

LA-UR- 00-982

Approved for public release;
distribution is unlimited.

Title:

APPROXIMATION ALGORITHMS FOR CLUSTERING TO MINIMIZE
THE SUM OF DIAMETERS

Author(s):

Stephan "NMI" Kopp, TSA-2
Henning S. Mortveit, TSA-2
Christian M. Reidys, TSA-2

Submitted to:

7th Scandinavian Workshop on Algorithmic Theory (SWAT)
Bergen, Norway
July 5-7, 2000

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Approximation Algorithms for Clustering to Minimize the Sum of Diameters¹

(Extended Abstract)

SRINIVAS R. DODDI² MADHAV V. MARATHE² S. S. RAVI^{2,3}

DAVID S. TAYLOR⁴ PETER WIDMAYER⁵

February 15, 2000

RECEIVED

OCT 04 2000

OSTI

Abstract

We consider the problem of partitioning the nodes of a complete edge weighted graph into k clusters so as to minimize the sum of the diameters of the clusters. Since the problem is NP-complete, our focus is on the development of good approximation algorithms. When edge weights satisfy the triangle inequality, we present the first approximation algorithm for the problem. The approximation algorithm yields a solution that has no more than $10k$ clusters such the total diameter of these clusters is within a factor $O(\log(n/k))$ of the optimal value for k clusters, where n is the number of nodes in the complete graph. For any fixed k , we present an approximation algorithm that produces k clusters whose total diameter is at most twice the optimal value. When the distances are not required to satisfy the triangle inequality, we show that, unless $P = NP$, for any $\rho \geq 1$, there is no polynomial time approximation algorithm that can provide a performance guarantee of ρ even when the number of clusters is fixed at 3. Other results obtained include a polynomial time algorithm for the problem when the underlying graph is a tree with edge weights.

¹Supported by Department of Energy Contract W-7405-ENG-36.

²Los Alamos National Laboratory, P. O. Box 1663, MS B265, Los Alamos NM 87545. Email: {srinu,marathe}@lanl.gov.

³Department of Computer Science, University at Albany - State University of New York, Albany, NY 12222. Email: ravi@cs.albany.edu. Research supported by NSF Grant CCR-97-34936.

⁴Department of Computer Science, University of California, Los Angeles, CA 90095-1596. Work done while visiting Los Alamos National Laboratory. Email: dstaylor@cs.ucla.edu.

⁵Institute for Theoretical Computer Science, ETH, 8092 Zürich, Switzerland. Work done while visiting Los Alamos National Laboratory. Email: widmayer@inf.ethz.ch.

1 Introduction

1.1 Motivation

The main goal of clustering is to partition a set of objects into homogeneous and well separated subsets (clusters). Clustering techniques have been used in a wide variety of application areas including information retrieval, image processing, pattern recognition and database systems [Ra97, ZRL96, JD88, DH73]. Over the last three decades, several clustering methods have been developed for various applications [HJ97, JD88]. Many of these methods define a distance (or a similarity measure) between each pair of objects, and partition the collection into clusters so as to optimize a suitable objective based on the distances. Some of the objectives that have been studied in the literature include minimizing the maximum diameter or radius, total pairwise distances in clusters, etc. The survey paper by Hansen and Jaumard [HJ97] provides an extensive list of clustering objectives and applications for these objectives.

Clustering problems where the objective is to minimize the maximum cluster diameter have been well studied from an algorithmic point of view (see Section 1.4 for a summary). The focus of this paper is on clustering problems where the objective is to partition a given collection of objects into a specified number of clusters so as to minimize the sum of the diameters of individual clusters. The motivation for this objective is derived from the fact that in several applications, clustering algorithms that minimize the maximum diameter produce a “dissection effect” [HJ97, MS89]. This effect causes objects that should normally belong to the same cluster to be assigned to different clusters, as otherwise the diameter of a cluster becomes too large. In such applications, the sum of diameters objective is more useful as it reduces the dissection effect [HJ97, MS89].

1.2 Problem Formulation and Previous Work

To study the clustering problem in a general setting, we represent the objects to be clustered as nodes of a complete edge-weighted undirected graph $G(V, E)$ with $|V| = n$. The distance (or similarity measure) between any pair of objects can then be represented as the weight of the corresponding edge in E . For an edge $\{u, v\}$ in E , we will use $\omega(u, v)$ to denote the weight of the edge. It is assumed that the edge weights are nonnegative. For any subset V' of V , the **diameter** of V' (denoted by $\text{DIA}(V')$) is the weight of a largest edge in the complete subgraph of G induced on V' . Note that when $|V'| = 1$, $\text{DIA}(V') = 0$. A formal statement of the clustering problem considered in this paper is as follows.

Clustering to Minimize Sum of Diameters (CMSD)

Instance: A complete graph $G(V, E)$, a nonnegative weight (or distance) $\omega(u, v)$ for each edge $\{u, v\}$ in E and an integer $k \leq |V|$.

Requirement: Partition V into k subsets V_1, V_2, \dots, V_k such that $\sum_{i=1}^k \text{DIA}(V_i)$ is minimized.

In general, edge weights in instances of CMSD need not satisfy the triangle inequality. We use CMSD_Δ to denote instances of CMSD where edge weights satisfy the triangle inequality. Most of our results are for the CMSD_Δ problem. We assume without loss of generality that the optimal solution value to any given instance of CMSD_Δ is strictly greater than zero. We may do so since it is easy to determine whether a given instance of CMSD_Δ can be partitioned into a specified number of clusters each of which has a diameter of zero.

