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Approximation Algorithms for Clustering

to Minimize the Sum of Diametersl

(Extended Abstract)
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Abstract

We consider the problem of partitioning the nodes of a complete edge weighted
graph into k clusters so as to minimize the sum of the diameters of the clusters.
Since the problem is NP-complete, our focus is on the development of good ap-
proximation algorithms. When edge weights satisfy the triangle inequality, we
present the first approximation algorithm for the problem. The approximation al-
gorithm yields a solution that has no more than 10k clusters such the total diameter
of these clusters is within a factor O(log (n/k)) of the optimal value fork clusters,
where n is the number of nodes in the complete graph. For any fixed k, we present
an approximation algorithm that produces k clusters whose total diameter is at
most twice the optimal value. When the distances are not required to satisfi the
triangle inequality, we show that, unless P = NP, for any p z 1, there is no poly-
nomial time approximation algorithm that can provide a performance guarantee of
p even when the number of clusters is fixed at 3. Other results obtained include
a polynomial time algorithm for the problem when the underlying graph is a tree
with edge weights.
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1 Introduction

1.1 Motivation

The main goal of clustering is to partition a set of objects into homogeneous and well separated subsets
(clusters). Clustering techniques have been used in a wide variety of application areas including in-
formation retrieval, image processing, pattern recognition and database systems [Ra97, ZRL96, JD88,
DH73]. Over the last three decades, several clustering methods have been developed for various appli-
cations [HJ97, JIX8]. Many of these methods define a distance (or a similarity measure) between each
pair of objects, and partition the collection into clusters so as to optimize a suitable objective based on
the distances. Some of the objectives that have been studied in the literature include minimizing the
maximum diameter or radius, total pairwise distances in clusters, etc. The survey paper by Hansen and
Jaumard [HJ97] provides an extensive list of clustering objectives and applications for these objectives.

Clustering problems where the objective is to minimize the maximum cluster diameter have been
well studied from an algorithmic point of view (see Section 1.4 for a summary). The focus of this
paper is on clustering problems where the objective is to partition a given collection of objects into a
specified number of clusters so as to minimize the sum of the diameters of individual clusters, The
motivation for thk objective is derived from the fact that in several applications, clustering algoritks
that minimize the maximum diameter produce a “dissection effect” [HJ97, MS89]. This effect causes
objects that should normally belong to the same cluster to be assigned to different clusters, as otherwise
the diameter of a cluster becomes too large. In such applications, the sum of diameters objective is more
useful as it reduces the dissection effect [HJ97, MS89].

1.2 Problem Formulation and Previous Work

To study the clustering problem in a general setting, we represent the objects to be clustered as nodes
of a complete edge-weighted undirected graph G(V, E) with IV I = n. The dktance (or similarity
measure) between any pair of objects can then be represented as the weight of the corresponding edge
in E. For an edge {u, v} in ~, we will use w(u, v) to denote the weight of the edge. It is assumed that
the edge weights are nonnegative. For any subset V’ of V, the diameter of V’ (denoted by DIA(V’))
is the weight of a largest edge in the complete subgraph of G induced on V’. Note that when \V’] = 1,

DIA(V’) = O.A formal statement of the clustering problem considered in this paper is as follows.

Clustering to Minimize Sum of Diameters (CMSD)

Instance: A complete graph G(V, E), a nonnegative weight (or distance) U(U,v) for each edge {u, v}
inE andanintegerk < IVI.

Requirement: Partition V into k subsets VI, V2, . . .. Vk such that ~~=1 DIA(VZ) is minimized.

.
In general, edge weights in instances of CMSD need not satisfy the triangle inequality. We use

CMSDA to denote instances of CMSD where edge weights satis~ the triangle inequality. Most of our
results are for the CMSDA problem. We assume without loss of generality that the optimal solution
value to any given instance of CMSDA is strictly greater than zero. We may do so since it is easy to
determine whether a given instance of CMSDAcan be partitioned into a specified number of clusters
each of which has a diameter of zero.

