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BRIDGING THE GAP BETWEEN SPEECH PRODUCTION AND SPEECH
RECOGNITION

John Hogden & Patrick Valdez ~~~~j~~~

Los Alainos National Laboratory (ICT O42000
hogden @Ianl.gov

ABSTRACT

Although stochastic models of speech signals (e.g. hidden
Markov models, trigrams, etc) have lead to impressive
improvements in speech recognition accuracy, it has been noted
that these models have little relationship to speech production
(Lee, 1989) and their recognition performance on some
important tasks is far from perfect. However, there have been
recent attempts to bridge the gap between speech production and
speech recognition using models that are stochastic and yet
make more reasonable assumptions about the mechanisms
underlying speech production (Bakis, 1991; Deng, 1998;
Hogden, 1998; Picone et al., 1999). One of theses models,
Multiple Observable, Maximum Likelihood Continuity Mapping
(MO-MALCOM) is described in this paper.

There are theoretical and experimental reasons to believe
that MO-MALCOM learns an insertable stochastic mapping
between articulator positions and speech acoustics.
Furthermore, MO-MALCOM can be combined with standard
speech recognition algorithms to create a speech recognition
model based on a stochastic production model. Results of using
MO-MALCOM speech recognition on data derived from the
switchboard corpus will be discussed.

BACKGROUND: STATE-OF-THE-ART SPEECH
RECOGNITION

In many realistic domains, automatic speech recognition
performance (ASR) is inadequate. To be concrete, at the
National Institute of Standards and Technology 1998 HUB-5
Speech Recognition Evaluation, state-of-the-art systems had
about a 60°/0-650/0word recognition rate on “casual speech, i.e.,
telephone conversations in the Switchboard database (Martin,
Fiscus, Przybocki & Fisher, 1998). Since speaking rates of 200
words per minute ske not uncommon in casual speech, a 600/0
word recognition accuracy implies approximately 80 errors per
minute -- an unacceptably high rate for many applications.
Furthermore, recognition performance is not improving rapidly.
Improvements in word recognition accuracy of a few percent are
considered “big” improvements, and recognition rates of the
best systems on the Switchboard data were between 64.9% and
61.2% for 1996, 1997, and 1998, although they have improved
from only sz~. recognition in the 1995 evahtationl. These types
of recognition results should prompt us to look for alternatives
to the curtent approach.

The primary tool used in speech recognition is the hidden
Markov model (HMM) -- they are used to estimate the

1There was no 1999 evaluation and the 2000 evaluation has not
started as of the time this paper was written

---

probability of an acoustic sequence given the model parameters
(Jelinek, 1997). A nice feature of HMMs is that maximum
likelihood techniques allow the model parameters to be
automatically determined from training data. The automatic
parameter estimation, and the stochastic nature of the HMMs are
presumably the features that allow them to cope with the
amazing amount of variability in speech.

While HMMs have been useful, few researchers would
argue that speech production is a Markov process, or even a
hidden Markov process. In fact, it has been noted that “[the
HMM] is a very inaccurate model of the speech production
process” (Lee, 1989). The problems with HMMs have
prompted many researchers to propose alternatives (a good
review is given in Ostendorf, Digalakis & Kimball, 1996). Most
of the alternatives add parameters to HMMs to allow greater
ability to model ‘signals. Adding parameters has the
disadvantage that more data is needed to train the models, and
training data sets are already very large. In our opinion, making
the acoustic models more general by adding parameters is the
wrong way to go. In fact, like other researchers in the field
(Bakis, 1991; Deng, 1998; Picone et al., 1999), we are interested
in making the acoustic models more specific to speech, i.e.,
retain the stochastic nature of the model and the automatic
parameter estimation, but change the underlying model to more
accurately represent speech production.

INTRODUCING MO-MALCOM

Multiple Observable Maximum Likelihood continuity
Mapping (MO-MALCOM) is a variant of the MALCOM
algorithm. As such, it produces a stochastic model of two or
more sequences of categorical data values. In the work reported
here, the categorical data sequences are vector quantization
(VQ) codes, representing speech acoustics, and time-aligned
phoneme labels.

