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Abstract

We consider the problem of partitioning the nodes of a complete edge weighted
graph into k clusters so as to minimize the sum of the diameters of the clusters.
Since the problem is NP-complete, our focus is on the development of good ap-
proximation algorithms. When edge weights satisfy the triangle inequality, we
present the first approximation algorithm for the problem. The approximation al-
gorithm yields a solution that has no more than 10k clusters such the total diameter
of these clusters is within a factor O(log (n/k)) of the optimal value for & clusters,
where 7 is the number of nodes in the complete graph. For any fixed &, we present
an approximation algorithm that produces k& clusters whose total diameter is at
most twice the optimal value. When the distances are not required to satisfy the
triangle inequality, we show that, unless P = NP, for any p > 1, there is no poly-
nomial time approximation algorithm that can provide a performance guarantee of
o even when the number of clusters is fixed at 3. Other results obtained include
a polynomial time algorithm for the problem when the underlying graph is a tree
with edge weights.
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1 Introduction

1.1 Motivation

The main goal of clustering is to partition a set of objects into homogeneous and well separated subsets
(clusters). Clustering techniques have been used in a wide variety of application areas including in-
formation retrieval, image processing, pattern recognition and database systems [Ra97, ZRL96, JD88,
DH?73]. Over the last three decades, several clustering methods have been developed for various appli-
cations [HJ97, JD88]. Many of these methods define a distance (or a similarity measure) between each
pair of objects, and partition the collection into clusters so as to optimize a suitable objective based on
the distances. Some of the objectives that have been studied in the literature include minimizing the
maximum diameter or radius, total pairwise distances in clusters, etc. The survey paper by Hansen and
Jaumard [HI97] provides an extensive list of clustering objectives and applications for these objectives.

Clustering problems where the objective is to minimize the maximum cluster diameter have been
well studied from an algorithmic point of view (see Section 1.4 for a summary). The focus of this
paper is on clustering problems where the objective is to partition a given collection of objects into a
specified number of clusters so as to minimize the sum of the diameters of individual clusters, The
motivation for this objective is derived from the fact that in several applications, clustering algorithms
that minimize the maximum diameter produce a “dissection effect” [HIJ97, MS89]. This effect causes
objects that should normally belong to the same cluster to be assigned to different clusters, as otherwise
the diameter of a cluster becomes too large. In such applications, the sum of diameters objective is more
useful as it reduces the dissection effect [HJ97, MS89].

1.2 Problem Formulation and Previous Work

To study the clustering problem in a general setting, we represent the objects to be clustered as nodes
of a complete edge-weighted undirected graph G(V, E) with |V| = n. The distance (or similarity
measure) between any pair of objects can then be represented as the weight of the corresponding' edge
in E. For an edge {u,v} in F, we will use w(u, v) to denote the weight of the edge. It is assumed that
the edge weights are nonnegative. For any subset V' of V, the diameter of V' (denoted by DIA (V"))
is the weight of a largest edge in the complete subgraph of G induced on V'. Note that when {V’| = 1,
DIA(V') = 0. A formal statement of the clustering problem considered in this paper is as follows.

Clustering to Minimize Sum of Diameters (CMsD)

Instance: A complete graph G(V, E)), a nonnegative weight (or distance) w(u, v) for each edge {u,v}
in F and an integer k < |V|.

Requirement: Partition V into & subsets V1, V3, .. ., Vi such that Zle DIA(V;) is minimized.

In general, edge weights in instances of CMSD need not satisfy the triangle inequality. We use
CMSDA to denote instances of CMSD where edge weights satisfy the triangle inequality. Most of our
results are for the CMSD problem. We assume without loss of generality that the optimal solution
value to any given instance of CMSDp is strictly greater than zero. We may do so since it is easy to
determine whether a given instance of CMSDa can be partitioned into a specified number of clusters
each of which has a diameter of zero.

We now summarize the known results from the algorithmic literature for the CMSD problem. Prior
work on the CMSD problem has been restricted to the case where the number of clusters & is fixed.




