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Abstract

This paper reports on the development of a unified one-equation model for the prediction

of transitional and turbulent flows. An eddy viscosity - transport equation for non-turbulent

fluctuation growth based on that proposed by Warren and Hassan (Journal of Aircrajl, Vol.

35, No. 5) is combined with the Spalart-Allmaras one-equation model for turbulent fluctu-

ation growth. Blending of the two equations is accomplished through a multidimensional
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intermittence function based on the work of Dhawan and Narasimha (Journal of Fluza’Me-

chanics, Vol. 3, No. 4). The model predicts both the onset and extent of transition.

Low-speed test cases include transitional flow over a flat plate, a single element airfoil, and

a multi-element airfoil in landing configuration. High-speed test cases include transitional

Mach 3.5 flow over a 5° cone and Mach 6 flow over a flared-cone configuration. Results

are compared with experimental data, and the spatial accuracy of selected predictions is

analyzed.

Nomenclature

a

b

Cb,

Cp

Ct

G,

%

cWI

d

ft,

f ‘m

= model constant

= model constant

= Spalart-Allmaras model constant

= model constant

= model constant

= Spalart-Allmaras model constant

= Spalart-Allmaras model constant

= Spalart-Allmaras model constant

= distance to nearest wall

= transition function in Spalart-Allmaras model

= wall damping function in Spalart-Allmaras model
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fw

k

Re

RT

s

T

Tu

v

wall blockage function in Spalart-Allmaras model

fluctuation kinetic energy

Reynolds number

turbulence Reynolds

surface distance

temperature

number

turbulence intensity (percentage)

ratio of specific heats

intermittence function

Boundary layer thickness

localization function

von Karman constant

relaxation length

kinematic viscosity

“non-turbulent” eddy viscosity

transported eddy viscosity in Spalart-Allmaras model

flow property in

model constant

time scale

Richardson Extrapolation
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subscripts

aw

b

e

1

nt

N

o

t

w

co

superscripts

*

variable used in intermittence function

enstrophy (vorticity variance)

characteristic frequency of disturbance

vorticity vector magnitude

adiabatic wall

boundary layer

boundary layer edge

laminar

non-turbulent

Narasimha

stagnation conditions

transitional or turbulent

wall

free stream conditions

boundary layer reference state

Introduction

Earlier worksl–4 have detailed the development of a unified modeling approach for tran-

sitional / turbulent flows based on the combination of the k — ~ (enstrophy) turbulence

1’2 Linear stability theory is usedmode15 with a model for non-turbulent fluctuation growth.
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to guide the modeling of the non-turbulent fluctuation growth process which leads to tran-

sition. Thus far, Tollmien-Schlichting, crossflow, and second-mode mechanisms have been

implemented into the model, with generally good results having been achieved for a variety

of flowfields.

This paper reports on the application of these ideas to one-equation “eddy viscosity

transport” turbulence models. Initial attention is focused on the popular Spalart-Allmaras

one-equation model ,6 but the procedures as developed should be applicable to other mod-

els of this type. An eddy viscosity-transport model for non-turbulent fluctuation growth is

proposed through analogy with the work of Warren and Hassan. 1‘2 Blending of this formula-

tion with the fully-turbulent Spalart-Allmaras model is achieved through a multidimensional

intermittence function based on the work of Dhawan and Narasimha.7 The sections that fol-

low present the unified one-equation transition / turbulence model and describe results that

illustrate its effectiveness in simulating a variety of transitional flows.

In the Warren-Hassan

Model Description

transition model, the growth of the non-turbulent fluctuation

kinetic energy (k) is modeled by an equation of the following form:

Dk
~ =vJ2(Q – (a+ b)%&v

8V
—((- + l.%)%),

+ ax.j 3 J
(1)

where

Vnt = Cplcrnt,
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and Q is the magnitude of the vorticity vector. The time scale ~~t ( “nt” for “non turbulent”)

is characteristic of the prevailing transition mechanism. The present work models transition

due to both first and second-mode disturbances, thus

where the subscripts 1 and 2 refer to first- and second-mode contributions.

For first mode (Tollmein-Schlicting) transition,

a
7-ntl = —

WI

(3)

(4)

In this, WI represents the frequency of the first-mode disturbance having the maximum

amplification rate and is correlated as a function of surface distance s by the following:3

Second-mode contributions are modeled as3

b
Tnt2 = — ,

W2

where

u.