We now summarize the known results from the algorithmic literature for the CMSD problem. Prior work on the CMSD problem has been restricted to the case where the number of clusters k is *fixed*.

Hansen and Jaumard [HJ87] considered the Euclidean version of CMSD_Δ with $k = 2$ and presented an algorithm with a running time of $O(n^3 \log n)$. Later, Monma and Suri [MS89] improved the running time to $O(n^2)$. These authors also showed that for $k = 2$, the CMSD problem (without the triangle inequality) can be solved in polynomial time. Capoyleas et al. [CRW91] also studied a generalized version of the CMSD_Δ problem for points in \mathbb{R}^2 . They showed that for any fixed k , the problem can be solved in polynomial time for any monotonic increasing function of cluster radius or diameter. Examples of such monotonic increasing functions include sum of diameters (or radii), maximum diameter (or radius), etc.

1.3 Summary of Results

We study the complexity and approximability of the CMSD problem. The main results of this paper can be summarized as follows:

1. We show that unless $\mathsf{P} = \mathsf{NP}$, CMSD cannot be efficiently approximated to within any factor even when the number of clusters is fixed at 3. (In contrast, note that CMSD is known to be efficiently solvable when the number of clusters is equal to 2 [MS89].)
2. For CMSD_Δ , we show that if the constraint on the number of clusters must be met, then it is NP -hard to approximate the total diameter to within a factor $2 - \epsilon$, for any $\epsilon > 0$.
3. In contrast to the non-approximability results above, we present a polynomial time bicriteria approximation algorithm [MR+98] for CMSD_Δ . This approximation algorithm outputs a solution with at most $10k$ clusters whose total diameter is within a factor of $O(\log(n/k))$ of the minimum possible total diameter with k clusters.
4. We also show that when the number of clusters k is fixed, there is an approximation algorithm for CMSD_Δ which produces at most k clusters whose total diameter is within a factor of 2 of the minimum possible total diameter.
5. Finally, we can show that when the CMSD problem is solvable in polynomial time when restricted to trees and more generally to graphs of bounded treewidth.

Due to space limitations, the remainder of this paper discusses the above approximation results. A brief summary of these results is given in Section 5.

1.4 Other Related Work

A number of researchers have addressed the clustering problem where the goal is to minimize the maximum diameter or radius of a cluster. In location theory literature, the problem of minimizing the maximum radius is also known as the k -center problem. For the metric version of the problem of minimizing the maximum diameter, Gonzalez [Go85] presented a simple greedy heuristic that runs in $O(nk)$ time and provides a performance guarantee of 2. He also showed that, unless $\mathsf{P} = \mathsf{NP}$, the performance guarantee cannot be improved. Using a general technique for approximating bottleneck problems, Hochbaum and Shmoys [HS86] also presented a heuristic with a performance guarantee of 2 for the metric version of the k -center problem.

In [FPT81, MS84], it is shown that the problems of minimizing the maximum radius or diameter remain NP -hard even for points in \mathbb{R}^2 . For this geometric version, Feder and Greene [FG88] improved

the running time of Gonzalez's heuristic to $O(n \log n)$. They also showed that it is NP-hard to achieve a performance guarantee of 1.82 and 1.97 respectively for the diameter and radius problems in \mathbb{R}^2 . Recently, Agarwal and Procopiuc [AP98] have presented an exact algorithm for the k -center problem for points in \mathbb{R}^d . Their algorithm has a running time of $O(k \log k) + (k/\epsilon)^{O(k^{1-1/d})}$.

Several other types of clustering problems have also been studied in the literature. For example, Charikar et al. [CC+97] study an incremental version of the clustering problem for minimizing the maximum radius. Pferschy et al. [PRW94] study geometric versions of clustering problems using objectives such as minimizing the total perimeter. Agarwal and Procopiuc [AP00] study projective clustering problems where the goal is to cover a set of points in \mathbb{R}^d using hyper-strips, and the objective is to minimize the maximum width of the strips. References where other types of clustering problems are studied include [Ma99, ABC+98, GH98, DKS97, Da94, BKK94].

1.5 Organization

The remainder of this paper is organized as follows. In Section 2, we establish some preliminary results. In Section 3, we present our approximation results for CMSD_Δ . Section 4 presents lower bounds on achievable performance guarantees. Section 5 briefly mentions our other results.

2 Preliminaries

In this section, we develop our approximation results for CMSD_Δ . We begin with some preliminary results that are used throughout this section.

2.1 A Merging Lemma

The formulation of CMSD problem requires that the clusters be pairwise disjoint. Our approximation algorithms may produce clusters which may not satisfy the disjointness condition. The following lemma points out that for instances of CMSD_Δ , we can merge pairs of intersecting sets without increasing the total diameter.

Lemma 2.1 *Let I be an instance of CMSD_Δ given by the edge weighted complete graph $G(V, E)$ and integer k . Let $\mathcal{C} = \{C_1, C_2, \dots, C_k\}$ be a collection of subsets of V such that their union is V and the sum of the diameters of all the subsets in \mathcal{C} is ψ . Further, suppose C_i and C_j ($i \neq j$) are two sets in \mathcal{C} such that $C_i \cap C_j \neq \emptyset$. Then the total diameter of the collection \mathcal{C}' obtained by deleting C_i and C_j from \mathcal{C} and adding the set $C_i \cup C_j$ is at most ψ .*

Proof: Clearly, the lemma would follow by showing that $\text{DIA}(C_i \cup C_j) \leq \text{DIA}(C_i) + \text{DIA}(C_j)$.