Hansen and Jaumard [HJ87] considered the Euclidean version of CMSDA with k = 2 and presented an
algorithm with a running time of O(n3logn). Later, Monma and Suri [MS89] improved the running
time to O(n?). These authors also showed that for & = 2, the CMSD problem (without the triangle
inequality) can be solved in polynomial time. Capoyleas et al. [CRW91] also studied a generalized
version of the CMSDa problem for points in %2. They showed that for any fixed &, the problem can be
solved in polynomial time for any monotonic increasing function of cluster radius or diameter. Exam-
ples of such monotonic increasing functions include sum of diameters (or radii), maximum diameter
(or radius), etc.

1.3 Summary of Results

We study the complexity and approximability of the CMSD problem. The main results of this paper
can be summarized as follows:

1. We show that unless P = NP, CMSD cannot be efficiently approximated to within any factor even
when the number of clusters is fixed at 3. (In contrast, note that CMSD is known to be efficiently
solvable when the number of clusters is equal to 2 [MS89].)

2. For CMSDp, we show. that if the constraint on the number of clusters must be met, then it is
NP-hard to approximate the total diameter to within a factor 2 — ¢, for any ¢ > 0.

3. In contrast to the non-approximability results above, we present a polynomial time bicriteria
approximation algorithm [MR+98] for CMSDAa. This approximation algorithm outputs a solution
with at most 10k clusters whose total diameter is within a factor of O(log (n/k)) of the minimum
possible total diameter with £ clusters.

4. We also show that when the number of clusters % is fixed, there is an approximation algorithm
for CMsSD which produces at most & clusters whose total diameter is within a factor of 2 of the
minimum possible total diameter.

5. Finally, we can show that when the CMSD problem is solvable in polynomial time when restricted
to trees and more generally to graphs of bounded treewidth.

Due to space limitations, the remainder of this paper discusses the above approximation results. A
brief summary of these results is given in Section 5. '

1.4 Other Related Work

A number of researchers have addressed the clustering problem where the goal is to minimize the
maximum diameter or radius of a cluster. In location theory literature, the problem of minimizing
the maximum radius is also known as the k-center problem. For the metric version of the problem
of minimizing the maximum diameter, Gonzalez [Go85] presented a simple greedy heuristic that runs
in O(nk) time and provides a performance guarantee of 2. He also showed that, unless P = NP, the
performance guarantee cannot be improved. Using a general technique for approximating bottleneck
problems, Hochbaum and Shmoys [HS86] also presented a heuristic with a performance guarantee of
2 for the metric version of the k-center problem.

In [FPT81, MS84], it is shown that the problems of minimizing the maximum radius or diameter
remain NP-hard even for points in R2. For this geometric version, Feder and Greene [FG88] improved




the running time of Gonzalez’s heuristic to O(n logn). They also showed that it is NP-hard to achieve
a performance guarantee of 1.82 and 1.97 respectively for the diameter and radius problems in R2.
Recently, Agarwal and Procopiuc [AP98] have presented an exact algorithm for the &-center problem
for points in R%. Their algorithm has a running time of O(k log k) + (k/ €Ok,

Several other types of clustering problems have also been studied in the literature. For example,
Charikar et al. [CC+97] study an incremental version of the clustering problem for minimizing the
maximum radius. Pferschy et al. [PRW94] study geometric versions of clustering problems using
objectives such as minimizing the total perimeter. Agarwal and Procopiuc [AP00] study projective
clustering problems where the goal is to cover a set of points in R using hyper-strips, and the objective
is to minimize the maximum width of the strips. References where other types of clustering problems
are studied include [Ma99, ABC+98, GH98, DKS97, Da%4, BKK9%4].

1.5 Organization

The remainder of this paper is organized as follows. In Section 2, we establish some preliminary results.
In Section 3, we present our approximation results for CMSDA. Section 4 presents lower bounds on
achievable performance guarantees. Section 5 briefly mentions our other results.

2 Preliminaries

In this section, we develop our approximation results for CMSDA. We begin with some preliminary
results that are used throughout this section.

2.1 A Merging Lemma

The formulation of CMSD problem requires that the clusters be pairwise disjoint. Our approximation al-
gorithms may produce clusters which may not satisfy the disjointness condition. The following lemma
points out that for instances of CMSD 5, we can merge pairs of intersecting sets without increasing the
total diameter.

Lemma 2.1 Let I be an instance of CMSD given by the edge weighted complete graph G(V, E) and
integer k. Let C = {C1,Cy,...,C} be a collection of subsets of V such that their union is V and the
sum of the diameters of all the subsets in C is 1. Further, suppose C; and C; (i # j) are two sets in
C such that C; N C; # 0. Then the total diameter of the collection C' obtained by deleting C; and C;
Jrom C and adding the set C; U C is at most 1.

