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Using Vector Spherical Harmonics to
Compute Antenna Mutual Impedance
from Measured or Computed Fields

Billy C. Brock
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Sandia National Laboratories
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Albuquerque, NM 87123-0533

Abstract

The mutual coupling that exists between the antenna elements in an
antenna array can be described with a mutual impedance. The knowledge
of this mutual impedance is critical to the successful design of the array.
Computing the mutual impedance involves integrating vector products of
fields over a surface, but the integrands can oscillate wildly over the
integration surface, and are often difficult to integrate accurately. The
method described here relies on the expansion of the fields in terms of
vector spherical harmonics. The integrations over the closed surface are
performed in closed form, leaving the mutual impedance expressed as a
sum of products of expansion coefficients.
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Introduction

The mutual impedance is a circuit-theory quantity associated with a network. It relates
the current, i, flowing into one port of the network to the open-circuit voltage, v, at

another port. The definition is

Z jk = - »
lk i, =0im=12,-- m#k
where j, k, and m are indices which designate the various ports of the network.
Alternatively, a mutual admittance can be defined,

i.

— _J
Yau = »
Vi

v, =0im=12.---, m#k

m=

which relates the voltage, v, , applied across one port to the short-circuit current, i, at

another port. Mutual impedance (or admittance) exists between the antenna elements in
an antenna array, and knowledge of this mutual impedance (or admittance) is critical to
the successful design of the array. Because of the mutual coupling, the reflection
coefficient looking into an element is different when it is embedded in an array with all
the elements excited, compared to that for the isolated element. Thus, in order to tune the
elements properly for minimum reflection in the active array, the mutual impedance (or
admittance) is needed.

Obviously, one could build an array of antenna elements, and then measure the coupling
between the elements. From this measurement, usually in the form of a scattering matrix,
the mutual impedance (or admittance) is easily determined (see Appendix V). However,
this is not very practical in many situations, when the number of elements is large.

As described below, the mutual impedance can be computed if the electric and magnetic
fields for the elements are known. Often, especially when the array is composed of
small, identical elements, it is practical to measure or compute the fields for the element.
Ideally, these fields should be measured or computed in the array environment, with all
other elements terminated in matched impedances, but not excited. However, this is not
always practical, and, sometimes, useful information can be obtained with the element
fields measured or computed in an environment where it is the only element present.

For many applications, the mutual impedance is needed for many different relative
positions of the two antenna elements. When numerical methods, such as method of
moments, finite-difference time-domain methods, and finite-element methods are used, it
can be very time consuming to compute the fields at each new relative position of the
antennas. Thus, a field representation that allows easy translation to new positions would
be valuable for improving the efficiency of the computation as the relative position is
iterated.

Computing the mutual impedance involves integrating vector products of fields over a
surface. The integrands can oscillate wildly over the integration surface, and are often



difficult to integrate accurately. The method described here relies on the expansion of the
fields in terms of vector spherical harmonics. The integrations over the closed surface
are performed in closed form, leaving the mutual impedance expressed as a sum of
products of expansion coefficients.

The mutual impedance is described in terms of a physical observable called the reaction,
introduced by Rumsey. The reaction theorem is related to the reciprocity theorem
derived by Lorentz, and an understanding of the reciprocity theorem is helpful for
understanding the reaction concept. In the following, the Lorentz reciprocity theorem is
derived and examined in some detail. In order to understand better the generality and
applicability of the theorem, it is derived in a very general form. The medium in which
the elements are embedded is assumed linear and time-invariant, but not homogeneous or
even isotropic. The validity of the theorem does place constraints on the medium, and
these constraints will be stated.

After the discussion of the reciprocity theorem, an expression for the mutual impedance
in terms of the reaction quantity is written. The reaction is a term contained in the
mathematical statement of the reciprocity theorem, and thus the discussion of the
reciprocity theorem is very relevant to understanding the mutual impedance.

Once the expression for mutual impedance is written, the fields can be expanded in
vector spherical harmonics, and the mutual impedance is ultimately written in terms of
the expansion coefficients. This process is somewhat tedious and is described in detail.
Although the final result may appear unwieldy, it is straightforward to program a
computer to perform the computation. The first advantage, of course, is the avoidance of
the need to integrate a wildly oscillating integrand that is slow to converge. The second
advantage is that mutual impedance can be computed for many sets of element positions,
using a single measurement or computation of the fields around an element.

Lorentz reciprocity theorem

The reciprocity theorem derived by Lorentz [1, 2, 3] leads to a reaction concept [3, 4,5]
that is useful for understanding and computing mutual coupling between two antennas, or
more generally, between two sets of source currents. The reciprocity theorem is
discussed below, but a particularly entertaining discussion of the reciprocity theorem is
contained in Weeks [6]. The reaction quantity, which corresponds to terms contained in
the statement of the reciprocity theorem, was introduced by Rumsey [5]. The reaction
quantity is a physical observable associated with the reaction between the fields of two
sources. In an electrostatic system, Rumsey’s reaction corresponds to the force exerted
by one source of charge on another. He shows that, for monochromatic electromagnetic
fields, the reaction is the difference between the instantaneous and average rates (over
one period) at which one source performs work against the other.

Following [1], the reciprocity theorem will be developed in a general form. It is
important to realize that the theorem is obtained by simply applying certain mathematical
operations to fields associated with two independent sets of sources. The fields are




required to satisfy Maxwell’s equations, but they are not required to be related to each

other, or even to exist at the same time. However, they are required to be associated with

the same region of space. In addition, one would expect the validity of the theorem to

require that the media associated with each set of fields be the same. While this is true in

the isotropic case, it will be shown below that a more general relationship between the
two media must hold, and that for certain anisotropic media, the media will not be the
same.

