 17
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Suppose a bank pays 8 per cent each year on its checking accounts,
but it also deducts 40 dollars per year as a service charge (after
first adding on the interest).

Let A(n) be the amount of money in the account at the beginning
of year n.

(a) Given that the initial deposit is A(0) = 1000 dollars, find the amount
in the account after 1, 2, and 3 years. (Assume no checks were
written) ‘

(b) Formulate a dynamical system for the amount in the account
in year n+1 using the amount in the account in year n.

Let A(n) be the amount of money in the account at the beginning
of year n.

(@  A(1)=1000 + 0.08(1000) - 40 = 1000 + 80 - 40 = 1040
A(2) = 1040 + 0.08(1040) - 40 = 1040 + 83.2 - 40 = 1083.2
A(3) = 1083.2 + 0.08(1083.2) - 40 = 1083.2 + 86.656 - 40 = 1129.856

(b) amount in year n+1 =amount inyearn + interest foryearn
- service charge
A(n+1) = A(n) + 0.08A(n) - 40
A(n+1) = 1.08A(n) - 40

Note: This is a first order system (how many initial values
are needed?), but we don't yet know how to find the
general solution for this type of system.

Volume 1. Linear Dynamical Systems page 18
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Suppose that you borrow 2000 dollars from a friend. You agree to
add 1 per cent interest each. month to the amount of the load that

is still outstanding and also to pay your friend 150 dollars each month.
Your friend insists that the interest is first added on to what you owe
and then your 150 dollar payment is subtracted.

Let A(n) be the amount of money owed at the beginning of month n.

(a) Formulate a dynamical system for the amount owed in month n+1
using the amount owed in month n.

L

Let A(n) be the amount of money owed at the beginning of month n.

amount owed in month n+1 = amount owed in month n
-+ interest on amount owed in month n
- payment to friend

A(n+1) = A(n) +0.01A(n) - 150

An+1)=1.01A(n) - 150

Volume 1. Linear Dynamical Systems page 19
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Situation #1: 55 e 1

Suppose it costs 120 dollars plus 20 cents a mile to rent a car
for a week. Let A(n) represent the total cost for renting the car
if you drive for a total of n miles.

Situation #2:

To make a telephone call to New York City costs 45 cents for -
the first minute and 33 cents for each additional minute. Let
A(n) represent the cost of a call lasting for n minutes.

For each Situation, you are to write a dynamical system )
relating A(n+1) in terms of A(n). Before you write the general
system, write expressions, for A(0), A1), A(2), and A(3).

Situation #1: A(n) is the total cost after driving n miles.
A(0)=120
A1) =A0)+20
AQ)=A1)+20
A@B)=A2)+20

An+)=AMm)+20 (n=0,..)

Situation #2: A(n) is the cost of a call lasting n minutes.
A0)=0
AQ) =45
AQR)=A1)+ 33
AB)=A()+33

A+ =AMm)+33 (n=1,..)

Volume 1. Linear Dynamical Systems page 20

CRE S SN e SO SMPNCREARE D S 2 X R CASIOCI O DGO ONRATRGMETE < ey SR AR P A g TCR ST R P S S

%




S

[

Tamdl et omel  Fesd e

N

l--tv-j

1

Situation #1:

Let A(n) be the number of gallons of gas left in a car after driving
n miles. The car originally had A(0) = 12 gallons, and it goes 20
miles per gallon of gas [Note: That is 0.05 gallons per mile driven.]
Write a dynamical system describing the amount of gas left after
driving n+1 miles in terms of the amount of gas left after driving
n miles.

Situation #2:

Suppose that a person takes a pill containing 200 milligrams of a
drug every 4 hours, and assume that thé drug goes into the blood-
stream immediately. Also assume that every 4 hours the body .
eliminates 20 per cent of the drug that is in the bloodstream.
Develop a dynamical system describing the amount A(n) of the
drug in the bloodstream after taking the nth pill.

Situation #1: A(n) is the number of gallons left in a car after driving n miles
when the car consumes 0.05 gallons per mile driven
A0)=12
A(1)=A(0)-0.05
A(2)=A(1)-0.05 :
A(n+1)=A(m) - 0.05 n=0,..)

Situation #2: A(n) is the amount of drug in the bloodstream after taking
the nth pill :
A0)=0
A1) =200

A(2) =200+ 0.8A(1)
A(3) =200 + 0.8A(2)
A(n+1) =200 + 0.8A(n) (n=1,..)

Volume 1. Linear Dynamical Systems page 21




- -

[ TN

]

| R

‘:—;OQ‘Q".‘)

kovernd

it 1o Ry ==

- . o
1-.«-"*) b-u -

| R—

- .
St snd

ing a Savings Account you were introduced to the
plain vanilla first order linear dynamical system -

A@+1) =rAm),
which has the solution A (K) = XA (0).

That system didn't have many realistic applications. Butnow with
a minor modification, we have the first order AFFINE dynamical system:
An+l)=rAMm)+b (b is a constant).

For example, you have a savings account with annual interest and you
add a constant amount to the account at the beginning of each year.
That situation can be modeled with a first order affine dynamical system.

But models are no good if we can't get a solution. So, first we need the

solution of: An+1) =rA(n) + b.
: ] Quit !

This section has no interaction, so two cards are displayed on each page.

A real advantage of working with difference equations is that

the mathematics is so accessible and the approach is so straight-
forward. Now, how did we solve A(n+1) =rA(n)? We wrote some
terms and saw a general pattern. Let's do the same thing for

Am+1) =rA(n) + b.

A1)=rA0)+b
AR)=rAQ)+b=r[rA0)+b]+b=r2A0)+1rb+ Db
=r2A(0) +b(1 +71)
AB)=rAQ)+b=r1[r2A(0) + b +b] +Db
=BA0)+1r2b+1b +b
= PA0) +b(1l +r+1r?)

Volume 1. Linear Dynamical Systems page 22
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Since A(3)=r3A(0) + b(1 + r+ 2), we can see the form of A(k):
AK = KA0) +b(L + 1 + 12+ ... + ).

But, what can be done with that god-awful term in parentheses?
Fortunately, a clever person noticed that:

l+r+R+..+1k1=(1-1%/1-1)
Thus, A(k)=rkA(0)+ b[(1 - rK)/(1 - 1)], which can be simplified to
AK) = 1M[A©) - b/ @-1)] + [b/(1-1)]

This form is not so bad, and it contains the repeating term, b/ (1-1).
Does that have a significance?

SO ECLC = o ROCOROCCORREC

To see the significance of the repeating term, b/ (1-r), we must take a slight
detour from our derivation of the solution of first order affine systems.

A first order affine system, in fact any difference equation, is said to be in
EQUILIBRIUM if every term has the same value —A(0) = A1) = A(2) =...

Let the equilibrium value be a. Then, for A(n+1) = rA(n) + b, both A(n+1)
and A(n) will equal a. Thus

a=ra+b
(I-r)a=b
a=>b/ (11

Our repeating term is the EQUILIBRIUM value for the first order affine
system. And note that the system has no equilibriumifr=1.
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So we also need to consider the special case of the PR
first order affine system withr=1: A(n+1) =A(m) + b.

- AQ)=A0)+Db
AR)=A1)+b=A0)+b+b=A0)+2b
AB)=AQ)+b=A0)+2b+b=A(0)+3b

So, A =A0)+kb

In other words, all we're doing in this system is ad ding the
constant b at each step.

Thus, the first order affine system:
Am+l)=rA(m)+b

has one of the following solutions:

whenr=1:
AK) =1x[A(0)-a] +a
where a=b/ (1-1)
whenr=1: A =A@0)+kb

Volume 1. Linear Dynamical Systems ) page 24
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In this section, we will use the first order affine dynamical system
to model the following applications:

Certificates of Deposit
Annuities

How the Lottery Works
Loan Amortization

The topics are independent of one another. Just click on the one
you want. To return here, click on "Financial” at the
bottom of the page.

l Financial E

This page serves as the “home” page for all financial applications

Volume 1. Linear Dynamical Systems page 25

o o A o meym ‘- PERESCYA-a »




4

‘.
PRI

* r-ﬁb}l
- —— roe

1 -
W

]

.

4

-1
]

l\ i“ii , - iil e 'iﬂil

H I '!‘“‘

]
] woveel

]
»”

- ———

l "] hd - i l;: 5 H i Lol [

A Certificate of Deposit (CD) is a financial instrument where you
give the bank a sum of money and they promise to give you a
guaranteed percentage of interest in return. But, you can't get
your money back in the interim. It's tied up for the lifetime of
the CD.

Relatively short term CDs are now paying 6%, so let's say we
could get long term CDs paying 7%. Further, you have a long
worklife ahead of you.

So, if you deposited the same amount each compounding period
(say, every quarter), and the CD is paying 7% interest, compounded
quarterly, how much would you need to deposit every 3 months

to have a million dollars in 20 years? in 30 years? in 40 years?

Model:
the amount in quarter n+1 = amount from quarter n
+ quarterly interest on amount from quartern
+ deposit for quarter n+1

An+l)=AMm) + (0.07/HAN) +b
An+1)=1.0175A(n) +b

Solution:
a=b/(1-1)=b/(@1 -1.0175) = b/ (-0.0175) =-57.14 b
A0 =b
AXK) = X[A(0) - a] + a= (1.0175)k[b - (-57.14 b)] - 57.14 b
AK) = (1.0175)k[58.14 b] - 57.14 b

Financial I

Volume 1. Linear Dynamical Systems page 26
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If we want $1,000,000 [this will be A(K)] in 20 years (k is
20 x 4 quarters = 80 quarters):
1,000,000 = (1.0175)%0[58.14 b} - 57.14 b
1,000,000 = 175.79 b
b =$5,688.55 (or $22,754.20 annually)

For 30 years: .
1,000,000 = (1.0175)120[58.14 b] - 57.14 b
1,000,000 =409.1b
b =$2,444.42 (or $9,777.68 annually)

For 40 years:
..,.-1,000,000 = (1.0175)160[58.14 b] - 57.14 b
1,000,000 = 876.08 b
b =%$1141.45 (or $4,565.80 annually)

Volume 1. Linear Dynamical Systems
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" Let's eay {r:;; now have the $1,000,000 that you saved for for 40 years and
you're now 65 years old. Further, let's say that you can get a guaranteed
5% at the bank (remember you can't touch the money if it's in CDs).

You could live off the annual interest of $50,000 or you could take $50,000 out
of the million and put the restinto 1-year CDs at say 6% and get $57,000.

The nice thing here is that when you die, you would be leaving the whole
million to your kids.

On the other hand, SCREW THE KIDS! In fact, you want $75,000 per year
because YOU HAVE NEEDS that have been deferred by saving $5,000 per
year for 40 years.

Don't go to the next pdge until you have written and solved a first order
affine dynamical system model to determine how long the million will last.

Financial

Model:

We assume that we start with A(0) = 1,000,000 and receive an
annual interest of 5%. Further, we are taking a lump sum of $75,000 -
each year. (The calculations are nicer if we forego the first year.)

If A(n) is the amount of money in our account at the beginning of
year n, we want to know the value of k such that A(k) =

amountinyearn+1=  amountinyearn
+ interest for year n
- withdrawal of $75,000

An+1) = A(n) + 0.05A(n) - 75000 = 1.05A (n) - 75000

Financial

Volume 1. Linear Dynamical Systems page 28
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Solution: A =A(0)-a]+a

REAREN S 93 -G
r=1.05 .
A(0) =1,000,000 |
b =-75,000 '

a= b/ (1-r) = (-75000)/ (1 - 1.05) = 1,500,000 ;

A(k) = (1.05)k[1,000,000 - 1,500,000] + 1,500,000 =0
500,000(1.05)k = 1,500,000
(1.05)k = 3

At this point you can use logarithms, calculators, spreadsheets, whatever
to find thatk is between 22 and 23. In other words, you better kick the
bucket about 87 or your kids will do the job themselves!

l Financial l
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Let's now look at another annuity — the State Lottery. This again is an
annuity. A lump sum of money is put in an interest-bearing account
and the interest (and part of the principal) is disbursed over a period of
years. In this case, it's a fixed number of years — 20.