‘2 = 0“476(s)

(5)

(6)

(7)

and 6(s) is the boundary layer thickness.

In these descriptions, the subscript “e” represents an evaluation at the edge of the

boundary layer. To account for compressibility effects,

evaluated at a reference temperature T*, defined as3

T*

the kinematic viscosity v. in Eq. 5 is

m
1

— = 1 + 0.032M: + 0.56(; – 1)
T. e

(8)
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The calculation (or estimation) of edge quantities is a necessary, but somewhat cumbersome

aspect of the transition model. The calculations presented later either determine them di-

rectly through a searching procedure (flat plate, supersonic cone, and hypersonic flared cone),

or estimate them from the surface pressure distribution by assuming isentropic, adiabatic

flow in the inviscid regions and zero pressure gradient in the direction normal to the surface

(low-speed airfoils). The quantity s is a surface distance measured from the stagnation point.

Other quantities appearing in the formulation include the magnitude of the vorticity vector

Q and the model constants a and b. The constant a depends on

precise form is presented later. If second-mode mechanisms are

the turbulence intensity; a

included, the constant b is

assigned a value of 0.06, slightly higher than the range of values used in Ref. [3] (0.053 to

0.056). Otherwise, b is set to zero.

Eq. 1 is converted to an evolution equation for an eddy viscosity characteristic of

non-turbulent fluctuations by multiplying by CP~nt and neglecting derivatives of the surface-

dependent quantity I-t:

Dv.t

Dt =
v.,Q(C,W., -(a+ b)*

%/d

au—((- + 1.8+3
+ 8Xj 3

(9)
J

Eq. 9 is then combined with the Spalart-Allrnaras model, with each component weighted

by an intermittence function I’. As r approaches zero, the evolution equation for the “non-

turbulent” eddy viscosity is recovered, and as r

Allmaras model is recovered. Using the notation

7“

approaches one, the standard Spalart-

of Ref. [6], the result is given by the



following:

,

where

(lo)~ =(1- r)m[cpfh,- (a+ b)-$
+ctr(br)m

+r[cbl(l– ft2)tifi– (Cwl.fw– ~.ft2)(j21

+;(VO2 +V “($+ -.#)w)

1 r l–r—=;+— 3’ (11)
ol

lr—=—+ 1.8(1 – r), (12)
c Gt G

ti is the transported quantity (proportional to the eddy viscosity), and d is the distance from

the nearest wall. The term CtI’(l – 17)fifl, which is not present in either Eq. 9 or the Spalart-

Allmaras model, affects the behavior of the solution in the transition region O < I’ <1. The

chosen value of Ct, 0.35, was determined by numerical optimization, as discussed later. The

final step accounts for the viscous sublayer in the fully turbulent region:

~t = ti[I + r(jvl– q] (13)

This step turns off viscous damping in the regions governed by non-turbulent fluctuations.

All other constants and functions are as described in Ref. [6], except that the function

~,, = C,, ev(-G4(~)2) (14)

is redefined as

ft2= G3 ew(-Ct4(max[ f’c’y’ , ;1)2)

8

(15)
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The additional argument in Eq. 15 is the algebraic solution of Eq. 9, neglecting convective

and diffusive terms. This modification helps initiate the turbulent growth process. The

“trip” term described in Ref. [6] is not included.

Transition Onset

Transition onset is specified by monitoring the behavior of the quantity

R~=& (16)
P

throughout a particular boundary layer profile. When the maximum value of RT in a profile

first exceeds unity (“first” in the sense of a sweep from the stagnation point aft), transition

onset is assumed to occur, and the surface distance from that point to the stagnation point

is designated as st. This step is one of the more geometry-dependent aspects of the model

but is somewhat better than other onset indicators, such as the point of minimum heat flux

or skin friction, for complex configurations. Ref. [I] shows that, for

11~ criterion gives results nearly equivalent to those obtained using a

indicator of transition onset.