The main assumptions of MO-MALCOM are 1) that data
sequences are produced by objects moving smoothly through an
abstract space called a continuity map (CM) and 2) that the
probability of observing a particular data value at time t is
dependent on the position of the object at time t, x(t). These
assumptions model the facts that 1) speech sounds are produced
by motions of the speech articulators and 2) the sound output at
time t can be determined from the positions of the articulators at
time t. As discussed below, these assumptions are realistic
enough that it is often helpful to think of CM positions as
estimated articulator positions.

MO-MALCOM is very similar in spirit to an HMM. As
with HMMs, the MO-MALCOM parameters are learned from
training data using maximum likelihood techniques. Paths of
the objects through the continuity map are considered
unobservable and are inferred in much the same way as HMM
state sequences. Furthermore, the probability of outputting a
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particular VQ code given a path position is analogous to the
output probability of au HMM state. However, when we
continue the analogy of MO-MALCOM continuity map position
to states we see two major differences between HMMs and
MALCOM: 1) in an HMM there are a finite number of states
whereas in MALCOM the state is a continuous variable; 2)
MALCOM uses a smoothness constraint on paths through the
CM, which is much more realistic and uses much more context
than a first or second order Markov assumption.

In order to determine the probability of each code for each
of an infinite number of CM positions, MO-MALCOM
estimates the parameters of probability density functions (e.g.
Gaussians) over the continuity map, which quantify the
probability of a position in the continuity map given a VQ code.
To be concrete, for each VQ code, Ci, MO-MALCOM

estimates an a priori probability, ~ci ], and parameters of PDFs

that give ~xlci,~], where X denot~s a position in the CM and q

represents the PDF parameters (e.g. means and covariance
matrices). These parameters constitute the MO-MALCOM
estimate of a probabilistic mapping between VQ codes and
articulation.

While it mayor may not be possible to invert a
deterministic mapping from articulation to acoustics (Atal,
Chang, Mathews & Tukey, 1978; Hogden et al., 1993), Bayes’
law makes it easy to invert MO-MALCOM’S probabilistic
mapping to get the probability of a VQ code given a continuity
map position.

qci~x,q] = wciwci]
P[xpp]

and analogous tec~lques are use to get the probability of each
phone, X, given a continuity map position:

The joint probability of fi and
given by”:

ci given a CM positions is

and the joint probabili~ of a sequences of VQ codes, c = [c(l),
c(2), ... c(n)], and phones, f = [f(l); f(2), . . . f(n)], given a path
through the CM, X = [x(l), x(2), ... x(n)], is given by the
equation

P[c,flx,(p] = fiP[c(t),f(t)\x(f), fp]
1=0

As with HMMs, we must make a conditional independence
assumption to calculate the probability of a whole sequence
from the probabilities at each time. However, this assumption is
somewhat more warranted for MO-MALCOM. To support this
claim, note that if the path position at time t contains sufficient
information about the articulator positions at time 4 then one
should expect conditional independence – just as one should
expect that the sound output from the mouth at time t depends

only on the articulator positions at time t. As we discuss below,
there is good reason to believe that MO-MALCOM is capable of
inferring articulator positions, so the conditional independence
assumptions for VQ codes is probably not too bad. However, it
is unlikely that the probability of a phone at t given the
articulator positions at t is conditionally independent of the
temporal context so the MO-MALCOM assumption can likely
be improved. Further discussion of this point can be found
below.

Signal Processing

Before applying MO-MALCOM to continuous valued data,
short time-windows of the data should be processed into vectors
that contain information about vocal-tract shape and as little
information as possible about the vocal-tract excitation. (e.g.
cepstr~ LPC coefficients, mel-cepstra). This signal processing
must be done to meet the MO-MALCOM assumption that the
signals are produced by slowly moving objects, such as the
articulators, not quickly moving objects such as the vocal
chords. The resulting sequences of vectors are then converted to
sequences of categorical data values using VQ.

MO-MALCOM Training

As with HMMs, the MO-MALCOM parameters need to be
trained on a large corpus of training data. Two learning steps
arc iteratively repeated to calculate the parameters of the PDFs:

1) Given some initial set of PDF parameters, and many different
examples of simultaneous f and c data sequences, find the
smooth paths (i.e. paths that have no Fourier components above
some cut-off frequency) through the CM that maximize the
likelihood of the code sequences. That is, representing the path
though the CM by X = [x (l), x(2), ... x(n)], and the PDF
parameters by q+find

x= argpXP[c,f]x,(p] = Mg:mfiP[c(f),f(f)lx(f),p]
,=0

2) Find the values of the PDF parameters that maximize the
probability of the data catego~ sequence. That is:

There are a variety standard algorithms for performing the
maximizations required above. We have found conjugate
gradient ascent methods useful.