Proof: Clearly, the lemma would follow by showing that DIA(C; U C;) < DIA(C;) + DIA(C;).
Let w be a node in C;NC; and let u and v be two nodes in C;UC; such that w(u, v) = DIA(C;UC;).
If u and v are both in C; (or both in C}), then w(u,v) < DIA(C;) (w(u,v) < DIA(C;)), and the proof
is trivial. So, assume that 4 € C; and v € C;. By the triangle inequality, w(u,v) < w(u,w) +w(v, w).
Since u and w are both in Cj, w(u,w) < DIA(C;). Similarly, w(v,w) < DIA(Cj). Therefore,
DIA(C; U Cj) = w(u,v) < DIA(C;) + DIA(C}), and this completes the proof. ]

In view of the above lemma, when considering instances of CMSDa, we may repeatedly merge
pairs of clusters with nonempty intersection until the clusters are pairwise disjoint. The merging process
does not increase the total diameter of the clusters. This observation will be used many times in the
remainder of this section.




TRANSFORMTOSETCOVER(G(V, E), k, f)
f is a nonnegative parameter.

e Output: An instance of weighted set cover problem with base set (), and collection W of
nonempty subsets of @, each with a weight.

e 1. Q =V /*Note: |Q| =n.
2. W=9
3. foreachv € V do
(a) Sort {w(v,u) : u € V} into (strictly) increasing order.
(b) Leta; =0 < ag < ... < oy, denote the sorted order.
(c) fori=1tor, do ,
i Let Wi = {u : w(u,v) < o5}
ii. W=W+ (W}, DIA(W?) + f/k) /* A set and its weight
-~ return(Q, W)

Figure 1: Transformation from CMSDA to Weighted Set Cover

2.2 Transformation to Weighted Set Cover

Our results rely on a transformation from instances of CMSDA to instances of weighted set cover
problem. Given instance of CMSD A along with a nonnegative value f, the transformatien in Figure 1
produces an instance of the weighted set cover problem. For each node v € V, the transformation
considers the nodes in V' in increasing order of distances from v. For each distinct distance d, the
transformation outputs a set consisting of all the nodes which are at a distance of at most d from v. The
weight of each set w is chosen to DIA(w) + f/k. It is clear that the transformation can be carried out
in polynomial time. The following lemma points out an important property of the resulting set cover
instance.

Lemma 2.2 Let I denote an instance of CMSDa problem, let f be a nonnegative number and let T'
denote the instance of the weighted set cover problem produced by the transformation in Figure 1. Let
OPT(I) and OPT(I') denote the optimum solution value to I and I' respectively. Then, OPT(I') <
20PT(I) + f.

Proof: Let C;, Ca, Cy, denote the clusters in an optimal solution to I. Thus, OPT(I) = le DIA(C;).
We will show that there is a subcollection of k sets in I’ such that the total weight of the sets in the
subcollection is at most 2OPT(I) + f. The lemma would then follow immediately.

Consider each cluster C; (1 < ¢ < k) in the optimal solution to I. If C; contains two or more
nodes, let v; be a node in C; such that v; is one of the endpoints of an edge whose weight is equal
to DIA(C;). If C; contains only one node (i.e., DIA(C;) = 0), let v; be that node. Now, by the
transformation of Figure 1, I’ has a set, say w;, that includes all the nodes which are at a distance
of at most DIA(C;) from v;. By the triangle inequality, DIA(w;) < 2DIA(C;). So, c(w;) =
DIA(w;)+ f/k < 2DIA(C;) + f/k. Clearly, the subcollection {w;,ws, . .., wg} covers the base set
Q. The weight of this cover is Y_%_; c¢(w;), which is at most Y_%_, (2 DIA(C;)+ f /k) = 2 OPT(I) +f.
This completes the proof of the lemma. n




2.3 The Budgeted Maximum Coverage Problem

For obtaining our approximation result for CMSDA (where the number of clusters & is a part of the
problem instance), we use a known approximation result for the Budgeted Maximum Coverage Prob-
lem (BMcCP). Below, we provide a definition of the problem and state the necessary approximation
result.