We now summarize the known results from the algorithmic literature for the CMSDproblem. Prior
work on the CMSD problem has been restricted to the case where the number of clusters k is jixed.
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Hansen and Jaumard [HJ87] considered the Euclidean version of CMSDA with k = 2 and presented an
algorithm with a running time of O (n3 log n). Later, Monma and Suri [MS89] improved the mnning
time to 0(n2), These authors also showed that for k = 2, the CMSD problem (without the triangle
inequality) can be solved in polynomial time. Capoyleas et al. [CRW91] also studied a generalized
version of the CMSDAproblem for points in R2. They showed that for any fixed k, the problem can be
solved in polynomial time for any monotonic increasing fimction of cluster radius or diameter. Examp-
les of such monotonic increasing functions include sum of diameters (or radii), maximum diameter
(or radius), etc.

1.3 Summary of Results

We study the complexity and approximability of the CMSDproblem. The main results of this paper
can be summarized as follows:

1.

2.

3.

4.

5.

We show that unless P = NP, CMSDcannot be efficiently approximated to within any factor even
when the number of clusters is fixed at 3. (In contrast note that CMSD is known to be efficiently
solvable when the number of clusters is equal to 2 [MS89].)

For CMSDA, we show that if the constraint on the number of clusters must be met, then it is
NP-hard to approximate the total diameter to within a factor 2 – e, for any c >0.

In contrast to the non-approximability results above, we present a polynomial time bicriteria
approximation algorithm [MR+98] for CMSDA.This approximation algorithm outputs a solution
with at most 10k clusters whose total diameter is within a factor of O(log (n/k) ) of the minimum
possible total diameter with k clusters.

We also show that when the number of clusters k is fixe~ there is an approximation algorithm
for CMSDAwhich produces at most k clusters whose total diameter is within a factor of 2 of the
minimum possible total diameter.

Finally, we can show that when the CMSDproblem is solvable in polynomial time when restricted
to trees and more generally to graphs of bounded treewidth.

Due to space limitations, the remainder of this paper discusses the above approximation results. A
brief summary of these results is given in Section 5.

1.4 Other Related Work

A number of researchers have addressed the clustering problem where the goal is to minimize the
maximum diameter or radius of a cluster. In location theory literature, the problem of minimizing
the maximum radius is also known as the k-center problem. For the metric version of the problem
of minimizing the maximum diameter, Gonzalez [G085] presented a simple greedy heuristic that runs
in O (nk) time and provides a performance guarantee of 2. He also showed that, unless P = NP, the
petiormance guarantee cannot be improved. Using a general technique for approximating bottleneck
problems, Hochbaum and Shrnoys [HS86] also presented a heuristic with a performance guarantee of
2 for the metric version of the k-center problem.

In [FPT81, MS84], it is shown that the problems of minimizing the maximum radius or diameter
remain NP-hard even for points in %?2.For this geometric version, Feder and Greene [FG88] improved
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the running time of Gonzalez’s heuristic to O(n log n). They also showed that it is N P-hard to achieve
a performance guarantee of 1.82 and 1.97 respectively for the diameter and radius problems in ?R2.
Recently, Agarwal and Procopiuc [AP98] have presented an exact algorithm for the k-center problem

for points in Rd. Their algorithm has a running time of O(k log k) + (k/c) O(~(’-’’’)l.

Several other types of clustering problems have also been studied in the literature. For example,
Charikar et al. [CC+97] study an incremental version of the clustering problem for minimizing the
maximum radius. Pferschy et al. [PRW94] study geometric versio~s of clustering problems using
objectives such as minimizing the total perimeter. Agarwal and Procopiuc [APOO]study projective
clustering problems where the goal is to cover a set of points in !J# using hyper-strips, and the objective
is to minimize the maximum width of the strips. References where other types of clustering problems
are studied include [Ma99, ABC+98, GH98, DKS97, Da94, BKK94].