MO-MALCOM Speech Recognition

During recognition, we first want to estimate the probability
of each phone at each time step. To do so we first find the
smooth path throught the CM that maximizes the probability of
the VQ codes:

x=argpxq~x,q?] =argyixfiP[c(t)lx(t),gq
,4

After obtaining this path estimate, it is possible to estimate
the probability of each phone at each time.



Combining MO-MALCOM with Word Models

In standard speech recognition algorithms, the probability of

a phone sequence given a word, ~[~(t) = ~@], is estimated

using a lattice model, and is then used to get the probability of a
word given the observable data. Since a variety of standard
techniques can be used to create a Iattice model, we will not
discuss the problem of estimating lattice model structures or
parameters here. However, in the next section, we discuss one
way to combine a lattice structure with MO-MALCOM
processing to achieve speech recognition.

Define variables reminiscent of the HMM forward
algorithm:

au = P[~(t) = jf(t–1) =$,w]

b,(t) = P[f(t) = f+(t)]

ni = P[f(l) = jqlv]

C$(t) = I’[f(t) = jjw,x(t),x(t – l),x(t – Z),..., x(l)]

The reader can confirm tliat

CXi(1)= bi (l)ni

and

CXi(t)= bi(t)~ atiaj (t – 1)

Using these recursively calculated probabilities we can find

P[w’lx] = q+(t),x(t – l),x(t – 2)
. .,. .

sion below) consistent (Neter, Wasserman & Kutner,
~--‘~x(1)] = ~ ~i (~~*That is if our model is accurate then maximum

i

Ideally, we would find

P[w’lc] = p[wlxp[xlc]dx

but since calculating this integral is not practical, we will

assume that ~[XIC] is only non-zero in an infinitesimal region

around

x= arg~ P[c]x]

and calculate

P[wlc] = P[wlx]

The basic ide~ then, is to start by finding the smooth path
through the continuity map that maximizes the probability of the
VQ code sequence. Then use that path to get the probability of

each phoneme for each acoustic window. Then combine the
probabilities of each phoneme given the path, with the phoneme
probabilities given the word, and the prior word probability, to
get an estimate of the posterior probability of the word.

Optimizing Other MO-MALCOM Parameters

The formulationabove assumes that we know the number of
dimensions to use in the continuity map, and that we know what
cut-off frequency to use to constrain the smooth paths. Of
course, these parameters are typically not known a priori. The
obvious way to determine the parameters is to simply try many
combinations of parameters and determine which combination
works best for the problem being studied. However, doing so
can be very time consuming.

A (sometimes) more expedient way to optimize the number
of dimensions and cut-off frequency is to cross-validate using
MO-MALCOM’S estimate of the probability of a cross-
validation set as a measure of how well the model is performing.
Doing so is relatively straightforward, but it should be
remembered that estimating MO-MALCOM paths from the
cross-validation set, and then determining the probability of the
data given the paths, will result in a biased estimate of the
generalization performance. Instead, a MO-MALCOM path
should be estimated without using one pair of categorical data
values from a sequence, then the probability of the left out data
pair should be calculated using the estimated path, and the
process should be repeated leaving out successive pairs of data
values.

SUMMARY OF MO-MALCOM EXPERIMENTS

An encouraging outcome of both MALCOM and MO-
MALCOM is that, after training, the estimated mean continuity
map position for a given VQ code is highly correlated with the
mean of the measured articulator positions that produce a the
VQ code (Hogden, 1995; Nix, 1998). This is true even though
the training data does not include articulator positions. This
result was not wholly unexpected. In fact, statistical theory tells
us that maximum likelihood mmrneters are tv~icallv (but see

likelihood parameter values will approach the actual parameter
values of the system generating the data as the amount of
training data gets large. Since the MO-MALCOM model
parameters (the means and covariance matrices of the Gaussian
probability density functions) constitute an estimate of the
mapping between articulator positions and acoustics, the fact
that the parameters are correlated with measured articulator
positions suggests that the MO-MALCOM model has a great
deal of validity.