~ An instance of BMCP consists of a base set Q@ = {q1,42,...,qn}, a collection W of nonempty
subsets of Q, a nonnegative weight c(w) for each set w € W and a nonnegative budget B. The goal is
to choose a subcollection of sets from W so that the total cost of the chosen sets is at most B and the
number of elements covered by the chosen sets is a maximum. This problem is NP-hard since it is'a
restatement of the minimum cost set cover problem. The following approximation result for BMCP is
proved in [KMN99].

Theorem 2.3 BMCP can be efficiently approximated to within a factor (1 — 1/e). [

It is shown in [KMNO99] that the approximation algorithm referred to in Theorem 2.3 can also be
used for the more general version of BMCP where there is a weight associated with each element of the
base set, and the goal is to maximize the weight of the elements covered by the chosen sets. For our
results, the unit weight version of BMCP where the weight of each element of the base set is 1, suffices.

3 Approximating CMSDp

3.1 Algorithm Overview

“We give a brief top-down description of our approximation algorithm APPROX-CMSD A, and introduce
the terminology we will use in later analysis. At all times, APPROX-CMSD maintains a set D of
clusters which cover all vertices in V, at cost U'. We call these global clusters, since they cover all
vertices in V. It begins with D consisting of |V| singleton clusters, and progresses through a series
of rounds. During each round, it constructs a set N by selecting an arbitrary vertex from each of its
current clusters. It then finds a clustering C on N. We call the clusters in C local clusters, since they do
not need to cover all of V, but only N. The number of clusters |C| is at most 3k[1 + In (|N|/k)]. We
use ¢ to denote their total cost. Next, APPROX-CMSD A uses MERGE to combine the C and D clusters
into a set of just |C| clusters, which cover all of V' at cost at most ¥ + ). Finally, it iterates this entire
process until the number of clusters in D is at most 10k.

In order to do this, APPROX-CMSDA uses FINDCOVER to return the required C clusters during
each round. FINDCOVER, in turn, iterates through at most O(ln (| N|/k)) calls to PARAMETRICBMCP
each of which returns a set of at most 3k clusters which cover all but a (1/e) fraction of the remaining
uncovered vertices from N. These clusters have cost no more than 3(1 + €)OPT.

_ Using TRANSFORMTOSETCOVER from Figure 1, PARAMETRICBMCP converts the problem to a

set cover instance, and repeatedly calls the Budgeted Maximum Coverage Approximation Algorithm

BMCP, with growing budgets, until the budget is large enough to make BMCP cover the required frac-

tion of vertices. A complete description of the approximation algorithm is given in Figure 2.

3.2 Correctness of Algorithm

To show that our algorithm runs in polynomial time and achieves the stated performance guarantees, we
analyze it from the lower level functions up to the top level call, beginning with PARAMETRICBMCP,




APPROX-CMSDA(G(V, E), k)
e Output: A set of no more than 10k clusters with total sum of diameters no more than
O(In (JV]/k)OPT).
e 1.D={{r}:veV}
2. while(|D| > 10k) do Remark: We call each of these iterations a Round
(@) N = {vp : VD € D,vp arbitrary € D}
(b) C =FINDCOVER(G(N, E), k)
(c) D =MERGE(D,(C)
3. return(D)
FINDCOVER(G(N, E), k)
e Output: A set of no more than 3k[1 + In (|N|/k)] clusters which cover N with cost no more than
3[1+In(|N|/k)](1 + €)OPT. :
. 1.C=90
2. while(V # @) do
(8) C' = PARAMETRICBMCP(G(N, E), k)
) C=Cul
) N=N-{i:ieCel'}
(d) E = weights between two vertices in new, smaller N
return(C)
PARAMETRICBMCP(G(N, E), k)

e Output: A set of no more than 3% clusters which cover (1 — 1/e)|N| or more vertices from N with cost
no more than 3(1 + ¢)OPT. '

) 1. f = the smallest non-zero weight between u,v € N
2. ={{v} : ve N}
3. while(|C'| > 3kor |{v : ve C €'} < (1-1/e)|N|)do
(a) S =TRANSFORMTOSETCOVER(N, f)
(b) C' = BMCP(S,3f)
© f=Q0+eof
return(C")

MERGE(D, ()
Remark: D, C sets of vertexsets, YD € D, 3C € C3 (DNC #0)

e Output: A set of |C| vertex sets which cover all {v : v € X € D UC} at cost no more than the sum of
the costs of C and D.