The fields will be assumed time-harmonic (monochromatic) with dependence e’ . An
electric current, J , it the usual true physical source for the fields. A fictitious magnetic
current, M, will also be included, because of its convenience in handling the equivalent
sources often associated with the tangential electric-field of apertures in conducting
surfaces. The medium of interest will be assumed linear and time-invariant. However, it
will not be assumed homogeneous or even isotropic. Thus, the medium will be
characterized by dyadic electric permittivity and magnetic permeability, which are not
necessarily symmetric,
E#E,
AR,
where * indicates the transposed dyadic. The electric displacement field and magnetic
flux density are
D=%-E,
and
B=n-H.

Suppose there exist two sets of independent sources, (J,, M, ), and (J,, M, ). The first
set of sources is associated with the medium (ﬁ, ﬁ) , and the second source is associated

with the "transposed” medium (ET, ﬁ) . At least when the medium is symmetric

(8 =%, ' =f), it is natural to ask whether the two sets of sources are present at the

same time. The theorem to be developed will be valid regardless of whether the sources
are present at the same time. The fields associated with each source satisfy

and

The reciprocity theorem is obtained by combining vector products of the fields and
applying vector identities, with the fields subject to (1.5) through (1.8). Thus, the
theorem begins as simply a mathematical relationship that is imposed because the fields
are solutions of Maxwell’s equations. We begin by forming the difference between the
cross product between the electric field of the first source with the magnetic field of the

(1.1)
(1.2)

(1.3)

(1.4)




second source and the cross product of the remaining electric and magnetic fields. The
divergence of this difference is

V-(E xH,-E,xH,)=H, - (VxE)-E, - (VxH,)-H - (VxE,)+E,- (VxH). (1.9
Now, substitute (1.5) through (1.8) for the curl of the fields

V-(E,xH,-E,xH,) =-jo(H,-7-H -0, i -H,)
+ jo(E,-§-E, —E,-& -E,) : (1.10)
+E,-J,-E,-J,+H,-M, -H, -M,

Since the transpose of a scalar is that same scalar,
a.x.r,:(a-fc.s)' =b-X"-a
for all vectors @, b and all dyadics X . Thus, (1.10) becomes
v-(E, xH,-E,xH,)=E,-J, -E J,+H M, -H,-M,, (1.11)

which is the differential form of the Lorentz reciprocity theorem. Integrating (1.11) over
the volume containing the sources,

jfjv(ﬁl XﬁZ_EZXﬁI)dV Z@(F:Xﬁz _Ez Xﬁ1)'d§
\%4

y _ . ) (1.12)
=.[U(E2 -J,-E J,+H,-M, - H, 'Ml)dV
v

where the closed surface X encloses the volume V, and the surface normal points out of
the volume. The integral form of the Lorentz reciprocity theorem is given by (1.12).

For most situations of interest, the electric permittivity and the magnetic permeability are
scalars or symmetric dyadics, and the two sets of sources are radiating in the same
medium. However, even when the constitutive parameters are non-symmetric dyadics,
(1.11) and (1.12) still hold, provided E,, H, meet a very special condition: E,, H, must
correspond to the fields when the second set of sources are embedded in a medium whose
constitutive properties are the transpose of the constitutive properties of the medium in
which the first set of sources are embedded, that is

=+

2 =

ol

and

1-

©n
Il
Tt
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When the source currents exist in a finite volume and radiate into unbounded space, the

fields are subject to the radiation condition [1]. The radiation condition says that the

electric and magnetic fields become transverse to each other and propagate outward, so

that

limr(VXE+ jkfxE)=0. (1.13)
r—ee

Thus, if the surface X is taken to be the surface of the sphere at r — oo, then, assuming

the medium does not change as » — oo,




-ds (1.14)

Since the inverse of the transpose of a dyadic is the same as the transpose of the inverse,
we can write

R =7, Me (1.15)
so that
—=:\"1 oo
(F7) =(i") =7en, - (1.16)
Substituting (1.15) and (1.16) into (1.14)

lim¢b(E, xH, - E, x 1)-a’§=—-£‘-’-lim s, (L.17)
o 3 ® o= I —(szﬁL(ﬂRXEl)'r)
Thus, when the magnetic permeability is either a scalar or a symmetric dyadic,
lim{b(E, xH, —E, xH,)-ds =0. (1.18)

r—seo

Inserting (1.18) into (1.12) we see that
[J[(E,-3,-E,-J, +H, -M, - H, -M,)dV =0, (1.19)
\'4

when currents contained in a finite volume radiate into unbounded space, and the
magnetic permeability is either a scalar or a symmetric dyadic.

Suppose each set of sources is localized and the sets are contained in non-overlapping,
finite, closed volumes V, and V,. The volume integral can be broken into two pieces

[[[(E,-3,-E,-J,+H,-M, -0, -M,)dv = [[[(E, -], -0, -M,)av

; (1.20)

([ (&, -3, -1, -M,)av

v,
where Vis a closed volume containing all of the sources, V| ié the closed volume
| containing only sources J,, M, , and V, is the closed volume containing only sources ‘
J,. M, . Under this condition, (1.41) becomes
[[[(E,-3,-8,-M,)av = [[[(E,-J, - H,-M,)av . (1.21)
v, v,

Suppose we choose to integrate (1.12) over the source-free volume, the volume V less the

two closed volumes containing the sources, V, and V,. The surface integral in (1.12) will

now contain three separate parts,

<ﬁ>(E1 xH, - E, xﬁl)-d§+§f:ﬁ(i?] xH, -E, xﬁ1)~d§+<§>(El xH, -E,xH,) ds (1.22)
, z,

z




where X is the surface of volume V, and X, , T, are the surfaces of volumes V, and V,,

respectively. In each of the integrals, the direction of d§ is outward from the enclosed
source-free volume. This means that in the integrals over X, , X, , dS is pointing into the

volume containing the sources. Now, the volume integral on the right side of (1.12) will
be zero since no sources are contained within the volume. Also, as previously shown, the
integral over the outer surface ¥ will be zero as we allow r — =. In this case, the
Lorentz reciprocity theorem reduces to

@(Elxﬁz-ﬁzxﬁl)-d§+@(ﬁl xH,-E,xH,)-ds=0.
%

%

Reaction and mutual impedance

Now suppose the volume of integration is the closed volume containing only sources
J,. M, , or sources J,, M, . In the first case, we have, from (1.12)

¢p(E, xH,-E, xH,)-as = [[[(E, -J, - H,-M,)av,

= v,
while in the second case,

p(E, xH, -E, xH,)-ds=~[[[(E,-J, - H,-M,)dV .