1.5 Organization

The remainder of this paper is organized as follows. In Section 2, we establish some preliminary results.
In Section 3, we present our approximation results for CMSDA. Section 4 presents lower bounds on
achievable pefiormance guarantees. Section 5 briefly mentions our other results.

2 Preliminaries

In this section, we develop our approximation results for CMSDA. We begin with some preliminary
results that are used throughout this section.

2.1 A Merging Lemma

The formulation of CMSDproblem requires that the clusters be pairwise disjoint. Our approximation al-
gorithms may produce clusters which may not satisfi the disjointness condition. The following lemma
points out that for instances of CMSDA, we can merge pairs of intersecting sets without increasing the
total diameter.

Lemma 2.1 Let I be an instance of CMSDAgiven by the edge weighted complete graph G(V, E) and
integer k. Let C = {Cl, C2,. . . . Ck) be a collection of subsets of V such that their union is V and the
sum of the diameters of all the subsets in C is +. Further suppose Ci and Cj (i # j) are two sets in
C such that Ca ~ Cj # fl. Then the total diameter of the collection c’ obtained by deleting Ci and Cj

ji-om C and adding the set Ci u Cj is at most 4.

Proofi Clearly, the lemma would follow by showing that DIA(Ci U C’j)< DIA(Ci) + DIA(Cj).

Let w be a node in CirlCj and let u and v be two nodes in C$X7j such that U(U, v) = DIA(CiUCj).
If u and v are both in Ci (or both in Cj), then W(U,v) < DIA(Cj) (w(u, v) < DIA(Cj)), and the proof
is trivial. So, assume that u E Ci and v G Cj. By the triangle inequality, W(U7v) < W(U,w) + U(V,w).
Since u and w are both in Cz, W(U,w) < DIA(Ct). Similarly, U(V,w) < DIA(Cj). Therefore,
DM(Ci U C’j) = U(U,V) S DIA(Ci) + DIA(Cj), and this completes the proof. ■

In view of the above lemma, when considering instances of CMSDA, we may repeatedly merge
pairs of clusters with nonempty intersection until the clusters are pairwise disjoint. The merging process
does not increase the total diameter of the clusters. This observation will be used many times in the
remainder of this section.
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TRANSFORMTOSETCOVER(G(V,I?), Ic,f)
f is a nonnegative parameter.

● Output: An instance of weighted set cover problem with base set Q, and collection W of
nonempty subsets of Q, each with a weight.

● 1. Q = V/* Note: IQl = n.

2.w=O

3. foreachv E V do

(a) Sort {w(v, u) : u E V} into (strictly) increasing order.

(b) Letcq=O<a2 <... < a,w denote the sorted order.

(c) for i = 1 to TVdo

i. Let W, = {u : W(U,v) ~ ai}

ii. W = W + (W.. , DIA(W~) + ~/k) /* A set and its weight

return(Q, W)

Figure 1: Transformation horn CMSDAto Weighted Set Cover

2.2 Transformation to Weighted Set Cover

Our results rely on a transformation from instances of CMSDA to instances of weighted set cover
problem. Given instance of CMSDAalong with a nonnegative value ~, the transformation in Figure 1
produces an instance of the weighted set cover problem. For each node v E V, the transformation
considers the nodes in V in increasing order of distances from v. For each distinct distance d, the
transformation outputs a set consisting of all the nodes which are at a distance of at most d from w. The
weight of each set w is chosen to DIA(w) + j/k. It is clear that the transformation can be carried out
in polynomial time. The following lemma points out an important property of the resulting set cover
instance.

Lemma 2.2 Let I denote an instance of CMSDAproblem, let f be a nonnegative number and let I’
denote the instance of the weighted set cover problem produced by the transformation in Figure i. Let
OPT(I) and OPT(I’) denote the optimum solution value to I and I’ respectively. Then, OPT(I)) s
2 OPT(1) + f.