Let w be a node in $C_i \cap C_j$ and let u and v be two nodes in $C_i \cup C_j$ such that $\omega(u, v) = \text{DIA}(C_i \cup C_j)$. If u and v are both in C_i (or both in C_j), then $\omega(u, v) \leq \text{DIA}(C_i)$ ($\omega(u, v) \leq \text{DIA}(C_j)$), and the proof is trivial. So, assume that $u \in C_i$ and $v \in C_j$. By the triangle inequality, $\omega(u, v) \leq \omega(u, w) + \omega(v, w)$. Since u and w are both in C_i , $\omega(u, w) \leq \text{DIA}(C_i)$. Similarly, $\omega(v, w) \leq \text{DIA}(C_j)$. Therefore, $\text{DIA}(C_i \cup C_j) = \omega(u, v) \leq \text{DIA}(C_i) + \text{DIA}(C_j)$, and this completes the proof. ■

In view of the above lemma, when considering instances of CMSD_Δ , we may repeatedly merge pairs of clusters with nonempty intersection until the clusters are pairwise disjoint. The merging process does not increase the total diameter of the clusters. This observation will be used many times in the remainder of this section.

TRANSFORMTOSETCOVER($G(V, E)$, k, f)

f is a nonnegative parameter.

- **Output:** An instance of weighted set cover problem with base set Q , and collection \mathcal{W} of nonempty subsets of Q , each with a weight.
- 1. $Q = V$ /* Note: $|Q| = n$.
 2. $\mathcal{W} = \emptyset$
 3. **for** each $v \in V$ **do**
 - (a) Sort $\{\omega(v, u) : u \in V\}$ into (strictly) increasing order.
 - (b) Let $\alpha_1 = 0 < \alpha_2 < \dots < \alpha_{r_v}$ denote the sorted order.
 - (c) **for** $i = 1$ to r_v **do**
 - i. Let $W_v^i = \{u : \omega(u, v) \leq \alpha_i\}$
 - ii. $\mathcal{W} = \mathcal{W} + (W_v^i, \text{DIA}(W_v^i) + f/k)$ /* A set and its weight

return(Q, \mathcal{W})

Figure 1: Transformation from CMSD $_{\Delta}$ to Weighted Set Cover

2.2 Transformation to Weighted Set Cover

Our results rely on a transformation from instances of CMSD $_{\Delta}$ to instances of weighted set cover problem. Given instance of CMSD $_{\Delta}$ along with a nonnegative value f , the transformation in Figure 1 produces an instance of the weighted set cover problem. For each node $v \in V$, the transformation considers the nodes in V in increasing order of distances from v . For each distinct distance d , the transformation outputs a set consisting of all the nodes which are at a distance of at most d from v . The weight of each set w is chosen to $\text{DIA}(w) + f/k$. It is clear that the transformation can be carried out in polynomial time. The following lemma points out an important property of the resulting set cover instance.

Lemma 2.2 *Let I denote an instance of CMSD $_{\Delta}$ problem, let f be a nonnegative number and let I' denote the instance of the weighted set cover problem produced by the transformation in Figure 1. Let $\text{OPT}(I)$ and $\text{OPT}(I')$ denote the optimum solution value to I and I' respectively. Then, $\text{OPT}(I') \leq 2 \text{OPT}(I) + f$.*

Proof: Let C_1, C_2, C_k denote the clusters in an optimal solution to I . Thus, $\text{OPT}(I) = \sum_{i=1}^k \text{DIA}(C_i)$. We will show that there is a subcollection of k sets in I' such that the total weight of the sets in the subcollection is at most $2 \text{OPT}(I) + f$. The lemma would then follow immediately.

Consider each cluster C_i ($1 \leq i \leq k$) in the optimal solution to I . If C_i contains two or more nodes, let v_i be a node in C_i such that v_i is one of the endpoints of an edge whose weight is equal to $\text{DIA}(C_i)$. If C_i contains only one node (i.e., $\text{DIA}(C_i) = 0$), let v_i be that node. Now, by the transformation of Figure 1, I' has a set, say w_i , that includes all the nodes which are at a distance of at most $\text{DIA}(C_i)$ from v_i . By the triangle inequality, $\text{DIA}(w_i) \leq 2 \text{DIA}(C_i)$. So, $c(w_i) = \text{DIA}(w_i) + f/k \leq 2 \text{DIA}(C_i) + f/k$. Clearly, the subcollection $\{w_1, w_2, \dots, w_k\}$ covers the base set Q . The weight of this cover is $\sum_{i=1}^k c(w_i)$, which is at most $\sum_{i=1}^k (2 \text{DIA}(C_i) + f/k) = 2 \text{OPT}(I) + f$. This completes the proof of the lemma. ■

2.3 The Budgeted Maximum Coverage Problem

For obtaining our approximation result for CMSD_Δ (where the number of clusters k is a part of the problem instance), we use a known approximation result for the Budgeted Maximum Coverage Problem (BMCP). Below, we provide a definition of the problem and state the necessary approximation result.