] 1. foreach C € C do

(a) foreach D € D do
i. if(CND #P)do
ih.h C=CUD;D=D-D

return(C)

Figure 2: Outline of APPROX-CMSDA




and finishing with APPROX-CMSDA.

Lemma 3.1 Given graph G with optimal k-cluster cost OPT, PARAMETRICBMCP returns no more
than 3k clusters which contain at least (1 — 1/€)|N| of the vertices from |N\|. Further, the sum of
diameters of the returned clusters is no more than (3 + €)OPT.

Proof. By Lemma 2.2, we see that if f > OPT, then the call to TRANSFORMTOSETCOVER will
return a set cover instance'problem with optimal solution no more than 20PT + f. In this case, by
Theorem 2.3, the call to BMCP with budget 3f > 30PT > 20PT + f, will return sets which cover
the stated number of vertices. Also, when f > 0, this solution cannot have more than 3% clusters:
each of the clusters has minimum cost f/k, so any more than 3k clusters will have cost more than
3f. Therefore, with any f > OPT, BMCP(G, 3f) will return at most 3k clusters which cover enough
vertices. _ _ :

Since we start f at the smallest possible (non-zero) value (in fact, we first implicitly testif f = 0
suffices,) and increase it by factors of (1 + €), we are guaranteed to try a value f < (1 + €)OPT.
This will occur within O(log, .. OPT) iterations. Since OPT is at most the maximum edge weight, the
number of iterations is polynomial. |

Lemma 3.2 Given graph G(N, E) with optimal k-cluster cost OPT, FINDCOVER returns no more
than 3k{1 + In (|N|/k)] clusters which cover N with cost no more than 3[1 + In (|N|/ k)](1 + €)OPT.

Proof. By Lemma 3.1, each call to PARAMETRICBMCP will return at most 3k clusters of cost 3(1 +
€)OPT, and will leave at most |N|/e of the |N| vertices uncovered. In the following iterations of
PARAMETRICBMCP, we use a subset of N which certainly has an optimal k-clustering with cost no
greater than OPT. Afier ¢ iterations, we are guaranteed no more than 3k remaining vertices, where
|N|/e* < 3k. To upper bound 4, notice that if 4 is not the last iteration, |N|{/e!™! > 3k, and i <
1+ In(n/3k) < In(n/k). The final iteration generates at most 3% additional clusters. Each of the
1 + In(n/k) iterations returns no more than 3k clusters, of cost at most 3(1 + €¢)OPT. The lemma
follows. [ |

Lemma 3.3 MERGE returns |C| vertex sets which cover all {v : v € X for cluster X € DUC}, with
cost no more than the sum of the costs of C and D.

Proof. Consider all C U D clusters whose cost is the sum of the costs of C and D. Since each D € D
intersects some C' € C, we may replace D and C with D U C, at no additional cost, by Lemma 2.1.
This process can be continued until each cluster in D has been merged into some cluster in C. n

Finally, we need to show that the top level function APPROX-CMSD A does in fact halt within a
polynomial number of iterations. To do this, we show that the number of clusters in D is eventually
less than 10k, and that this happens after no more than O(log, log, (n/k)) rounds. '

Our algorithm begins with n vertices, and by Lemma 3.2, after the end of the first round, we are
~ left with 3k[1 + In(n/k)] clusters, each of which contributes one vertex towards the second round.
Generalizing this for all rounds, let D; be the set of global clusters at the end of round ¢, and n; = |D;|.
Then, ng = n, and n;_; is both the number of clusters at the end of round 7 — 1 and the number of
vertices we need to cluster in the i*® round. We get the recurrence

Ni+1 < 3k[1 + In(n;/k)].




Lett; = n;/k, we have ¢;41 < 3+ 3-Int; < 6-Int; fort; > e. By having enough rounds to make ¢;
constant, we will have a total of O(k) clusters. After O(log* to) rounds, £; becomes constant, but here
we will instead give a simple proof that O(log, log, to) = O(log, log, (n/k)) rounds are sufficient.”

Lemma 3.4 After at most 5 + log log, (n/k) rounds, |D| contains at most 10k clusters.

