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ABSTRACT

We discuss adaptive importance sampling forindividual steps in Markov

chains. Such chains arise in many simulation problems, such as related to

airborne particle dispersion. Through use of experimental design for simulation

runs and regression methods for analysis of the output, import ante sampling

transit ion kernels are defined which substantially improve convergence times.

1. INTRODUCTION

Computer simulation is widely used to examine physical processes when

controlled experiments are expensive or impractical to conduct. Indeed, recent

advances (in computing hardware and in parallelization, for example) have

made simulation increasingly valuable. In many cases, however, runtimes are

still sufficiently lengthy so as to preclude obtaining estimates of good precision

and to inhibit investigation of the full range of scenarios of interest.

In this paper, we describe how fitted regression models of simulation output

can be embedded in Markovian transition kernels to greatly reduce comput a-

tion time. Those transition kernels alter the trajectories of simulated chains

and improve efficiency of estimation, in some cases by orders of magnitude.

The primary motivation for this work’ involves the simulation of turbulent
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particle dispersion. One related computer code is used by the National Atmo-

spheric Release Advisory Center, for example, to aid in real-time emergency re-

sponse to natural and man-made disasters (Sullivan, Ellis, and Drumtra 1997).

Similar codes have been used in a reconstructive vein to better understand

past events – such as the Chernobyl nuclear accident (Lange, Dickerson, and

Gudiksen 1988) – as well as in a futuristic vein to plan for hypothetical ones

(Saltbones, Foss, and Bartnicki 2000). More generally, Markovian simulation

models are used to address basic science problems in fluid mechanics.

2. PARTICLE DISPERSION

Consider the collection of particles involved in a release, such as from an

industrial smokestack. Those particles are eventually dispersed over a wide

area, their transport being governed by local wind patterns, terrain, ground

surface deposit ion, and other factors.

Much effort has been invested in developing stochastic models to accurately

represent observed behavior (Thomson 1987; Ermak and Nasstrom 2000). A

review of related physics is beyond the scope of this paper, but the bottom line

is that each particle path is a transient Markov chain. The underlying stochas-

tic models are incorporated into computer codes that receive input on source

conditions and on transport dynamics, and then generate a large number of

i.i.d. trajectories, from which simple summary statistics are extracted.

The Lagrangian approach of generating ‘natural’ particle trajectories is

time consuming, especially when rare events are involved. Consider, for ex-

ample, estimating by simulation the portion of particles emitted from the

Chernobyl accident that reached Paris, France. Generating each individual

particle trajectory is nontrivial, and millions of such trajectories are required

to yield a precise simulation estimate of the quantity of interest.

A solution, then, is to not generate natural particle trajectories but to
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instead generate ‘biased’ ones that are important to the problem at hand. By

reweighing the results, estimation is greatly improved.

3. METHODOLOGY

We now describe importance sampling for transient Markov chains, and

show how experimental design and regression are useful in improving simula-

tion efficiency. The chain is denoted {~n ; n = O, 1,2, ...} where, relative to

the simulation, Xn is the state of the particle at the n-th time step. In gen-

eral, the state space is multivariate, with components that summarize particle

location, velocity, direction, and other aspects of interest such as ‘real’ time.

The chain’s transition kernel is denoted p(~n-l, ~n); that is, simulating

the next state Z. given the current state Zn_l is equivalent to sampling from

p(z.-l, Zn). The step at which absorption occurs is denoted T, and the prob-

abilityy density function for a trajectory emanating from Z. is

hP(%-1,G) .
72=1

Simulation is used to estimate properties of the physical process, here expressed

as ‘scores’ that accumulate with each step of the chain. Letting s (xm_l, zn)

denote the score accumulated on step n, the overall score for a chain starting

in state zo is
T

s(w)) = ~ S(%+, l%) .
n=l

One common score is the indicator function of an event of interest (i.e., if that

event occurs on step n, then S(xn_l, Zn) = 1 and the chain is terminated; all

other scores are zero). For airborne part icle dispersion, simple examples are

whether the simulated particle enters a specified volume or is deposited within

a specified surface area.

To estimate the expected score

s(q) = E, [s(xO)]
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of the chain beginning in ~. and evolving according to the natural transition

kernel p(”, “), numerous chains starting from ~0 are typically simulated, a score

for each chain obtained, and those scores are then averaged.

Importance sampling in this context amounts to choosing a transition ker-

nel q(2kIj ~~) # P(%-–I ~% ) and simulating the corresponding chains. For an

importance-sampled chain, the counterpart to the standard score is

(3.1)

[Note: (3.1) is not the classical importance sampling estimator except when

scoring occurs only on the final step, but we prefer this estimator for

discussed in Section 4.]