Our interest is in finding out how much the State "makes" on the Lottery
money. That is, does all of the money go to the winners?

So, now your task is to write a first order affine dynamical system to
determine how much money should be put in an account yielding 8%
annual interest (the State can get a good deal!) and be depleted after 20 |
annual payments of $50,000 each (that's a million-dollary lottery win).

Model: )

We are looking for the starting amount, A(0). That amount will
yield an annual interest of 8%. Further, we are taking a lump sum of
$50,000 each year. (The calculations are nicer if we forego the first year.)

If A(n) is the amount of money in our account at the beginning of
year n, we want to know the value of k such that A(k) =0.

amountinyearn+1=  amountinyearn
+ interest for year n
- withdrawal of $50,000

A(n+1) = A(n) + 0.08A(n) - 50000 = 1.08A(n) - 50000

Financial

Volume 1. Linear Dynamical Systems page 30
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Solution: AK) =1x[A(0)-a] +a-

r=1.08

k=20

A@0)=?

b =-50,000

a= b/ (1-1) = (-50000)/ (1 - 1.08) = 625,000

AK) = (1.08)20[A(0) - 625,000] + 625,000 =0
4.66A(0) - 2,912,500 + 625,000 =0

4.66A.(0) = 2,287,500

A(0) =490,879

In other words, the state gets about half of the ;honey for itself! Does this
begin to explain why state lotteries are so attractive to politicians?

i -Financial l

Volume 1. Linear Dynamical Systems

page 31




~

e

1 N
drraecen

.
camemadd

«

W eyl el Feed e

»
Ppeeyte

A [ SO

L

L3 reed e

.

[

You got a student loan at 10%. At the time you graduate, you owe $15,000.
You're given 3 options: 5 years, 10 years, or 15 years. Which should you
take?

You should be getting pretty good at this. Write a linear affine dynamical
system model to determine the monthly payment. Use a monthly interest
rate of 0.1/12.

‘‘‘‘‘‘‘

Financial I

Model:

A(n) is the amount of money that we owe at the beginning of each month,
and we want to know the value of b such that A(k) = 0 for k =60, 120, or 180.

amount owed inmonthn+1= amount owed in monthn
+ interest on amount owed in month n
- monthly payment

A(n+1) = A(n) + 0.0083A(n) - b=1.0083A(n) -b

Financial
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Solut-i-on: AR =%[A0)-a]+a

E XN R

r=1.0083

k =60, 120, or 180 (Il show the details for k= 60)
A(0)=15,000

b=?

a=b/(1-)=b/(1-1.0083)=-120.5b

A(K) = (1.0083)60[15,000 + 120.5b] - 120.5b =0
k=60: b=$318.38 total amount paid =$19,102

k =120: b=$197.88 total amount paid = $23,746
k =180: b=$160.80 total amount paid =$28,944

meancial i
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As one might imagine, the applications of dynamical systems to be found
in political science are much wordier than those of financial applications.
Therefore, these applications tend to drone on from page to page. Please
be patient, though, because the material may seem old familiar but the
treatment is quite novel.

I have extracted applications on:

Partisanship
Political Attention

Birth and Death of State Agencies
Unemployment and Encumbency

At any point the "PoliSci" key will return you to this page, from which you-
can click onto another application. "Home" and "Quit" are always available.

This is the “home” page for the Political Science Applications. The first
application, “Partisanship,” is carried through to a model and its solution. The
other applications are modeling opportunities for the students as data is not
available to create an actual model. One of the intriguing elements of Boynton's
work in the application of dynamical systems to political science is his use of models
for qualitative analysis.
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A fact about American politics that is part of the general lore is that
individuals divide themselves into Democrats and Republicans. We call
this partisanship.

The strength of partisanship varies; some people think of themselves as very
strong Democrats or Republicans, and some as not so strong Democrats or
Republicans.

One might think that strength of partisanship is related to age. That is,
younger adults (18 - 35) are less likely to think of themselves as strong
partisans than are older adults (55 - 70).

It is also known that partisans of one party are more likely to vote for
candidates of that party than they are to vote for candidates of the other
party. After all, that's what "partisan” means.

But all studies of partisansl'ulip‘ éinong children show that partisanship has
its beginnings well before the first vote, and that the partisanship of
children is directly linked to the partisanship of their parents.

In the 1950s research was conducted in the United States and France on
partisanship in the respective adult populations. The level of partisanship
was vastly different in the two countries. In the United States, 75% of the

In France, only 24% of the population felt similar partisan attachments.

adult population thought of themselves as partisans of one or the other party.

Volume 1. Linear Dynamical Systems page 35
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The individuals interviewed were also asked about the partisan attachments
of their parents. In the U.S,, 76% of those interviewed could remember the
partisan attachment of their parents; in France, only 25%.

But when the data was analyzed, an unexpectedly similar pattern of political
learning in the two countries is revealed:

Know Father's Party Don't Know Father's Party

France Us France UsS
Partisan 79% 82% 48% 51%
Not partisan 21% 18% 52% 49%

Of those who could remember their father's party, 80% (regardless of country)
were themselves partisan; of those who could not remember, 50% were partisan.

What is needed is a formal representation of this learning process which will
provide insight into the way levels of partisanship will change over time.

Let A{n) represent the proportion of partisans in the current generation. Then,
A(n-1) is the proportion of partisans in the previous generation, the generation
of their parents. Further, [1- A(n-1)] is the proportion of the previous gene-
ration who were not partisans.

Then, from the data given on the previous card, we know that 80% of the
parents who were partisan will have children who are partisan, and 50% of
the parents who were not partisan will have children who are partisan.

Thus, A(n) = 0.8A(n-1) + 0.5[1 - A(n-1)] = 0.3A(n-1) + 0.5
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_ From the presentation given in Theory of First Order Affine Systems, we
" know how to solve this system:
A(n)=03A(n-1) + 0.5

We are, however, used to seeing such systems advanced one period:
A(n+1)=0.3AMm) +0.5

Solution: r=0.3
a=b/(1-Y)=0.5/(1-0.3) =0.714
AK =1[A@©)-a] +a
AK) = (0.3)K[A(0) - 0.714] + 0.714

|7 As k gets large, (0.3)k will go to zero, leaving A(k) to apprach 0.714. Thus,

our mode] predicts partisanship will increase in France and drop in the US.
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There was a time whenmost of the food consumed was produced either by
the individual family unit or by one's neighbor. Bread was baked each day-
by the local bakery. Meat was grown and slaughtered locally. In general,
food production was a small-scale local operation.

As that changed, farms became larger, food was transported over longer and
longer distances, and buyers and sellers became more concerned about the
appearance of the food product. In order to make farming more productive,
chemical fertilizers were used and poisons developed and used to kill bugs,
diseases, etc. Chemiicals were added to foodstuffs to preserve them and make
them more attractive.

Then it'was discovered that many additives, chemicals, and poisons are
potentially harmful to those who eat the food.

Over the past thirty years there has been 1nc:reasmg poht1ca1 atten’uon devoted

to this problem.

If political attention to chemicals in the food is the output of the system, then
the amount of chemicals in food can be thought of as the input.

When political officials compete for office through elections, they are concerned
about the problems of interest to their constituents. This can be represented

by a constant multiplied by the input; the constant represents citizen concern
about health.

There is, however, a limit on the amount of time that government can devote
to any given problem. There are many problems; attention has to be spread
around. The press of other business can be represented by a constant
multiplied by attention to chemicals in food in the past.
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For purposes of model development, the preceding discussion can be
summarized as follows:

The rule that transforms the amount of chemicals in food (the input) into
the political attention to chemical in food (the output) can be summarized as:

current political attention is produced by the concern of citizens about health
times the current amount of chemicals in food plus the press of other business
times the attention given to this problem at the immediately past time period.

Use the following definitions to formulate this model:

A(n) amount of political attention to chemicals in food in period n
u(n) amount of chemicals in food in period n

a press of other business

B public concern about health

A(n) amount of political attention to chemicals in food inperiod n

u(n) amount of chemicals in food in period n
o4 press of other business
B public concern about health

current political attention [A(n)] is produced by [=]
the concern of citizens about health [f]
times the current amount of chemicals in food [u(n)] plus [+]

the press of otherbusiness [o]  times the attention given to this
problem at the immediately past time period [A(n-1)].

A@)=Bu@) + cA(n-1)
Note that unless we are willing to make u(n) a constant, we cannot solve this
model. This model is a type known as nonhomogeneous.
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The sunset laws are one answer to big government and red tape. Sunsetlaws
are laws that set up executive agencies for a specified period of time. When
that time has elapsed, the governor and the legislature review the work of
the agency to determine if there continues to be a need for the agency. Itis
assumed by the proponents of these laws that at least some agencies will,
through this process, go out of existence.

The input is the number of new agencies set up in a given year. The number
of new agencies is added to those agencies already in existence, that is, all
agencies that existed in the previous year. From this is subtracted those
agencies for which the death knell sounds after their review (say 7 years), but
since this is not likely to be all agencies, this teym must be multiplied by a
constant representing the proportion that are not continued.

Model this situation given the following definitions:

Am) number of executive agencies in year n
u(n) number of agencies established in year n
o] proportion of reviewed agencies which go out of existence

The input is the number of new agencies set up in a given year. The number
of new agencies is added to those agencies already in existence, that is, all
agencies that existed in the previous year. From this is subtracted those
agencies for which the death knell sounds after their review (say 7 years), but
since this is not likely to be all agencies, this term must be multiplied by a
constant representing the proportion that are not continued.
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Model this situation given the following definitions:

o - A number of executive agencies in year n

u(n) number of agencies established in year n

o] proportion of reviewed agencies which go out of existence
[A@+1)] = The input is the number of new agencies set up in a given year.

The number of new agencies is added to those agencies already in existence,
that is, all agencies that existed in the previous year. [u(n+1) + A(n)]

From this is subtracted those agencies for which the death knell sounds after
their review (say 7 years), but since this is not likely to be all agencies, this
term must be multiplied by a constant representing the proportion that are

not continued.  [- cA(n-7)]

An+1) = u(n+1) + A(n) - cA(n-7)

l PoliSci [
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In the past 60 years the public has come to assign principal responsibility for
managing the performance of the economy to government. As a result,
fluctuations in unemployment have consequences for election outcomes.

The Democrat party is believed by much of the public to be more effective in
producing "good times" than is the Republican party. Thus, when unemploy-
ment increases, the public is likely to vote in Democrats and vote out Repub-
licans. When unemployment decreases, the electoral prospect of Democrats
is diminished and the prospects for Republicans brightens.

) PoliSci [

This argument can be formalized by treating the proportion of Democrats

elected to Congress as the output of the system.

The input is change in unemployment — not the level of unemployment, but
the change in the level of unemployment. Change in unemployment can be
represented as the current level of unemployment from which is subtracted
unemployment at the immediately pas period.

Once a Congressman is in office, his or her chance of being reelected is rather
good. There is advantage in incambency. The advantages that accrue to
incumbents can be represented by a constant, which is multiplied by the
proportion of Congressmen who were elected at the last election.