simpler flowfields, the

minimum skin friction

Intermittence Definition

The non-turbulent and turbulent components of Eq. 10 are blended through the inter-

mittence function r. This is composed of two parts, a surface-distance dependent

17N(s) based on the work of Dhawan and Narasimha7 and a multidimensional

component

component

9



r~(z,y) that serves to restrict the applicable range of the transition model to boundary

layers. Theparticular form isgiven as follows:

r(~, Y) = I + r~(~,y)(r~(s) – I) (17)

The Dhawan-Narasimha expression 17Nis defined along the surface of the geometry from the

stagnation point:

rN(s)= 1– exp(–0.412&2)

f= max(s - s,, 0)/A

l?e~ = 9.0Re~0”75

The boundary layer localization function 17~is defined as follows:

rb(~, y) = tanh(q2),

max(O, max(tl, tz) – t~)
q=

-tZ+ -tm
>

500V
‘1= d2‘

,2=-
@2d ‘

(18)

(19)

(20)

(21)

(22)

(23)

(24)

-tZ= fifi (25)

~ ~ ~o_7u:
t.= — (26)

Vm

This expression is similar to that utilized in Menter’s hybrid k – c / k – w turbulence model.g

I’~ approaches one near solid surfaces and decays sharply to zero as the edge of the boundary

layer is approached. For simpler flows, one can also use

r(~,y)= rN(s), (27)
I

10 I
I
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with equivalent results. The utility of the multidimensional component 17~lies in the calcu-

lation of transitional flows on complex geometries, where both shear layers (treated as fully

turbulent) and boundary layers might be present.

Results

The unified transition / turbulence model described in earlier sections has been imple-

mented into two -Navier-Stokes codes: a research version of CFL3D,9 a cell-centered finite-

volume Navier-Stokes solver for 3-D aerodynamic flows, and REACTMB ,10 a cell-vertex

finite-volume Navier-Stokes solver for 2-D or axisymmetric reactive flows. The research ver-

sion of CFL3Dll utilizes time-derivative preconditioning 12 to enhance solution accuracy and

numerical efficiency for low-speed flow calculations. REACTMB also utilizes time-derivative

preconditioning. In CFL3D, the unified model is advanced in a

with the solution for eddy viscosity updated after the solution for

In REACTMB, the model is strongly coupled with the main flow

weakly-coupled manner,

the main flow variables.

equations. Calculations

that account for second-mode disturbances will be specifically noted in the discussion. A

baseline convergence criterion of a seven-decade reduction in the residual norm was used for

REACTMB, with the cases used in the grid convergence studies converged to even tighter

tolerances. Convergence for CFL3D was assessed by monitoring lift and drag coefficients

and predicted transition points, as residual norms tended to oscillate after a period of rapid

decrease.

Validation of the new approach is accomplished through simulations of several flows
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successfully computed by the original Warren-Hassan transition / turbulence model. Sim-

ulations of the flat-plate experiments of Schubauer and Klebanoff13 and Schubauer and

Skramstad14 are used to determine the functional dependence of the model constant a on

the free-stream turbulence intensity Tu, expressed as a percentage value. The results, ob-

tained by correlating the predicted transition onset locations with experimental data, yield

the following dependence:

a = 0.009863 – 0.001801(Tu) + 0.05050 (Tu)2 (28)

It should be noted that the calibration is also sensitive to the freestream value of the trans-

ported quantity U. This is chosen as 0.0001v~ for all calculations presented herein. The effect

of the constant Ct in Eq. 10 on the skin friction predictions for the Schubauer-Klebanoff

experiment (TZJ = 0.03) is shown in Figure 1 (CFL3D implementation). All choices predict

the correct onset location based on the RT = 1 criterion, as per the calibration, but the

shape of the skin friction distribution is best predicted by the optimized value of C~ = 0.35.

This value is maintained for all subsequent calculations.

In addition to the 65x97 grid, medium (129x193) and fine (257x385) mesh levels are used

to assess the accuracy of the CFL3D solutions. In addition, the Richardson Extrapolation

procedure15 is used to obtain more accurate skin friction profiles:

where 1 and 2 denote the fine and medium grid solutions, respectively, and @represents the

skin friction. Richardson Extrapolation assumes that the spatial accuracy is second order and

12



that the solutions are in the asymptotic grid convergence regime. Figure 2 presents computed

skin friction profiles for the three grid levels along with the Richardson Extrapolation results.

