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Abstract

This paper reports on the development of a unified one-equation model for the prediction
of transitional and turbulent flows. An e‘ddy viscosity - transport equation for non-turbulent
fluctuation growth based on that proposed by Warren and Hassan (Journal qf Aircraft, Vol.
35, No. 5) is combined wi»th the Spalart-Allmaras one-equation model for turbulent fluctu-

ation growth. Blending of the two equations is accomplished through a multidimensional
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intermittency function based on the work of Dhawan and Narasimha (Journal of Fluid Me;-
chanics, Vol. 3, No. 4). The model predicts both the onset and extent of transition.
Low-speed test cases include 'transitional flow over a flat plate, a single element airfoil, and
a multi-element airfoil in landing configuration. High-speed test cases include transitional
Mach 3.5 flow over a 5° cone and Mach 6 flow over a flared-cone configuration. Results
are compared with experimental data, and the spatial accuracy of selected predictions is

analyzed.

Nomenclature

=  model constant

=  model constant

=  Spalart-Allmaras model constant

= model constant

= model constant

=  Spalart-Allmaras model constant

=  Spalart-Allmaras model constant

= Spalart—Alhﬁaras model constant

=  distance to nearest wall

=  transition function in Spalart-Allmaras model

=  wall damping function in Spalart-Allmaras model




fuw =  wall blockage function in Spalart-Allmaras model
k =  fluctuation kinetic energy

Re = Reynolds number

Ry = turbulence Reynolds number

s : =  surface distance

T =  temperature

Tu =  turbulence intensity (percentage)

0% = ratio of specific heats

r =  intermittency function

) =  Boundary layer thickness

n = localization function

K =  von Karman constant

A = relaxation length

v =  kinematic viscosity

Vnt = “non-turbulent” eddy viscosity

1% =  transported eddy viscosity in Spalart-Allmaras model
(0] =  flow property in Richardson Extrapolation

o} =  model constant

T =  time scale




I3 =  variable used in intermittency function

¢ =  enstrophy (vorticity variance)

w =  characteristic frequency of disturbance

Q "= vorticity vector magnitude
subscripts

aw = adiabatic wall

b e boundary layer

e =  boundary layer edge

! ‘ =  laminar

nt = non-turbulent

N =  Narasimha

0 =  stagnation conditions

t = transitional or turbulent

w = wall

00 =  free stream conditions
superscripts

* =  boundary layer reference state

Introduction

Earlier works'~* have detailed the development of a unified modeling approach for tran-
sitional / turbulent flows based on the combination of the k — ¢ (enstrophy) turbulence

model® with a model for non-turbulent fluctuation growth.' 2 Linear stability theory is used
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to guide the modeling of the non-turbulent fluctuation growth process which leads to tran-
sition. Thus far, Tollmien-Schlichting, crossflow, and second-mode mechanisms have been
implemented into the model, with generally good results having been achieved for a variety
of flowfields.

This paper reports on the application of these idea;s to one-equation “eddy viscosity
transport” turbulence models. Initial attention is focused on the popular Spalart-Allmaras
one-equation model,® but the procedures as develorprécriﬂ should be applicable to other mod-
els of this type. An eddy viscosity-transport model for non-turbulent fluctuation growth is
proposed through analogy with the work of Warren and Hassan.! 2 Blending of this formula-
tion with the fully-turbulent Spalart-Allmaras model is achieved through a multidimensional
intermitten(:}; function based on the work of Dhawan and Narasimha.” The sections that fol-
low present the unified one-equation transition / turbulence model and describe results that

illustrate its effectiveness in simulating a variety of transitional flows.
Model Description

In the Warren-Hassan transition model, the growth of the non-turbulent fluctuation

kinetic energy (k) is modeled by an equation of the following form:

Dk k
—E = VntQ(Q —_ (a + b)72—;)
ad v ok
+ E((g + 1-8Vnt)55;), (1)
where
Unt = C“kTm, (2)




and  is the magnitude of the vorticity vector. The time scale 7,; (“nt” for “non turbulent”)
is characteristic of the prevailing transition mechanism. The present work models transition

due to both first and second-mode disturbances, thus
Tt = Tayy + Tnty, (3)

where the subscripts 1 and 2 refer to first- and second-mode contributions.