Finally, there must be a constant which represents citizen concern about
change in unemployment.
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Thus, the current proportion of Congressment who are Democrats is produced
by the advantage of incumbency multiplied by the proportion of Democrats
elected in the last election plus the concern of citizens about change in
unemployment multiplied by unemployment now, from which is subtracted
unemployment at the last time period.

Model this description of the situation using the following definitions:

An) proportion of Congressmen who are Democrats in session n
u(n) unemployment at the time of the election for session n

o advantage of incumbency

B citizen concern about change in unemployment

A(n) proportion of Congressmen who are Democrats in session n
u(n) unemployment at the time of the election for session n

o advantage of incumbency

B citizen concern about change in unemployment

Thus, the current proportion of Congressment who are Democrats is produced
by [AM) =] the advantage of incumbency multiplied by the
proportion of Democrats elected in the last election  [cA(n-1)]

plus [+] the concern of citizens about change in unemployment [f]
multiplied by unemployment now, from which is subtractedunemployment
at the last time period. [u(@) - u(n-1)]

AMm) = aA®-1) +Blu®) - u(n-1)]

PoliSci l

i
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Introductory Remarks

This volume — Nonlinear Dynamical Systems — and its companion
volume, Linear Dynamical Systems, are written for the audience of a student who is
moderately literate in undergraduate -mathematics,  but almost certainly has not
taken a course in difference equations. The underlying thesis of this effort is that
mathematical modeling can be introduced, understood, and mastered by such
students if difference equations are used rather than differential equations. Such an
approach does not, of course, preclude the eventual, or even simultaneous, use of
differential equations. However, the relative simplicity of difference equations
allows a student to concentrate on — and participate in — the modeling process,
which is not the case with the typical differential equation approach.

The subject matter for the presentation has been chosen with the adolescent
student in mind. It is the experience of the author that such students are primarily
absorbed with matters focusing on either money. or sex. Hence, Volume 1 presents a
difference equation approach to linear dynamical systems concentrating on models
of personal finance with a short venture into politics. Volume 2 extends the
approach to nonlinear dynamical systems focusing on models of population.

The presentation shows how the material could be presented to students
using a hypertext system of the genre of HyperCard™. However, the material does
not currently exist in a hypertext medium. Therefore, the computer screen displays
are simply representative of the sorts of options that students could be given as they
study, explore, and master Linear Dynamical Systems.

The material presented ‘in this volume was excerpted from the following
references:

HyperCard Reference Manual, Apple Computer, Inc., 1993

MacMath 9.2: A Dynamical Systems Software Package for the Macintosh™ , John
Hubbard and Beverly West, 1993, Springer-Verlag

Discrete Dynamical Systems: Theory and Applications, -James T. Sandefur, 1990,
Clarendon Press

Differential Equations and Their Applications, Martin Braun, 1993, Springer-Verlag

Growth and diffusion Phenomena: Mathematical Frameworks and Applications,
Robert Banks, 1994, Springer-Verlag
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General Layout of a Card

The presentation is given on a series of cards. The general layout of a typical
card is shown above. At the top is a statement of the Topic under discussion. The
discussion material for the card will be given in the blank space. This material may
consist of sentences, diagrams, equations, pictures, or combinations of them all. For
this report, pictures are excluded because the technology is not available.

The triangles and rectangles in the bottom strip furnish the hypertext
capabilities of the presentation. The triangular buttons represent the ability to move
to the immediately-preceding or immediately-following card. The button labeled
“Home” represents the ability for the student to transfer to the beginning of the
entire presentation. The button labeled “Quit” represents the ability for the student
to terminate the presentation. The unlabeled buttons represent optional card
locations that are dependent upon the context of a given card.

In addition, words in the discussion material which are underlined have the
same function as buttons in the bottom strip. Those words allow students to
transfer to other cards while in the middle of the presentation to get “refresher”
informatjon relevant to the concepts being presented. After reading the “refresher”
information, the student can return to his original location in the presentation.

Volume 1. Linear Dynamical Systems page 46

oo
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to understand better l mat}}emat}cal
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into real-world terms l get a "solution”

We begin our discussion with a

graphic presentation of the essential steps in
dynamical modeling.
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WELCOME to a study of Nonlinear Dynamical Systems. This is HOME page.

If this is your first use of this system, click on the triangle on the bottom E
that points to the right. It will start you on your first module. ’.

If you are returning for more study, click on one of the topics listed below:

Logistic Equation Models
Equilibria and Cobwebbing
Analysis of the Logistics Models

Whenever you want to stop, click on the "Quit" button.

Although the “Home” page is not exactly the first page in our presentation, it ,
serves as a traffic director. When the student begins, he will pass through this page
and begin the first module — Logistic Equation Models. On subsequent uses of the ;
system, the student can jump immediately to the last module he was studying. At !
any time, the student can visit this page by clicking on the “Home” button at the
bottom of the screen and be re-directed to any part of the presentation. :
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In this section, we will first explore the limitations of exponential i
growth (the Malthusian model) and then consider models of
constrained growth (the Logistic model):

Limitations of Exponential Growth
Logistic Model f
Logistic Model of Population Growth E
Logistic Model of Belief Systems

The topics should be viewed in the order they are given. Just click f
on the one you want. To return here, click on "Logistic" at the ’
bottom of the page.

This is the “home” page for the section developing logistic models. The
student is first shown the need for such models by considering limitations of the
predictive power of models based solely on exponential growth. Although logistic
models are usually associated with population models, I have also included :
discussion of models in which logistic modeling was used to show how rumors or :
“beliefs” spread within a population. "
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Let A(n) be the population size at time period n. Assume that the number
of births in a given time period is proportional to the size of the population
in that period, and the proportionality factor is b — the birth rate.

births in period n = bA(n)
Further, assume in a like manner that the number of deaths in a given
time period is proportional to the size of the population in that period, and
the proportionality factor is d — the death rate.

deaths in period n = dA(n)

Then,

An+1) = A(n) +bA(n) - dA()
An+)=0+b-d)AMm)

A1) = (1 +1) A(n),
where r=b-d =netgrowth rate

From the material in Linear Dynamical Systems, we know that the solution
to this system is

AR = (1+1)kA(0)

This is the Malthusian model of exponential growth, from which he predicted
a world-wide catastrophe.
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Then,
An+1) = A(n) +bA(n) - dA(n)
A@tl)=(1+b-d) Am)

An+l)=1+r) A(n),
where r=b-d =netgrowth rate

From the material in Linear Dynamical Systems, we know that the solution
to this system is

AK) = (1 +1)kA0)

This is the Malthusian model of exponential growth, from which he predicted

An analysis of the data for the beginning years of the country su ggests an
annual growth rate of about 3% (r = 0.03). Therefore, if we calculate
A(n+1) = (1.03)k A(0), where A(0) = 4:

t N Pred t N  Pred t N Pred
0 4 70 31 32 140 123 251
10 5 5 80 39 43 150 132 337
20 7 7 9% 50 57 160 151 453
30 10 10 100 63 77 170 179 609
40 13 13 110 76 103 180 203 818
50 17 18 120 92 139 190 226 1099
60 23 24 130 106 187

We see that the predicted values (Pred) are initially accurate but eventually
grossly inflated

-
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The predicted values for the late 1800's were 10% or morein error,
and the 1930 prediction is double the actual value.

Clearly, the exponential growth model, which seemed so promising
for the first 100 years or so, is not a model adequate to predict the
population of the United States.

Furthermore, data from animal populations also suggest that the
model is satisfactory only as long as the population is not too large.

Malthus made his prediction of a population catastrophe in 1798:

"Population when unchecked increases in a geomedtrical ratio.
Subsistence increases only in an arithmetic ratio. A slight
acquaintance withnumbers will show the immensity of the
first power in comparison of the second.”

In fact, Malthus had the ingredients of a correct interpretation. He
recognized that there were limits to the growth of a population. He
did not recognize, however, that those limits could have a moderating
influence on the population long before catastrophe is on the horizon.

That insight is the germ of the Logistic Equation and a Dutch biologist
named Verhulst (1837).
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Our aim is to change the exponential model, which had a fixed growth
rate, to one in which the growth rate is a function of the population
size for a given time period.

Further, we saw that the problem with the exponential model was that
the predictions were too large. So dlearly, the growth rate must
DECREASE with increasing population size.

Thus, something affects big populations that doesn't affect small ones
and that something is competition! The population numbers are
confronting the stark reality of finite resources that are insufficient
for everyone to survive. S

Thus, our new model, called the Logistic Model, starts
with the assumption that the environment of the population
can only support a cerfain number, say L, of the species.

That number L is called the CARRYING CAPACITY of the
environment.
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The (restrained) growth rate should relate to the carrying capacity as follows:

When the population is MUCH LESS than the carrying capacity,
there is plenty of food for the population and the growth rate
should be close to the unrestricted growth rate, r.

When the population is LESS than the carrying capacity, thereis
sufficient food for the population and the growth rate should be
positive butnot as large as the unrestricted growth rate, r.

When the population EXCEEDS the carrying capacity, there is not
enough food and the growth rate should be negative.

Satisfy yourself that these conditions are met by:
restrained growth rate= 11 - (A(n)/L)]

Our model now becomes:
A+ =A@+ f1-(Am)/L]A®D) |
which simplifies to:
An+1)=(1+1) A(n)-b A2(n),
whereb=r/L.

This is the Logistic Model and the ™ b A2(n)" term is called a damping

term because its effect is to dampen or suppress the growth of the
population.
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In 1920 R. Pearl and L. J. Reed derived a logistic model and applied it to the
United States using a carrying capacity of 200,000,000:

t N Pred t N Pred t N Pred
0 4 70 31 29 140 123 125
10 5 5 80 39 37 150 132 141
20 7 7 90 50 48 160 151 155
30 10 10 100 63 60 170 179 167
40 13 13 110 76 74 180 203 177
50 17 17 120 92 91 190 226 184
60 23 22 130 106 108

As you see, the predictions are excellent until we get near the carrymg :
capacity. The Achilles heel of the Logistic Model is knowing the carrying

capacity.

In Differential Equations and Their Applications, Martin Braun makes the
following observation as a consequence of a logistic model application:

"In 1845 Verhulst prophesied a maximum population for Belgium of
6,600,000. Now, the population of Belgium in 1930 was already 8,092,000.
This large discrepancy would seem to indicate that the logistic law of
population growth is very inaccurate, at least as far as the population of
Belgium is concerned.

However, this discrepancy can be explained by the astonishing rise of
industry in Belgium, and BY THE ACQUISITION OF THE CONGO
WHICH SECURED FOR THE COUNTRY SUFFICIENT ADDITIONAL
WEALTH TO SUPPORT THE EXTRA POPULATION."

Mathematical models can yield unexpected insights.
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The following model is due to J. Sandefur as published in Discrete
Dynamical Systems: Theory and Applications:

In the popular Star Trek series, the Federation's Prime Directive was
that the Enterprise crew could not interfere in any world that had
not had contact with other worlds. The fear was that any contact
from another world could alter the course of history on a developing
planet.

Suppose, then, that Earth is actually being watched by intelligent
creatures from another planet. These aliens wish to study us
without having us know they are there or at least they want most
of us not to believe they exist.

The aliens might reason as follows:

Let A(n) be the fraction of people on Earth that believes in flying saucers
at time n. Then A(n) is some number between 0 and 1.

Thus, 1 - A(n) is the fraction of people on Earth who, at time n, do not
believe in flying saucers.

The aliens assume that in each time period the believers convince a certain
proportion of the nonbelievers that flying saucers do exist. That proportion
depends on the interaction of believers and nonbelievers, which can be
modeled by the product A(n)[1 - A(n)].