Proofi Let Cl, C’z,C’~denote the clusters in an optimal solution to 1. Thus, OPT(1) = ~~=1 DIA(CZ).
We will show that there is a subcollection of k sets in 1’ such that the total weight of the sets in the
subcollection is at most 2 OPT(1) + f. The lemma would then follow immediately.

Consider each cluster Cz (1 < i < k) in the optimal solution to 1. If Cz contains two or more
nodes, let vi be a node in Ci such that vi is one of the endpoints of an edge whose weight is equal
to DIA(Ci). If Ci contains only one node (i.e., DIA(CZ) = O), let vi be that node. Now, by the
transformation of Figure 1, 1’ has a set, say wi, that includes all the nodes which are at a distance
of at most DIA (Ci ) from vi. 13ythe triangle inequality, DIA(wi) s 2 DIA(Ci). SO, c(~i) =
DIA(wi) + f/k ~ 2 DIA(Ci) + j/k. Clearly, the subcollection {WI,wz, ..., Zf)k}covers the base set
Q. The weight of this cover is ~$=1 c(wi), which is at most ~$=l(2DIA(Ci)+f/k) = 2 OPT(1) +.f.
This completes the proof of the lemma. ■
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2.3 The Budgeted Maximum Coverage Problem

For obtaining our approximation result for CMSDA (where the number of clusters k is a part of the
problem instance), we use a known approximation result for the Budgeted Maximum Coverage Prob-
lem (BMcP). Below, we provide a definition of the problem and state the necessary approximation
result.

h instance of BMCP consists of a base set Q = {qI,W,... ,qn},a collection W of nonempty

subsets of Q, a nonnegative weight c(w) for each set w c W and a nonnegative budget B. The goal is
to choose a subcollection of sets from W so that the total cost of the chosen sets is at most 13 and the
number of elements covered by the chosen sets is a maximum. This problem is NP-hard since it is’a
restatement of the minimum cost set cover problem. The following approximation result for BMCP is
proved in [KMN99].

Theorem 2.3 BMCP can be efficiently approximated to within afactor (1 – I/e). ■

It is shown in [KMN99] that the approximation algorithm referred to in Theorem 2.3 can also be
used for the more general version of BMCPwhere there is a weight associated with each element of the
base set, and the goal is to maximize the weight of the elements covered by the chosen sets. For our
results, the unit “weightversion of BMCPwhere the weight of each element of the base set is 1, suffices.

3 Approximating CMSDA

3.1 Algorithm Overview

We give a brief top-down description of our approximation algorithm APPROX-CMSDA,and introduce
the terminology we will use in later analysis. At all times, APPROX-CMSDAmaintains a set D of
clusters which cover all vertices in V, at cost V. We call these global clusters, since they cover all
vertices in V. It begins with D consisting of ]VI singleton clusters, and progresses through a series
of rounds. During each round, it constructs a set N by selecting an arbitrary vertex from each of its
current clusters. It then finds a clustering C on N. We call the clusters in C local clusters, since they do
not need to cover all of V, but only N. The number of clusters ICIis at most 31c[1+ in (lN1/k)j. We
use @to denote their total cost. Next, APPROX-CMSDA uses MERGEto combine the C and D clusters
into a set of just ICIclusters, which cover all of V at cost at most V + ~. Finally, it iterates this entire
process until the number of clusters in D is at most 10k.

In order to do this, APPROX-CMSDAuses FINDCOVERto return the required C clusters during
each round. FINDCOVER,in turn, iterates through at most O(ln (llV1/k) ) calls to PARAMETRICBMCP
each of which returns a set of at most 3k clusters which cover all but a (1/e) fiction of the remaining
uncovered vertices from N. These clusters have cost no more than 3(1 + e)OPT.