For first mode (Tollmein-Schlicting) transition,

4
Tnty = ZJ—l_ (4)

In this, w; represents the frequency of the first-mode disturbance having the maximum

amplification rate and is correlated as a function of surface distance s by the following:?

W Ve

= 0.48Re 065 ' (5)

Second-mode contributions are modeled as®

b
Tnty = g : (6)
where
U,
= 0. 7
wo = 0.47 50s) (7)

and 6(s) is the boundary layer thickness.
In these descriptions, the subscript “e” represents an evaluation at the edge of the

boundary layer. To account for éompressibility effects, the kinematic viscosity v, in Eq. 5 is

evaluated at a reference temperature T, defined as®

*

T w
= =1+40.032M2 + 0.56(% —1) (8)
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The calculation (or estimation) of edge quantities is a necessary, but somewhat cumbersome
aspect of the transition model. The calculations presented later either determine them di-
rectly through a searching procedure (flat plate, supersonic cone, and hypersonic flared cone),
or estimate them from the surface pressure distribution by assuming isentropic, adiabatic
flow in the inviscid regions and zero pressure gradient in the direction normal to the surface
(low-speed airfoils). The quantity s is a surface distance measured from the stagnation point.
| Other quantities appearing in the formulation include the magnitude of the vorticity vector
2 and the model constants a and b. The constant a depends on the turbulence intensity; a
precise form is presented later. If second-mode mechanisms are included, the constant & is
assigned a value of 0.06, slightly higher than the range of values used in Ref. [3] (0.053 to
0.056). Otherwise, b is set to zero.
Eq. 1 is converted to an evolution gquation for an eddy viscosity characteristic of
non-turbulent fluctuations by multiplying by C,7,; and neglecting derivatives of the surface-

dependent quantity 7,;:

Dl/n \ Un
Dtt = UntQUC, Qs — (a + b) \/gt,,)
8 14 al/nt

Eq. 9is then combined with the Spalart-Allmaras model, with each component weighted
by an intermittency function I'. As I' approaches zero, the evolution equation for the “non-
turbulent” eddy viscosity is recovered, and as I' approaches one, the standard Spalart-

Allmaras model is recovered. Using the notation of Ref. [6], the result is given by the
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following;:

PD_’Z = (1 - T)7Q[C, 27 — (a +b) 7_’32;] (10)
+ C.I'(1 - T)oQ
+ F[Cbl(l - ft2)17§2 - (Cwlfw - %fw)(g)zl

F ~\2 1 ]. ~ ~
+;(V1/) +V (Ulu+0—tu)Vu)

where
1 I 1-T
E—E+T’ (11)
1 T
—=—-+18(1-T 12
—=-+181-D) (12)

7 is the transported quantity (proportional to the eddy viscosity), and d is the distance from
the nearest wall. The term C;I'(1—T")2§2, which is not present in either Eq. 9 or the Spalart-
Allmaras model, affects the behavior of the solution in the transition region 0 < I' < 1. The
chosen value of C;, 0.35, was determined by numerical optimization, as discussed later. The

final step accounts for the viscous sublayer in the fully turbulent region:
ve = D[l +T(fu1 — 1)) (13)

This step turns off viscous damping in the regions governed by non-turbulent fluctuations.

All other constants and functions are as described in Ref. [6], except that the function

fio = Cg exp(~Cua(2)’) (14)
is redefined as
' 20,07, D
fi = Cis exp(~Calmar{ L2252t (15




The additional argument in Eq. 15 is the algebraic solution of Eq. 9, neglecting convective
and diffusive terms. This modification helps initiate the turbulent growth process. The

“¢rip” term described in Ref. [6] is not included.
Transition Onset

Transition onset is specified by monitoring the behavior of the quantity

Ry = — - (16)

throughout a particular boundary layer profile. When the maximum value of Ry in a profile
first exceeds unity (“first” in the sense of a sweep from the stagnation point aft), transition
onset is assumed to occur, and the surface distance from that point to the staghation point
is designated as s;. This step is one of the more geometry-dependent aspects of the model
but is somewhat better than other onset indicators, such as the point of minimum heat flux
or skin friction, for complex configurations. Ref. [1] shows that, for simpler flowfields, the
Ry criterion gives results nearly equivalent to those obtained using a minimum skin friction

indicator of transition onset.
Intermittency Definition

The non-turbulent and turbulent components of Eq. 10 are blended through the inter-
mittency function I'. This is composed of two parts, a surface-distance dependent component