When a population is broken into two parts, A(n) and 1 - A(n), their product
is called the contact ratio and is used extensively in the study of epidemics.
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So, in the absence of flying saucers, A(n) would satisfy the dynamical
system

Am+1)=AM) + kKAM)[1- A@n)]

If k> 0, then there is a tendency to believe, while if k <0, there is a
tendency to not believe in flying saucers.

Let's assume the aliens have determined through their studies that
k =-0.01.

Let's also assume that flying saucers do land in certain areas and b
per cent (as a fraction) of the people see them each time period.

Then we have (up to) 100b per cent of new believers and our
dynamical system mod el becomes:

A +1)=0.99A () +0.01A2(n) + b

Our aliens must ask themselves:

How large can b become without having everyone believe in
flying saucers? In other words, they are willing to have some
peoplebelieve since, if most people do not beheve Earth's
behavior will not change.
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This is as far as we can currently pursue this model because we
have no provisions for analysis. That is, what are the fixed
points or equilibria of these models?

That subject is taken up in the next section,

Equilibria and Cobwebbing.
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In Theory of First Order Affine Systems, we said that any difference
equation is said to be in EQUILIBRIUM if every term has the same
value—A0)=A1)=AQ)=..

We let that equilibrium value be a, we substituted a for all "A(?)" terms
in the difference relation, and then solved for a.

Find the equilibrium value(s) for the logistic equation:

An+1)=0+1r)AN)-bA2(n)

"Given the logistic eqqlation:
Am+1)=1+1r)A[m)-bA2(n)
and substituting a as the equilibrium value yields:
a=(1+r)a-ba2
ba2-ra=0
(r/L)a2-ra=0
raf(a/L)-1]=0

Solution: a=0 or a=1L

This says that the population becomes extinct or it "maxes out"
at the carrying capacity limit Which is it going to be?

Volume 1. Linear Dynamical Systems page 59




tv—o‘o.‘ Hetortoa )

I

vmd e

]
<4

hatente

N I = S o T

Bebdyet

30 ona e .

[POSRT |

| D

Although the analysis can be done algebraically, itis far more
interesting to use the analysis technique known as

Cobwebbing

Cobwebbing is a graphical procedure which allows you
to see the progression of A (n)s from one period to the
next.

What we will be seeing is that some values seem to attract
successions of A(n)s and other values seem to repel these
successions.

Those attracting points are called attracting equilibria, and
the points which repel are called repelling equilibria. Note
that repelling equilibria are still equilibria because if that any
A(n) every assumes that exact value, all successive A(n) will
also remain there. But the "hit" must be the exact value. Just
the smallest deviation will lead to repulsion.
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Let's take the logistic dynamical system:

An+1)=00+1AM)-bA2n)
and letr= 1.4.and L=10.

A(n+1) = 2.4A(n) - 0.14A%n)

We know that the equilibria are 0 and 10. But what does

the cobweb diagram show us?
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This cobweb diagram shows what happens when the initial value is close to a

repelling fixed point, namely zero. The parabola is the characteristic equation (from
which we calculated the value of a).

Take the first point, just to the right of the small tic mark.- That is A(0). Its
intersection with the parabola determines A(1). Now we need to get to the
corresponding position for A(1) on the x-axis. The diagonal line (y = x) allows just
that. Draw a horizontal line from the position on the parabola to the diagonal and
you have the x-position for A(1). Then, repeat the process. Draw a vertical line to
the parabola to get A(2), etc.
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This cobweb diagram shows the succession of values when the initial value is
close to the attracting fixed point, 10. By the way, 10 was also the attracting point

when the initial value was close to the repelling fixed point, 0.
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This cobweb diagram shows that even when the initial value is past the
attracting fixed point — in this case, 10 — the dynamical system brings the values
back to the attracting fixed point.
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This cobweb diagram is for the dynamical system

A +1) =3.2A() - 0.8A2(n)

The fixed points are 0 and 2.75. The diagram shows clearly that zero is a repelling
fixed point. However, to our surprise, we see that the system does not home in on
int. This is called a 2-cycle

the fixed point of 2.75, but rather cycles about this fixed po

system.

Systems can have cycles with more than 2 elements. It is not clear whether

such systems actually exist in real-life.
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Again, this cobweb diagram shows that even when the initial value is close to
the fixed point of 2.75, the system adopts a 2-cycle as its terminal behavior. |
|

i
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In this section, we will analyze the two logistics models
that were developed in an earlier section:

Analysis of the Model of Population Growth
Analysis of the Model of Belief Systems

The topics should be viewed in the order they are given. Just click
on the one you want. To return here, click on "Analysis" at the

bottom of the page.
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We already know that the logistics model yields an S-shaped curve
(called sigmoid) and the fixed points are zero and the carrying

capacity.

Therefore, our analysis of the logistics model of population growth
will focus on another aspect of population. We are concerned with
the problem that faces all state agencies associated with wildlife —
How much hunting should be allowed?

To simplify the results, we will choose units such that the carrying
capacity equals one unit. For example, one unit could equal 10,000
deer. Further, let's assume that r, the unrestricted growth rate, is 0.8.

An+1)=AMm)+08(1- An)AMm) = 1.8A(n) - 0.8A2(n)

Our first model is called the Fixed Harvest ("harvest" is what wildlife people
call hunting). In this model, we allow hunters to kill b units of deer per
season, where b is a fraction of a unit (which we're saying is 10,000 d eer).
An+1)=18AMN)-08A%n)-b
Letb = 0.072 (720 deer arekilled each year if one unit equals 10,000 deer).
The dynamical system is:
A +1)=18A()-0.8A%n) - 0.072

and the fixed points are 0.1 (1,000 deer) and 0.9 (3,000 deer).

Let's look at the cobweb.
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Remember that the fixed points are 1000 and 9000 deer. Even if the
population is close to, but above, 1000 deer and 720 deer are killed per year, the
population will survive and eventually reach the attracting fixed point of 9000 deer.
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If by some chance, the population of deer exceeds the carrying capacity of the

environment, the harvest helps reduce the population to the attracting fixed point
of 9000 deer.
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However, if the population falls below the repelling fixed point of 1000, the
harvest will serve to hasten the extinction of the population.
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Now, let's show what happens when the kill (oops, sorty), when the

harvest is too large.
Let b = 0.24 (2400 deer are killed each year ).
The dynamical system is:

A(n+1)=1.8A()-0.8A2(n)-0.24

Here's the cobweb.
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An alternative strategy is to havest a fixed proportion of the population.
Let b now represent the proportion of the population to be removed.
Then the total number of deer killed will be bA(n)

A +1)=1.8A(n)-0.8A%n) - bA()
or
A +1)=(18-Db)A(n) - 0.8A2(n)

We will take representative values forb and look at the cobweb.

Analysis
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0.4, which shows a stable population.

This cobweb is for a value of b
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This cobweb is for b = 0.9. It shows that the population will be driven to

extinction.
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This cobweb is for b = 0.
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This was our model:

Let's also assume that flying saucers do land in certain areas and b
per cent (as a fraction) of the people see them each time period.
Then we have (up to) 100b per cent of new believers and our
dynamical system model becomes:

-AMm+1)=0.99A () +0.01A2(n) + b
Our aliens must ask themselves:

How large can bbecome without having everyone believe in
flying saucers? In other words, they are willing to have some
people believe since, if most people do notbelieve, Earth's
behavior will not change.

As before, let's take some representative values for b
and look at the cobweb.
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Well, this shows the limitation of cobwebbing for analysis. The parameter

used was b = 0.005. For that situation, eventually all would believe in flying saucers.
The critical value for b turns out to be 0.0025,
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Traffic Flow

The traffic flow that we considered is that of the cars moving on one
side of a divided highway. Since the behavior of a vehicle is influenced by
the cars around it, we can predict the movement of the vehicle through CA.
A car can move forward one space, sideways, or it can be at a stand still. In
the figure 4 the number. corresponds to the site. For instance, the initial

site is one, the site ahead is site two, the site adjacent is site four and etc.

Figure 4
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Each site is represented by a one (1) when occupied by a car and zero (0) if
it is empty. To determine the movement of the cars we define the Moore
neighborhood for our boundary conditions and invoke CA with the

following rules.
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Rules

Rule #1
An occupied site [1] becomes empty when the site ahead of the site

[2] is empty.
driveWithObstacle[1,0, , , _, 1=0

Rule#2

An occupied site [1] that is blocked by either a car or an obstacle in
the site ahead of it, switches lanes when there is an adjacent empty space at
site [4] and behind the adjacent site [6] is empty or has an obstacle.

driveWithObstacle[1,1 |1 ¢, _,0,_.) 1 c]=0

que #3

An occupied site [1] remains occupied when the sites ahead of the
site [2] and the adjacent site [4] are both occupied or contain obstacles.

driveWithObstacle[1,1 ¢, _,11lc, ,_]=1

Rule #4

An empty site [1] that is followed by a car becomes occupied by that
car.

driveWithObstacle[0, ,1, _, , =1




Rule #5

An empty site [1] that is followed by an empty space or obstacle in
site [3] and is next to a car that is blocked by a car or obstacle ahead of it
becomes occupied as the car changes lanes.

driveWithObstacle[0, ,01 ¢, 1,11 ¢, _J=1

Rule # 6
In situations other than those given above, empty sites remain empty
and occupied sites and obstacles remain in place.

driveWithObstacle[x_, , _, , , l:=x

Now to start the keepOnMoveingOn code in the following way to show the
path of the traffic when the obstacles occur at random positions.

In [5] := indy500[n_, p_, t_]:=
Module[{roadWithObstacle, driveWithObstacle},

roadWithObstacle =
ReplacePart[Table[Floot[p + Random[]],{2}, {n}], ¢,

{Randoml[Integer,{1, 2}], Random[Integer, {1, n}l}] ;

' driveWithObstacle[1,0, , , , 1=0;
driveWithObstacle[1,11 ¢, _,0, , | c]=0;
driveWithObstacle[1,1 1 ¢, 1l ¢, _ _1=1;
driveWithObstacle[0, ,1, , , 1=1;
driveWithObstacle[0, ,01 ¢, 1,11 ¢, _1=1;
driveWithObstacle[x_, , , , , 1=x;

NestListiMapThread[driveWithObstacle, {#,
RotateRight[#, {0, -1}]
RotateRight[#, {0,- 1}], RotateRight[#, {1, 1}]},
2]&, roadWithObstacle, t]]




Test the indy500 function by assigning numbers to the three variables. We
must not forget to assign the obstacle "c" a color value. -

test = indy500[30, ,.7, 34];
Map[Show[Graphics[RasterArray[# /.
{0 -> RGBColor{0.7, 0.7, 0.7],
1->RGBColor[0, 1, 0],
¢ -> RGBColor[0, 0, 11}1],
AspectRatio -> Automaticl&,

test];




Definitions

von Neumann neighborhood - consist of the site and the four nearest

neighbors, north (above) east (right), south (below), and west (left) of the

site is represented in the diagram below.
von Neumann neighborhood

o—H O

Moore (neighborhood) - consists of the site and the eight nearest neighbor
sites, north, northeast, east, southeast, south, southwest, west, and

northwest.

Moore neighborhood




cellular automaton - consists of a system sites having various initial values.

The sites evolve in time steps as each site assumes a new value based on

the values of some local neighborhood of sites. To incorporate a cellular-

automata models the lattices needs to be well defined for the

neighborhoods of sites for various boundary conditions.
lattice - a matrix consisting of n rows and m columns.

