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Abstract. 4 semi-implicit formulation of rate-independent classical plasticity, as im-
plemented in a three dimensional continuum mechanics code is discussed. The plas-
ticity formulation employs an associative flow rule for the evolution of plastic strain,
an anisotropic yield criterion, an application of Nemat-Nasser’s semi-implicit method
for updating the deviatoric stress, and isotropic hardening through the evolution of a
flow stress. Several different hardening rules have been implemented. Preliminary eval-
uation of these hardening models, based on an ability to predict the results of Taylor
cylinder impact, are presented. The evaluation is based on a comparison of predicted
final deformed shape to ezperimentally measured final deformed shape. Test results ob-
tained from ezperiments conducted using two different copper materials and tantalum
are included in the evaluation.
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1 INTRODUCTION

The thermomechanical problem of predicting the behavior of metallic components
undergoing large deformation plastic flow is of central importance in a number of ap-
plications. Consequently, this is a field of mechanics which has received significant
attention over at least the last one hundred-fifty years. Even with such sustained at-
tention, the problem remains one that is not fully resolved. One reason for this is that
closed form solutions are almost always untenable, and the computational capabilities
necessary to solve the numerical approximation of the physical thermomechanical prob-
lem have until recently been beyond the reach of even the most capable computers
and numerical techniques. This may still be the case, but capabilities are now becom-
ing available which enable us to advance our understanding of the large deformation
problem, at least incrementally.

One aspect of the problem which remains an as yet unresolved issue is a determi-
nation of the most appropriate formulation for a model intended to predict hardening.
Independent variables that effect hardening behavior certainly include strain, strain
rate, and temperature, but perhaps others as well. One factor that complicates the
determination of the most appropriate hardening formulation is that these independent
variables reside in a domain which can be quite large. Moreover, it may be that a model
which works well in one loading regime will fail miserably in another. Consequently, an
objective of validating a general purpose hardening model necessarily requires compar-
ing its predictive capabilities in a variety of pertinent loading regimes. .

The authors, along with several colleagues, have undertaken the task of assessing
the ability of several proposed hardening models to accurately predict hardening over
a loading regime that is within the reach of simple experimental validation techniques
such as Taylor cylinder impact and plane-strain flyer plate impact. The present work -
focuses on an evaluation of three proposed models and is based on comparison of predic-
tion to experimental data derived from Taylor cylinder impact. Other loading regimes
will be addressed at a later date. The Taylor test is considered a good test for the
evaluation of plasticity models because it produces a variety of macroscopically observ-
able material behaviors and rather large gradients in strain, strain rate, and to a lesser
degree, temperature. The result is an integrative test which serves to excercise many
aspects of the plasticity model in general, and of hardening in particular. Details of the
Taylor test will be given in section four below.

Over the last two decades, several models have been proposed for predicting hard-
ening in large deformation plasticity. Three of these, Johnson-Cook* (JC), Steinberg-
Cochran-Guinan? (SCG), and Mechanical Threshold Stress (MTS)® have been included
in the current evaluation. The authors do not imply that these models have been
presented by their respective developers without validating data, merely that that val-
idation alone is insufficient to fairly compare one model to another. One reason for
this is that the validating predictions presented in support of a given model was not
necessarily arrived at through exactly the same numerical methods as that presented
for another model. An unavoidable consequence of this is that any comparison of the
predictive capabilities of these models that is based on the current literature alone will
be, to some degree, an “apples-to-oranges” comparison. The present work is devoted to
obtaining an “apples-to-apples” comparison by implementing all models to be evaluated
in the same continuum code and then conducting a comparison wherein all factors other
than the hardening model are kept identical. The decision to conduct all analyses in a
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common code is important, for it is only by taking such an approach that we have any
hope of evaluating subtle model differences.

The focus of this paper will be primarily on the framework within which these eval-
uations are being conducted, although some preliminary results will be presented. In
the following, the code into which the above mentioned models have been implemented
for the purpose of this work is described. The formulation of large deformation plas-
ticity, of which the hardening model is a constituent part, will then be outlined. The
formulation will be seen to be semi-implicit, employing associative flow, anisotropic
yield, and isotropic hardening. Each of the three models under evaluation here will be
discussed in-turn and in some detail. Comparisons to experimental data derived from
tests involving two different copper materials and tantalum will be presented.