Using TRANSFORMTOSETCOVERfrom Figure 1, PARAMETRICBMCPconverts the problem to a
set cover instance, and repeatedly calls the Budgeted Maximum Coverage Approximation Algorithm
BMCP,with growing budgets, until the budget is large enough to make BMCP cover the required frac-
tion of vertices. A complete description of the approximation algorithm is given in Figure 2.

3.2 Correctness of Algorithm

To show that our algorithm runs in polynomial time and achieves the stated performance guarantees, we
analyze it from the lower level fi,mctionsup to the top level call, beginning with PARAMETRICBMCP,
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APPROX-CMSDA(G(V,,E),k)

● output: A set of no more than 10k clusters with total “SW of diameters no more than
O(ln (lV1/k)OPT).

● 1.D={{V}:VGV}

2. while(lDl > 10k) do Remark Wecall eachof these iterationsa Round

(a) N = {w~ : VII G D, ‘UDarbitraryE D}
(b) C =FINDCOVER(G(N,.?3),k)
(c) D =MERGE(D,C)

3. return(D)

FINDCOVER(G(N,E), k)

. Outputi A set of no more than 3k[l + in (IN[/k)] clusterswhich cover N with cost no more than
3[1+ in (lN1/k)](l + c)OPT.

● 1.C=O

2. while(N # 0) do

(a) C’= PARAMETRICBMCP(G(N,13),k)
(b) C=CUC’
(c) N= N–{i:i EC~C’}
(d) E = weightsbetweentwo verticesin new,smallerN

return(C)

PARAMETRXCBMCP(G(N,-?3),k)

. Output: A set of no morethan 3k clusterswhichcover(1—l/e) INIor moreverticesfrom N with cost
no more than 3(1 + E)OPT.

● 1. f = the smallestnon-zeroweightbetweenu, v ~ N

2. C’={{V}:V EN}

3. while(lC’1 > 3k or I{v : v e C c C’}1< (1 – l/e)lNl)do

(a) S =TRANSFORMTOSETCOVER(N,f)
(b) C’= BMCP(tS,3f)
(c) f =(1 +e)j

return(C’)

MERGE(D,C)
Remark: D, C sets of vertex sets, VD E D, X’ E C 3 (D ~ C“# 0)

● Output: A set of ICIvertexsetswhich coverall {v : v E X E D UC} atcost no more than the sum of
the costs of C and D.

● 1. foreach C E Cdo

(a) for eachD c D do
i. if(C n D # 0) do

ii. C= CUD; D=D– D

returu(C)

Figure 2: Outline of APPROX-CMSDA

6



and finishing with APPROX-CMSDL.

Lemma 3.1 Given graph G with optimal k-cluster cost OPT, PARAMETRICBMCPreturns no more
than 3k clusters which contain at least (1 – lfe) [Nl of the vertices from IN I. Furthec the sum of
diameters of the returned clusters is no more than (3 + ~)OPT.

Proof. By Lemma 2.2,. we see that if f > OPT, then the call to TRANSFORMTOSETCOVERwill
return a set ,cover instance”problem with optimal solution no more than 20PT + ~. In this case, by
Theorem 2.3, the call to BMCP with budget 3f > 30PT > 20PT + j, will return sets which cover
the stated number “ofvertices. Also, when f > 0, this solution cannot have more than 3k clusters:
each of the clusters has minimum cost ~/k, so any more than 3?cclusters will have cost more than
3f. Therefore, with any ~ > OPT, BMCP(G, 3f ) will return at most 31cclusters which cover enough
vertices.

Since we start .f at the smallest possible (non-zero) value (in fact, we first implicitly test if .f = O
suffices,) and increase it by factors of (1 + e), we are guaranteed to try a value f < (1 + ~)OPT.
This will OCCUr within O(logl+E OPT) iterations. Since OPT is at most the maximum edge weight, the ,
number of iterations is polynomial. ■

Lemma 3.2 Given graph G(N, E) with optimal k-cluster cost OPT, FINDCOVERreturns no more
than 3k[l + in (lN1/k)] clusters which cover N with cost no more than 3[1 + in(lN\/k)] (1 + c)OPT.