An instance of BMCP consists of a base set $Q = \{q_1, q_2, \dots, q_n\}$, a collection W of nonempty subsets of Q , a nonnegative weight $c(w)$ for each set $w \in W$ and a nonnegative budget B . The goal is to choose a subcollection of sets from W so that the total cost of the chosen sets is at most B and the number of elements covered by the chosen sets is a maximum. This problem is NP-hard since it is a restatement of the minimum cost set cover problem. The following approximation result for BMCP is proved in [KMN99].

Theorem 2.3 *BMCP can be efficiently approximated to within a factor $(1 - 1/e)$.* ■

It is shown in [KMN99] that the approximation algorithm referred to in Theorem 2.3 can also be used for the more general version of BMCP where there is a weight associated with each element of the base set, and the goal is to maximize the weight of the elements covered by the chosen sets. For our results, the unit weight version of BMCP where the weight of each element of the base set is 1, suffices.

3 Approximating CMSD_Δ

3.1 Algorithm Overview

We give a brief top-down description of our approximation algorithm APPROX- CMSD_Δ , and introduce the terminology we will use in later analysis. At all times, APPROX- CMSD_Δ maintains a set \mathcal{D} of clusters which cover all vertices in V , at cost Ψ . We call these *global clusters*, since they cover all vertices in V . It begins with \mathcal{D} consisting of $|V|$ singleton clusters, and progresses through a series of rounds. During each round, it constructs a set N by selecting an arbitrary vertex from each of its current clusters. It then finds a clustering \mathcal{C} on N . We call the clusters in \mathcal{C} *local clusters*, since they do not need to cover all of V , but only N . The number of clusters $|\mathcal{C}|$ is at most $3k[1 + \ln(|N|/k)]$. We use ψ to denote their total cost. Next, APPROX- CMSD_Δ uses MERGE to combine the \mathcal{C} and \mathcal{D} clusters into a set of just $|\mathcal{C}|$ clusters, which cover all of V at cost at most $\Psi + \psi$. Finally, it iterates this entire process until the number of clusters in \mathcal{D} is at most $10k$.

In order to do this, APPROX- CMSD_Δ uses FINDCOVER to return the required \mathcal{C} clusters during each round. FINDCOVER, in turn, iterates through at most $\mathcal{O}(\ln(|N|/k))$ calls to PARAMETRICBMCP each of which returns a set of at most $3k$ clusters which cover all but a $(1/e)$ fraction of the remaining uncovered vertices from N . These clusters have cost no more than $3(1 + \epsilon)\text{OPT}$.

Using TRANSFORMTOSETCOVER from Figure 1, PARAMETRICBMCP converts the problem to a set cover instance, and repeatedly calls the Budgeted Maximum Coverage Approximation Algorithm BMCP, with growing budgets, until the budget is large enough to make BMCP cover the required fraction of vertices. A complete description of the approximation algorithm is given in Figure 2.

3.2 Correctness of Algorithm

To show that our algorithm runs in polynomial time and achieves the stated performance guarantees, we analyze it from the lower level functions up to the top level call, beginning with PARAMETRICBMCP,

APPROX-CMSD $_{\Delta}$ ($G(V, E), k$)

- **Output:** A set of no more than $10k$ clusters with total sum of diameters no more than $O(\ln(|V|/k)\text{OPT})$.
- 1. $\mathcal{D} = \{\{v\} : v \in V\}$
- 2. **while**($|\mathcal{D}| > 10k$) **do** **Remark:** We call each of these iterations a Round
 - $N = \{v_D : \forall D \in \mathcal{D}, v_D \text{ arbitrary} \in D\}$
 - $\mathcal{C} = \text{FINDCOVER}(G(N, E), k)$
 - $\mathcal{D} = \text{MERGE}(\mathcal{D}, \mathcal{C})$
- 3. **return**(\mathcal{D})

FINDCOVER($G(N, E), k$)

- **Output:** A set of no more than $3k[1 + \ln(|N|/k)]$ clusters which cover N with cost no more than $3[1 + \ln(|N|/k)](1 + \epsilon)\text{OPT}$.
- 1. $\mathcal{C} = \emptyset$
- 2. **while**($N \neq \emptyset$) **do**
 - $\mathcal{C}' = \text{PARAMETRICBMCP}(G(N, E), k)$
 - $\mathcal{C} = \mathcal{C} \cup \mathcal{C}'$
 - $N = N - \{i : i \in C \in \mathcal{C}'\}$
 - $E = \text{weights between two vertices in new, smaller } N$
- **return**(\mathcal{C})

PARAMETRICBMCP($G(N, E), k$)

- **Output:** A set of no more than $3k$ clusters which cover $(1 - 1/e)|N|$ or more vertices from N with cost no more than $3(1 + \epsilon)\text{OPT}$.
- 1. $f = \text{the smallest non-zero weight between } u, v \in N$
- 2. $\mathcal{C}' = \{\{v\} : v \in N\}$
- 3. **while**($|\mathcal{C}'| > 3k$ **or** $|\{v : v \in C \in \mathcal{C}'\}| < (1 - 1/e)|N|$) **do**
 - $\mathcal{S} = \text{TRANSFORMTOSETCOVER}(N, f)$
 - $\mathcal{C}' = \text{BMCP}(\mathcal{S}, 3f)$
 - $f = (1 + \epsilon)f$
- **return**(\mathcal{C}')

MERGE(\mathcal{D}, \mathcal{C})

Remark: \mathcal{D}, \mathcal{C} sets of vertex sets, $\forall D \in \mathcal{D}, \exists C \in \mathcal{C} \ni (D \cap C \neq \emptyset)$

- **Output:** A set of $|\mathcal{C}|$ vertex sets which cover all $\{v : v \in X \in \mathcal{D} \cup \mathcal{C}\}$ at cost no more than the sum of the costs of \mathcal{C} and \mathcal{D} .
- 1. **for** each $C \in \mathcal{C}$ **do**
 - for** each $D \in \mathcal{D}$ **do**
 - if**($C \cap D \neq \emptyset$) **do**
 - $C = C \cup D$; $\mathcal{D} = \mathcal{D} - D$
 - **return**(\mathcal{C})

Figure 2: Outline of APPROX-CMSD $_{\Delta}$

and finishing with APPROX-CMSD $_{\Delta}$.