2 THE CONTINUUM MECHANICS CODE

The continuum mechanics code that we have chosen to use for the current study is
CHAD* (Computational Hydrodynamics for Advanced Design). CHAD is a three di-
mensional code which employs the finite volume method of arriving at finite difference
approximations to the governing field equations. These governing equations: conser-
vation of mass, conservation of linear momentum, and conservtion of energy, form a
hyperbolic set which is solved implicitly. The governing equations take the form:

i/pdV+/[p(uz'—vi)]ni dS =0 (1)
dt Jy S

4 pu; dV + /S [pui (uj — vj) nj + (% +0op 2pK) ni] dS =

dt Jyv
/S (s]-i +7p F UTTTji) n; dS

d -

—/ ph dV—i—/ lph (u; — vi)ln; dS =

dt Jy s

s
/ <_p +'u,ip,i) dV—{-/ (sj,;ui,j + Tjiui 5 + O'Tpe) av —/ (qL_ + a'Tq,_,,,) dsS
v \ 0t v s\ :

Since the governing equations are written in rate form, we must must solve them in an
incremental fashion marching through time. All tensors in the above are Eulerian. With
the exception of Eq. (47), indicial notation applies throughout the paper. The variable
u; denotes the instantaneous velocity of a material point in the mathematical domain
of interest and v; denotes mesh velocity. Note that in this formulation advection is
embedded into the governing equations. This obviates the two step (Lagrangian/remap)
process that is standard in the classical ALE approach. Note also that the governing
. equations given above are in keeping with the assumption that the Cauchy stress, T},
takes the following form:

(2)

(3)

Tji = sji + Tji — pji (4)
where s;; denotes the deviatoric stress, 7j; denotes the viscous stress, p denotes the

hydrostatic (or spherical) part of the stress tensor, and d;; is the Kroneker delta. It is
noted that Eq. (4) is an unconventional interpretation of the Cauchy stress and may be

in conflict with an interpretation founded on the experimental measurement of stress. It
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is convenient, however, to think of the Cauchy stress in terms of such a notional tensor.
This viewpoint facilitates the modeling of domains which exhibit both solid and fluid
behaviors. Making the assumption that the Cauchy stress takes the notional form given
in Eq. (4), we can derive Egs. (1)-(3) from first principles and avoid adding terms such
as artificial viscosity in an ad hoc manner. Whether we arrive at Eqs. (1)-(3) through
the assumption of Eq. (4), or through some other manner, we must ultimately arrive at
conservation of linear momentum and energy which includes both s;; and 7;; if we are to
be able to handle both fluid and solid behaviors in an efficient manner. CHAD is written
to handle the full range of solid-fluid behavior. Turbulence is incorporated thrugh the
use of a K-e model, with o, being a switch (1 if the flow is turbulent, 0 otherwise(?.
Term o, was set to zero in the present work. Other variables appearing above include
the density p, a unit outer normal n;, the specific enthalpy h, the thermal flux g¢;, and
a pressure gradient scaling parameter, a. The pressure gradient scaling parameter can
be used to improve computational efficiency for low mach number flows by giving it.a
value greater than one (it was set to unity in the current work). CHAD includes three
additional sets of governing equations which are not explicitly addressed here. These
are equations for calculating the species mass transport for chemically reactive flows,
and for determining the turbulent kinetic energy K and its dissipation rate e (necessary
when o, = 1). Note that if the term s;; were missing from the above, CHAD would be

an advanced computational fluid dynamics code (one incorporating a turbulence model
and advection). With s;;, the code possesses an ability to predict the behavior of flowing

solids as well as fluids. As discussed in O’Rourke and Sahota,* CHAD can be executed
in Lagrangian mode, Eulerian mode, or something in-between. The analysis conducted
herein was performed in a pure Lagrange mode.