R A
Rumsey [5] defines the right hand sides of (1.24) and (1.25) as the reaction, (1, 2) ,
between source 1 and 2, and (2, 1) between sources 2 and 1, respectively. In Rumsey’s
notation, the first designator in <> indicates the source located inside the volume of
integration. Specifically

and

and,
(2.1)=§p(E, xH, -E xH,)-ds.
5,

Richmond [4] has shown that the reaction can also be written
Vil = _<j’k> ’
where v, is the voltage induced across the open-circuited terminals of source j in the

presence of the fields, (Ek , ﬁk ) , due to current i, at the terminals of source k. The fields

(E »H J.) are the result of applying terminal current i, at source j.

(1.23)

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)




In a multiport network, the currents at each port are related to the port voltages by an
impedance matrix, as follows,

Vi Zn L Zn || b
v, S N A
2| A S (1.31)
Vn an .. e Znn in
Thus, from (1.30) and (1.31), the mutual impedance between port j and port  is
V.
Iy ="
lk i, =0, m#k
(1.32)

—{j.k 1 = = = oo .
; M:-T@(ijHk—EkXijdﬁ
L, Lt Ll 3,
When the fields associated with two antennas are known, then the mutual impedance
between them can be found from (1.32). In this case, the currents on the antennas need
not be known. Only the fields radiated when each antenna is excited with a known

terminal current are necessary. If necessary, these fields can be obtained through
measurement.

Fields associated with different média

Suppose the two sets of sources are contained within different media, {i,, €, for source 1,
and [l,, €, for source 2. With this situation, (1.10) becomes
V'(El Xﬁz "Ez Xﬁl) =—j(0(ﬁ2 'ﬁ] 'ﬁl _ﬁl 'ﬁz ﬁz)
+ jo(E, -§ -E, ~E, &, E,) . (1.33)
+Ez 'jl —El 'jz +ﬁ1 'Mz —ﬁz 'Ml
As shown previously, in order for (1.33) to reduce to the usual forms of Lorentz’s
reciprocity theorem, (1.11) and (1.12), the media must have the transpose relationship
g =F§., (1.34)
0, =0 (1.35)
However, when the fields are associated with media that do not satisfy the transpose
relationship, the reciprocity theorem is not as simple, but still it can be stated that

¢p(E, xH, - E, xH,) mE -J,-E,-J,+H,-M, -0, M,)dv

z . (1.36)
+Jmm1<: & -E -H,-fi, B -E & E+0 f 0)av

The additional volume integral compensates for the different materials, but now the
integration must be extended to the entire volume where the media properties differ.

When the media are isotropic (scalar permittivity and permeability), then

11




Consider the situation as r — c=. Using (1.13) in the left-hand expression of (1.37), we
see that

S
Elx[—(-;—ﬁ;‘ -(erZ)J

*|-E, x(%ﬁl“ -(f-XE)J

-ds (1.40)

In general, the surface integral does not go to zero as r — o when the different media
extend to r — o=. Howebver, it is reasonable to assume that the region of differing media
is finite, so as ¥ — o0, I, —> W, and {I, —> W,. With this assumption, the surface integral
does go to zero at r — . Thus, in the general case where the currents are contained in a
finite volume of differing media and radiate into unbounded space

([[(E,-J,-E, -3, + B, -M, -8, -M,)av = jof[[(E, & E, -,

, H,)dv

=

"jm-[J..[(Ez'gl'El_ﬁz’ﬁl'ﬁl)dv . (1.41)

Implementation of the computation of the mutual impedance

In order to compute the mutual impedance between two antennas, we will assume that the
near fields associated with each antenna have already been obtained in some manner.
Perhaps, the fields have been obtained through spherical-near-field measurement,
method-of-moments computation, finite-element computation, or some other means that
results in the complex-frequency-domain phasor representation of the spatial dependence
of the time-harmonic field associated with each antenna. Regardless of how the fields
have been obtained, it will be convenient to write the fields as expansions in a set of
orthogonal vector harmonics. The convenient set associated with spherical coordinates is
the set of vector spherical harmonics [3, 7, 8, 9, 10]. The vector spherical harmonics and
their use in expansions of electromagnetic fields are described in Appendix 1.

Initially, it may seem that this approach unnecessarily complicates the formulation of the
mutual impedance. The motivation lies in the fact that considerable effort is required to

obtain the near electric (or magnetic) field for a particular antenna element. However, if
this effort is expended once for the element of interest, then the procedure described here

12




will allow the mutual impedance with another identical element to be obtained easily, for
any number of different locations of the second element. The second element can be
translated to any position relative to the first element, but we will not consider rotation.
(The method can be extended to include rotation, however.) In addition, the integrand of
(1.32) can oscillate wildly, causing difficuity in obtaining an accurate value for the
mutual impedance by simply evaluating the integral. The use of vector spherical
harmonics allows the integrations to be performed in closed form, and the expression for
the mutual impedance is reduced to sums containing products of expansion coefficients.