Lemma 3.1 *Given graph G with optimal k -cluster cost OPT , PARAMETRICBMCP returns no more than $3k$ clusters which contain at least $(1 - 1/e)|N|$ of the vertices from $|N|$. Further, the sum of diameters of the returned clusters is no more than $(3 + \epsilon)\text{OPT}$.*

Proof. By Lemma 2.2, we see that if $f > \text{OPT}$, then the call to TRANSFORMTOSETCOVER will return a set cover instance problem with optimal solution no more than $2\text{OPT} + f$. In this case, by Theorem 2.3, the call to BMCP with budget $3f > 3\text{OPT} > 2\text{OPT} + f$, will return sets which cover the stated number of vertices. Also, when $f > 0$, this solution cannot have more than $3k$ clusters: each of the clusters has minimum cost f/k , so any more than $3k$ clusters will have cost more than $3f$. Therefore, with any $f > \text{OPT}$, BMCP($G, 3f$) will return at most $3k$ clusters which cover enough vertices. ■

Since we start f at the smallest possible (non-zero) value (in fact, we first implicitly test if $f = 0$ suffices,) and increase it by factors of $(1 + \epsilon)$, we are guaranteed to try a value $f < (1 + \epsilon)\text{OPT}$. This will occur within $O(\log_{1+\epsilon} \text{OPT})$ iterations. Since OPT is at most the maximum edge weight, the number of iterations is polynomial. ■

Lemma 3.2 *Given graph $G(N, E)$ with optimal k -cluster cost OPT , FINDCOVER returns no more than $3k[1 + \ln(|N|/k)]$ clusters which cover N with cost no more than $3[1 + \ln(|N|/k)](1 + \epsilon)\text{OPT}$.*

Proof. By Lemma 3.1, each call to PARAMETRICBMCP will return at most $3k$ clusters of cost $3(1 + \epsilon)\text{OPT}$, and will leave at most $|N|/e$ of the $|N|$ vertices uncovered. In the following iterations of PARAMETRICBMCP, we use a subset of N which certainly has an optimal k -clustering with cost no greater than OPT . After i iterations, we are guaranteed no more than $3k$ remaining vertices, where $|N|/e^i \leq 3k$. To upper bound i , notice that if i is not the last iteration, $|N|/e^{i-1} > 3k$, and $i \leq 1 + \ln(n/3k) \leq \ln(n/k)$. The final iteration generates at most $3k$ additional clusters. Each of the $1 + \ln(n/k)$ iterations returns no more than $3k$ clusters, of cost at most $3(1 + \epsilon)\text{OPT}$. The lemma follows. ■

Lemma 3.3 MERGE returns $|\mathcal{C}|$ vertex sets which cover all $\{v : v \in X \text{ for cluster } X \in \mathcal{D} \cup \mathcal{C}\}$, with cost no more than the sum of the costs of \mathcal{C} and \mathcal{D} .

Proof. Consider all $\mathcal{C} \cup \mathcal{D}$ clusters whose cost is the sum of the costs of \mathcal{C} and \mathcal{D} . Since each $D \in \mathcal{D}$ intersects some $C \in \mathcal{C}$, we may replace D and C with $D \cup C$, at no additional cost, by Lemma 2.1. This process can be continued until each cluster in \mathcal{D} has been merged into some cluster in \mathcal{C} . ■

Finally, we need to show that the top level function APPROX-CMSD $_{\Delta}$ does in fact halt within a polynomial number of iterations. To do this, we show that the number of clusters in \mathcal{D} is eventually less than $10k$, and that this happens after no more than $O(\log_2 \log_2(n/k))$ rounds.

Our algorithm begins with n vertices, and by Lemma 3.2, after the end of the first round, we are left with $3k[1 + \ln(n/k)]$ clusters, each of which contributes one vertex towards the second round. Generalizing this for all rounds, let \mathcal{D}_i be the set of global clusters at the end of round i , and $n_i = |\mathcal{D}_i|$. Then, $n_0 = n$, and n_{i-1} is both the number of clusters at the end of round $i - 1$ and the number of vertices we need to cluster in the i^{th} round. We get the recurrence

$$n_{i+1} \leq 3k[1 + \ln(n_i/k)].$$

Let $t_i = n_i/k$, we have $t_{i+1} \leq 3 + 3 \cdot \ln t_i \leq 6 \cdot \ln t_i$ for $t_i \geq e$. By having enough rounds to make t_i constant, we will have a total of $O(k)$ clusters. After $O(\log^* t_0)$ rounds, t_i becomes constant, but here we will instead give a simple proof that $O(\log_2 \log_2 t_0) = O(\log_2 \log_2 (n/k))$ rounds are sufficient.