Only the results in the transitional

The assumptions that the solutions

convergence regime can be assessed

region appear to show dependence on the mesh size.

are second order accurate and in the asymptotic grid

by examining the percent error in the solution values

relative to the Richardson Extrapolation value:

In order for these

percent error obey

% Error of Mesh k =
(h - @l?-E)~ 1(J) (30)

QRE

assumptions to hold, it is necessary (although not sufficient) that the

the relationship

% Error of Mesh 1 =
(%Error of Mesh 2)

4

(%Error of Mesh 3) ,..,

16 ‘
(31)

where the left equality in Eq. 31 is identically true when Eq.

errors from Eq. 30 are presented in Figure 3 for the CFL3D

29 is used. The normalized

solutions of the Schubauer-

Klebanoff flat plate case. The skin friction

to be within the second order asymptotic

in the laminar and turbulent regions does appear

grid convergence regime. The fine grid errors in

this region are below 1%, while the solutions in the transitional region do not appear to be

fully grid converged. This latter result is not surprising since no attempt has been made to

provide a priori clustering in this region.

Figure 4 illustrates the effect of grid refinement on the skin friction prediction for the

Tu = 0.03 case, REACTMB implementation. Again, solutions are presented on the three

mesh levels along with the Richardson Extrapolation results. Grid sensitivity is seen in both

13



the transitional and turbulent regions of the flow. Figure 4 also shows that the predicted

transition location and the extent of the transition region display some sensitivity to the

mesh size. The normalized errors from Eq. 31 are presented in Figure 5 and show that

the fine grid solution is accurate to within 1% in the laminar region and approximately

3% in the turbulent region. Although these errors are small, the fact that the normalized

errors do not satisfy Eq. 31 indicates that the assumptions required for the application of

Richardson Extrapolation. are not fully valid. Thus, the error estimates presented in Fig. 5

may not be accurate. It is expected that these errors could be further reduced with additional

grid refinement and/or grid adaptation. Finally, Figure 6 compares fine grid solutions from

the two codes with experimental data for the Tu = 0.03 case. Even with significant grid

refinement, the solutions do display some code- and implementation-dependent differences.

The second case considered involves the database of Mateer, et al. ,16 which contains

skin friction measurements over a supercritical airfoil for a freestream Mach number of 0.2

and a range of Reynolds numbers and angles of attack. The percentage turbulence intensity

is Tu = 0.5, higher than the highest value found in the Schubauer-Skramstad database

(’Tu = 0.34). For this level of intensity, the model operates slightly outside its limits of

calibration. Figure 7 presents skin friction distributions for a Reynolds number of 2 x 106

(based on a 0.2 m chord) and an angle-of-attack of-0.5 degrees. The CFL3D implementation

is used for this case. Calculations from a boundary-layer integral / e“ analysis yielded

transition predictions well aft of the experimental results for both surfaces.16 The unified one-
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equation model predicts transition accurately on the lower surface but aft of the experimental

location on the upper surface. These results are in accord with those presented earlier for the

Warren-Hassan implementation.1 Figure 8 compares predictions and experimental results for ~

a higher

location

surface.

Reynolds number of 6 x 10G. Good agreement with the upper-surface transition

is indicated, but the model underpredicts the extent of laminar flow on the lower

It is of note that the predicted transition locations for both cases are nearly equal

for the upper and lower surfaces, a trait also shared by the Warren-Hassan implementation.

This may indicate the need for the explicit inclusion of surface pressure gradient effects into

the correlation for T.t to render it more valid for curved surfaces.

The third test case involves Mach 0.2, a = 19° flow about a three-element airfoil in land-

ing configuration. 17!18’19This configuration has been the subject of a detailed investigation

“using the original Warren-Hassan transition / turbulence model.4 Results using the baseline

Spalart-Allmaras model with either user-specified transition points or “natural” transition

have also been reported. 18 Figures 9, 10, and 11 compare velocity magnitude profiles at

the x/c = 0.1075, x/c = 0.45, and z/c = 0.8982 locations (relative to the stowed chord

length) with experimental data from Chin, et al. 17 Profiles were measured only along the

upper surfaces of the airfoils and are plotted versus normal distance from the surface. These

calculations were run using the modified CFL3D code, assuming a free-stream turbulence

intensity of Tu = 0.05. The figures include results from the unified model implemented

using the one-dimensional intermittence function r = I’N(s) (Eq. 27), results from the