In the expression for mutual impedance, (1.32), the fields associated with each element
must be obtained in an environment that is consistent with the presence of the other
antenna. For example, if the fields are obtained for an isolated element, the computed
mutual impedance will be approximate, to the extent that the presence of the second
element perturbs the fields away from the isolated-element fields.

Expansion of the antenna’s field in vector spherical harmonics
We will assume that region around the antenna, in which we wish to expand the field, is
characterized by scalar permittivity, €, and permeability, u. The electric field is written
as an expansion in the normalized vector sphen'cal harmonics

B = 2 2 [bTE M(’) mem ( ):' 2.1

n=1 m=—-n

where the normalized vector spherical harmonics are

MY (£) = jC,, : \FLT 2% (kr) P" (cos 0) 8 +sin 8z (kr)gx—l’n’"(x)x_cose é], 2.2)
and
63 k
o i k( r)n(n-i-l) P (cos6)F
N (f):jcn,mgf 1r 5 . . . (2.3)
TT i . m A Jm m "
+ ar[rzﬂ(kr)]{-sm GE;P,, (x) x:cosee+sinep” (cose)q)]
where
: 2 1 -m)!
C = (2n+l) (n-m): (2.4)
; n(n+1) (n+m)!

The expansion in (2.1) is often referred to as a multipole expansion [7]. The n =1 terms
are the dlpole terms, while n =2 corresponds to the quadrupole terms, etc. In (2.2) and

(2.3), z (kr) is one of the spherical Bessel’s functions

W (kr)si=1 }

h® (kr);i=2 ‘
o )22 @5
Jo(kr);i=3 l
y, (kr);i=4

..(l) (kr)

13



and P (x) is the associated Legendre function of the first kind. The notation used here

is consistent with the notation used by Jackson [7] and by Abramowitz and Stegun [8].

The vector spherical harmonics are described in detail in Appendix I. With the ¢’ time
dependence, the MY (F) and N2 (F) represent outwardly propagating waves.

The magnetic field intensity is obtained by substituting (2.1) into curl equation for the
electric field,

H=j~%% (6N () +b0ML, (F) ] (2.6)
(D“' n=l m=—n
The coefficients ] describe the strength of the transverse-electric (TE) components of

the radiated field, while coefficients 5] describe the strength of the transverse-magnetic

(TM) components. When the antenna can be enclosed in a sphere of radius a, the series
usually can be truncated at degree n = ka [11], but in critical cases, it may be advisable
touse n=ka+10 [12].

Using the asymptotic expansion of the spherical Hankel’s function, the vector harmonics

in the far-field region are approximated at large radius, 7, by
:ntl -~ jkr

M2 (F)=L-2—X, (6,0), @.7)
. r .
and
_ jne—jkr _
NG (1) = L—#xX,., (0.0), 2.8
¥
where the radially independent vector spherical harmonic, Xm , 1s given by
_ 1 ,
R (0.0) =N
, . 2.9)
= jC, . 26\/__ LlJn P" (cos8)6 +sin BE——P"’ (x) . &)}
Thus, the far-field expressmns for the outward-propagating fields are
Z Y, [, (6,0)+ b7 XX, , (0,0)], (2.10)
n=l m=-n
and
— k _
= prEEXX, - X, . (6,0) |=—FxE. 2.11
o (Dpt;m-z_,,] [] r ¢) n.m n,m( (I))] mp.rx ( )
Suppose we have obtained E(F) at ¥ =F,. Then,
E 1 2n T — (i) (= )
b = Fim (m,n;m,n) Jo d¢f0 sin edeE(rO)'(M"-m (rO)) ’ (2.12)

and

14




b = 1 J-:ndq)_[:sin edeE(fo)-(NﬁL (% ))* ’

Fix (m,n;m,n)

where (see Appendix I)

JS’I-M (m’ n; m/’ n,,i'b) = Zr(:) (krb)z 6rm’Smm’ ?
and
Fx (m,n;m'ﬂ/;%) =11z® (k’b)r + 71 _ -a—[iz,z(” (]%)_a_[,az(f)* (kiz,)ﬂ 0,0, s
N-N n k_76~ ar n ar 7 nn" mm
and
Lk=j
% = {o, k#j
If the magnetic field is obtained instead of the electric field,
TE _ WU n T . =\ (N (=1}
b = kaﬁﬂ (m,n;m,n;r;,)J.O d¢jo sin 8d6H (F,) (N"'m,(rO)) ,
and
™ _ . op i L i (= ). (N1 (1)
by =—J T (m,n;m,n;;;))-[o d(l)_[o sin 6dOH (T, (Mm (ro)) :

Translation of the fields

Although the expression for mutual impedance (1.32) is valid for any two arbitrary
antennas, the array problem is concerned with the mutual impedance between identical
elements. Thus, we will only address the problem of computing the mutual impedance
between identical elements. The translation of the fields is accomplished through the
application of an appropriate addition theorem. The addition theorem for vector spherical
harmonics 1s described in Appendix III.

Antenna 1 is located at the origin of coordinate system 1 (unprimed), and antenna 2 is
located at the origin of coordinate system 2 (primed). The origin of coordinate system 2
is located from the origin of antenna 1 by position vector ¥,

I =r"[sin® cos ¢"%, +sin0”sin ¢"§, + cos07Z, .
The geometry is illustrated in Figure 1. To obtain z,,, the integration in (1.32) will be
performed over a sphere that surrounds antenna 2.