~maze - a confusing network of passages. The maze's code is defined by
rectangular lattice consisting of sites with value 1 (a wall site), 0 (a path
site). All turns in the paths and the walls are at ninety degrees.

mathematica - ahigh lever programming language
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"Code for the Traffic
Simulation

The last two sections of code modeled the traffic going in the same
direction on a two lane highway. This was most interesting ‘because we
Were able to animate our results. The traffic followed the six drive rules
- outlined earlier. We were able to observe the traffic in normal conditions
and when an obstacle was introduced. We could also observe and graph

the average velocity when we increased the probability of cars on the road.

(roadTest= {{a, 6, 4, 5, b},
(31,2 d}})// TableForm

MapThread[rule, {#, RotateRight[#, {0, -1}],
RotateRight{#, {0, 1}],
RotateRight{#, {1, 0}],
RotateRight(#, {1, -1}],
RotateRight(#, {1, 1}]},
)&{roadTest][[2,3]]

keepOnMovin n_p.,t):=
Mod e[{r[oad drive),

road = Table[Floor[p + Random([}], {2} {n}];
derE[l, 7 s _I —_ )= OI

drive[l, 1, _, , _0]=0;

dnve[l, 1/ — l — ...] = 1;

drive[OI - 1/ — vt _.] = 1;

drive[0,_0,1,1, ]=1;

drive[x_, , _, _,_,_l=x

NestList{MapThread[drive,
{#, RotateRight(#, {0, -1}],
RotateRight[#, {0, 1}],
RotateRight[#, {1, 0}],
RotateRight[#, {1,-1 ],
RotateRight[#, {1, 1}]},
2]&, road, t

Map[Show[Gra Iucs[RasterArrag[# /.
0> GBColor[O 7.0
1-> RGBColor[O 1 O]}]],
AspectRatio -> Automatlc]&
keepOnMovingOn{10, .5, 10]};




(roadTest= {{a;6, 4, 5, b},
{c, 3,1,2,d}})/ /TableForm

MapThread[rule, {#, RotateRight[#, {0, -1}],
RotateRight[#, {0, 1)],
RotateRight[#, {1, 0}{,
RotateRight{#, {1, -1}],

RotateRight{#, {1, 1}1},
otat %l]lgz[rc}ad'l'}git][[z.’i]]

keepOnMoveing On[n_, p_, t ] :=
P Modul%[{road, cfrive},

road = Table[Flooxr[p + Random([]],{2},{n}];
drive[l,0, ,_ _ _]=0;

drive[l,1, 0, _ 0} =0;
dIiVe[l, 11 j_— 11 —_ = 1;
drive[O, —L___l=%
drivel0,_,0,1,1,_]=1;
drive[x, ,_,_, . l=x;

NestList{MapThread[drive,
{#, RotateRight[#, {0, -1}],
RotateRight{#, {0, 1}],
RotateRight[#, {1, 0}],
RotateRight(#, {1, -1}],
RotateRight[#, {1, 1}]},
2)&, road, t]]

Map[Show[Cra%hics[RasterArraf[# /. -
GBColor{0, 1, 1],

{0->
1 ->RGBColor[0, 0, 1],
¢ ->RGBColor{1, 0, 1J}]],
AspectRatio -> Automatic)é,
test);

test = indy500[30, .6, 10];

indy500[n_ p_ t ] :=

Module[{road WithObstacle, driveWithObstacle},

roadWithObstacle = ReplacePart[Table[Flooz[p +

Random[]}{2}, (n)), ¢, (Random{Integer, {1, 2)]

Random|[Integer,{1, n}}}] ;
driveWithObstacle[1,0, , _, _, _]=0;
driveWithObstacle[1,1 1 ¢, 0, _01¢]=0;
driveWithObstaclef1,11 ¢, __11¢c, _ _]=1;
driveWithObstacle[0, ,1, , _,_]=1;
driveWithObstacle[0, ,01 ¢, 1,11¢,_]=1;
driveWithObstaclefx_, , _, _, _, _]=x;

NestList{MapThread[driveWithObstacle, {#,
RotateRight[#, {0, -1}],
RotateRight[#, {0, 1}], RotateRight[#, {1, 0}],
RotateRightl#, {1, -1}], RotateRight[#, {1, 1}]},

2]&, roadWithObstacle,]]




Code and Results

AR

We used the following code to solve the maze we created to
represent a section of a city with many cul-de-sac's and dead end roads.
This code invoked cellular automation with the von Neumann
neighborhood as the boundary conditions . This code can be very useful to

traffic engineers when they need an alternate path to get around road

~

work.

maze=({{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1},
{1/11111I11111/111111111/11011111111}/
{1,1,1,1,1,0,00,0,0,0,0,0,0,1,1,1,1},
{1IOIOIOIOIOI1I11011/111/1/1111111/1}I
{1/1/1,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1},
{1/1/111I1Iolll110111011101110I110I1}/
{1,1,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0,1},
{1,1,011/1,011,1,1,1,1,1,1,1,1,1,0/1},
{1,1,0,l,1,0,0,0,1,1,1,1,0,0,1,1,0,1},
{eIOIOIOIO/OI11010111111101111/]'/0/1}l
{1111011/11()[1/] 10111111101111111011}1
{1111011/111111111111111101111111011}1
{1,0,0,0,0,0,0,0,0,0,1,1,0,1,1,1,0,1},
{1101111111011111111I11110I110IOIOIe}I
{110111111IOI]'lllllololololollllloll}I
{11011/111IOI]'111010/11111/011/1/111}1
{11111I1/1/0101010111111111011111111}/
{111111111/1/1/11011/111111011111111}1
{111,1,1,11,1,1,1,1,1,1,1,1,1,1,1}}

Show[Graphics[RasterArray[Reverse[maze]/. {e -> RGBColor[0,1,0],
1 -> RGBColor[1,0,01,0 ->RGBColor[1,1,0]}1],
AspectRatio -> Automatic];

PathToEnlightenment| maze_] :=
Module[ {mazeSolve, VonNeumannValues},

mazeSolve[0, 1,1, 1, 0] :=1;




mazeSolve[0,1, 1,0, 1] :=1;
mazeSolve[0, 1,0, 1, 1] :=1;
mazeSolve[0, 0,1, 1, 1] :=1;
mazeSolve[0, 1, 1;1,1] :=1;
mazeSolve[x_, _, _, _ _1=x;

VonNeumannValues[func_, lat_] :=
MapThread[func, {#,
RotateRight[#, {0, 1}],
RotateRight[#, {1, 0}],
RotateRight[#, {0, -1}],
RotateRight[#, {-1, 0}]},
2]&([lat];

R S

FixedPoint[VonNeumannValues[mazeSolve, #]&,
maze]]

Show[GraphicsArray[Map[Show[
Graphics[RasterArray[Reverse[#]/.
{e -> RGBColor{[0, 1, 0],
1 -> RGBColor{1, 0, 0],
0 -> RGBColor(1, 1, 01}1],
AspectRatio -> Automatic,
DisplayFunction -> Identity]&,
{# PathToEnlightenment[#]}&[maze]]]];




Will-sul

maze={{1,1,1,1,1,1,1,1,1,1,1,1,1},

e,0,0,0,0,0,0,0,0,0,0,0,0;,
,0,2,1,1,1,1,0,1,1,0,%,0¢;,
i,0,1,0,0,0,1,0,1,1,0,1,0;,
{1,0,1,0,1,0,%,0,1,1,0,1,0},
i,0,2,0,0,0,1,1,1,1,1,1,0;,
i,0,1,1,0,%1,1,1,0,0,0,1,0;,
,0,1,,0,1,0,0,0,1,0,1,04,
,0,1,1,0,1,0,2,0,0,0,1,0;,
i,0,1,1,0,1,0,1,1,1,1,1,0},
e0,0,0,0,0,0,0,0,0,0,0,0%},
i,1,1,1,1,1,1,1,1,1,1,1,1 }7

Show[Graphics[RasterArray[Reverse [maze]/.
{e -> RGBColor[0,1,0],
1 -> RGBColor([1,0,0],0 ->RGBColor([1,1,01}1],
AspectRatio -> Automatic];
PathToEnlightenment[ ‘maze ] :=

Module[ {mazeSolve, VonNeumannvValues},

mazeSolvel0,
mazeSolvel0,
mazeSolvel0,
mazeSolvelO0,
mazeSolvel[0,
mazeSolvelx , , , , 1
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VonNeumannValues [func , lat_]1 :=
MapThread[func, {#,
RotateRight [#, {0
RotateRight [#, {1
RotateRight[#, {0
RotateRight [#, {-
2l&[lat];

FixedPoint [VonNeumannValues [mazeSolve, #]&,maze]]

Show[GraphicsArray [Map [Show[
Graphics[RasterArray[Reverse[#]/.
{e -> RGBColorl[o, 1, 0],
1l -> RGBColoril, 0, 0],
0 -> RGBColor[i, 1, 0]1}11,
AspectRatio -> Automatic,
DisplayFunction -> Identityls,
{#,PathToEnlightenment [#] }& [maze]1]];




Will-sul

maze={{1,1,1,1,1,1,1,1,1,1,1,1,1},

e,0,0,0,0,0,0,0,0,0,0,0,0¢,
1,0,1,1,1,1,1,0,1,1,0,%,0;,
1,0,1,0,0,0,1,0,1,1,0,1,0;,
{1IolllolllOlllolllllolllo}l
i,0,,0,0,0,2,1,1,1,31,1,0;,
,0,1,1,0,1,1,1,0,0,0,1,0,,
1,0,1,1,0,1,0,0,0,1,0,1,0;,
i,0,1,%,0,1,0,1,0,0,0,1,0¢,
i,0,1,1,0,1,0,1,1,1,1,1,0y,
e,0,0,0,0,0,0,0,0,0,0,0,0¢,
i,1,1,1,1,1,1,1,1,1,1,1,1 };

Show [Graphics[RasterArray[Reverse [mazel /.
{e -> RGBColor[0,1,0],
1 -> RGBColor[1,0,0],0 ->RGBColor[l,1,01}11,
AspectRatio -> Automatic];
PathToEnlightenment[ maze ] :=

Module[ {mazeSolve, VonNeumannValues},

mazeSolve[O, 1, 1, 1, 0] :=1;
mazeSolve[0, 1, 1, 0, 1] :=1;
mazeSolve[0, 1, 0, 1, 1] :=1;
mazeSolve[0, 0, 1, 1, 1] :=1;
mazeSolve[O, 1, 1, 1, 1] :=1;
mazeSolvelx , _, _, _, _1 :=x;

VonNeumannValues [func_, lat_ ] :=
MapThread[func, {#,
RotateRight[#, {0, 11],
RotateRight[#, {1, 0}],
RotateRight [#, {0, -1}1,
RotateRight [#, {-1, 0}1},
2]&[lat];

FixedPoint [VonNeumannValues [mazeSolve, #]&,maze]]

Show [GraphicsArray [Map [Show[
Graphics [RasterArray[Reverse[#]/.
{e -> R@BColor[0, 1, 0],
1l -> RGBColor{l, 0, 0],
0 -> RGBColor[l, 1, 01}11,
AspectRatio -> Automatic,
DisplayFunction -> Identityl&,
{#,PathToEnlightenment [#] }& [mazell]];
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Will-sul

maze={{1,1,1,1,1,1,1,1,1,1,
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i,0,,1,1,1,1,0,1,1,0,1,0},
1[Olllolololllolllllolllo r
{1,0,1,0,2,0,1,0,1,1,0,1,0},
i,0,1,0,0,0,1,1,1,1,1,1,0},
,0,1,1,0,1,1,1,0,0,0,1,0},
i,0,1,1,0,1,0,0,0,1,0,1,0},
i,0,1,1,0,1,0,1,0,0,0,1,0}%,
i,0,1,1,0,1,0,1,1,1,1,1,0},
e,0,0,0,0,0,0,0,0,0,0,0,0},
i,1,1,1,1,1,1,1,1,1,1,1,1}};