Proof. By Lemma 3.1, each call to PARAMETRICBMCPwill return at most 3k clusters of cost 3(1 +
e)OPT, and will leave at most IN I/e of the \NI vertices uncovered. In the following iterations of
PARAMETRICBMCP,we use a subset of N which certainly has an optimal k-clustering with cost no
greater than OPT. After z iterations, we are guaranteed no more than 3k remaining vertices, where
lN1/ez < 3k. To upper bound i, notice that if i is not the last iteration, lN\/ei-l > 3k, and i s
1 + in (rz/3k) < in (n/k). The final iteration generates at most 3k additional clusters. Each of the
1 + In (n/k) iterations returns no more than 3k clusters, of cost at most 3(1 + e)OPT, The lemma
follows. ■

Lemma 3.3 MERGEreturns [Clvertex sets which cover all {v : v E X for cluster X c D UC}, with
cost no more than the sum of the costs of C and D.

Proof. Consider all C U D clusters whose cost is the sum of the costs of C and D. Since each D E D
intersects some C E C, we may replace D and C’with D U C, at no additional cost, by Lemma 2.1.
This process can be continued until each cluster in D has been merged into some cluster in C. ■

Finally, we need to show that the top level function APPROX-CMSDLdoes in fact halt within a
polynomial number. of iterations. To do this, we show that the number of clusters in D is eventually
less than 10k, and that this happens after no more than O(logz logz (n/k)) rounds.

Our algorithm begins with n vertices, and by Lemma 3,2, after the end of the first round, we are
left with 3k[l + in (n/k)] clusters, each of which contributes one vertex towards the second round.
Generalizing this for all rounds, let Di be the set of global clusters at the end of round i, and nz = lDi 1,
Then, no = n, and ni_l is both the number of clusters at the end of round i – 1 and the number of
vertices we need to cluster in the ith round. We get the recurrence

ni+l ~ 3k[l + ln(ni/k)].

7



Let -t~= ni/k, we have ti+I <3 +3” In ti <6. in ti for ti > e. BY having enou@ ro~ds to make t;

constant, we will have a total of O(k) clusters. After O (log* to)rounds, tibecomes constant, but here
we will instead give a simple proof that 0(log2 log2 -to)= 0(log2 log2 (n/k) ) rounds are sufficient.

Lemma 3.4 After at most 5 + log2 logz (n/k) rounds, [D\ contains at most 10k clusters.

Proof. Consider the “iterating” fimction which we use to get log* x from logz x. For any fimction ~
such that j(%) < z for sufficiently large x, the iterating fimction is the number of times you must
apply that fiction to get a constant. More specifically, define the function j* (Z)C to be the number of
times that f () must be iteratively applied to get a result less than C. (Thus, log;(m) 1 gives the familiar
fimction log* z.) Next, we use the fact that for z >2109, 6 “lnz < @. Thus, (6 . h)* (Z)2109 <

(@*(@2109 < (<)*(+. However, ({)” (z)l = (log2 log2 xl, so we need to iterate less than
log2 log2 tO times before reaching t; < 2109. One more iteration for n gives us nl+logz logstl <
3k + 3ks in 2109< 26k. Applying the recwsion fo~ more times gives n5+10g,log,f~l~] < 10k. ■

Thus, APPROX-CMSDAwill terminate in O(log log (n/k)) rounds. Each round has a call to FIIND-
COVER,which makes at most O(log (n/k)) calls to PARAMETRICBMCP.Finally, PARAMETRICBMCP
takes time O((n2 log n +’2V(n2))logl+, OPT), where Z’(Z) is the time to run BMCP. This gives us total
runtime ofi

O(log log (n/k)[log (n/k)(n2 log n + T(n2)) logl+~ OpT])

Since T’(3) is polynomial by [KMN99], so is our algorithm.