Note that, as illustrated in Figure 1, ¥ locates the field point on the sphere of integration
from the origin of coordinate system 1 (unprimed), while ¥’ locates the same field point

from the origin of coordinate system 2 (primed). In fact, during the integration, |F] will

be constant at the value of the radius chosen for the integration, even though the length of
I changes. Also, note that ¥, which locates origin 2 from coordinate system 1, is a
constant vector; it does not move during the integration. These three vectors are related
as

-7

F=f"+F
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(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)




The fields for antenna 1 will be expanded in vector spherical harmonics as follows:

E 2 2 I:bTE (’) +bTMNm ( ):' (2.20)

n=l m=-n

and

= J—Z 3 [bEND (%) +BIM2 (F) ], 221)

n=1 m=-n
using vector spherical harmomcs associated with the unprimed (antenna 1) coordinate
system. However, in order to integrate over a sphere around antenna 2, it is convenient to
express these fields in terms of vector spherical harmonics associated with the primed
coordinate system.

~t

. . z
integration surface A

antenna 2

fox 4

antenna I

>
>

Figure 1 Geometry describing the relationship between the two antennas.

The vector-spherical-harmonic addition theorem says (see Appendix III) that for the
additive relationship F =¥+,

M ZAn inaM P (F)+ B, N (F), (2.22)

and

’7

Nfzj r ZAII m’in,m ni —J)+Bn m anEli’?m'(i;,)’ (2'23)
where A, .. . and B, .  are givenin Appendix IIl. Both the vector spherical

harmonics M . (¥') and N')  (¥) contain spherical Bessel’s functions z')' (kr’), the
specific kind of which is determmed by the relative size of 7" and r” as follows

in Mgtl')m' (i:,) and Nii'?m' (f,) : Zr(zl') (kr,) - {

i (kr’) JF <y

. 2.24
h,(l,z) (kr') r>r ( )
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Similarly, both sets of coefficients A . , and B

’ 2
n.m:ain.m

contain spherical Bessel’s
functions evaluated at r”, the specific kind of which is determined according to

h,(f) (kr"), ¥ <7

(k") P >

It should be emphasized that, for the integration over the spherical surface around
antenna 2 (Figure 1), these Bessel’s functions are constant, since r” and #” are constant.

in Ay.and B, . o 2 (k)=

nmnm

(2.25)

Substituting (2.22) and (2.23) into (2.20) and (2.21) gives the appropriate expressions for
the fields associated with antenna 1

bTE z (An m’n.m n m ) + Bn'.m';n,mNEzi’?m' (f’))
E=YY , (2.26)

S +b:z (An'.m':n.mN)(j'?m' (f,) + Bn m'in mM(i'?m' (f,))

and
PRI b:i E (AnmnmNEzl)m (f,) + Bn',m';n.mMEf'?m' (i;,))
fi - j-m_z Yo | , (2.27)
ot e +br?ﬁ (A:'.m’:n,mMEz’;?m' (i-") + Bn'.m':n,mNE:'?m' (i;,))
or |
— < (bTE Ah' m';nm brYL-Ar/rlz n.m’ nm) V Ell')m' (i:/)
E = B , (2.28)
pIpIpY (BB i + B A )N, (F)
and ‘
_ (bnn;:nAz’m’;n m b%Bn m'nm (FI)) _‘ni').m' (f’)
A } (2.29)
]wu;mz’”; (bZI);anmnm nglqnmrzm Mﬁ) (i:,)
Exchanging the order of summation
E = 2 2 ( bE MY L (F)+ b NG (r-’)), (2.30)
and n'=l m'=—n’ |
" i) /o |
-J-@gmz_n(m (F) +.87M,. (F)). @3
where
lb:Em 2 2 ( [rinliz m'n,m byl‘*dan m’ nm) (2'32)
n=1 m=-n
and
1&%{ = i i (b}z-fn n'am’inm b:ﬁA‘n',m':n,m)‘ (2'33)
n=l m=—n

The pre-subscript is used to designate the coefficients as belonging to the field expansion
for antenna 1.
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The fields from antenna 2 are simply

2 2 2 l: bTE M(’) -/ bTM N(") (*’)]’ (2.34)

n'=t m'=-n’
H, = Jm—E 2 (L8NG (F) + 5002, (F) ], (2.35)
”' n'=l m'=—n’
where
b = bl (2.36)
and
Do =B (2.37)

Mutual impedance

The fields for antenna 1 and antenna 2 have been expanded in vector spherical harmonics
as follows:

EI =i 2 [ bTE M(x) (—4)_*_ bTM N(z) (-4)]7 (2.38)

n'=l m'=-n"

= J_Z S [ BERG, (F) + M0, (7)], (2.39)
n—lm——n

E, = 2} 2[ LM, (F)+ 0N (7], (2.40)

H "J—ZZ[ BN, (V) + 60 M2, (F) ]. (2.41)
n-l m=-n

The pre-subscripts on the coefficients correspond to the antenna designation. The
superscript showing the type of spherical Bessel’s function used in the vector harmonic is

designated with the superscript (i) in the expressions for E, and H;. It is assumed that
the harmonics have already been translated using the translation theorem. Also, the
coefficients b7, and b}, have already been translated using the translation theorem.

As noted above, the types of Bessels functions contained in (2.38) and (2.39) depend on
the relative size of the distance from the old coordinate origin to the new coordinate
origin, r”, and the distance from the new origin to the field point, r’.

The mutual impedance between the antennas is, from (1.32)

le = Z’)

jdq)jsmede (E, xH, -E,xH,)-#". (2.42)
lll») o 0
The integrals in (2.42) are of the forms
{ ag'[sino'ae’ (MO, (£)x M2 (F)) - =
J; '<[ ( ) (7 )) (2.43)

ic. ¢ W)

kr,) = J{mem’) rl [ d g - d
e do’| | mP" (x)—P (x)~m'P; (x)—P" (x) |dx
-!; :[1 dx dx

n.m nm 4 n




fd(j)fsmﬁdﬁ (N,,,,,( )XM",”( ))
2lra ] e [[ 22 pe () () 1)

jd@[smede (N,,,,,( F)x MY, (F))-

e

qu;’f sin0'do’ (
0 0

'R (kr r
L I

d . .

