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ABSTRACT

Distributed sensor networks are systems of sensor nodes interconnected by a communication
network. The networks support advanced detection algorithms that use distributed compl;ting to detect
events as emergent phenomena of the system of detectors. These systems depend on connected and
reliable communication networks. The systems are directly related to mobile networks, with similar
characteristics and problems. This paper derives models of these networks based on the theory of
random graphs to develop design specifications for node density and communication capability for such

networks.
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1. INTRODUCTION

Distributed sensor networks (DSNs) are a new type of detection, computation, and
communications object. Comprised of an array of discrete sensors, a communications network that links
thém, and a (possibly distributed) computing environment that combines the measurements of the
individual sensors, a DSN supports new types of detection algorithms that can improve detection

probability, reduce false alarms, and collect new types of scientific data.




The Anti-Personnel Landmine Alternatives (APLA) Project at the Los Alamos National
Laboratory (LANL) seeks to replace certain types of military landmines with an array of sensors across
a battlefield, creating a DSN to detect the presence and movement of enemy forces and direct weapons
to defeat them. This is an example of a DSN in which sensors are physically distributed at random
locations across a geographic area, with the detection and information collection being an emergent

property of the sensor system.

The communications network is vital to the operation of the DSN. For the APLA's DSN, the
sensor nodes may be linked by radio communications. Then there will be a tradeoff between transmitter
power and battery life at the sensor nodes that can be optimized. Important to the optimization of
transmitter power to maximize battery life is an understanding of the relationship between transmitter
power, communications range, and the connectivity necessary to adjoin the sensor nodes so that signals

can be routed efficiently through the communications network.

These problems of DSN optimization are related to recent work in the field of mobile
communications networks. As early as 1978, Kleinrock and Silvester [5] developed models for mobile
networks that are related to the problems of DSNs. More recently, work has considered message routing
by broadcast percolation [1], connectivity as a function of nodal communication distance [6], and
optimization criteria for nodal communication distance [9]. Other work in clustering of random nodal
phenomena [4] and modeling of mobile networks as a time series of random graphs [8] is also related to

this problem.

The purpose of this paper is to explore mathematical models of random communications graphs
and to apply those models to the validation of scientific-computing techniques for simulation of DSNs.
The analysis will reveal emergent phenomena from the simulation that are predicted by these

mathematical models. The work will be used to develop reliability specifications for the design of DSNs




through the selection of the number of nodes and their communications capabilities as a function of the
area to be covered by the DSN. These reliability specifications will seek to ensure the connectedness of
the network, the availability of redundant message-handling paths to support message throughput and

tolerate component failures, and the use of simple message-routing algorithms.

2. CONNECTIVITY OF RANDOM GRAPHS

Many communications networks are random graphs. Particularly, distributed sensor networks
and mobile networks comprise random graphs through a set of vertices  embedded randomly in a two-
dimensional plane (a geographic map) or on a three-dimensional surface (a geographic map with terrain
elevation features) such that the edges E connecting these vertices exist if the distance between two
vertices is less than some maximum-range parameter and, for the three-dimensional surface, the line-of-
sight between the two vertices is unobstructed. Note that a distributed sensor network typically is
comprised of a set of fixed vertices, whereas in mobile networks the vertices are able to move to
different locations over time. In either case, the set of edges and the resultant network connectivity are
emergent properties of the graph that are determined by the locations of the vertices. We will consider
the connectivity properties of such random graphs for the purpose of evaluating the ability of the
communications network to route messages between pairs of vertices. We will evaluate graphs with
fixed vertices, as a model of distributed sensor networks or as a discrete-time "snapshot" of a mobile

network.

2.1 Expected Nearest-Neighbor Distance
If the probability density function for the locations of the nodes is known, then other properties

of the DSN can be derived. An example is the expected nearest-neighbor distance, the average distance

between a node and its closest neighbor.
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For example, consider the nodes to be distributed across an area 4 with uniform probability per

unit area a.
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Then the probability that the first neighbor of a node is at a distance between r and r+dr is the
joint probability of observing a neighbor at this distance and the probability that there are no other nodes
closer than the distance r. The expression of this probability uses a combinatorial enumeration of the
possible number of nodes in the two regions. This enumeration is a function of the number of nodes, N,
that are randomly placed in 4 to make up the DSN.
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Using a binomial expansion of the term involving dr,
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where H.O.T. signify higher-order terms of powers of dr. Then the probability density function for the

nearest-neighbor distance, P(7), is
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The expected nearest-neighbor distance, (r), is a useful metric for establishing a lower bound for

the necessary communication range, so that a node in the DSN will at least be able to communicate with

its nearest neighbor. It also is a performance metric for the evaluation of DSNs through simulation.
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2.2 Expected Number of Neighbors
A similar analysis determines the expected number of neighbors within a nodes communications

range, R. The node is able to communicate over an area 7R?, so the probability that any one other node

falls within this area is azR*. The probability that there will be k£ nodes within this area out of N-1

possibilities is
ey )= - me) ©®

Then the expected number of neighbors, z = (k), is
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2.3 Holes in Communications-Network Coverage
It is useful to consider the probability that there is an area B within the DSN that contains no

nodes. This probability is

Pr(0,B) = (1- aB)" ®)

Connectivity through the network depends on adequate communication between neighboring
nodes to repeat and route messages through the network. If there is an area containing no nodes and the
extent of that area exceeds the communication distance of the neighboring nodes, then no
communication will occur across that area. The area will constitute a "hole" in the network, requiring

some messages to be routed longer distances to bypass the hole or possibly disconnecting the network

by dividing it into two unconnected subnetworks.