Show[Graphics[RasterArray[Reverse [mazel /.
{e -> RGBColor[0,1,0],
1 -> RGBColor[1,0,0],0 ->RGBColor[l,1,0]1}11,
AspectRatio -> Automatic];
PathToEnlightenment[ maze ] :=

Module[ {mazeSolve, VonNeumannValues},

mazeSolvel[0, 1, 1, 1, 0] :=1;
mazeSolvel[0, 1, 1, 0, 1] :=1;
mazeSolve[0, 1, 0, 1, 1] :=1;
mazeSolve[0, 0, 1, 1, 1] :=1;
mazeSolve([0, 1, 1, 1, 1] :=1;

=X
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mazeSolvelx , _, _, _,

VonNeumannValues [func , lat_] :=
MapThread[func, {#,
RotateRight[#, {0, 1
RotateRight[#, {1, 0
RotateRight[#, {0, -1
RotateRight[#, {-1, O
2]&[lat];

FixedPoint [VonNeumannValues [mazeSolve, #]&,maze]]

Show|[GraphicsArray [Map [Show [
Graphics[RasterArray[Reverse[#]/.
{e -> RGBColor[0, 1, 0],
1l -> RGBColor[1, 0, 0],
0 -> RGBColor[i, 1, 01}1],
AspectRatio -> Automatic,
DisplayFunction -> Identityls,
{#,PathToEnlightenment [#] }& [mazel1]l]l;
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1.

An Introduction to Computerized Tomography

The word tomography derives from the Greek word tomos meaning “slice”
plus graph meaning “picture”. The method of tomography examines the in-
side of a three-dimensional object by creating two-dimensional images of
cross-sections of the object. Each image is created by passing radiation
through one plane of the object, measuring its attenuation, and using that
attenuation to map the density of the object in that plane. Because com-
puters are used to create the image from the measured data, tomography
is often called computerized tomography (CT). Originally, the abbreviation
CAT stood for Cross-Azial Tomography, but now it is interpreted as Com-
puter Aided Tomography, we will simply use CT.

In the 1970s, computerized tomography revolutionized diagnostic radiology.
In the brain, for example, CT can readily detect tumors and internal bleeding
without the need of exploratory surgery. The 1979 Nobel Prize in Medicine
was awarded for work in computerized tomography.

For a CT scan, a patient sits or lies inside a ring mounted with an X-ray
source directly opposite an X-ray detector. Figure 1 sketches a possible setup
for a CT scan. A set of parallel rays of X-ray photons is directed through the
patient’s body. When a ray passes through a body part, some X-ray photons
are absorbed, with dense materials such as bone and tumors absorbing more
than soft muscles and skin. The detector measures the number of photons
passed through the body and so determines how much the ray was attenuated
by absorption. The average density of the body along the path of each ray can
then be determined by comparing the incident and transmitted intensities of
the ray.
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By rotating the ring around the patient, rays can be sent along any number
of paths in one plane of the body. Using the attenuation readings for all of
the rays, it is possible to create an approximate map of the density of the
object within the plane, translating the ring along the body and repeating the
procedure builds a sequence of two-dimensional images that together form a
rough three-dimensional image of the interior of the object.

Because we pass only a finite number of rays through the body, we cannot
find an exact or continuous map of the density throughout the slice. In-
stead, to reconstruct the cross-sectional image from the thousands of recorded
beam measurements, the reconstruction region is subdivided into n X n small
squares, called pizels (from “picture elements”). This set of pixels form what
is often referred to as a grid. The width of each pixel is chosen according to
the width of the detectors and/or the width of the X-ray beams. This sets
the resolution of the image. The General Electric CT /T system uses 102,400
pixels in a 320 X 320 array. To each pixel there is associated a number,
called its CT number, or its X-ray density number. This number is a mea-
sure of photon attenuation as the beam of X-ray photons passes through the
pixel; it will be defined more precisely in what follows. The determination of
these pixel CT numbers is the basic mathematical problem of computerized
tomography.

Once these numbers have been determined, the cross-sectional image can be
displayed on the video monitor, since from the CT number of each pixel, a
“grayness” value can be assigned, and an image constructed that is made of
varying shades of gray. Different structures within the body have different
X-ray densities and thus can be distinguished in the image.

If r rays are passed through a /n X \/n grid with » > n, we are required
to solve an overdetermined linear system, with a r X n coefficient matrix,
to produce a digitized image of the object in one plane. An overdetermined
system is one with more equations then unknowns, see figure 3. Such a sys-
tem typically does not have an exact solution, so the image is reconstructed
from the best approximate solution. The mathematical details of how to
reconstruct the image from the data will be covered later.




The first published description of CT was authored by Sir Godfrey Hounsfield
of EMI Ltd. in London and appeared in 1973. Hounsfield’s scans used X-rays
of very low intensity, and it took many hours of exposure to gather the data.
An eight by eight grid was superimposed on the object, and the attenuations
of sixty four rays were measured. The resulting 64 x 64 system took hours
to solve on EMDI’s then state-of-the-art computer.

Present day problems are much larger but take less time to solve. The reso-
lution desired for modern CT scans demands that the grid boxes be at most
1-3 mm on a side. This means that a 148 x 148 or greater grid is used for
a typical brain scan. The radiation source is moved to pass X-rays through
each row of the grid at many different angles of incidence. When 148 rays are
passed at each of 180 different angles, a total of 26,640 rays are passed. This
translates into a 26,640 by 21,904 linear system. Recorded intensities from
each ray are sent directly to the computer where the image is reconstructed.

In these Modules we will consider an iterative reconstruction technique used
in CT. The “Solution” of a large system of linear equations is involved.

The Model

We now concentrate on reconstructing an image via a CT scan. Recall that
for a CT scan, X-rays are passed through one plane of an object from various
angles. The intensity of each ray is measured before and after it passes
through the object. In this section, we review the mathematical fundamentals
of the process of mapping the density of the object from the measured ray
attenuations.
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If we introduce a variable s that measures the distance from the source along
a ray, we can write down an expression for how the intensity of a ray changes
as it passes through an object assuming that the ray travels in the zy—plane.
Specifically, the intensity I changes with respect to the distance s according
to

dl

where p(z,y) is the density of the object. Because the density and intensity
must always be nonnegative, the negative sign in equation 1.1 shows that, if
the intensity changes, it decreases with increasing distance s.

To relate the initial and transmitted intensities of the ray to the density,
we must group all terms involving the intensity and integrate-the resulting
equation

T = —u(z,y)ds. (1.2)

The left-hand side is a definite integral in terms of I. If I, is the initial
intensity of the ray and Ir is its final intensity,

Ir

/ # = In(Ir/L) = ~In(L/Iz). (1.3)

Ir

To integrate the right-hand side of 1.1, we must integrate a function of = and
y with respect to the variable s. This is not inconsistent because the distance
s along the ray is itself a function of z and y. If the beam originates at the
point (z,,%,) and distance s, from the origin, the length from that point to
any other point (z,y) on the ray is

§— 8 = \/(:D - xo)z + (y - yo)2' (14)
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To integrate the right-hand side we must use a special sort of integral known
as a line or path integral. If o denotes the line in the zy—plane followed by
the ray, the line integral is written

/[.L(:E, y)ds. (1.5)

. :
The usual definite integral [ f(z)dz measures the area beneath the curve of

the integrand between z —aandz =b by summing infinitesimally small
increments of area between those points. In contrast, a line integral measures
the “weight” of the curve itself. For example, if the object is of constant
density p(z,y) = v and the ray is of length sr, the line integral is just the
length of the line times the density of the object

/ p(z,y)ds = ysr. (1.6)

Integrating equation 1.2

In(L/Ir) = [ (=, )ds | (L7)

then tells us how the ratio of the initial and transmitted intensities of a ray
is related to the amount of material through which the ray passes. When
the density of the object depends explicitly on = and y, we must rewrite the
integral to remove the dependence on s before we can evaluate the integral.
Details of this procedure are presented in most calculus books. Line integrals
arise in many problems in mathematics and physics, and the path over which
one integrates need not be a straight line.




The Discretized Problem

When recreating an image by tomography we do not evaluate the line integral
of equation 1.7. Indeed, the density u(z,y) is the unknown quantity we are
trying to find. In 1917, Radon showed how to extract the density from the
right-hand side of equation 1.7 by transform methods, but his formulas are
based on continuous projection data instead of the finite set of measurements
produced in an actual scan. They are inaccurate when applied to finite data
sets, especially those subject to some experimental error. In addition, his
formulas do not lend themselves to an efficient computational algorithm.
Hence, subsequent research has focused on developing a good computational
algorithm. In these modules, we will develop a discretized formulation of the
image reconstruction problem that can be solved on a computer. We show
how the problem translates into an overdetermined system. We will derive
a method that is typically used to solve the resulting discretized problem in
medical and other image reconstruction applications.

Because we use a finite number of rays, we cannot obtain a continuous ap-
proximation for the density u = p(z,y) over the entire grid, so we instead
approximate the density in all boxes of the grid. If we are studying a \/n X /1
grid, we assume that the density is constant within each box. Denoting the
density in box B; by p;, for ¢ = 1,...,n, we then compute an approximation
to p of the following form:

i & p1in By and ppin B and ... and pu, in Bi. (1.8)

To make this approximation easier to work with, we introduce a new function
6; which equals 1 inside box ¢ but equals 0 in any other box. Rewriting the
grid itself as a matrix allows us to represent the discrete problem as a system
of linear equations. For the 3 X 3 example, we can write the approximate
density in the grid in matrix form as follows

H1 M2 U3
I Pa M5 Us ' (1.9)
H7 Mg Mg




1 00 0 0O
= ;| 000 |4+dm| 000
0 0O 0 0 1
= 01+ pabs + ... + pobs. (1.10)

For a grid with n boxes, we can write

Lo~ pby 4 pebs + ..+ by (1.11)
> wib. ©(L12)
i=1

For ray o, the path integral from equation 1.7 then becomes
/ z,y)ds ~ /Zp, 5. (1.13)
] o; =1 .

If the measured attenuation for ray §; is denoted

p;=In(L/Ir), (1.14)

then we may define the relations

/u(w y)d8~/Zﬂz5 —Zﬂz/&, j=1,. (1.15)

i=1 =1
F aj

If we make 7 attenuation measurements p;, j = i, ...,T, equation 1.15 defines
a rectangular system of equations

Mp=p, (1.16)

where the 7 X n coefficient matrix has elements Mj;; = f 6;forj=1,...,rand

i = 1,...,n. The vector p on the right-hand side has r elements p(j) Dj»
and the solutlon vector 4 has n elements u(2) = p;.




2.

An Introduction to Backprojection

Backprojection is a mechanism for deducing the density of an object from
measured ray attenuations. How can one recreate an image from measured
data? One may use a two-dimensional grid with its boxes colored either black
or white and attempt to determine the coloring of each box by passing rays
vertically or horizontally through the grid. At its origin, a ray is assigned a
value of zero. When it emerges from the grid, it has an integer value equal
to the number of black boxes through which it has passed. In this module
we will examine this method for 3 x 3 grids.