P (x)— P (x)-m'BY (x)=
J[mer ()52 ()= ()
Each of these integrals contains the factor

I ej(m+m’)¢’d¢/ — 2n8mv_m’ ,

so each integral is zero unless m” = —m . Examination of (2.43) through (2.46) indicates

that we only need to evaluate three integrals:
I (n.n',m)= J (1-—x2 —
I, (n,n',m_) = m_[

_l[a"*(x)-j—xarm (3) Ja

L (n,n ,m)=

() B (x)

The integrals (2.48) and (2.50) possess obV1ous symmetry properties:

I (n,n’,m) =1, (n",n,—m)

=1, (n’,n,m)’

Ii(n,n',m)=
I, (n,n’,—m) =

I (n',n,—m)
I (n',n,m)'

It is convenient to express the integrals (2.48)—(2.50) in terms of integrals containing
associated Legendre functions of only positive order, m > 0. Since [7]

(n+m)! "

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)




we have

;o m(n'—m)!l d . d .
I, (n,n,m) = (~1) (n,+m)!:fl(l— )de" (x)——B7 (x)dx -
m (0 —m)! '
—(—1) (n/_*_m)!(gl(n’n m)
m (n —m)' ll: m d il
I =(-1 P —P7 dx
(o) = (1) | 27 () 522 (2 .
w (0 —m)! .
=(-1) En,+m;'m<¢?_(n,iz m)
, it (' —m)! 1 . ”
L ()= (7 e [ R (22 (1)
2.56
m+] (n, m)‘ ( )
=(-1) (n,_l_m)!mj(nn ,m)
It can be shown that the integrals in (2.54)—(2.56) can be expressed in closed form as
follows (see Appendix 1),
( ppen ) ) )
'fl("a”"m)=j(1—x')aﬂm (x) - B7 (x)dx
-1
0;n" +n odd
(2.57)

min n,n) )' ’

2n(n+ ) {n+m ,
( ) ;n+neven,m=0

:j(2n+1) n—m

!

n'+n even,m <0

vv \-/\./
v—
=S
E
—f /‘-\A
.'3
3
-
=&
~
N’
S’

(
(
2n(n+1) (n+m
\ (2n+1) (n m
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1

J| 20 Lre ()|

& (n,n’,m)

-1

’O' n’ +n even, for all m
n+n odd,n>n",andm=0
2:n+n"odd,n" >n,andm=0
_1 + |
(5 1) () L 2 1) ) |
1 (mm(n n'—1)- m)! . {n'-i—n odd
_jm(2n"+1 ‘+DN+m)! | |landm>0
(M| i) )
(mm(n,n +1)- m)!
—1)+m)!
(w +1)(n +m) (max ( " )+m)
1 (max(n,n —1)—m)! . {n’+nodd
2n' +1 ) D +m)! and m <0
( ) _ (n,+l_m)(max(n n’+1) m)
(max (n,n +1)—m)‘ (2.58)
and
1
(n,n’,m) I P’ (x)dx
(0; n’+n odd
(min (n,n')+m)! ,
. y ; nw+nevenandm >0 | (2.59)
m(mm(n,n )—m)!
- (max (n,n") +m)! )
- ~ cnt+nevenand m <O
m(max(n,rz )—m)!
(undefined; n’+nevenandm =0
The integrals necessary for the computation of the mutual impedance can now be written.
Substituting (2.57) into (2.54)
0;n"+n odd
/__ ! : , 4 + ! ’7
I, (nnym) = (-1)" ] 2n(n+1) 5 - n, m mln(n n') m) : n’ +neven (2.60)
(2n+1) ™ mm(n,n)—m)! and m =0

n’+n even

(
(
2n(n+1) (n"—m
61‘2 ’Z/
(2n+1) ™ (
Substituting (2.58) into (2.55)

—_|
N
=
~
S’

+

3
—_—A——

andm<0
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0; n’+n even

(n"=m)! (min(n,n ~1)+m)!
L (nn'\m) = (—l)m (n'-1+m)!(rnjn(n n -1 —m)! . {n,+nodd
2 (2n"+1) ,(n’+1—m) (mm n,n’ +1)+m )!

(' +m)! (min(n,n"+1)—m)!

(n"+1)

(" —m)! (max(n,n —1)+m)!
(_1)m+1 (n’——1+m)!(max(n n'—1 —m)! . {n'+nodd
(2n"+1)} (0" +1-m)! (max (n,n"+1)+m)!

(n"+1)

and m <0

(n +m)! (max n,n’+1) m)
L
Substituting (2.59) into (2.56)

0; n"+n odd
/_ ! : 4 !
I (n,n’,m):«(—l)mﬂm(n m)(rrun(n,n)+m) cn'+nevenand m=0
3 (n'+m)!(mm(n,n')—m !
"—m)! ) +m)!
(—l)mlm(n m) (max(nn) m) n'+nevenand m<0
(n"+m)! (max (n,n")—m)!

The integrals contained in (2.42) are
[ ag[sinoraer (M9, () x M2, (7)) -# =
¢ ]

h(2) k ’ (1;) ’
iCy.C. = (kr )22" (kr ) [12 (n,n',m) -1, (n',n,m)]S

)0 oy , .
- Cn'.mcn,m er’ )-a—;;.[rhr(zﬂ) (kr )][13 (n,n ’m) - Il (n’ ’n’m):lSm.—m'

22

’
m,-m

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)




and

Zquff SULL L (ij,?m, (F)x NP (f’)) =
o 0

0 r e (12 (2.66)
JCinC 5oL () [ ()

n’m ™~ nm 2]{2}’,2

where, as stated previously,
(2n+1) (n—m)!
Crzm = *
' n(n+1) (n+m)!