Lemma 3.4 *After at most $5 + \log_2 \log_2 (n/k)$ rounds, $|\mathcal{D}|$ contains at most $10k$ clusters.*

Proof. Consider the “iterating” function which we use to get $\log^* x$ from $\log_2 x$. For any function f such that $f(x) < x$ for sufficiently large x , the iterating function is the number of times you must apply that function to get a constant. More specifically, define the function $f^*(x)_C$ to be the number of times that $f()$ must be iteratively applied to get a result less than C . (Thus, $\log_2^*(x)_1$ gives the familiar function $\log^* x$.) Next, we use the fact that for $x > 2109$, $6 \cdot \ln x < \sqrt{x}$. Thus, $(6 \cdot \ln)^*(x)_{2109} \leq (\sqrt{})^*(x)_{2109} \leq (\sqrt{})^*(x)_1$. However, $(\sqrt{})^*(x)_1 = \lceil \log_2 \log_2 x \rceil$, so we need to iterate less than $\log_2 \log_2 t_0$ times before reaching $t_i \leq 2109$. One more iteration for n gives us $n_{1+\log_2 \log_2 t_1} \leq 3k + 3k \cdot \ln 2109 \leq 26k$. Applying the recursion four more times gives $n_{5+\log_2 \log_2 (n/k)} \leq 10k$. ■

Thus, APPROX-CMSD $_{\Delta}$ will terminate in $O(\log \log (n/k))$ rounds. Each round has a call to FIND-COVER, which makes at most $O(\log (n/k))$ calls to PARAMETRICBMCP. Finally, PARAMETRICBMCP takes time $O((n^2 \log n + T(n^2)) \log_{1+\epsilon} \text{OPT})$, where $T(x)$ is the time to run BMCP. This gives us total runtime of:

$$O(\log \log (n/k) [\log (n/k) (n^2 \log n + T(n^2)) \log_{1+\epsilon} \text{OPT}])$$

Since $T(x)$ is polynomial by [KMN99], so is our algorithm.

Now all that is left is to show that the total cost is no more than the stated bound. Let \mathcal{C}_i denote the set of local clusters from round i . Since \mathcal{C}_i covers the set of N vertices, one from each $D \in \mathcal{D}_i$, we know that each $D \in \mathcal{D}_i$ intersects a cluster C in \mathcal{C}_i . Let Ψ_i and ψ_i be the sum of diameters of the global and local clusters during the i^{th} round respectively.

Lemma 3.5 *After i rounds of APPROX-CMSD $_{\Delta}$, $\Psi_i \leq \sum_{j=1}^i \psi_j$.*

Proof. We prove this by induction on i . Before the first round, the lemma is trivially true. After round i , the costs of \mathcal{C}_i and \mathcal{D}_i are ψ_i and Ψ_i respectively. But \mathcal{D}_i is constructed by calling MERGE on \mathcal{D}_{i-1} and \mathcal{C}_i , so $\Psi_i = \Psi_{i-1} + \psi_i$ by Lemma 3.3. Now, inductively substitute for Ψ_{i-1} and the lemma follows. ■

To get the total cost of all global clusters at the end of the algorithm, we just need to compute $\Psi_{5+\log_2 \log_2 (n/k)}$, since it was shown in Lemma 3.4 that the number of rounds is at most $5 + \log_2 \log_2 (n/k)$,

Lemma 3.6 $\Psi_{5+\log_2 \log_2 (n/k)} = \text{OPT} \cdot O(\ln (n/k))$.

Proof. Note that by Lemma 3.5, $\Psi_{5+\log_2 \log_2 (n/k)} = \sum_{i=1}^{5+\log_2 \log_2 (n/k)} \psi_i$. By separating the summation into the first term and all others, and noticing that n_i is decreasing so all terms with $n_{i \geq 1}$ are upper bounded by n_1 , we get that the first term in the summation is $3[1 + \ln(n/k)](1 + \epsilon)\text{OPT}$, and the rest of the terms are $\text{OPT} \cdot O((\log_2 \log_2 (n/k))^2)$. For large enough n/k , the first term dominates all of the rest, so for $\epsilon' > \epsilon$, the cost is no more than $3[1 + \ln(n/k)](1 + \epsilon')\text{OPT} = \text{OPT} \cdot O(\log_2(n/k))$, with small constant terms. ■

Summarizing the above discussion, we have:

Theorem 3.7 *There is a polynomial time approximation algorithm for the CMSD $_{\Delta}$ problem that returns at most $10k$ clusters whose total diameter is at most $O(\ln(n/k))$ times the optimal solution value with k clusters.* ■

3.3 An Approximation Algorithm for CMSD_Δ for Fixed k

When k is fixed, it is possible to obtain a simple 2-approximation algorithm for the CMSD_Δ problem using the transformation shown in Figure 1. We present this result below.

Theorem 3.8 *When the number of clusters k is fixed, there is a 2-approximation algorithm for CMSD_Δ .*

Proof: The steps of the approximation algorithm are as follows.

1. Using the transformation of Figure 1, construct an instance of the minimum cost set cover problem from the given instance of CMSD_Δ with the parameter f set to zero.
2. Find a minimum cost set cover consisting of at most k sets. Since k is fixed, this step can be done in polynomial time by exhaustive search.
3. If the collection of sets obtained in Step 2 are not pairwise disjoint, then repeatedly merge pairs of sets with nonempty intersection until the collection is pairwise disjoint.
4. Output the collection of sets found in Step 3 as the solution to the CMSD_Δ instance.