Furthermore, Nix (1998) showed that MO-MALCOM
positions are excellent at discriminating phonemes – better than
measured articulator positions. Using a jackknife procedure,
Nix used MO-MALCOM to create a CM from training data.
Then, on testing dat~ smooth paths through the CM were found
using only the VQ codes. Fisher’s discriminant analysis was
used to find dimension of the map that best discriminated the
phoneme pair, where the phonemes in a pair are designated j
and f2. Along this best dimension, the percentage of area in
common between p(xfl) and p(x~J was computed. To the
extent that this is a low value, the CM positions give a lot of
information about phoneme identity.
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The abilitv of MO-MALCOM to differentiate between
phonemes diff~ring in place is demonstrated by two examples:
1) the largest overlap in MO-MALCOM PDFs between
phoneme pairs composed of [p], [t], and [k] is 1%,2) the largest
overlap between phoneme pairs composed of [b], [d], and [g] is
6%. The ability of MO-MALCOM to discriminate between
phonemes with similar articulation but different acoustics is also
evident -- [b] and [p] have an overlap of less than 0.5%, [d] and
[t] have an overlap of 2%, [k] and [g] have an overlap of 6%.
Even [b] and [w] are discriminated well by MO-MALCOM
positions (the overlap is less than 0.5’XO).Furthermore, MO-
MALCOM continuity map positions are good at discriminating
vowels -- the largest overlap for MO-MALCOM is 3V0and only
6 vowel pairs have overlaps larger that 0.5%. The most difficult
pair of phonemes for MO-MALCOM to discriminate are [r] and
[1],which have 19% overlap. The next most difficult pair is [r]
and the glottal stop with a 17% overlap. The vast majority of
phoneme pairs have less than a 0.5% overlap and only 7
phoneme pairs have overlaps of more than 10%.

Despite good phoneme discrimination results, when MO-
MALCOM was used to perform speaker dependen< isolated
word recognition on data derived from the phonetically Iabelled
portin of the switchboard data set, the recognition results were
not impressive. Even on the training set, only about 40%
recognition accuracy was achieved. However, there were many
known deficiencies in the recognition system that was used (it
was created in less than a year). First, the training set was much
smaller than the speaker-independent continuous-speech
recognition training sets commonly used today (we use about 3
minutes of speech as opposed to, say, 65 hours on the complete
Switchboard training set). Second, doing isolated-word
recognition, prevented the algorithm from taking advantage of a
language model. Third, the model that estimates the probability
of sequences of phonemes given a word was much more
simplistic than in state-of-the-art recognition systems. Fourth,
the dictionary contains only canonical pronunciations of words
as opposed to pronunciations that commonly occur in casual
speech. This problem is particularly severe since, in
automatically extracting isolated words from continuous speech,
phonemes were oflen added or deleted from the beginning or the
end of the word. Sixth, we did not use cepstral mean subtraction
or variance normalization.

DISCUSSION

The MO-MALCOM theory is still incomplete. While it is
true that maximum likelihood parameters are typically
consistent particularly when using mixtures of Gaussians as
with MO-MALCOM, it is not necessarily the case. Proofs that
MO-MALCOM parameters actually are consistent would be
welcome. If it can be proven that MO-MALCOM parameters
are consistent, then it will be possible to argue that the mapping
between acoustics and articulation (or possibly between
acoustics and task-dynamic tract variable -- see below) can be
recovered from acoustics alone. This would have important
repercussions for the motor theory of speech perception as well
as theories of speech production that postulate that phoneme
targets must be acoustic because there is no teaching signal to
help learn the mapping between acoustics and tract variables,
e.g., (Guenther, Harnpson & Johnson, 1998).

Furthermore, we are currently exploring variations on the
MO-MALCOM theme, such as building a simplified task
dynamic model (essentially constraining the paths to look like
mass-spring motion between phone targets). Although not

described above, simplifications to the MO-MALCOM model
have been used to speed up processing. The effects of these
simplifications on the results are unknown, and should be
studied.

We believe that MO-MALCOM and its allies will prove to
be valuable tools to add to our speech processing toolbox, and
may well engender significant changes theories of speech
perception and speech production.
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