Proof. Consider the “iterating” function which we use to get log* = from log, z. For any function f
such that f(z) < z for sufficiently large z, the iterating function is the number of times you must
apply that function to get a constant. More specifically, define the function f*(z)¢ to be the number of
times that f() must be iteratively applied to get a result less than C'. (Thus, log3(z); gives the familiar
function log* z.) Next, we use the fact that for z > 2109, 6 - Inz < /z. Thus, (6 - In)*(z)2109 <
(V) (@)2100 < (/) (2)1. However, (/- Y*(z); = [logylogsy z], so we need to iterate less than
log, logs to times before reaching ¢; < 2109. One more iteration for n gives US nytiog,logyty <
3k + 3k -1n2109 < 26k. Applying the recursion four more times gives 75 10g, log, (n/k) < 10k. =
Thus, APPROX-CMSD A will terminate in O(log log (n/k)) rounds. Each round has a call to FIND-
COVER, which makes at most O(log (n/k)) calls to PARAMETRICBMCP. Finally, PARAMETRICBMCP
takes time O((n? logn +T(n?)) logy .. OPT), where T'(z) is the time to run BMCP. This gives us total
runtime of:
O(loglog (n/k)[log (n/k)(n? log n + T(n?)) log, . OPT])
Since T'(z) is polynomial by [KMN99], so is our algorithm.
Now all that is left is to show that the total cost is no more than the stated bound. Let C; denote
the set of local clusters from round i. Since C; covers the set of N vertices, one from each D € D;,

we know that each D € D; intersects a cluster C in C;. Let ¥; and 1; be the sum of diameters of the
global and local clusters during the i® round respectively.

Lemma 3.5 After i rounds of APPROX-CMSDx, ¥; < Z;’.—:l ¥;.

Proof. We prove this by induction on i. Before the first round, the lemma is trivially true. After round
1, the costs of C; and D; are ; and ¥; respectively. But D; is constructed by calling MERGE on D;_,
and C;, so ¥; = ¥,_, +1; by Lemma 3.3. Now, inductively substitute for ¥;_; and the lemma follows.
= c

To get the total cost of all global clusters at the end of the algorithm, we just need to com-
pute ¥s110g, log, (n/k)> SinCE it was shown in Lemma 3.4 that the number of rounds is at most 5 +

log, log, (n/k), |

Lemma 3.6 ‘115-Hf)g2 logy (nfk) = OPT - O(ln (n/k))

Proof. Note that by Lemma 3.5, U5 j0g, 10g, (n/k) = 5+1°g2 logz (n/k) ;. By separating the summation
into the first term and all others, and noticing that n; 1s decreasmg so all terms with n;>; are upper
bounded by n1, we get that the first term in the sammation is 3[1 + In (n/k)]}(1 + €)OPT, and the rest
of the terms are OPT - O((log,, log, (n/k))?). For large enough n/k, the first term dominates all of the
rest, so for € > ¢, the cost is no more than 3[1 + In (n/k)}(1 + €¢)’OPT = OPT - O(log,(n/k)), with
small constant terms. ]

Summarizing the above discussion, we have:

Theorem 3.7 There is a polynomial time approximation algorithm for the CMSDa problem that re-
turns at most 10k clusters whose total diameter is at most O(In(n/k)) times the optimal solution value
with k clusters. )




3.3 An Approximation Algorithm for CMSD, for Fixed %

When k is fixed, it is possible to obtain a simple 2-approximation algorithm for the CMSDa problem
using the transformation shown in Figure 1. We present this result below.

Theorem 3.8 When the number of clusters k is fixed, there is a 2-approximation algorithm for CMSDA.

Proof: The steps of the approximation algorithm are as follows.

1. Using the transformation of Figure 1, construct an instance of the minimum cost set cover prob-
lem from the given instance of CMSDA with the parameter f set to zero.

2. Find a minimum cost set cover consisting of at most & sets. Since £ is fixed, this step can be done
" in polynomial time by exhaustive search.

3. If the collection of sets obtained in Step 2 are not pairwise disjoint, then repeatedly merge pairs
of sets with nonempty intersection until the collection is pairwise disjoint.