I'y(s) based on the work of Dhawan and Narasimha’ and a multidimensional component




['y(x,y) that serves to restrict the applicable range of the transition model to boundary

layers. The particular form is given as follows:

I(z,y) = 1+To(z,y)(Tn(s) — 1)

(17)

The Dhawan-Narasimha expression 'y is defined along the surface of the geometry from the

stagnation point:
I'n(s) =1 — exp(—0.412¢?)
& =max(s — s¢,0)/A

Re) = 9.0Re;°'75

The boundary layer localization function I', is defined as follows:

Pb(‘r? y) = ta’nh(nz)v

_ max(0, max(t,tz) — teo)

7 t3 + too ’
500v
h=—5
ci?q

t3=\/C—'uQ
2

too = 1 X 10—7g92
Voo

(18)

(19)

(20)

(21)
(22)
(23)
(24)
(25)

(26)

‘This expression is similar to that utilized in Menter’s hybrid k —e / k —w turbulence model.?

I', approaches one near solid surfaces and decays sharply to zero as the edge of the boundary

layer is approached. For simpler flows, one can also use

F(CC, y) = PN(S):

10

(27)




with equivalent results. The utility of the multidimensional component I' lies in the calcu-
lation of transitional flows on complex geometries, where both shear layers (treated as fully

turbulent) and boundary layers might be present.
Results

The unified transition / turbulence model described in earlier sections has been imple-
mented into two 'Navier-SFokes codes: a research version of CFL3D,? a cell-centered finite-
volume Navier-Stokes solver for 3-D aerodynamic flows, and REACTMB,Y10 a cell-vertex
finite-volume Navier-Stokes solver for 2-D or axisymmetric reactive flows. The research ver-
sion of CFL3D!! utilizes time-derivative preconditioning? to enhance solution accuracy and
numerical efficiency for low-speed flow calculations. REACTMB also utilizes time-derivative
preconditioning. In CFL3D, the unified model is advanced in a weakly-coupled manner,
with the solution for eddy viscosity updated after the solution for the main flow variables.
In REACTMB, the model is strongly coupled with the main flow equations. Calculations
that account for second-mode disturbances will be specifically noted in the discussion. A
baseline convergence criterion of a seven-decade reduction in the residual norm was used for
REACTMB, with the cases used in the grid convergence studies converged to even tighter
tolerances. Convergehce for CFL3D was assessed by monitoring lift and drag coefficients
and predicted transition points, as res.idual norms tended to oscillate after a period of rapid
decrease.

Validation of the new approach is accomplished through simulations of several flows
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successfully computed by the original Warren-Hassan transition / turbulence inodel. Sim-
ulations of the flat-plate experiments of‘ Schubauer and Klebanoff®® and Schubauer and
Skramstad!* are used to determine the functional dependence of the model constant a on
the free-stream turbglence intensity T'u, expressed as a percentage value.» The resulfs, ob-
tained by correlating the predicted transition onset locations with experimental data, yield

the following dependence:
a = 0.009863 — 0.001801(Tu) + 0.05050(7"u)? (28)

It should be noted that the calibration is also sensitive to the freestream value of the trans-
ported quantity 7. This is chosen as 0.0001v for all calculations presented herein. The effect
of the constant C; in Eq. 10 on the skin friction predictions for the Schubauer-Klebanoff
rexperiment (Tw = 0.03) is shown in Figure 1 (CFL3D implementation). All choices predict
the correct onset location based on the Ry = 1 criterion, as per the calibration, but the
shape of the skin friction distribution is best predicte{d by the optimized value of C; = 0.35.
This value is maintained for all subsequent calculations.