Clearly, the approximation algorithm runs in polynomial time. Applying Lemma 2.2 with $f = 0$, the cost of an optimal set cover is at most twice the optimal solution value of the CMSD_Δ instance. Step 2 finds an optimal solution to the set cover problem, and by Lemma 2.1, the merging operations in Step 3 do not increase the total diameter of the clusters. Thus, the total diameter of the clusters produced is at most twice the optimal value. ■

4 Non-Approximability Results

4.1 Non-Approximability Without Triangle Inequality

We show that, unless $P = NP$, CMSD cannot be efficiently approximated to within any factor even when the number of clusters is fixed at 3. We establish this result through a reduction from the well known Graph 3-colorability (3-COLOR) problem [GJ79].

Proposition 4.1 *Unless $P = NP$, for any $\rho \geq 1$, no polynomial time algorithm for the CMSD problem can provide a performance guarantee of ρ .*

Proof: Suppose for the sake of contradiction that for some $\rho \geq 1$, there is a polynomial time approximation algorithm \mathcal{A} that provides a performance guarantee of ρ for CMSD . We will show that \mathcal{A} can be used to solve the 3-COLOR problem in polynomial time, contradicting the assumption that $P \neq NP$.

Let $G(V, E)$ denote the undirected graph which represents an arbitrary instance of 3-COLOR. We construct an instance of the CMSD problem (without triangle inequality), consisting of a complete edge weighted graph G' on the vertex set V as follows. For any pair of vertices u and v , the weight of $\{u, v\}$ is set to $3\rho + 1$ if $\{u, v\}$ is an edge in E and to 1 otherwise. The number of clusters is set to 3. It is easy to see that if G is 3-colorable, then the optimal solution value to the CMSD instance is at most 3. Using this fact, it is straightforward to verify that when \mathcal{A} is executed on G' , the total diameter of the 3 clusters returned by \mathcal{A} is at most 3ρ if and only if G is 3-colorable. ■

This non-approximability result should be contrasted with the known result that the CMSD problem is solvable in polynomial time for 2 clusters [MS89].

4.2 A Non-Approximability Result for CMSD $_{\Delta}$

Here, we prove our non-approximability result for CMSD $_{\Delta}$. We establish this result through a reduction from the well known CLIQUE problem [GJ79].

Proposition 4.2 *Unless P = NP, for any $\epsilon > 0$, no polynomial time algorithm for the CMSD $_{\Delta}$ problem can provide a solution which satisfies the bound on the number of clusters and whose total diameter is within a factor $2 - \epsilon$ of the optimal value.*

Proof: We use a reduction from the CLIQUE problem. Let the undirected graph $G(v, E)$ and integer $J \leq |V|$ denote an arbitrary instance of the CLIQUE problem. We construct an instance of the CMSD $_{\Delta}$ problem consisting of a complete edge weighted graph G' on the vertex set V as follows. For any pair of vertices u and v , the weight of $\{u, v\}$ is set to 1 if $\{u, v\}$ is an edge in E and to 2 otherwise. Obviously, the resulting edge weights satisfy triangle inequality. The number of clusters k is set to $|V| - J + 1$. Now, it straightforward to see that if G has a clique with J or more vertices, then G' can be partitioned into at most k clusters with a total diameter of 1: the vertices of the clique form one cluster of diameter 1 and each of the remaining $|V| - J$ vertices forms a separate cluster with a diameter of zero. Further, if G does not have a clique with J or more vertices, then any solution with at most k clusters must have a total diameter of at least 2. The proposition follows. ■

5 Other Results

In this section, we briefly mention our other results on the CMSD problem. Details of these results will appear in a complete version of the paper.

We have considered the CMSD problem when the underlying graph is a tree with edge weights (rather than a complete graph). In this version, the distance between any pair of nodes is the length of the path between the nodes in the tree. For this problem, we have developed a polynomial time algorithm using dynamic programming. This algorithm uses $O(kn^2)$ space and runs in $O(k^2n^3)$ time.

We have also considered the clustering problem where the goal is to minimize the sum of the radii of the clusters (rather than the sum of the diameters). To discuss these results, we first recall the definition of cluster radius. Let C be a cluster. For any node v in C , let d_v denote the maximum distance between v and any other node in C . The radius of C is given by $\min\{d_v : v \in C\}$. A node v for which d_v is equal to the radius of C is a **center** of C . When edge weights satisfy the triangle inequality, the diameter of a cluster is at most twice the radius. Therefore, our approximation result for CMSD $_{\Delta}$ (Section 3) carries over (with a different constant within the big-O) to the clustering problem where the goal is to minimize the sum of the radii. We have also been able to show an interesting contrast between the diameter and radius problems for the non-metric case. For fixed k , while it is NP-hard to obtain even an approximation for the non-metric version of the diameter problem (Section 4.1), the corresponding problem for radius can be solved in polynomial time.