3. SIMULATION OF RANDOM GRAPHS

Some analyses of DSNs can be performed through computer simulation. Particularly, Monte
Carlo techniques can be used to simulate the random locations of nodes in a DSN for the purpose of

evaluating network connectivity and other aspects of the network as a graph.

3.1 Graph Visualization Tool
Figures 1, 2, and 3 illustrate a DSN graph visualization tool that has been developed by the

APLA as a Java™ applet for the world-wide web. This applet is presently available on the LANL
website, at http://public.lanl.gov/u106527/DSN/GrphDemo/GrphDemo.html. These figures demonstrate
the utility of this tool in evaluating the communication network as a function of the nodal

communication distance, R. Clearly, if R is too small, then the network will not be connected. Although




connectivity and network message routing are improved with increasing R, the energy requirement,
battery cost, and expected battery life of these nodes place a premium reducing R. Therefore, there will
be an optimum communication distance for a particular DSN, and this optimum value can be evaluated

by computer simulation.

3.2 Neighbor-Location Probability Density Function
The results developed in Section 2 can be used as validation of the simulation results. Figure 4

compares the empirical nearest-neighbor probability density function observed in the simulation with the
expression derived in Eq. 4. The simulation evaluated the random location of 400 nodes, repeating the
procedure through 100 trials. The nearest-neighbor distance for each node was recorded, and statistics
were calculated for the fraction (that is, the empirical probability) of observing a nearest-neighbor
distance between 7 and r+Ar. These results are compared with the probability density function by
integrating that function to determine the probability of observing a nearest neighbor within that distance

interval. Figure 4 shows the excellent agreement between the simulation and the calculation.

3.3 Connectedness of Random Graphs
A crucial objective of the communications-network aspect of the DSN is that the network be

connected. Through simulation, we evaluated a number of networks, varying both the number of sensors
and the nodal maximum communication radius to evaluate the dependence of network connectivity on
these design parameters. Table 1 shows results of these simulations. As expected, the probability that all
nodes in.the DSN were connected increased as the nodal maximum communication radius increased.
Below a finite radius threshold, few of the networks were completely connected. However, above this
threshold nearly all the networks were connected. This radius threshold was Alarger for sparse DSNs

containing fewer nodes in an area.

Figure 5 illustrates a model for computing the probability of non-trivial (e.g., more than one node

disconnected). In this model, a node is capable of communicating with neighbors if they are within the
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node's communications radius. For simplicity of tiling, let this radius be approximated by a hexagon, as
shown in the figure. Then a "hole" in the DSN is an area containing no nodes such that no
communications edges (drawn as straight lines between adjacent neighbors) cross this area. There are
several ways such holes can be described, but for simplicity let us partition the DSN's area of coverage
by a pattern of regular hexagons of radius (and side length) equal to the nodes' communications radius.
With this approximation, a simple description for the probability of a hole (comprised of a set of

unoccupied hexagons) capable of dividing the network into to disconnected subgraphs.

The probability that one hexagon is unoccupied by nodes is

Pr(0) = (1~ o, )V = (1-3+3aR2)', ©)
where Ap is the area of the hexagon. Then the joint probability that six such unoccupied hexagons are
arranged in the pattern shown in Fig. 5 (the minimum number of unoccupied hexagons away from the
edges of the DSN area capable of causing a disconnected network) is

P{Six disc'omeﬁng) = [(1 _3J§aR2Y]6 . (10)

hexagons

Note that this joi.nt probability becomes vanishingly small with R and N sufficiently large. (Although
there are many possible locations for such a set of disconnecting holes in the DSN, the probability of the
occurrence of each of them is the same and will be a function of the expression given in Eq. 10. This
expression is a useful metric for considering the possibility of disconnection of a particular DSN.) Thus,
for sufficient R and N, nearly all DSNs with those parameters will be expected to be connected,

supporting the results described in Table 1.

The presence of holes in the DSN area also can necessitate indirect shortest paths for routing
messages between pairs of nodes. Figure 6 shows how two holes increase the path length and number of

retransmissions necessary for communication between nodes C and D.




4. FURTHER WORK

Additional work is necessary to develop the model of holes in the DSN area. This work includes
the development of techniques for evaluating holes of irregular shape, combinatorics of the number of
possible hole configurations for disconnecting a network, and models for the expected path length and

number of retransmissions between pairs of nodes in the DSN.
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A graph with Good Node Density but Poor Comm. Range
may be disconnected.
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Increasing communications range can degrade system performance

from computational burden of large number of options.
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Frequency of Observation (Pr(nn)=r)

The Distribution-Function is an Accurate Model
of the Simulation Result.
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Figure 5. The presence of "holes" in a DSN
(indicated by shaded hexagons) is a necessary
condition for the network to be disconnected.
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Figure 6. Holes also can lengthen
message routing paths and necessitate
complicated routing algorithms.
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