3 THE PLASTICITY THEORY

Inspection of the governing field equations (just presented) reveals that the deviatoric
stress tensor, s, appears in conservation of linear momentum and in conservation of
energy. In order to satisfy the governing field equations, it is therefore necessary to
update the deviatoric stress on each time step. It is within the framework of classical
plasticity that this is accomplished. In this section we delineate the method that has
been adopted. It is based on a formulation presented by Maudlin and Schiferl.® We
shall not develop that formulation here, but will present only the information necessary
to enable this work to stand comprehensibly. The reader is referred to Maudlin and

Schifer]l® for additional detail.

3.1 Kinematics of deformation

A fundamental challenge in large deformation elastic-plastic constitutive modeling
is satisfying the requirements of constitutive modeling invarience and kinematic consis-
tency. Two distinct approaches have appeared in the literature. One approach is to
conduct the modeling in a frame of reference that is fixed with respect to the deforma-
tion process (a “laboratory” or “global” frame), and employ an objective stress rate.
The other option is to conduct the constitutive modeling in an unrotated (or “mate-
rial”) frame that is related to the laboratory frame by an explicit rigid body rotation.
It is this later approach that has been adopted in the present work, and consequently,
is the only approach discussed herein. The interested reader is referred to Maudlin and
Schifer]® for more information on alternate approaches. It is noted that the approach
taken here is more costly computationally, but offers greater capability, such as in the
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modeling of anisotropic flow.

In adopting the material frame modeling approach to acheiving invarience, all in-
dependent tensors must be rotated from the global to the material frame in order to
conduct the consitutive modeling (updating of s;), and this must be done on each time

step. Once the constitutive modeling is completed, the updated s,; is rotated from the

material to the global frame prior to-proceeding to the next time step. It is obvious
then that kinematic consistency requires an accurate method for updating the rotation

tensor, R;;.
. A rate of rotation tensor, Q;;, can be defined® as follows:

Qi = R Ri; ()
The rate of rotation is easily manipulated to provide an expression for Rji.

Ri; = Qi Ry (6)

Applying a central difference approximation to this expression (Hughes and Winget®)
provides the updated rotation which we seek:

at 17t At
Rkj(t + At) = [5;5, Yy sz:| [51' Y Qik:l Rkj(t) (7)

Obviously for Eq. (7) to be applied, we require a means of determining Q;;. Dienes”
has provided a straight-forward means of accomplishing this which gives Q;; in terms of
the spin and left stretch tensors. It is easy to show that Q;; is antisymmetric. Conse-
quently it can be expressed in terms of an axial vector, w;.

Qik = Eijpwy (8)
where €;;;, is the Murnaghan (permutation) symbol. Following Dienes’, the axial vector
w; is calculated as follows:

w; = w; + [0 Vi — Val ™ 2 (9)

where V; is the left stretch (Malvern®), w; is the axial vector associated with the anti-
symmetric spin (or vorticity) tensor W;; (Malvern®), and 2; is given as:

z, = Vi — iV (10)

where h; is the axial vector associated with an antisymmetric tensor H;;, defined as
follows:

Hpg = Opg = Wpq (11)

One final kinematic detail must be addressed. Since 9;; is a function of the left

stretch, it is obvious that this tensor too will have to be updated on each time step. To

arrive at a relationship for updating the left stretch, we employ the polar decomposition
theorem expressed in terms of the deformation gradient, F;;, and the left stretch:

F;j = Vip Ry (12)

5
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along with the relationship between the velocity gradient (Malvern®) and the deforma-
tion gradient: ‘
Lij = FikF]:jl (13)

Substituting (12) onto (13) yields the following relationship for the velocity gradient:
Lij = V;IVZ]_I + VimQmi l;l (14)

Rearranging Eq. (14) so as to isolate V;J and then applying a forward difference ap-
proximation yields the necessary update:

Vij(t + At) = Vi5(t) + (Limvmj - iQOj) At (15)

3.2 Updating the deviatoric stress

Classical plasticity consists of four parts: a stress-strain relation, a yield criterion,
a hardening rule, and a flow rule, and it is classical plasticity that forms the basis for
updating the deviatoric stress, s,;.