For transient Markov chains with nonnegative scoring, there is

reasons

a zero-

variance transition kernel (Baggerly, Cox, and Picard 2000). That kernel is

s(zn_l, Z’n) + i$(zn)
@GPl ,h) = P(G2–1 ,h) 3(%-1) “

(3.2)

In other words, simulating a single Markov chain from ~. using the kernel

(3.2) would yield the solution ~(zo) without error. Of course, (3,2) deperids

on knowledge of the function ~(x) for all states x, so the zero-variance result

may not appear to be of much value.

What is accomplished by (3.2) is to point the way towards good transition

kernels. Consider approximating the expected score ~(x) with the linear model

(3.3)

where the {pi} are unknown parameters and the {I?i (~)} are known basis

functions. By simulating natural chains from a number of different initial

stat es, the result ing scores can be used to estimate model parameters. Upon

substituting parameter estimates {~i} into (3.3) to obtain an estimate ~(z) of

~(z) and normalizing, a transition kernel q;(z~-1, x.) is defined which can be

used to produce biased trajectories.
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Iteration of the above yields an adaptive procedure with good properties.

Thai

1)

2)

3)

is, each iteration of the adaptive process involves

simulating importance-sampled chains using the kernel q~(x~–1 ~z~),

using the simulation output in a regression to estimate the parameters

{@i} in (3.3) and obtaining the fitted model ~(~)= X &B~(z), and

substituting ~(z) for ~(x) in (3.2) and normalizing to give an updated

importance sampled transition kernel.

In the ideal case where the model (3.3) is formally correct, it has been shown

(Baggerly, Cox,. and Picard 2000) that under mild regularity conditions the

adaptive process converges exponentially quickly to the zero-variance solution.

As such, its simulation estimates converge much more rapidly than the N-112

rate for the standard approach, where N denotes the number of simulated tra-

jectories. An example of this remarkable phenomenon is given in Section 5.1.

More generally, the model (3.3) is only approximate, and the adaptation is

terminated upon reaching its limiting performance. At that point, replicated

simulation runs starting from ZO are used to estimate ~(x).

4. CONSIDERATIONS FOR IMPLEMENTATION

Several implementation details must be resolved in order for the approach

to succeed. They involve

● experimental design (i.e., choosing a set of initial states for obtaining

simulation data and determining the number of replications needed for

each initial state),

● import ante sampling estimation (i.e. incorporate ion of variance reduction

techniques such as splitting and survival biasing, as well as the definition

of the score such as (3.1) for each simulated trajectory),
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●

regression (i.e., choosing the basis functions in the model (3.3) and esti-

mating parameters from the heteroscedastic regression), and

identifying a stopping rule for the adaptation to assess when the limiting

ability of the fitted model to describe the data is reached.

These details are discussed in turn.

In each iteration of the adaptation, an experimental design is used to pro-

duce data {Z[i), ~(~(i))}, where ~(x(i}) denotes the average of the replicated

scores for simulated chains whose initial state is the i-th design point x(i).

From the data. {z(i), S(x(i) ) }, a fitted model ~(~) of the true mean response

function ~(z) obtained by regression. In determining the design points {~(i}},

the set of trajectories produced by the design should encompass the chains

important to the calculation at hand. Examples are given in the next section.

The number of replications per design point is a related design issue. In

what follows, we use the same number of replications for each design point,

though this is not necessary. If the number of replications is much too small,

the algorithm may not converge; otherwise, use of a nonoptimal number of

replications has a mild effect on computational efficiency.

When simulating importance-sampled chains, actions such as particle split-

ting and survival biasing should be taken to reduce variance. These techniques

are not new (see, e.g., Lux and Kolbinger 1991), but are reviewed briefly for

a self-contained exposition.

As expected from (3.1), if a ,simulated trajectory has a large likelihood ratio

) / 11=1 q($~-l, ~~), the trajectory’s SCOreCOUlddestabilize& = 11:=1p(%-1 , %

the estimate. This phenomenon is well known for ordinary importance sam-

pling (Owen and Zhou 2000) and the same is true in a random walk context.

The average likelihood ratio, with respect to the kernel q(., .), is 1, but large

ratios are possible. To reduce the effects of large ratios, & is monitored during

each simulated trajectory and, if it becomes too large, the particle is ‘split.’
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Splitting amounts to replacing a particlq with several subparticles. That

is, if at step n a trajectory in state x~ has a likelihood ratio & that is too

large, the particle is replaced by k subparticles at z. with likelihood ratios

R./k; subparticle paths are then simulated and their scores added to replace

the original particle score that would have been obtained. In what follows,

we split particles whenever & >2, and the number of subparticles being the

smallest k such that -&/k < 2. Note that there exists the possibility that

subparticles may themselves be split at later time steps.