In addition to the 65x97 grid, medium (129x193) and fine (257x385) mesh levels are used
to assess the accuracy of the CFL3D solutions. In addition, the Richardson Extrapolation

procedure!® is used to obtain more accurate skin friction profiles:

Sre = ¢1 + (1 — ¢2)/3 (29)

where 1 and 2 denote the fine and medium grid solutions, respectively, and ¢ represents the

skin friction. Richardson Extrapolation assumes that the spatial accuracy is second order and

12




that the solutions are in the asymptotic grid convergence regime. Figure 2 presents computed
skin friction profiles for the three grid levels along with the Richardson Extrapolation results.
Only the results in the transitional region appear to show dependence on the mesh size.
The assumptions that the solutions are second order accurate and in the asymptotic grid
convergence regime can be assessed by examining the percent error in the solution values

relative to the Richardson Extrapolation value:

(¢x — ¢rE)

RE

% Error of Mesh k =

In order for these assumptions to hold, it is necessary (although not sufficient) that the
percent error obey the relationship

(%Error of Mesh 2)  (%Error of Mesh 3)

% Error of Mesh 1 = 1 G

(31)

‘where the left equality in Eq. 31 is identically true when Eq. 29 is used. The normalized
errors from Eq. 30 are presented in Figure 3 for the CFL3D solutions of the Schubauer-
Klebanoff flat plate case. The skin friction in the laminar and turbulent regions does appear
to be within the second order asymptotic grid convergence regime. The fine grid errors in
this region are below 1%, while the solutions in the transitional region do not appear to be
fully grid converged. This latter result is not surprising since no attempt has been made to
provide a priori clustering in this region.

Figure 4 illustrates the effect of grid refinement on the skin friction prediction for the
Tu = 0.03 case, REACTMB implementation. Again, solutions are presented on the three

mesh levels along with the Richardson Extrapolation results. Grid sensitivity is seen in both

13

X 100 (30)




the transitiénal and turbulent regions of the flow. Figure 4_also shows that the predicted
transition location and the extent of the transition region diéplay some sensitivity to the
mesh size. The normalized errors from Eq. 31 are presented in Figure 5 and show that
the fine grid solutiop is accurate to within 1% in the laminar region and approximately
3% in the turbulent region. Although these errors are small, the fact that the normalized
errors do not satisfy Eq. 31 indicates that the assumptions required for the application of
Richardson Extrapolation.are not fully valid. Thus, the error estimates presented in Fig. 5
may not be accurate. It is expected that these errors could be further reduced with additional
grid refinement and/or grid adaptation. Finally, Figure 6 compares fine grid solutions from
the two codes with experimental data for the T'u = 0.03 case. Even with significant grid
refinement, the solutions do display some code- and implementation-dependent differences.

The second case considered involves the database of Mateer, et al.,!® which contains
skin friction measurements over a supercritical airfoil for a freestream Mach number of 0.2
and a range of. Reynolds numbers and angles of attack. The percentage turbulence intensity
is Tu = 0.5, higher than the highest value found in the Schubauer-Skramstad database
(Tw = 0.34). For this level of intensity, the model operates slightly outside its limits of
calibration. Figure 7 presents skin friction distributions for a Reynolds number of 2 x 10°
(based on a 0.2 m chord) and an angle-of-attack of -0.5 degrees. The CFL3D implementation
is used for this case. Calculations from a boundary-layer integral / e” analysis yielded

transition predictions well aft of the experimental results for both surfaces.!® The unified one-
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equation model predicts transition accurately on the lower surface but aft of the experimental
location on the upper surface. These results are in accord with those presented earlier for the
Warren-Hassan implementation.! Figure 8 compares predictions and experimental results for
a higher Reynolds ngmber of 6 x 10%. Good agreement with the upper-surface transition
location is indicated, but the model underpredicts the extent of laminar flow on the lower
surface. It is of note that the predicted transition locations for both cases are nearly equal
for the upper and lower surfaces, a trait also shared by the Warren-Hassan implementation.
This may indicate the need for the explicit inclusion of surface pressure gradient effects into
the correlation for 7,,; to render it more valid for curved surfaces.

The third test case involves Mach 0.2, o = 19° flow about a three-element airfoil in land-
ing configuration.!”> '8 1% This configuration has been the subject of a detailed investigation
‘using the original Warren-Hassan transition / turbulence model.? Results using the baseline
Spalart-Allmaras model with either user-specified transition points or “natural” transition
have also been reported.!® Figures 9, 10, and 11 compare velocity magnitude profiles at
the z/c = 0.1075, z/c = 0.45, and z/c = 0.8982 locations (relative to the stowed chord
length) with eXperimental data from Chin, et al.'” Profiles were measured only along the
upper surfaces of the airfoils and are plotted versus normal distance from the surface. These
calculations were run using the modified CFL3D code, assuming a free-stream turbulence
intensity of Tu = C.OS. The figures include results from the unified model implemented

using the one-dimensional intermittency function I' = T'y(s) (Eq. 27), results from the
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unified model implemented using the two-dimensional intermittency function I' = T'(z, )

(Eq. 17), and results from a fully turbulent implementation. In comparison with the fully

turbulent model, the unified model provides better agreement with experimental data for

the stations nearer tile leading edge but provides poorer agreement further downstream.