The stress-strain relation, expressed in deviatoric rate form, is given as:

8, = 2#77,-3-
=2p (m,- - 77,?;'.)

where p denotes the shear modulus and 7,; denotes the deviatoric part of the rate of

deformation tensor® (deviatoric natural strain rate). Superscripts e and p are used to
denote elastic and plastic parts, respectively. Note that all tensors appearing in this
section reside in the material frame of reference. Implicit in the constitutive relation
given above is the assumption that the elasticity is isotropic.

The anisotropic yield criterion is given as:

(16)

1
f= Eaijk,sijsk, —0?=0 17

where oy, is a fourth order tensor of coefficients which defines the shape of the yield
surface and o is a flow stress which incorporates isotropic hardening and softening
effects. Note that the yield surface is a function of deviatoric stress only and since
s,, = 0 this is a five dimensional space. Note also that this yield criterion accomodates
von Mises J, plasticity, and Hill’s quadratic criterion® (applicable to orthotropic media)
as subsets. The hardening models will be discussed in the following section.

The associated flow rule (normality condition) is given as:

of
Os,.

tJ

where d;; denotes the rate of deformation (natural strain rate) and \is a time-dependent
scalar. The fact that the normality condition is expressed in terms of the deviatoric

6
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stress and not the total stress follows from the assumption that the yield surface is a
function of deviatoric stress only.

As stated previously, our goal in this section is an update of the deviatoric stress.
Following Nemat-Nasser,' this is accomplished by applying a finite difference approxi-
mation to a modified (but equivalent) form of Eq. (16). The term nf, appearing in Eq.

(16) is calculated from the following:

7P =qu,; (19)
where of
. q. .
Y = AL /q..5,; e i = 20
T "= Lt %= B, .
Substituting (19) into (16) produces:
éij =2y (77;']‘ - ;yuij) ' (21)
and applying a forward difference approximation yields:
5 (t+ At) = s;;(8) + 2pm; AL — 2p Ay, (22)

Using previous time step values for all variables on the right-hand-side of Eq. (22) would
represent an “explicit” solution. Nemat-Nasser'® has provided a better-than-explicit,
semi-implicit method. The essence of the method resides in: (1) the approximation of
A7y, and (2) using (¢ + At) values of u,;. It is through these two features that we achieve

semi-implicitness. We shall discuss each of these features in turn.
The first step toward developing the semi-implicit character of Ay is to recast Eq.
(21) into an analagous scalar form:

#=v2p(d - o) (23)

where .

Tl = 595 ¢ = uu,; d = u,mn,; (24)
Recognizing that (d — c7) represents the elastic part of the deviatoric part of the rate
of deformation in this scalar constitutive equation, and making the assumption that all

of the deviatoric part of the rate of deformation is plastic, implies the following:

. d

Y== (25)
c

In reality, most but not all of the deviatoric part of the rate of deformation will be

plastic. We therefore modify Eq. (25) to take this into account by adding the error that

would result from an assumption that the flow is completely plastic, Jer-

y= 4 26
7—;_%1' (26)

7
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A forward difference approximation to Eq. (26) is given as:
d
c .

Using previous time step values for all variables on the right-hand-side of Eq. (27) would
represent an “explicit” approximation of Ay. We shall instead use a weighted average
for d, thereby arriving at the better-than-explicit representation for Ay that we seek.
We use previous time step values of c. If we use a superscript * to denote a weighted
average and a superscript + to denote a previous time step value, we seek A7 such that:

%k

Hence our task now boils down to developing a suitable approximation for d* and A7e,.
Considering A, first, if we substitute Eq. (28) into a forward difference approximation
of Eq. (23), a little manipulation yields:

VEa(t+ AL) = /G5 (t)

AYer = 2pct (29)
Finally, the weighted average for d is given as:
1
— |um z 9p N Wi
d* = [“u-j i+ 50 (uiJ’ My = Uy 77;,-)] ct (30)

where i .
T v ?= % 9:——d -

vV im T VL d*

The term =} indicates the direction of deviatoric strain, the term uijfl indicates the
direction of deviatoric plastic strain, and 6§ is a weighting function that represents the
fraction of At that realizes elastic deformation. Note that d* is a function of §, and 6 is
a function of d*, consequently, iteration is required to arrive at the weighted d*.