Survival biasing is useful in conjunction with partially reflecting barriers,

as often occur in airborne dispersion. Similar to particle splitting, it reduces

the likelihood ratio to improve estimation. If a particle reaches a partially

reflecting barrier and is to be absorbed with probability ~ or be reflected with

probability 1 – x, the simulation azways reflects the particle and updates the

likelihood ratio to (1 – m)l?~. In this way, the particle continues to score in a

way that gives unbiased estimation with reduced variance.

In terms of scoring, various estimators can be used, as noted by Hester-

berg (1995) for ordinary importance sampling. We choose (3.1) in place of

the classical estimator because it is frequently superior to the standard esti-

mate (Glasserman 1993) and is also amenable to Rao-Blackwellization. As

implemented here, the Rao-Blackwellized score generalizing (3.1) is

The one-step conditional expectations in (4.1) are often simple to compute

and aid in reducing variability.

Once scores are obtained, regression is used to produce the fitted model

~(z). Not surprisingly, choice of basis functions is problem-dependent. There

is a tradeoff of statistical efficiency versus computational efficiency: statistical

efficiency involves minimum variance per simulated trajectory, motivating a

fitted model resembling the actual mean response as closely as possible, while

7

.



,,

computational efficiency involves simulation from the transition kernel q;(., .),

mot ivat ing a form of S(Z) to allow efficient random number generation. More-

over it is necessary that ~(~) >0, so that substitution into (3.2) gives a well

defined kernel. Fortunately, good results can often be achieved with simple

models, especially when fit piecewise to localized regions of the space – a

truncated second-order response surface performed well in the examples here.

Use of fitted models requires a stopping rule in adaptation. The goal is

to reach the limiting ability of the model to explain the data, at which point

importance-sampled chains from X. are used to estimate the quantity of inter-

est. In examples to follow, adaptation ceases when the moving average over

three iterations of adaptation of the residual sum of squares for the regression

increases. Other convergence diagnostics could be considered, of course.

5. EXAMPLES

5.1 Plume Spread for Dispersion in Homogeneous Turbulence

To begin, we take a ‘toy’ problem, namely dispersion in homogeneous tur-

bulence. The simulated process is as follows. At time to = O, a particle is

released in the atmosphere at height .zOhaving vertical velocity too = O. In-

dexing time in units of the simulated time step At, the states of

chain are denoted Xt = (t, zt, Wt), and the natural process evolves

the Markov

as

a)

b)

c)

d)

update the time to t + At,

update the vertical velocity to Wt = @wf_l + qt as per a first-order

autoregressive model, where @ = 1 – At/TL >0 with TL the Lagrangian

time scale, and qt N N(O, o~),

update the particle height to Zt = Zt–l + A-t [wt + wi–1]/2 , and

terminate the particle trajectory if the event(s) of interest have occurred;

otherwise, return to (a) and continue.
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We are interested in estimating the plume spread at time T = 1000,

J(m))= E,[(zT – 20)2]3-J].

Owing to the simple recursion involved, it is not hard to show that the

actual regression model has the form

+p7z,w,(l/4)7-’ + p8w;(l/4)’-t + @9@(Vf#2)’-’ , (5.1)

where the parameters {~j} depend on specifics such as At, OW,and so on. For

the results to follow, we use values T~ = 10 and OW= 0.1.

The experimental design used is a factorial with 750 design points, using

all possible (-t, z, w) combinations from the sets

t c {O, 50,100,150,200,250,300, 350,400,450,

500,550,600,650,700, 750,800,850,900,910,

920,930,940,950,960, 970,980,990,995, 998} ,

z c {zo, Z. + 200, Z. + 400} , and

‘w E {0,+1,+2} .

These design points encompass the set of trajectories likely to be encountered,

and devote greater emphasis to the (more important) later times.

In the first iteration of the adaptive algorithm, 25 natural trajectories are

simulated from each design point, and the resulting scores used to estimate pa-

rameters in (5.1). In subsequent iterations, 25 biased trajectories are simulated

using importance sampled kernels q~(., .). Simulated trajectories incorporated

particle splitting, scores were obtained using (4. 1), and regression parameters

are estimated by ordinary least squares.

Results are averaged over 50 runs of more than 2000 CPU seconds each

and displayed in Figure 1 for the adaptive approach and for simulation of the
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Figure 1: Loglo simulation error as a function of CPU time for the plume

spread example, for simulation of the natural process (solid curve) and for

simulation of the adaptive process (dashed curve).

natural process. Log error for the adaptive procedure decreases linearly as a’

function of CPU time until machine precision for the calculation is reached, a

phenomenon known as exponential convergence (e.g., Booth 1997). By com-

parison, log error for simulation of the natural process decreases as log N-l/z.

5.2 Approximate Zero-Variance Models

Comparisons such as Figure 1 are unfair, in that adaptation to the zero-

variance kernel requires far more knowledge than does simulation of the natural

process. Consider extending the previous problem by using a quadratic model

The second-order response surface (5.2) provides a smooth approximation to

the actual model (5.1) over the range of interest.