Substituting the fields, expanded in vector spherical harmonics, into the integral for the
mutual impedance leads to

[12 (n,n’,m)-1, (n',n,m)]ﬁ

,
m.—m

42 =2y ,
Bl bl VE o
e e[| 20 SO (F) XN, () a0
bTE bTM 2
e j do j sinMY, (F)x M2, (F) - £d6’
- ;:l: (D_p"n-lm =—n’ n= lm——mmnn bzw; szE 2n ,T[ . e _, — s . - ,
+ B ldq)lsmeNggm,(r)xN;_;(r)-rde
bTM szM m T
n'.m’ 7 - Tl =7 (2} (=7 AL ’
. B b {dd)!sm@ NO (F)xMP (F)-¢do

Writing (2.67) in terms of the integrals described above, the mutual impedance is

o o min{n.n) k ! I s ,, -1 ,, >
RS T ] T )
n'=ln

lllo = moin(n.n") e +B, . mHM kr')l:l2 (n,n',m)—1, (n',n,m)]
where ‘
An , = lbn —m 7bTE + b;ﬁ leM
Ja.m 2
B ’ _ ] bTE_m 7bTM b:i leM
nn.m 2

(2.69)

6, ) =282 1y 1)) B CT) 0 )

—[rn® (&) ]ar[ r'z8 (k') ]

H,.i (k') = B2 (') 1 (') + 0
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Appendix | — Vector Spherical Harmonics

General vector harmonics

The vector wave equation is
VF+EF=VV-F-VxVxF+kF=0.

Three independent solutions of (I-1) are [13]

e
I
=
Il
4
X
)
<

and
= o 1 o 1 A
F=N =—k—V><M =;V><V><aur,
where y is a solution of the scalar wave equation
Vy+k*y =0,

and 4 is a constant unit vector. That L is a solution of (I-1) is easily demonstrated. We

have
VPL+k’L =VV-(Vy) - VX Vx(Vy)+ Viiy.
Since VxXVy =0, we have
V(Viy+ky)=0.
Substituting M into (I-1)
VM +k*M = V? (Vxay) + k* (V xay).

Since V? commutes with V x (see Appendix II), we see that

Vx(Vay +k’ay) = Vxa(Viy + k') =0.
Similarly, substituting N into (I-1)

V'N+k*N= Vz(%VxM)+ k* [%VXM).
Again, using the commutation property of V> and V x

VN +£°N =%VX(V2M+I<21\7I) =0.

From (I-3) and (I-4), we see that

V-M=0,
and

V-N=0.
Also, from (I-2)

vxL=0,

and since Y is a solution of the wave equation,
V-L=Vy=-k%y.
When the curl operator, VX, and a are anti-commutative (which is true when
a = constant or a =T, see Appendix II), the vector harmonics are also related by

25

(I-1)

(I-2)
I-3)

(I-4)

d-5)

1-6)

A7)

(I-8)

1-9)

(I-10)

d-11)

(I1-12)
(I-13)

(I-14)




M=Vxay=-axVy=-axL =%VXN.
Vector harmonics in the spherical coordinate system

In the spherical coordinate system, the requirement that 4 be a constant can be relaxed to
the extent that it can be replaced by the radial unit vector r [13], because the curl
operator, VX, and F are anti-commutative.

The set of vector spherical harmonics used here is based on the normalized vector
spherical harmonics and notation as defined in Jackson [7]

- 1
X 0,0)= ———=—=rxVY (0,0},
wm (6:0) j\/n_(nTl) FxVY,, (6,0)

where Y, , (6,0) are the scalar spherical harmonics given by

\/2n+l(n— )P’"(cose) me

4T (n+m)

Yn.m (e’ (p)

and P (x) is the associated Legendre function given by |
m m 2 mf2 dm
P (x) = (1) (1= Lo p (),

dx" "
where P, (x) is the Legendre function

For negative order, m, [7]

so that
. (8.0)=(-1)"7,,(6.9).

.. (8,0) are orthonormal [7], so that
.H. . q) * ( (I))dg Snnsmm’

The scalar spherical harmonics, Y

where [[dQ is j:sin edej0 do.
Q

The explicit form for X, is

" Hanson [12], Stratton [13], Arfken [14], and Mathews and Walker [16] omit the factor (—1)", but it is
included by Jackson [7], Abramowitz and Stegun [8], Chew [9], Lebedev [10], and Balanis [3].
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(I1-15)

(I-16)

(I-17)

(I-18)

(I-19)

(I-20)

(I-21)

(1-22)




or

jm

~ ‘j (2n+1) (n-

dnn{n+1) (n+

n(n+1)

From (I-21), we see that

X, (F) = (

sin 6

_1)’"

nm

sin O

m)!|sin® "

™) 4 sin B—R,’" (x)
dx
cos@

{ My (8, q>)e+smea J

j ]m . d
[ (9¢)6+smea —

n(n+1)

P" (cosB)e e

x=cos 8

Y, (6

ejmo&) ’
) é] :

Y., (6.9) q‘»].

The usefulness of the vector spherical harmonic derives from the fact it forms a solution

of the vector wave equation as

V29 (k)X (8,0) + k22 (k) X, (8,0) =
where z” (kr) represents any of the spherical Bessel’s functions
A (kr);i=1
(1) (kr) h(Z) (ki") )
o (kr);i=3"
Yo (kr);i=4

Vxz, ) (kr) X,.. (6,0) is also a solution of the vector wave equation, since the

operators V* and V x commute (see Appendix II),

v (V2 (k) X, (6,0)) +k* (Vx 2 (k) X,
Thus, z (kr)X,,, (6,0) and Vxz” (k)X

~(8.0))=0

(6,0) are both harmonic solutions of the

wave equation. The two types of vector spherical harmonics are defined in terms of X,

as

and

It is obvious that I\—/Ifi

M(l) = Z(t) (kr)
NGO = 1 (i) V¢
N ='ZVXZrl (kr)X
and N

»(6:0),

1

o (6,0) =—};VxM§ffn.