" Close agreement between predictions using the one-dimensional intermittency function an-d
those using the two-dimensional intermittency function is evidenced for all stations. The

success of the one-dimensional intermittency vfunction in this case may be fortuitous, as the

grid blocking arrangement is such that the presence of transitional regions extending away

from the element surfaces does not interfere significantly with turbulent wake development.

In accord with experimental results,'® the unified model predicts a nearly laminar slat cove

and a nearly laminar undersurface of the flap. The model does, however, predict transition

on the lower surface of the main element as occurring at roughly the quarter-chord point.
Experimental data suggests that transition on this surface is delayed until the flap cove.

Contour plots of I'(z,y) are shown in Figure 12 for the slat.- main-element juncture. As

indicated, the transition model with I' = I'(z,y) is localized to initially laminar boundary

layers near the surface of each element. Shear layers are treated in a fully turbulent fashion.

The fourth test case involves transitional, Mach 3.5 flow over a 5 degree half-angle cone

and corresponds to a set of experiments conducted by Chen, et al.?® in the NASA Langley

Mach 3.5 Pilot Low Disturbance Wind Tunnel. This case has also been studied by Singer,

et al.2!, Warren, et al.??, and McDaniel, et al.?, with the two latter efforts using variants of
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the Warren-Hassan transition model. Figure 13 presents wall recovery factor as a function

of surface distance along the cone. The wall recovery factor is defined by the relation

where
ﬂ=nu+%;M3

and Ty, and T, are determined from the computed solution at the wall and at the edge of
the boundary layer. The calculations assume that only first-mode mechanisms are important
and assume a turbulent Prandtl number of 0.88 and a turbulence intensity of 0.05. Further-
more, the calculations were performed using the REACTMB implementation. As noted in
Ref. [22], recovery factor predictions for this flow are very sensitive to the assumed value of
the turbulent Prandtl number, with the commonly-used value of 0.9 resulting in a sizeable
overprediction in the transitional and turbulent regions. Ref. [22] also shows that agreement
with experimental data can be substantially improved by including a flow-dependent turbu-
lent Prandtl number; such techniques have yet to be implemented in the present work. The
current results indicate that the unified one-equation model accurately predicts the onset of
transition for each of the Reynolds numbers considered. The model does overestimate the
peak in recovery factor near the end of the transition region and slightly overpredicts the
recovery factor in the fully-turbulent region. The former effect may indicate the need for

improved modeling of the transition-region term

C,r(1 - T)oQ
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in Eq. 10 for high-speed ﬂowé.

Three grid levels are used to assess the accuracy of the calculations for the Re/m =
5.89 x 107 case. Figure 14 shows the recovery factor profiles for the three grid levels along
with the Richardson Extrapolation results using Eq. 29. The most notgworthy effects of
increasing mesh refinement are a decrease in the distance required to establish an equilibrium
laminar boundary layer, a lowering of the recovery factor in the fully turbulent region, and a
slight shift in the transition onset location downstream. The error in recovery factor relative
to the more accurate extrapolated values are given in Figure 15, where the errors have been
- normalized according to Eq. 31. The fine grid errors are well below 0.1% in the laminar and
turbulent regions. The collocation of the normalized errors indicates the locations where
the solution is likely in the asymptotic grid convergence regime. Larger errors are seen
at the stagnation point singularity and in the transition region due to the large gradients.
Additional grid clustering could be employed to reduce the magnitude of the error in these
regions.