Using the above experimental design, the adaptive algorithm is imple-

mented with the approximate model. Adapt ation terminates when the moving

10
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Figure 2: Loglo simulation error as a function of CPU time for the plume

spread example, for simulation of the natural process (solid curve) and for

simulation of the adaptive approximate zero-variance process (dashed curve).

average over three iterations of the residual sum of squares increases, at which

point the resulting kernel q:(”,.) is used to simulated biased trajectories from

~o. Results, again averaged over 50 runs for simulation of the natural process

and of the adaptive approach, are displayed in Figure 2.

Although simulating a biased trajectory is roughly 6 times more compu-

tational work than simulating a natural one, overall gains are impressive. At

2000 CPU seconds, the difference in error is roughly 10°”= % 6,7; owing to the

N-112 behavior of the simulation error, this means that the natural process

would have to be run a factor of 6.72 s 45 times longer in order to achieve the

same accuracy as the adaptive

5.3 Particle Deposition

Consider another example,

tered in particle dispersion. A

approach.

intended to illustrate

particle is released at

other

a low

problems encoun-

height (ZO = 5 m)

and has a downward drift of 6 = 0.5 m/s. The ground (the plane z = O m) acts

as a partially reflecting barrier: when the particle reaches the ground there

11
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is a probability y r that the particle is deposited there; otherwise, the particle

is reflected upward and continues on. The goal is to estimate the probabilityy

that the particle is airborne after t = 1000 s.

The corresponding natural process is

a)

b)

c)

d)

e)

update the time to t + At,

update the vertical velocity to Wt = @wt_l +qt, where # = 1–At/TL >0

with TL the Lagrangian time scale, and qt N N(O, a;),

update the particle height to Zt = Z~_I + At [uq + wt-1]/2 – A-t [6] ,

if Zt <0, the particle is deposited on the ground with probability x; if it

is not deposited, then set zt = Izt[ and set wt = ]wt + 6], thereby ensuring

that zt ~ O and Wt ~ O after reflection, and

terminate the process if the particle has been deposited on the ground

or if the time step t = 1000; otherwise, return to (a) and continue.

We use deposition probability z = 0.75 for each reflection in (d).

Here, most simulated particles are deposited on the ground well in advance

of the 1000th simulated time step. Indeed, the probability of a particle being

airborne after such a long time is roughly 5 x 10-5. Importance sampling offers

potentially great benefits in the estimation of rare event probabilities.

We use a simple factorial design with structure

t c {os, 250s,500s, 750s,995s} ,

.Z c {1.33 m,5m, 15m,45m, 135m} , and

w C {–1 m/s, Ore/s, 1 m/s,2m/s,3m/s} ,

and 50 reps per design point per run. Log deposition probabilities are modeled

with a second-order response surface as before (which is not a particularly good

fit, but illustrates that convergence is greatly accelerated even when coarse

12

.



,.

.
.

0 lCKJ 260 300 400 5Cm

CPU ‘nIlw

Figure 3: Log10 simulation error as a function of CPU time for the particle

deposition example, for simulation of the natural process (solid curve) and for

simulation of the adaptive approximate zero-variance process (dashed curve).

models are used), the stopping rule for the adapt ation is as before, and sur-

vival biasing is used in addition to particle splitting and Rao-Blackwellization.

Figure 3 displays results averaged over 50 runs.

Although simulation of a natural trajectory is 35 times faster, on average,

than simulation of a biased one (recall that most natural trajectories involve

early deposit ion on the ground), the adaptive approach ‘is vastly superior.

The difference in error at 500 CPU seconds is 101-23 N 17. In other words,

the natural process would have to be simulated a factor of terms of 172 % 289

times longer to achieve the same precision.

6. CONCLUDING REMARKS

Regression modeling of simulation output, which is also helpful in un-

derstanding the simulated process, is useful in defining importance sampling

kernels as per approximations to (3.2). As illustrated, the approximate zero-

variance transition kernels offer the potential to accelerate convergence relative

to standaxd simulation by orders of magnitude.

13
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To date, the adaptive approach described herein has not been used on

large-scale problems. Theoretical underpinnings of the adaptive zero-variance

approach are recent. Moreover, owners of simulation codes, who typically have

nonstatistical backgrounds, tend to think solely in terms of simulating the

natural physical process and the notion of generating ‘unnatural’ trajectories

may not only be counter-culture but also disconcerting. And, no doubt, the

necessary regression modeling and multivariate simulation from kernels q~(”, ”)

are more difficult in higher dimensions than in the examples here.

The potential of adaptive importance sampling to greatly accelerate the

convergence of particle dispersion codes is considerable. For codes that are

run frequently (e.g., with different input parameters), an effort to augment

them with importance sampling techniques can have significant payoffs.
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