Figure 1 shows the values that would be measured by passing three rays
horizontally through the given 3 X 3 grid. To make the source of the mea-
surements clearer, the black and white boxes are also shown. The rays passed
through the first and last rows of the grid have the value 3. Thus, all three
boxes in those rows must be black. The ray passed through the second row
has value 2 and this tells us only that two of the three boxes in that row are
black. To determine its exact structure, we must pass more rays through the
grid. Figure 2 shows the measured values for three vertical rays. These data
tell us that the first and third columns of the grid are colored black. Because
the first and third rows are also black, the center vertical measurement 2
means that the center square must be white.

It is not difficult to devise an example for which this simple deductive algo-
rithm fails. Figure 3 shows horizontal and vertical measurements, we can be
certain only that the center row of the grid has three white boxes. Either of
the two configurations in figure 4 would give the same readings. In this 3x 3
case, we can discern the correct pattern by sending one more ray diagonally
through the grid from upper left to lower right. This single diagonal ray
when passed through the grid on the left in figure 4 will pass through two
black boxes. On the other hand, a diagonal ray passed through the grid on
the right in figure 4 will pass through only one.




Figure 1: The result of passing horizontal rays through the gnd.
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Figure 2: The result of passing horizontal and vertical rays through the gnd.
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Figure 3: The result of passing horizontal and vertical rays through the unknown
grid.
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Figure 4: The two possible colorings of the grid.
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An alternative to this precise deductive process is to produce a gray scale
coloring of the grid. In this case, a ray’s value upon exit is divided by the
number of boxes through which it passes. All boxes in the ray’s path are
then colored the same shade of gray defined by that value. In this way,
the measured value of the ray is backprojected along its path. Repeating
this process for many rays produces a rough approximation to the black and
white image in varying shades of gray.

The gray scale coloring of the grid of figure 2 is shown at the top in figure 5.
In this case, the horizontal rays assign values of 1, 2/3, and 1 to the boxes in
the first, second, and third rows, respectively. The vertical rays give values of
1, 2/3, and 1 to the boxes in the first, second, and third columns. Thus, each
box has been assigned two values -one from the horizontal ray and one from
the vertical ray. Summing these values and dividing by the number of rays
per box gives the average value per ray. The shade of gray corresponding to
each value appears on the grid in figure 5. While the black bordering rows and
columns of the grid are not exactly resolved by this process, the center box
correctly appears lighter than the surrounding ones. A better representation
could be obtained by passing more rays through the grid or by combining
the gray scale and deductive algorithms to recognize such features as a fully
blackened row or column.

These procedures give the most fundamental idea behind the process of back-
projection. In order to accurately reproduce larger and more complicated

images, however, it is necessary to turn to the more sophisticated procedure
that is the subject of the next module.

The Filtered Backprojection Method

To present a mathematical formulation of filtered backprojection, we first
assign unique angle and distance parameters to each ray as shown in figure
8. The origin is located at the center of the grid overlaying the object. The
line L runs through the origin in the same direction as the rays. The ray o;
is identified by its perpendicular distance ¢; from L and the angle 6 that the
perpendicular to the ray makes with the z—axis. The measured attenuation
of g; after it passes through the object is denoted by
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Figure 5: A gray scale rendenng of Figure 2
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pi=p(0,t) = [ plz,y)ds. (2.1)

Our goal is to derive a mathematical relationship between the measured
attenuations p; and the density u (z,y)that we are trying to determine.

To reproduce the image, we need to measure the attenuations of a large
number of rays. We organize the attenuations by passing K equally spaced
parallel rays 0, ...,0x~1 through the object at ‘each of g equally spaced an-
gles 0,,...,0,-1 for a total of r = ¢K attenuation measurements. For exam-
ple, at each angle 8, we send K rays at distances from the line L equal to
to, t]_, ey tK._]_ with tj = to +]At.

The collection of attenuation values measured for one set of the parallel lines
comprises a parallel projection.

The projection data and the density are related via Fourier transforms. In
the next module we will develop this relationship.

10




The Fourier Transform and Its Inverse

The Fourier Transform is a way to convert a continuous function of one
variable to a continuous function of the frequency of that variable. For
example, a function of space is transformed to a function of spatial frequency,
and a function of time is transformed to a function of temporal frequency.
The Fourier transform is generally applied when it is more convenient to do
a computation in the frequency domain, and we will see that this is indeed
the case for backprojection.

If f (z) is a continuous one-dimensional function of distance z and

+co
[ 1f @)]de < +oo,

then Fourier transform of f(z) is defined by

+oco
F(u) = / f(=z)e~ 2 gy,

where F'(u) is a one-dimensional function of spatial frequency. We can extract
the function f(z) from its Fourier transform by means of its inverse Fourier
transform

+o0
flz)= / F(uw)e™ ™ du.

11
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The Fourier transform can be also be applied to higher-dimensional functions.
The two-dimensional Fourier transform of the function f(z,y) is

+00 o0
F(u,v) = / / f(z,y)e =+ dgdy,

-0 — 00

and the inverse Fourier transform of F(u,v) is

+00 +00

flz,y) = / / F(u, v)e® =+ gy dy.

-0 —O0
A two-dimensional function can also be transformed in only one of its vari-
ables. For example, the two-dimensional function f(z,y) can be transformed

in the z dimension alone as

\

+c0
Fluy) = [ f@,5)e™=ds (3.1)

or in the y dimension alone as

+co
F(z,v) = / f(z,y)e 2 vdy. (3.2)

This property implies that we can actually replace a two-dimensional Fourier
transform by a pair of one-dimensional Fourier transforms taken in turn. One
possible organization is as follows:

-+00 +c0

Fuw) = [ [ fager ey (2.3

-0 ~CO

12




+oo | +¢c0

= / / f(=, y)e_z"i““d:z:} e~y (3.4)

—o0 [-co

+co
= / F(u,y)e”™¥dy. (3.5)

Alternatively, we can transform the function f(z,y) first in the variable y
and then in z to form .

+oc0
F(u,v) = / F(z,v)e” ™% dz. (3.6)

In addition, the Fourier transform it not confined to the Cartesian coordinate
system. For instance, a function g(6,t) expressed in polar coordinates can
be transformed in the angular variable 8 or the radial variable ¢ or in both
by integrating over the full ranges of those variables:

27 +co

Gn,p) = / / (8, e~ 2T+ gtag, - (3.7)
g 0

In some cases, we need to take the Fourier transform not of one function but
rather of the special integral of the product of two functions called convolution
and defined in one dimension by

frg= [ fle)gle—a)da. (3.8)

The Fourier transform of a convolution is the product of the Fourier trans-
forms of the functions used in that convolution. Thus, if the Fourier trans-
forms of f(z) and g(z) are available, the process of taking the Fourier trans-
form of f * g reduces to a simple multiplication in frequency space.

13
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/ (f % g)e Tds = F(u)G(u) (3.9)

—CO

= (7wf(m)e"%“dx) ( / g9(z)e 2""""’d:n) (3.10)

This result is a statement of the Convolution Theorem. Taking the inverse
Fourier transform of both sides of equation (3.14) gives an alternative defin-
ition of the convolution

+00
fxg= / F(u)G(u)e¥™*du. (3.11)

In the case of filtered backprojection, the functions with which we work rep-
resent an image or its Fourier transform. The image p(6,t) is a map of the
density in the xy-plane expressed in terms of polar coordinates. Its Fourier
transform U(@, p) is thus a function of spatial frequency, also expressed in
polar coordinates. An image for which U(6, p) is large when p is large is
one with rapid variation in density across the zy—plane. If this variation
is not actually a property of the depicted object, such an image is termed
noisy. The Convolution Theorem gives an easy way of improving the quality
of noisy images. For example, a function g(z — &) can be constructed so that
the convolution of U(f, p) and g either removes or enhances the contribution
to the image p(z,y) of certain frequencies. Thus, the Fourier transform G(p)
of the filter function g acts as a filter in frequency space. Filters are also a
necessary part of the most basic backprojection algorithm.

A Continuous Formulation of Backprojection

Now that the basic tools of the backprojection algorithm have been defined,
we can return to the problem of how to produce a discrete approximation of

the density

14




w(z,y) = Zl-"y (3.12)
=1

from the measured projection data p,, ..., px—1. While these data are clearly
discrete, it simplifies the derivation of the backprojection method to assume
first that we instead have a continuous parallel projection for a given angle
6. This corresponds to passing an infinity (K — o0) of rays through the
object at the angle § and collecting their attenuations p;, j = 0, ..., 400, to
form a continuous function p(#,t). In this case, t is a continuous variable
measuring the perpendicular distance from the line L through the origin to
the ray. Although ¢ varies continuously from —oo to +oc0, the projection
can have nonzero values only for those values of £ within the confines of the
object. The full range of ¢ is included only for convenience in the derivation.

‘We construct the relation between the continuous projection and the density
by first considering the special case of § = 0 and then generalizing that result
to hold for any value of 8. Both the special and general cases rely upon the
Fourier transform and inverse Fourier transform.

The special case § =0

We first relate the density and the projection for a continuous projection
taken parallel to the y—axis. The angle of this projection is § = 0, and the
line L running through the origin at angle § = 0 is the y—axis itself. This

means that the perpendicular distance ¢ from the ray to the line L is just the
z—coordinate of that ray. That is, { = z, and

p(6 =0,t) = p(8 = 0,2) = / u(z, y)ds. (3.13)

The distance along the ray from its starting point is

s—s,=1(z— )"+ (y - Yo) - (3.14)

15




However, when ¢ = z, this distance varies with y alone so that ds = dy.

Thus, when 8 = 0, the line integral along the path of the ray can be written
as the definite integral in ¥

+co
p(0=0,t) =p(@ =0,z) = /u(:z:, y)dy = / p(z, y)dy. (3.15)
o —-00
Again, we include the full range of y for convenience even though only those ¥

values between the emitter and detector can actually contribute to the value
of the integral.

It is not immediately clear how to obtain an expression for the density from
the above equation, but the Fourier transform provides the key. To see this,
we first write the two-dimensional Fourier transform of the density

“+co +co
Uu,v) = / / plz, y)e~ Fies+en) gody, (3.16)
If we then consider the case v = 0, we are left with a two-dimensional Fourier
transform of the density along the u—axis in frequency space

+0c0 400 B
Ue,0) = [ [ nloy)e=duiy (317)
—+oo_ +co
= / [ / ,u(:z:,y)dy} e~ 2Ty, (3.18)

Notice that the expression in the square brackets in this equation is just
p(6 = 0,z) so we actually have the important result

+00

U(u,0) = /p(B =0,z)e gy, - - (3.19)

-0
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That is, taking the one-dimensional Fourier transform of the projection p(f =
0,z) along the y—axis gives us one line in frequency space (namely, the
u—axis) of the two-dimensional Fourier transform of the density,

Thus, we can extract one line (t = z) of the density u(z,y) by taking the one-
dimensional Fourier transform of U (u, 0). This operation backprojects U(u, 0)
from frequency space onto the line £ = z in the spatial domain. If we could
generalize this result to produce any line of U(u,v), we could use it to find
U(u,v) in all of frequency space. By taking the inverse Fourier transform of
that representation of U(u,v) for all u and v, we could determine the density
p(z,y) for all z and y.

Using any old 8

As it turns out, our equations are easily modified to apply to any angle 8.
With the simple matrix operation known as the Jacobi rotation, we can get
other lines of the Fourier transform of the density u(z,y) from projections
taken at arbitrary angles 6.