References

- [ABC+98] B. Awerbuch, B. Berger, L. Cowen and D. Peleg, “Near-Linear Time Construction of Sparse Neighborhood Covers”, *SIAM J. Computing*, Vol. 28, No. 1, 1998, pp. 263–277.
- [AP98] P. K. Agarwal and C. M. Procopiuc, “Exact and Approximate Algorithms for Clustering”, *Proc. 9th ACM-SIAM Symposium on Discrete Algorithms* (SODA’98), San Francisco, CA, Jan. 1998, pp. 658–667.
- [AP00] P. K. Agarwal and C. M. Procopiuc, “Approximation Algorithms for Projective Clustering”, *Proc. 11th ACM-SIAM Symposium on Discrete Algorithms* (SODA’2000), San Francisco, CA, Jan. 2000, pp. 538–547.
- [BKK94] V. Batagelj, S. Korenjak-Cerne and S. Klavzar, “Dynamic Programming and Convex Clustering”, *Algorithmica*, Vol. 11, No. 2, Feb. 1994, pp. 93–103.
- [CC+97] M. Charikar, C. Chekuri, T. Feder and R. Motwani, “Incremental Clustering and Dynamic Information Retrieval”, *Proc. 29th Annual ACM Symposium on Theory of Computing* (STOC’97), El Paso, TX, May 1997, pp. 626–634.
- [CRW91] V. Capoyleas, G. Rote and G. Woeginger, “Geometric Clusterings”, *J. Algorithms*, Vol. 12, No. 2, Jun. 1991, pp. 341–356.
- [Da94] A. Datta, “Efficient Parallel Algorithms for Geometric k -Clustering Problems”, *Proc. 11th Annual Symposium on Theoretical Aspects of Computer Science* (STACS’94), Caen, France, Feb. 1994, Springer-Verlag Lecture Notes in Computer Science, Vol. 775, pp. 475–486.
- [DH73] R. Duda and P. Hart, *Pattern Classification and Scene Analysis*, Wiley-Interscience, New York, NY, 1973.
- [DKS97] J. S. Deegan, D. Kratsch and G. Steiner, “An Approximation Algorithm for Clustering Graphs with a Dominating Diametral Path”, *Information Processing Letters*, Vol. 61, No. 3, Feb. 1997, pp. 121–127.
- [FG88] T. Feder and D. H. Greene, “Optimal Algorithms for Approximate Clustering”, *Proc. 20th Annual ACM Symposium on Theory of Computing* (STOC’88), Chicago, IL, May 1988, pp. 434–444.
- [FPT81] R. Fowler, M. Paterson and S. Tanimoto, “Optimal Packing and Covering in the Plane”, *Information Processing Letters*, Vol. 12, 1981, pp. 133–137.
- [GH98] N. Guttmann-Beck and R. Hassin, “Approximation Algorithms for Min-sum p -Clustering”, *Discrete Applied Mathematics*, Vol. 89, 1998, pp. 125–142.
- [GJ79] M. R. Garey and D. S. Johnson, *Computers and Intractability: A Guide to the Theory of NP-completeness*, W. H. Freeman and Co., San Francisco, CA, 1979.
- [Go85] T. F. Gonzalez, “Clustering to Minimize the Maximum Intercluster Distance”, *Theoretical Computer Science*, Vol. 38, No. 2-3, Jun. 1985, pp. 293–306.

- [HJ87] P. Hansen and B. Jaumard, “Minimum Sum of Diameters Clustering,” *Journal of Classification*, 1987, pp. 215–226.
- [HJ97] P. Hansen and B. Jaumard, “Cluster Analysis and Mathematical Programming, *Mathematical Programming*, Vol. 79, Aug. 1997, pp. 191–215.
- [Ho97] D. S. Hochbaum (Editor), *Approximation Algorithms for NP-Hard Problems*, PWS Publishing Company, Boston, MA, 1997.
- [HS86] D. S. Hochbaum and D. B. Shmoys, “A Unified Approach to Approximation Algorithms for Bottleneck Problems”, *J. ACM*, Vol. 33, No. 3, July 1986, pp. 533–550.
- [JD88] A. Jain and R. Dubes, *Algorithms for Clustering Data*, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1988.
- [KMN99] S. Khuller, A. Moss and J. Naor, “The Budgeted Maximum Coverage Problem”, *Information Processing Letters*, Vol. 70, 1999, pp. 39–45.
- [Ma99] J. Matousek, “On Approximate Geometric k -Clustering”, Manuscript, Department of Applied Mathematics, Charles University, Prague, Czech Republic, 1999.
- [MR+98] M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz and H. B. Hunt III, “Bicriteria Network Design Problems”, *J. Algorithms*, Vol. 28, No. 1, July 1998, pp. 142–171.
- [MS84] N. Megiddo and K. J. Supowit, “On the complexity of some common geometric location problems,” *SIAM J. Computing*, Vol. 13, 1984, pp. 182–196.
- [MS89] C. L. Monma and S. Suri, “Partitioning Points and Graphs to Minimize the Maximum or the Sum of Diameters”, *Proc. 6th Int. Conf. Theory and Applications of Graphs*, Kalamazoo, Michigan, May 1989.
- [PRW94] U. Pferschy, R. Rudolf and G. J. Woeginger, “Some Geometric Clustering Problems”, *Nordic J. Computing*, Vol. 1, No. 2, Summer 1994, pp. 246–263.
- [Ra97] P. Raghavan, “Information Retrieval Algorithms: A Survey”, *Proc. 8th ACM-SIAM Symposium on Discrete Algorithms* (SODA’97), Jan. 1997, pp. 11–18.
- [ZRL96] T. Zhang, R. Ramakrishnan and M. Livny, “Birch: An Efficient Data Clustering Method for Very Large Databases”, *Proc. ACM-SIGMOD International Conference on Management of Data* (SIGMOD’96), Aug. 1996, pp. 103–114.