15



unified model implemented using the two-dimensional intermittence function r = r(z, g)

(Eq. 17), and results from a

turbulent model, the unified

fully turbulent implementation. In comparison with the fully

model provides better agreement with experimental data for

the stations nearer the leading edge

Close agreement between predictions

but provides poorer agreement further

using the one-dimensional intermittence

downstream.

function and

those using the two-dimensional intermittence function is evidenced for all stations. The

success of the one-dimensional intermittence function in this case may be fortuitous, as the

grid blocking arrangement is such that the presence of transitional regions extending away

from the element surfaces does not interfere significantly with turbulent wake development.

In accord with experimental results, 19 the unified model predicts a nearly laminar slat cove

and a nearly laminar undersurface of the flap. The model does, however, predict transition

on the lower surface of the main element as occurring at roughly the quarter-chord point.

Experimental data suggests that transition on this surface is delayed until the flap cove.

Contour plots of 17(x, y) are shown in Figure 12 for the slat - main-element juncture. As

indicated, the transition model with I’ = I’(Z, y) is localized to initially laminar boundary

layers near the surface of each element. Shear layers are treated in a fully turbulent fashion.

The fourth test case involves transitional, Mach 3.5 flow over a 5 degree half-angle cone

and corresponds to a set of experiments conducted by Chen, et al.20 in the NASA Langley

Mach 3.5 Pilot Low Disturbance Wind Tunnel. This case has also been studied by Singer,

et al.21, Warren, et al.22, and McDaniel, et al.3, with the two latter efforts using variants of

16



the Warren-Hassan transition model. Figure 13 presents wall recovery factor as a function

of surface distance along the cone. The wall recovery factor is defined by the relation

T.. – T.

‘= TO–T.

where

and T~Wand Te are determined from the computed solution at the wall and at the edge of

the boundary layer. The calculations assume that only first-mode mechanisms are important

and assume a turbulent Prandtl number of 0.88 and a turbulence intensity of 0.05. Further-

more, the calculations were performed using the REACTM13 impIementation. As noted in

Ref. [22], recovery factor predictions for this flow are very sensitive to the assumed value of

the turbulent Prandtl number, with the commonly-used value of 0.9 resulting in a sizeable

overprediction in the transitional and turbulent regions. Ref. [22] also shows that agreement

with experimental data can be substantially improved by including a flow-dependent turbu-

lent Prandtl number; such techniques have yet to be implemented in the present work. The

current results indicate that the unified one-equation model accurately predicts the onset of

transition for each of the Reynolds numbers considered. The model does overestimate the

peak in recovery factor near the end of the transition region and slightly overpredicts the

recovery fact or in the fully-turbulent region. The former effect may indicate the need for

improved modeling of the transition-region term

ctr(l – r)m
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in Eq. 10 for high-speed flows.

Three grid levels are used to assess the accuracy of the calculations for the Re/m =

5.89x 107 case. Figure 14shows therecovery factor profiles forthethree grid levels along

with the Richardson Extrapolation results

increasing mesh refinement area decrease in

using Eq. 29. The most noteworthy effects of

the distance required to establish an equilibrium

Iaminar boundary layer, a lowering of the recovery factor in the fully

slight shift” in’ the transition onset location downstream. The error in

turbulent region, and a

recovery factor relative

to the more accurate extrapolated values are given in Figure 15, where the errors have been

normalized according to Eq. 31. The fine grid errors are well below O.l$ZOin the laminar and

turbulent regions. The collocation of the normalized errors indicates the locations where

the solution is likely in the asymptotic grid convergence regime. Larger errors are seen

at the stagnation point singularity and in the transition region due to the large gradients.

Additional grid clustering could be employed to reduce the magnitude of the error in these

regions.

The final test case considered in this article involves Mach 5.91 flow over an 18 inch

flared cone and corresponds to the experiments of Blanchard and Selby23, conducted in the

NASA Langley Mach 6 quiet tunnel. The geometry consists of a straight 5 degree half

angle cone for the first 10 inches, followed by a flared portion with a radius of curvature of

91.94 inches. The flared portion was designed to induce a mild adverse pressure gradient,

hastening the growth of second-mode disturbances deemed important for natural transition

18



in hypersonic flows. A 241x221 mesh, clustered to the cone apex and to the wall, is used.