We now have a formulation for the term Ay which possesses semi-implicitness. This
term goes into Eq. (22) prior to solving for s;;(t + At). The remaining aspect of the
method which imparts semi-implicitness is, as mentioned previously, in using (f + At)
values of the term u,; appearing in Eq. (22). 1t is easy to show that u,;(t + Af) can be
written as a function of s,;(t + At). Consequently, we have s,;(t + At) on both the left
and right hand sides of Eq. (22). Moving the right hand side terms to the left hand
side and solving for s;;( + At) imparts semi-implicitness to the solution.

(31)

w7 =
17

3.3 The hardening models

The Johnson-Cook® model is a simple history independent model that depends on
the current state of the equivalent plastic strain, equivalent plastic strain rate, and
temperature. The model is given as:

o= [o,+B(@)"] [1+C 1 (&)] [1 - (%) m} (2

8
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where € denotes the equivalent plastic strain, é® denotes the equivalent plastic strain
rate, o, denotes the initial yield, B is a strain hardening coefficient, = is a strain hard-
ening exponent, C is a strain rate hardening coeflicient, T denotes room temperature,
T, denotes melt temperature, and m is a softening exponent. Hence the first bracketed
term in Eq. (32) represents strain hardening, the second strain rate hardening, and the
third thermal softening. This model has seven input parameters: o,, B, n, C, Ty, T,
and m. The equivalent plastic strain rate and equivalent plastic strain are determined

as follows:
p_ |2
€ = 577,-,-77,-1- (33)

t+At
P (t + At) = /() + / ef dt (34)
t

The Steinberg-Cochran-Guinan? model, like Johnson-Cook, is a simple history inde-
pendent model. It includes a method for adjusting the shear modulus as well as the
flow stress and includes a melt criterion but has no explicit strain-rate dependence. Its
developers claim that the model is expected to work so long as the strain rate is greater

than about 10° s™*. The model is given as:

p=p0{1+An—f/§—B(T—300)} (35)

_ 1 d,LL _ 1 dy, » n
" podP B= T oo {l+B(E +€)}" SV  (37)
T = Tmo exp {2a(1 — 1/m)} 7?27/ (38)

where p is the pressure, T is the temperature, p is the shear modulus at the reference
state (T=300 K, p=0, ¢’=0), 5 is the compression (p/po), 0o is the reference state
uniaxial yield strength, ¢, is the initial equivalent plastic strain, » and B are work
hardening parameters, Y., is the maximum value of uniaxial yield (at T=300 K and
p=0) that can be found in the literature, Tr, is the melt temperature (at p = po), ais the
coefficient of first-order volume correction to Griineisen’s gamma, and T, is the reference
state value of Griineisen’s gamma. This model requires twelve input parameters: po,
a0, A, B, B, €;, Yax; %, @, To, Tmo, and po.

The MTS? model attempts to take history into account. It is phenomenological yet is
based on dislocation mechanics in the sense that it attempts to macroscopically model
contributions to the flow stress from dislocation interactions with barriers such as other
dislocations, interstitial and solute atoms. Each of these interaction contributions is
quantified through an internal state variable ; (i denotes interaction number). And
each of these internal state variables has its own evolution law. The internal state vari-
ables which take into account structure evolution are coupled with constant-structure
terms, S;, (i denotes interaction number) that are primarily functions of strain rate and
temperature. The model includes a term, g, called the athermal threshold stress which

9
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represents dislocation interactions with long range barriers such as grain boundaries.
This term is usually assumed to be constant. The model is given as follows:

b
pmby— (39)
(F 1)
ET
P \ nabs
5= B (—) )
€s0
Xi= 2 P(x;) = 2 et) (a1)
g tanh &
00 =ap+ a1 In¢ + (12‘\/2 (42)
% =0y [1 — F(X3)] = Gi(n + 1) = 7i(n) + A O [t — F(X5)] (43)