Now all that is left is to show that the total cost is no more than the stated bound. Let Czdenote
the set of local clusters from round Z. Since C~covers the set of N vertices, one ffom each D E Di,
we know that each D c D~ intersects a cluster C’in Ci. Let Vi and #i be the sum of diameters of the
global and local clusters during the ith round respectively.

Lemma 3.5 Afier i rounds of APPROX-CMSDA,vi < ~~=1 @i.

Proof. We prove this by induction on i. Before the first round, the lemma is trivially true. After round
i, the costs of C; and Di are @iand Vi respectively. But Di is constructed by calling MERGEon Di_ 1
and Ci, so Vi = Vi_l + @iby Lemma 3.3. Now, inductively substitute for ‘l’i_l and the lemma follows.
■

To get the total cost of all global clusters at the end of the algorithm, we just need to com-

pute V5+10g,logz(~1~), since it was shown in Lemma 3.4 that the number of rounds is at most 5 +
log2 log2 (n/k),

Lemma 3.6 W5+10~,log, (nlk) = OpT” 0(~ (n/k)).

5+10g2log’‘“lk) #z. By separating the summationProof. Note that by Lemma 3.5, w5+10gzlogz(~ik) = ~i=l
into the first term and all others, and noticing that ni is decreasing so all terms with ni> 1 are upper
bounded by nl, we get that the first term in the summation is 3[1 + in (n/k)](l + e)OPT~and the rest
of the terms are OPT. 0((log2 log2 (n/k)) 2). For large enough n/k, the first term dominates all of the
rest, so ford > ~, the cost is no more than 3[1 + in (n/k)] (1 + e)’OPT = OPT. 0(log2 (n/k)), with
small constant terms. ■

Summarizing the above discussion, we have:

Theorem 3.7 There is a polynomial time approximation algorithm for the CMSDAproblem that re-
turns at most 10k clusters whose total diameter is at most O(ln(n/k)) times the optimal solution value
with k clusters. ■

8



.

.

3.3 An Approximation Algorithm for CMSDA for Fixed k

When k is fixed, it is possible to obtain a simple 2-approximation algorithm for the CMSDA problem
using the transformation shown in Figure 1. We present this result below.

Theorem 3.8 When the number of clusters k is fixed there is a 2-approximation algorithm for CMSDA.

Proofi The steps of the approximation algorithm areas follows.

1.

2.

3.

4.

Using the transformation of Figure 1, construct an instance of the minimum cost set cover prob-
lem from the given instance of CMSDAwith the parameter f set to zero.

Find a minimum cost set cover consisting of at most k sets. Since k is fixed this step can be done
in polynomial time by exhaustive search.

If the collection of sets obtained@ Step 2 are not pairwise disjoint, then repeatedly merge pairs
of sets with nonempty intersection until the collection is pairwise disjoint.

Output the collection of sets found in Step 3 as the solution to the CMSDAinstance.

Clearly, the approximation algorithm runs in polynomial time. Applying Lemma 2.2 with f = O,the
cost of an optimal set cover is at most twice the optimal solution value of the CMSDAinstance. Step 2
finds an optimal solution to the set cover problem, and by Lemma 2.1, the merging operations in Step 3
do not increase the total diameter of the clusters. Thus, the total diameter of the clusters produced is at
most twice the optimal value. ■

4 Non-Approximability Results

4.1 Non-Approximability Without Triangle Inequality

We show that, unless P = NP, CMSDcannot be efficiently approximated to within any factor even when
the number of clusters is fixed at 3. We establish this result through a reduction from the well known
Graph 3-colorability (3-COLOR) problem [GJ79].