This case was also studied in Ref. [3] using the Warren-Hassan transition / turbulence model.

Figure 16 compares wall temperature predictions with experimental data. Both second and

first-mode contributions are included in the transition model. The neglect of second-mode

contributions resulted in Iaminarization, while second-mode contributions alone resulted in

premature transition on the straight cone section. In the Iaminar part of the flow, the

calculations underpredict the wall temperature, with an average percent error of around 2

%. In the transitional region, the calculated temperatures are again below the experimental

values, with an average percent error of around 9Y0. Surface values of the intermittence

function are around 0.77 near the end of the flare, indicating that the calculation never

attains a fully turbulent state. Calculations performed on a finer grid of 481x441 nodes

(not shown) failed to provide any substantial improvement over these results. This level of

disagreement was also seen in the predictions of Ref. [3], but as noted in that reference,

there are inconsistencies in the presentation of the experimental results that defy a simple

explanation. Nevertheless, the unified model provides reasonable qualitative agreement with

the experimental data, with predicted transition onset delayed until the flared portion of the

cone (X x 14 inches).

Conclusions

A unified, one-equation “eddy viscosity - transport” model for transitional and turbu-

lent flows has been developed. The model combines an evolution equation for non-turbulent
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fluctuation growth developed from the work of Warren and HasSan with the standard Spalart-

Allmaras turbulence mociel. Blending of thetwoequations isaccomplished through amul-

tidimensional intermittence function. The current formulation is calibrated for transition

driven by the growth of first- and second-mode instabilities and predicts both the onset and

extent of the transition region. The model has been applied with reasonable success to low-

speed transitional flows over a flat plate, a supercritical airfoil, and a multi-element airfoil

in landing configuration and to high-speed flows over cone and flared-cone configurations.

The predictions are very similar to those obtained earlier using the k – < turbulence model,

indicating that the performance of the Warren-Hassan model in predicting transitional flows

is relatively independent of the turbulence model used. Grid refinement studies for selected

cases indicate that the prediction of transition onset is relatively insensitive to the grid spac-

ing for the finer meshes but that grid refinement or grid adaptation may be required to

obtain grid independence in the prediction of the extent of the transition region.
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Figure Captions

Figure 1: Effect of C~ on skin friction distribution (Schubauer-Klebanoff experiment;

65x97 mesh; CFL3D implementation)

Figure2: Skin friction distributions forthe Schubauer-Klebanoff flat plate along with

Richardson Extrapolation results (CFL3D implementation)

Figure3: Normalized error inskinfriction onthethree mesh levels forthe Schubauer-

Klebanoff flat plate (CFL3D implementation).

Figure4: Skin friction distributions forthe Schubauer-Klebanoff flat plate along with

Richardson Extrapolation results (REACTMB implementation).

Figure 5:

Klebanoff flat

Figure 6:

experiment)

Figure 7:

mesh)

Figure 8:

mesh)

Figure 9:

Normalized error in skin friction on the three mesh levels for the Schubauer-

plate (REACTMB implementation).

Fine-grid skin friction predictions versus experimental data (Schubauer-Klebanoff

Skin friction distributions (Mateer supercritical airfoil, ReC = 2 x 106, 321x91

Skin friction distributions (Mateer supercritical airfoil, ReC = 6 x 106, 321x91

Velocity profiles (x/c = 0.1075 station, a = 19°)

Figure 10: Velocity profiles (x/c = 0.45 station, a = 19°)

Figure 11: Velocity profiles (x/c = 0.8982 station, a = 19°

24



Figure 12: Intermittence contours (localized to thin, nearly Iaminar boundary layers)

Figure 13: Measured and computed recovery factors (M = 2.5, Re/m = 3.85 x 107,

5.89 x 107, 7.8 x 107, Pr~ = 0.88)

Figure 14: Recovery factor distributions forthe Mach 3.5cone along with Richardson

Extrapolation results

Figure 15: Normalized error in recovery factor on the three mesh levels for the Mach

3.5 cone

Figure 16: Measured and computed adiabatic wall temperatures (M =5.91, Re/m=

9.348 xlOG, T~= 56.2 K,241x225 mesh)
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