FTmE\ %"
S; = 1-—( M:;’) (44)

N
o=tot (£) s, (#5)
(8] .
=1

where by, b, and b; are constants in the model for the shear modulus, g, a, and a,
are constants in the hardening function 6y, 74 is the saturation stress at 0K, & is the
saturation stress reference equivalent plastic strain rate, A is a saturation stress fitting
constant, k is Boltzmann’s constant, b is Burger’s vector, g; is the normalized activation
energy for interaction i, ¢; and p; are free energy exponents for interaction 7, and « is
a parameter normally set to 2. This model requires thirteen plus 5N input parameters
(N being the number of relevant interactions): N, Ga, &, i, Di, %y Gio» Doy b1, b2y Tso, s,
A, b, ag, ay, az, o. Note that for most materials only one of the internal state variables
(;) actually evolves with time (the one related to dislocation-dislocation interaction),
the remaining remain fixed at the given initial value. This is the case with the tantalum
model to be presented below.

4 EXPERIMENTS AND COMPARISON TO PREDICTION

The Taylor cylinder impact test conducted to support the present work is depicted in
Fig. 1. It is conceptually quite simple, involving the impact of a right circular cylinder
onto the hardened surface of a massive anvil. The surface of the anvil is polished to
a mirror finish so as to minimize friction between the anvil and impacting cylinder.
Care is taken to align the gun so that the cylinder impacts with its axis normal to the
hardened surface. The gun used in the present work is a 30 caliber smooth-bore gas
gun with a peak pressure capability of about 13.79 MPa. This pressure will propel a
copper cylinder at about 200 m/s.

10
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SPECIMEN

Figure 1. Taylor cylinder test

The objective in the present work was to conduct tests involving several different
materials, and use the results of these tests to evaluate the ability of the continuum
code with the plasticity described previously to predict the final deformed shape of the
cylinder. In particular, we sought to use the results to evaluate the hardening models
keeping all other aspects of the prediction equivalent. As mentioned previously, the
Taylor test is considered a good test for the evaluation of plasticity models because
it produces a wide range in material behaviors which serve to excercise many aspects
of the model. For example, some materials respond to the impact in such a way that
the plastic wave sweeps the entire length of the cylinder, while in other materials the
plastic wave sweeps through only a fraction of the cylinder length. Some materials flow
isotropically producing a circular footprint (the shape of the cylinder impact surface
post-test), while other materials flow anisotropically producing a footprint that is non-
circular (in many cases roughly elliptical). The development of a general model capable
of capturing all of these responses makes for an interesting problem.

This work is, at the present time, in a preliminary stage. Included herein are the
results of tests involving a fully annealed copper (specimens initially 2.54 cm in length,
and 5.08 cm in length), a half-hardened copper (specimens initially 5.08 cm in length),
and a tantalum material which exhibits significant anisotropy (specimens initially 3.81
cm in length). The impact velocity of the 2.54 cm annealed copper cylinder was 146
m/s, of the 5.08 cm annealed copper cylinder and of the half-hardened copper cylinder
was 177 m/s, and of the tantalum cylinder was 175 m/s.

The hardening model parameters used in the analysis are presented in Tables 1-5.
The data in Table 1 was obtained from Johnson and Holmquist,' the data in Table 2
was obtained from Steinberg,’? and the data in Tables 3-5 was developed at Los Alamos
National Laboratory by the third author and his colleagues. In general, the data for
hardening models is obtained from uniaxial quasistatic and Hopkinson bar data. The
elastic shear modulus (value of y used in the calculation of the deviatoric stress while
inside the yield surface) was 45.45 GPa for both copper materials and 75.39 GPa for
Tantalum. The pressure was in all cases calculated using a Mie-Griineisen equation of

state of the form:
_ G+ (=) (]
[1—(Se—1)¢P

where C, is the bulk sound speed, Sy is a linear Hugoniot slope coeflicient, { is a
measure of compression (;,”: —1), and F is the internal energy. Bulk sound speed values

used in the analysis were 3940 m/s for the copper materials and 3310 m/s for the
tantalum. The parameter S, was given the value 1.489 for the copper materials and
1.2 for the tantalum. The internal energy was calculated as the product of specific heat
and temperature. Values of specific heat used in the analysis were 383 (Pa m®)/(kg K) for
the copper materilals and 135 (Pa m®)/(kg K) for the tantalum. The failure surface shape
parameters used in the analysis [e;;,, of Eq. (17)] are given in Voigt-Mandel notation

as follows:

+ToE (46)
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[ 2. —1. -—1. 0. 0. 0. ]|
-1 2. -1 0. 0. 0.
- -1 -1. 2. 0. 0. 0.
"™ =1%" 0. o a1s o 0. for copper
0. 0. 0. 0. 25 0.
0. 0. 0. o 0. 2L5)
(47)
2.522 —1.3584 —1.164 0. 0. 0.
—1.3584 2.195 —0.8363 0. 0. 0.
_ | —1.164 —0.8363 2.0 0. 0 0. for tantal
= 0. 0. 0. 2(1.791) 0. 0. or tantatiim
0. 0. 0. 0.  2(2.582) 0.
o 0. - 0. 0. 0. 2(2.287)
Parameter Description Value
oo Initial uniaxial yield 89.6E06 Pa
B Strain hardening coefficient 292.E06 Pa
o Strain rate hardening coeff. 0.025
n Strain hardening exponent 0.31
m Thermal softening exponent 1.09
T Room temperature 294 K
Tm Melt temperature 1356 K

Table 1. JC parameters for annealed Cu
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Parameter Description Value

Po Reference state density 8930 kg/m?
Ho Ref. state shear modulus 47.7E09 Pa
To Ref. state uniaxial yield strength 0.120E09 Pa
A Pressure hardening coeflicient 2.83E-11 Pa™
B Thermal softening coeflicient 3.77E-04

B Strain haradening coeflicient 36

n Strain hardening exponent 0.45

€ Initial equivalent plastic strain 0.

Ymaz Largest reported value, uniaxial yield 0.64E09 Pa
Ty Ref. state Griineisen’s gamma 2.02

a Coeff. 1st order vol. corr. Griineisen’s gamma 1.5

Trmo Melt temperature at n =1 1790 K

Table 2. SCG parameters for annealed Cu
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Parameter Description Value

N Number of interactions 1

Oa Athermal threshold sress 40.E06 Pa

€ Thermal activation const 1.E07 s7¢

g1 Normalized actication energy 1.6

D1 Free energy exponent 2/3

¢ Free energy exponent 1

o1, Initial mechanical threshold stress 0.

by Shear modulus const 45.78E09 Pa

b, Shear modulus const 3.0E09 Pa

bs Shear modulus const 180 K

ao Hardening function const 2390.E06 Pa

a; Hardening function const 12.E06 Pa

as Hardening function const 1.696E06 Pa

Ts0 Saturation stress at 0K 770.E06 Pa
€30 Saturation stress ref strain rate 1.E07 s~

A Saturation stress const 0.2625

b Burger’s vector 2.55E-10 m

o Parameter in F(X;) 2

Table 3. MTS parameters for annealed Cu
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Parameter Description Value

N Number of interactions 1

Oa Athermal threshold sress 40.E06 Pa
€ Thermal activation const 1.E07 s~

g1 Normalized actication energy 0.6

P Free energy exponent 2/3

e Free energy exponent 1

o1, Initial mechanical threshold stress 410.E06 Pa
b, Shear modulus const 45.78E09 Pa
b, Shear modulus const 3.0E09 Pa
bs Shear modulus const 180 K

Qo Hardening function const 2390.E06 Pa
a; Hardening function const 12.E06 Pa
a; Hardening function const 1.696E06 Pa
Ts0 Saturation stress at 0K 770.E06 Pa
€s0 Saturation stress ref strain rate 1.E07 s7*