A Jacobi rotation < is defined by a 2 X 2 matrix function of an angle 6.
Applying this matrix to a vector in the xy—plane rotates the vector about
the angle 6 in that plane as follows:

of T\ _ [ cosf sind z\ _ [ zcosO@+ysingd \ (1
“ly /T =sinf cosd y ) \ —zsinf+ycosf | \ s

(3.20)

The Jacobi rotation lets us rotate the zy—coordinate system into the ts—coordinate

system. This means that we can treat a projection taken at an angle 8 in
the xy—plane as a projection taken at an angle 0 in the ts—plane. The
ts—coordinate system is a natural one to use for our problem as the vari-
able ¢ represents the distance of the ray from the line L through the ori-
gin, and the variable s represents the distance travelled along the ray from
its source. For example, the point at location (z,,¥,) in the figure below
has s— and t—coordinates s, and t,, where s, = —z,sinf + y,cosf and
to = x,cos0 + Y, sin 6.
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Following the same steps as we used in the zy—coordinate system to derive
equation (3.14), we can write down the equation for a parallel projection in
the ts—plane running parallel to the s—axis:

“4co

p(6,1) = / p(t, s)ds. (3.21)

-0

Its one-dimensional Fourier transform is

+00
P8,p) = / (6, t)e~ Tt (3.22)
—+oo+oo

— / /#(t, s)e~ ¥t dsdt. (3.23)

—c0 ~ 00
Rewriting this in zy—coordinates gives us
+oo +oo

PO, = [ [ wlay)eeem=rtvinfiody = U(0,0).  (324)

-0 =00
Discrete Filtered Backprojection

Earlier we defined the Fourier Transform method, which gives us a relation-
ship between the projections and the density of the object. The projection
measured at a given angle is a collection of values denoted

" p=(po,P1, -, PK-1)" - (3.25)

We repeat this measurement for ¢ different angles 8,,...,60,_;. We then show
how to discretize both the Fourier transform and the filtered backprojection
algorithm to operate on the discrete data.

The Discrete Fourier Transform and Its Inverse

18




The discrete Fourier transform is a mechanism for transforming a set of
measurements of the spatial function f(z) to a set of values of a function of
spatial frequency F'(u).

We assume that we have an even number of measurements of the continuous
function f(z) taken at the equally spaced x—values so that z,, ..., Zx_;. That
is, f(z;) = fj for J =0,..., K — 1. We also assume that the function f(z)
is zero outside of the range [Z,,Zx-1] so that our samples f; represent all
important parts of f(z). The sum

K-~1
Fi=Fw)/Az =3 fe2HlX (3.26)

j=0
defines the discrete Fourier transform of these data at frequency ;.

Note that the terms of the sum form a periodic series in I. This is, because
e~?™ =1 for all integers values of j, F.; = Fx_;. In particular, F_g/s =
Fx/2, so we need only compute the K values F_gys, ..., Fx/2-1 to have all
information about F'. The K data values f,, ..., fx—1 thus actually lead to K
distinct Fourier transform values F_gys, ..., Fx/2—1.

Similarly, for J =0,..., K -1,

K/2-1
fi=@/K) Y, Fe™¥I¥ (3.27)

I=—K/2

defines the discrete inverse Fourier transform at z; of values F,,...,Fx in
frequency space.
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The convolution f * g has the K elements

K-1 ‘
= (f*gh= 2 f(5)g(l—7)- (3-28)
—
This convolution is well-defined for [ = 0,..., K — 1 when the data f and g
are assumed periodic with period K. In that case, the elements of g with
negative indices are evaluated by the relation g(—m) = g(k — m). This sort
of.convolution is termed a periodic.convolution.

Applying a periodic convolution directly to aperiodic data results in an incor-
rect result as the terms involving elements g_(x—1).1 contribute incorrectly to
the result. This interperiod interference is remedied by affixing zero elements
to the data vectors.

The convolution is related to the Fourier transform of f and g by

K/2-1 »
H= Y (f*g)e ™% =RaG, (3.29)

j=—K/2
forl=-K/2,..,K/2—1.
The discrete Fourier Transform can also be applied in two dimensions. The

. two-dimensional discrete Fourier transform of the function f(z,y) for samples
taken at fjx = f(a:j,yk) for ,k=0,..,K—11is

K-1K-1
Fim = F(u,vm)[AzAy = > S fize 2/ KAmk/K) (3.30)

7=0 p=0

The two-dimensional discrete inverse Fourier transform is

K/2-1 K/2-1

fie=Q/K) Y, 3 Fipe Km0, (3.31)

I=-K/2m=~K/[2

As in the continuous case, the 2D discrete Fourier transform can be written
as a pair of one-dimensional discrete Fourier transforms:

20




K-1TK-1 . .
-Flm — Z [Z fjke—-2mmk/K:| 6_27"1'7/1{. (332)

j=0 Lk=0

Continuous Backprojection in a finite frequency Domain

One can developed a continuous formulation of filtered backprojection by
relating the density p(z,y) of the object to the projection data as follows:

W e

wa,y) = [C6.8)0, (3.33)
Q
where the transform
+co
c(6,t) = / P(8,1) |p] e 2"tdp (3.34)

defines a filtered projection.

Discrete Formulation

wz,y) ~ % QE_: C(6,,1) (3.35)
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4.

Iterative Reconstruction Technique

It is known that, as an X-ray beam passes through an object, some of the
photons of the beam are absorbed by the object (photon attenuation). With
this in mind, consider a line of n pixels, through which an X-ray beam passes
squarely (See the figure below)

Suppose that the first pixel transmits a fraction f; of the incident photons,
the second pixel a fraction fo of the photons incident to it, and so on, to the
n** pixel, which transmits a fraction f, (i.e., f; equals the number of photons
entering the i*" pixel divided by the number of photons leaving).

The total fraction, f, transmitted through this line of pixels will be given by

F=AXfaxfsx X fo (4.1)
Hence
hf=hfi+lnfot+Infz+---+hf, (4.2)
or equivalently,
—Inf=-Infi-Info—-Infy—---—Inf,. (4.3)

The positive quantity —In f; is called the CT number (X-ray density) of
the first pixel and will be denoted by 3. Similarly, ps = —In fp is the CT
number of the second pixel, etc., with —In f as the total X-ray density of
the beam. This last quantity is called the ray sum of the beam and will be
denoted by s.

Thus, if the i beam, with ray sum, s;, passes squarely through a line of n
pixels, whose pixel numbers are j1, jo, ..., jn,then

By + gy + oo+ 1y, = 8 (4.4)
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where s; is known from the actual and calibration measurements, and the
Ly s Higy ey M, aT€ to be determined.

However, not all beams of a scan pass squarely through a line of pixels.
Instead, the i beam may pass “diagonally” through the pixel in its path.
In this case, we have

N

D Wijht; = S, : (4.5)
=1 SR \
* where w;; is a2 weighting factor that represents the contribution of the j*
pixel to the i** ray sum, and N = n? (the total number of pixels).

If the beam width is the same as the pixel width, then theoretically w;; equals
the ratio of the area of intersection of the i* beam with the j** pixel to the
area of the j** pixel. However, due to the computational difficulty of finding
the area of intersection of the beam and the pixel, other definitions of w;;
are sometimes used. Two such definitions are:

1. w;; = 1 if the ™ beam passes through the center of the j* pixel, and
w;; = 0, otherwise.

2. w;; = length of the center line of the i** beam that lies in the j** pixel,
divided by the width of the 7% pixel.

The first definition of w;; is easier to use than the second but is less accurate.

Either of these definitions gives rise to the following system
Mp=s.

There are various methods for solving linear systems -Gaussian elimination,
matrix inversion, the Gauss-Seidel method, etc. However, because of the
nature of the applied problem under consideration here, which gives rise to
the above system, the following points must be taken into account in solving
the system:

e The ray sums Sy, ..., Sx—1, which form the right-hand side of the system,
cannot be measured exactly. There will always be experimental error
in the data collected. Hence the system is usually inconsistant, and
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the best one can hope for is some “approximate solution.” Methods of
solution which assume that the system is consistent cannot, in general
be used.

e In computerized tomography, the number of scans taken in the data
collection process forces the system to be overdetermined, i.e., so that
M > N. Methods of solution which assume that M = N, therefore,
cannot be used.

e Our system can be so large that direct methods of solution are not
feasible, due to computer requirements on storage and time.

Many mathematical approaches are being tried in the area of image recon-
struction in computerized tomography. We next describe one such approach,
an iterative reconstruction technique, which produces approximate solutions
to the linear system.

To understand the Iterative Reconstruction Technique, let’s first consider the
following system of three linear equations in two unknowns:

1pg+1ps = 3 (4.6)
1/1,1 + 4/.&2 = 4 (47)
3p1 — 1y = -1 (4.8)

Geometrically, this system determines three straight lines L3, Ls,and Lj in
the pipe—plane. These lines do not have a common intersection point, i.e.,
the system is inconsistent. However, points on the triangle ABC formed by
the three lines can be considered as “approximate solutions” of the system.
(If the system were consistent, the triangle would shrink to a point, the
solution of the system).

The following is an iterative procedure that generates points on the triangle
ABC (“approximate solutions” of the system):

Choose an arbitrary point P, in the p3po—plane. Project P, orthogonally

onto L; to'get the éoint'Pl(l). Project P orthogonally onto Ls, to get P
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orthogonally onto L3 to get Pél) . The first iteration is now complete and
results in the points PV, P, and PPon lines Ly, Lo, and Ls.

Now use P3(1) as P,, etc., to obtain three sequences of points:

PO PA PO on L, (4.9)
PM PO PP . on L, (4.10)
PO p® PO on L. (4.11)

These sequences converge to points Py, Py, and P;, say, on lines Ly, L,, and
L3; and the three limiting points are independent of the starting points as
long as the three lines are not all parallel.

We need a formula for the orthogonal projection of a point onto a line.
Suppose that @Q(g1,g») is the orthogonal projection of the point P(p;,ps)
onto the line L in the pjpus—plane described by wypty + wapy = s.

Using vector notation and dot products with

T o= (p1,2), W= (01,w2), P = (p1,p2), 2nd T = (q1,¢2),  (4.12)

Then the projection point is given by

(4.13)

HOMEWORK

(1) Applying the iterative procedure to our 3 x 2 system with Py = (2, 3).
Doing four iterations.

Iterative Reconstruction Technique Algorithm

If we set & = (1,2, Mn) 20d W} = (Wi, Wiz, ., Win), 4 = 1,2,..., M,
then the system can be expressed as w; - & = s;,4 = 1,2,...M. In algorithm
form, the steps of the iteration are:
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1. Choose P,, or in vector form, p; ®

2. Set r = 1, for the first iterate.

3. Compute
Sk — Wy * Pp1 ")
ﬂ’(f)zﬁlc—_?(f)_l_( = Wi Pt ) o (414)
W« W

for k =1,2,..., M.(r = iteration count, M = # of hyperplanes)
4. Set pa = ppr™,
5. Increase the iterate number 7 by 1 and return to step 3.

From this, M sequences of points are obtained:

Pl(l), P1(2) , 1(3) ,--- on the first hyperplane, (4.15)
Pél), Péz), Pz(s), ... on the second hyperplane, (4.16)
- (4.17)
Pﬁ),Pﬁ), () .. on the M™ hyperplane; (4.18)

and it can be shown that these sequences converge to points P}, P ..., Py,
say, on the M hyperplanes, and that the limitin_g_Points are independent of
the starting point P,, as long as the vectors wy, w2, ..., Wy span RY.

One of the points Pl(r), ér),..., Jg), with r sufficiently large (depending on
the desired accuracy), is used as an approximate solution of the system and
hence used in the cross-sectional image reconstruction. The decision of which
approximate solution to use is based on different kinds of secondary criteria,
which are beyond the scope of our modules. '
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