Proposition 4.1 Unless P = NP, for any p >1, no polynomial time algorithm for the CMSDproblem
can provide a perjiormance guarantee of p.

Proofi Suppose for the sake of contradiction that for some p z 1, there is a polynomial time approxi-
mation algorithm A that provides a petiormance guarantee of p for CMSD.We will show that A can be
used to solve the 3-COLOR problem in polynomial time, contradicting the assumption that F’# NP.

Let G(V, E) denote the undirected graph which represents an arbitrruy instance of 3-COLOR. We
construct an instance of the CMSDproblem (without triangle inequality), consisting of a complete edge
weighted graph G’ on the vertex set V as follows. For any pair of vertices u and W,the weight of {u, v}
is set to 3p + 1 if {u, v} is an edge in 23 and to 1 otherwise. The number of clusters is set to 3. It is
easy to see that if G is 3-colorable, then the optimal solution value to the CMSD instance is at most 3.
Using this fact, it straightforward to verify that when A is executed on G’, the total diameter of the 3
clusters returned by A is at most 3p if and only if G is 3-colorable. ■

This non-approximability result should be contrasted with the known result that the CMSDproblem
is solvable in polynomial time for 2 clusters [MS89].
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4.2 A Non-Approximability Result for CMSDA

Here, we prove our non-approximability result for CMSDL. We establish this result through a reduction
from the well known CLIQUEproblem [GJ79].

Proposition 4.2 Unless P = NP, for any c >0, nopolynomial time algorithm for the CMSDAproblem
can provide a solution which satisjies the bound on the number of clusters and whose total diameter is
within a factor 2 – e of the optimal value.

Proofi We use a reduction from the CLIQUEproblem. Let the undh-ected graph G(v, l?) and integer
J < \VI denote an arbitrary instance of the CLIQUEproblem. We construct an instance of the CMSDA
problem consisting of a complete edge weighted graph G’ on the vertex set V as follows. For any
pair of vertices u and v, the weight of {u, v} is set to 1 if {u, v} is an edge in l? and to 2 otherwise.
Obviously, the resulting edge weights satis~ triangle inequality. The number of clusters k is set to
IVl – J + 1. Now, it straightforward to see that if G has a clique with J or more vertices, then G’
can be partitioned into at most k clusters with a total dhneter of 1: the vertices of the clique form
one cluster of diameter 1 and each of the remaining IVI – J vertices forms a separate cluster with a
diameter of zero. Further, “ifG does not have a clique with J or more vertices, then any solution with
at most k clusters must have a total diameter of at least 2. The proposition follows. ■

5 Other Results

In this section, we briefly mention our other results on the CMSDproblem. Details of these results will
appear in a complete version of the paper.

We have considered the CMSD problem when the underlying graph is a tree with edge weights
(rather than a complete graph). In this version, the distance between any pair of nodes is the length
of the path between the nodes in the tree. For this problem, we have developed a polynomial time
algorithm using dynamic programming. This algorithm uses O (kn2 ) space and runs in O (k2n3) time.

We have also considered the clustering problem where the goal is to minimize the sum of the radii of
the clusters (rather than the sum of the diameters). To discuss these results, we first recall the definition
of cluster radius. Let C be a cluster. For any node v in C’,let dwdenote the maximum distance between
v and any other node in C. The radius of C is given by min{dV : v E C’}. A node v for which
d. is equal to the radius of C is a center of C. When edge weights satisfi the triangle inequality,
the diameter of a cluster is at most twice the radius. Therefore, our approximation result for CMSDA
(Section 3) carries over (with a different constant within the big-O) to the clustering problem where
the goal is to minimize the sum of the radii. We have also been able to show an interesting contrast
between the diirneter and radius problems for the non-metric case. For fixed k, while it is NP-hard
to obtain even an approximation for the non-metric version of the diameter problem (Section 4. 1), the
corresponding problem for radius can be solved in polynomial time.
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