A Saturation stress const 0.2625

b Burger’s vector 2.55E-10 m
o Parameter in F(X;) 2

Table 4. MTS parameters for half-hard Cu
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Parameter Description Value

N Number of interactions 2

Oq Athermal threshold sress 40.E06 Pa

€1 Thermal activation const 1.E07 s72
(interaction 1: dislocation)

€ Thermal activation const 1.E07 s
(interaction 2: interstitial)

g Normalized activation energy 1.6
(interaction 1: dislocation)

g2 Normalized activation energy 0.1236
(interaction 2: interstitial)

P Free energy exponent 2/3
(interaction 1: dislocation)

D2 Free energy exponent 0.5
(interaction 2: interstitial)

@ Free energy exponent 1
(interaction 1: dislocation)

g2 Free energy exponent 1.5
(interaction 2: interstitial)

oy, Initial mechanical threshold stress 0. Pa
(interaction 1: dislocation)

Ta, Initial mechanical threshold stress 1203.E06 Pa
(interaction 2: interstitial)

b, Shear modulus const 65.25E09 Pa

b, Shear modulus const 0.380E09 Pa

bs Shear modulus const 40 K

ao Hardening function const 2000.E06 Pa

a, Hardening function const 0.

a, Hardening function const 0.

Ts0 Saturation stress at 0K 350.E06 Pa

€so Saturation stress ref. strain rate 1.E07 s~

A Saturation stress const. 1.6

b Burger’s vector 2.863E-10 m

a Parameter in F(X;) 2.

Table 5. MTS parameters for Ta

16




CL,oSTEE L T T S i T T TR T
P It SR S a s i Iy SEPCIOMNTR O SNIY of 7 S e X L0 AN r e S SR A e S & e P SR

Marvin A. Zocher, Paul J. Maudlin, Shuh Rong Chen, and Elane C. Flower-Maudlin

Comparisons between predicted deformed shape and measured deformed shape are
presented in Figs 2-5. In all cases the mesh silhouette depicts the predicted deformed
shape while the dots represent the measured deformed shape. The prediction of the de-
formed shape of the copper cylinders using the MTS model and the measured deformed
shape are practically indestinguishable (Fig. 2). Note that the plastic wave swept the
entire length of the annealed cylinders whereas it swept through only about half the
length of the half-hardened cylinder. The model was able to capture both behaviors.
The result using the SCG model to predict the deformed shape of the annealed copper
cylinders (Fig. 3) is very good. The only obvious error in the SCG prediction is in the
final cylinder length, with the predicted length being slightly greater than the measure
length. The JC model does a poorer job of predicting the shape of the copper cylinders
(Fig. 4), though not all that bad qualitatively. The JC model has the overall shape
about right but predicts a final length that is too great and predicts a larger footprint
than what is observed. Figure 5 shows the comparison between prediction and obser-
vation for the tantalum cylinder, with the prediction obtained using the MTS model.
Note that unlike the copper cylinders, which flowed isotropically, the tantalum cylinder
exhibited significant orthotropic flow. What is shown in Fig. 5 may be thought of as a
“front view”, “side view”, and footprint view. The agreement in Fig. 5 is considered to
be quite good.
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= &
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Figure 2. Copper cylinders, MTS hardening model
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Figure 5. Tantalum cylinder, MTS hardening model

5 CONCLUSIONS

A framework for conducting a thorough “apples-to-apples” comparison of hardening
models has been presented. This framework is based on an implementation of all models
into the same continuum mechanics code and conducting the evaluation with all aspects
of the analysis held constant, except for the hardening model. The hardening models
exist as a constituent part of classical plasticity which is formulated in a semi-implicit
numerical scheme that uses polar decomposition for kinematic consistency, associative
flow for the evolution of plastic strain, and isotropic hardening for the evolution of the
yield surface. The formulation is constructed so as to be able to handle anisotropic
yield.

While the results presented here seem to indicate that the MTS model does the best
job, followed by SCG and then JC, it is emphasized that this study is in a preliminary
stage and firm conclusions require further work. The authors plan to present a more
thorough evaluation when the data and analysis are available.
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