The final test case considered in this article involves Mach 5.91 flow over an 18 inch
flared cone and corresponds to the experiments of Blanphard and Selby?3, conducted in the
NASA Langley Mach 6 quiet tunnel. The geometry consists of a straight 5 degree half
angle cone for the first 10 inches, followed by a flared portion with a radius of curvature of
91.94 inches. The flared portion was designed to induce a mild adverse pressure gradient,

hastening the growth of second-mode disturbances deemed important for natural transition
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in hypersonic flows. A 241x221 mesh, clustered to the cone apex and to the Wéll, is used.
This case was also studied in Ref. [3] using the Warren-Hassan transition / turbulence model.
Figure 16 compares wall temperature predictions with experimental data. Both second and
first-mode contributi.ons are included in the transition model. The neglect of second-mode
contributions resulted in laminarization, while second-mode contributions alone resulted in
premature transition on the straight cone section. In the laminar part of the flow, the
calculations underpredict the wall temperature, with an average percent error of around 2
%. In the transitional region, the calculated temperatures are again below the experimental
‘values, with an average percent error of around 9%. Surface values of the intermittency
function are around 0.77 near the end of the flare, indicating that the calculation never
attains a fully turbulent state. Calculations performed on a finer grid of 481x441 nodes
(not shown) failed to provide any substantial improvement over these results. This level of
disagreement was also seen in the predictions of Ref. [3], but as noted in that reference,
there are inconsistencies in the presentation of the experimental results that defy a simple
explanation. Nevertheless, the unified model provides reasonable qualitative agreement with
the experimental data, with predicted transition onset delayed until the flared portion of the

cone (X & 14 inches).
Conclusions

A unified, one-equation “eddy viscosity - transport” model for transitional and turbu-

lent flows has been developed. The model combines an evolution equation for non-turbulent
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fluctuation growth developed from the work of Warren and Hassan with the standard Spalart-
Allmaras turbulence model. Blending of the two equations is accomplished through a mul-
tidimensional intermittency function. The current formulation is calibrated for transition
driven by the growth of first- and second-mode instabilities and predicts both the onset and
extent of the transition region. The modél has been applied with reasonable success to low-
speed transitional flows over a flat plate, a supercritical airfoil, and a multi-element airfoil
in landing configuration and to high-speed flows over cone and flared-cone configurations.
The predictions are very similar to those obtained earlier using the k& — ¢ turbulence model,
indicating that the performance of the Warren-Hassan model in predicting transitional flows
is relatively independent of the turbulence model used. Grid refinement studies for selected
cases indicate that the prediction of transition onset is relatively insensitive to the grid spac-
ing for the finer meshes but that grid refinement or grid adaptation may be required to

obtain grid independence in the prediction of the extent of the transition region.
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Figure Captions

Figure 1: Effect of C; on skin friction distribution (Schubauer-Klebanoff experiment;
65x97 mesh; CFL3D implementation)

Figure 2: Skin friction distributions for the Schubauer-Klebanoff flat plate along with
Richardson Extrapolation results (CFL3D implementation)

Figure 3: Normalized error in skin friction on the three mesh levels for the Schubauer-
Klebanoff flat plate (CFL?;D implementation).

Figure 4: Skin friction distributions for the Schubauer-Klebanoff flat plate along with
Richardson Extrapolation results (REACTMB implementation).

Figure 5: Normalized error in skin friction on the three mesh levels for the Schubauer-
Klebanoff flat plate (REACTMB implementation).

Figure 6: Fine-grid skin friction predictions versus experimental data (Schubauer-Klebanoff
experiment)

Figure 7: Skin friction distributions (Mateer supercritical airfoil, Re. = 2 x 108, 321x91
mesh)

Figure 8: Skin friction distributions (Mateer supercritical airfoil, Re, = 6 x 10%, 321x91
mesh)

Figure 9: Velocity profiles (x/c = 0.1075 station, a = 19°)

Figure 10: Velocity profiles (x/c = 0.45 station, a = 19°)

Figure 11: Velocity profiles (x/c = 0.8982 station, a = 19°)
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Figure 12: Intermittency contours (localized to thin, nearly laminar boundary layers)

Figure 13: Measured and computed recovery factors (M = 2.5, Re/m = 3.85 x 107,
5.89 x 107, 7.8 x 107, Pr; = 0.88)

Figure 14: Recoyery factor distributions for the Mach 3.5 cone along with Richardson
Extrapolation results

Figure 15: Normalized error in recovery factor on the three mesh levels for the Mach
3.5 cone

Figure 16: Measured and computed adiabatic wall temperatures (M = 5.91, Re/m =

9.348 x 10%, T,, = 56.2 K, 241x225 mesh)
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