4. Output the collection of sets found in Step 3 as the solution to the CMSD instance.

Clearly, the approximation algorithm runs in polynomial time. Applying Lemma 2.2 with f = 0, the
cost of an optimal set cover is at most twice the optimal solution value of the CMSD A instance. Step 2
finds an optimal solution to the set cover problem, and by Lemma 2.1, the merging operations in Step 3
do not increase the total diameter of the clusters. Thus, the total diameter of the clusters produced is at
most twice the optimal value. [

4 Non-Approximability Results

4.1 Non-Approximability Without Triangle Inequality

We show that, unless P = NP, CMSD cannot be efficiently approximated to within any factor even when
the number of clusters is fixed at 3. We establish this result through a reduction from the well known
Graph 3-colorability (3-COLOR) problem [GJ79].

Proposition 4.1 Unless P = NP, for any p > 1, no polynomial time algorithm for the CMSD problem
can provide a performance guarantee of p.

Proof: Suppose for the sake of contradiction that for some p > 1, there is a polynomial time approxi-
mation algorithm .4 that provides a performance guarantee of p for CMSD. We will show that A can be
used to solve the 3-COLOR problem in polynomial time, contradicting the assumption that P # NP.

Let G(V, E) denote the undirected graph which represents an arbitrary instance of 3-COLOR. We
construct an instance of the CMSD problem (without triangle inequality), consisting of a complete edge
weighted graph G’ on the vertex set V' as follows. For any pair of vertices u and v, the weight of {u, v}
is set to 3p + 1 if {u, v} is an edge in E and to 1 otherwise. The number of clusters is set to 3. It is
easy to see that if G is 3-colorable, then the optimal solution value to the CMSD instance is at most 3.
Using this fact, it straightforward to verify that when A is executed on G, the total diameter of the 3
clusters returned by A is at most 3p if and only if G is 3-colorable. n

This non-approximability result should be contrasted with the known result that the CMSD problem
is solvable in polynomial time for 2 clusters [MS89].




4.2 A Non-Approximability Result for CMSDa

Here, we prove our non-approximability result for CMSD. We establish this result through a reduction
from the well known CLIQUE problem [GJ79].

Proposition 4.2 Unless P = NP, for any € > 0, no polynomial time algorithm for the CMSD 5 problem
can provide a solution which satisfies the bound on the number of clusters and whose total diameter is
within a factor 2 — € of the optimal value.

Proof: We use a reduction from the CLIQUE problem. Let the undirected graph G(v, E)) and integer
J < |V denote an arbitrary instance of the CLIQUE problem. We construct an instance of the CMSDA
problem consisting of a complete edge weighted graph G’ on the vertex set V' as follows. For any
pair of vertices u and v, the weight of {u, v} is set to 1 if {u,v} is an edge in E and to 2 otherwise.
Obviously, the resulting edge weights satisfy triangle inequality. The number of clusters k is set to
[V| — J + 1. Now, it straightforward to see that if G has a clique with J or more vertices, then G’
can be partitioned into at most & clusters with a total diameter of 1: the vertices of the clique form
one cluster of diameter 1 and each of the remaining |V| — J vertices forms a separate cluster with a
diameter of zero. Further, if G does not have a clique with J or more vertices, then any solution with
at most k clusters must have a total diameter of at least 2. The proposition follows. |

5 Other Results

In this section, we briefly mention our other results on the CMSD problem. Details of these results will
appear in a complete version of the paper. ’

We have considered the CMSD problem when the underlying graph is a tree with edge weights
(rather than a complete graph). In this version, the distance between any pair of nodes is the length
of the path between the nodes in the tree. For this problem, we have developed a polynomial time
algorithm using dynamic programming. This algorithm uses O(kn2) space and runs in O(k?n3) time.

We have also considered the clustering problem where the goal is to minimize the sum of the radii of
the clusters (rather than the sum of the diameters). To discuss these results, we first recall the definition
of cluster radius. Let C be a cluster. For any node v in C, let d,, denote the maximum distance between
v and any other node in C. The radius of C is given by min{d, : v € C}. A node v for which
d, is equal to the radius of C is a center of C. When edge weights satisfy the triangle inequality,
the diameter of a cluster is at most twice the radius. Therefore, our approximation result for CMSDA
(Section 3) carries over (with a different constant within the big-O) to the clustering problem where
the goal is to minimize the sum of the radii. We have also been able to show an interesting contrast
between the diameter and radius problems for the non-metric case. For fixed k, while it is NP-hard
to obtain even an approximation for the non-metric version of the diameter problem (Section 4.1), the
corresponding problem for radius can be solved in polynomial time.
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