.. correspond to the general M and N harmonics defined

in (I-3) and (I-4) for the spemal case

since

Y=
j n(n+1)

Yn.m (e’¢) 4
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(I-23)

(1-24)

(I-25)

(1-26)

(I1-27)

(1-28)

(I1-29)

(1-30)

(I-31)

(1-32)



It will be useful to note that
VxN® —in vxz? (kr)X,, (8,0) = VX-]i-VxM;ﬁ;

k4

— LYV MY - LN
k Tk "

and since V-M) =0, and M) is a solution of the wave equation, we see that
M) = Lox N
k

This is the same result as (I-15) for the general vector-harmonic case.

The explicit forms for the normalized vector spherical harmonics are

Jm 2 (kr) P (cosB)e jmog)
. 2n+1 !
M), (f)zj\/ (@n+1) (n-m)!)sin®

4mn(n+1) (n+m)! +sin 62" (kr)%}’n”‘ (x)

?
ej”‘q’f{)

x=cos©

and

. (&) n(n+1)P" (cos8)e™™

kr

i v L] (2n+l) (n-m)] 1 9 .. d
RO (7) = j |- —— 1 (k Zpr
- 0) J\/4nn(n+1) (et | Tk 7) Jsin 62 Er ()

e™p ).

x=cos 6 {

10 (1) Jm mo
\+;;§[rz kr]sm P (cos8)e™

Since

X, (6,0)= jJ 2n+l (nom). {—sine———ap"; ()
X

4nn(n+1) (n+m)!

-

A ]m m " fmd
6+——P 6 e
sin@® " (cos )0

x=cos©

we see that

Ni".i,,(f)=j\/ ke (n—milzg)(kr) (n+1)B" (cos0) %

4nn(n+1) (n+m)!  kr

or

NO (F) = jyn(n+1)= 5 (kr )Y’" (e, q>)f+i J I: © (kr)]f' xX,,. (8,0),
- kr kr or -
and the transverse part of N¥ (F) is simply

NT(f - i = '\_1 a i
N® (F)-N© (¢)-# B == rz (kr }rxx (6,0).

These normalized vector spherical harmonics differ from those defined by Chew [9] and
Stratton [13]. The harmonics used by Chew must be multiplied by a factor of
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(I-33)

(dI-34)

(I1-35)

(I1-36)

(1-37)

(1-38)

(1-39)

(1-40)



Jj / Jn (n+1) to produce the normalized harmonics, and from those defined by Stratton

(2n+1)(n—m)!
47In(n+l)(n+m)!

must be multiplied by a factor of j (—1)'" \/ to yield the normalized

harmonics. Hanson [12] uses normalized harmonics almost identical to those used here.
However, Hanson’s harmonics, which are written with a different notation, must be

multiplied by a factor of j(m/|m|)" to produce the ones defined here. The relation

between Hanson’s notation and that used here is

and

A far-field representation of the vector spherical harmonics is obtained for out-going
waves, where the z. (kr) become K" (kr). Since

e T(n+p+l)
kr o p'T(n—-p+1)

the approximation for the far field region is,
— jkr

h(Z) (kr) - jn+1 4

n

(2jkr)7,

2 (kr) = j ———ekr as kr — oo,

and

Thus, in the far field region,

M(g) (i;) _ jne—jk’ (2n + 1) (n —m)‘ [ ]m Pm (COSQ)é‘*‘ Sine‘ii" Pm (x) d\) ejMQ,
o kr \4nn(n+1) (n+m)!|sin@ " dx

x=cos@ _|

and

_ sn—1 - jkr _ !" : ) . A A_ -
N3 () = ¢ \/;2”“ (o) noLpm () 8- b (cos6) e,

! dx ”

kr nn(n+1) (n+m)!| ecose | SIN ]
or simply
-n+l - jkr
M (7)=L 2 6,0),
(F)=——X..(0:9)
and
82 (1) =L xx (0
n.m( )— kr rx nm( 7¢)3

for the normalized vector spherical harmonics.
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(1-41)

(1-42)

(I-43)

(1-44)

(I1-45)

(1-46)

1-47)

(1-48)

(1-49)



The orthogonality integrals for the normalized vector harmonics are [7]

g (momsm’on'sr) = jo‘ do|_ sin6aOM), - (M) - 0
= ( )’ 6"" 6"1'71
and
Iex (momsm’,n’sr) = _f dq)]r. sin846NY, - (N9 )
(kr) Ery
= ——k?r—zl (n+1)+;—27-5:[rz§) (ki"):l Snnﬁmm . - (1-51)

i 2 1 a i a H
Z’E)(kr)l +k2 . rz;>(kr) ar[ rz®" (kr)MS,m S,

or, expanding (I-51),

_ | ‘P , 5
(1 e )
(z) k d (1) k d )
T (momm’onsr) =| + kE' 7) (%) 32 k(rr);l;zf;) () 8.8, @52
x=kr =kr
O (kr) <52 (x)
x=kr
and
I (mon,m’n'sr) = _[ d¢j sin 0d6M”, (Nﬁ,’l)m,)* (1-53)

=0

When r is small, the ¥ component of N(’) can be significant. However, it will be
p g

necessary to expand a measured field in terms of the vector spherical harmonics, and the
I component of the field is typically not measured. Thus, for small 7, the use of (I-52)
for the normalization can produce an error. Instead, we need the orthogonality integral

for the transverse part of NY)

I sosee) <(mmm’ )= jd(b’l.sm 646 N(" -N© f'f')(ij)m)
2 1-54)
_ aa [72 (kr)]| 8,8,
,

Special combinations of the vector spherical harmonics
Consider the far-field representation of M\ 2 (F (T) obtained from (I-48)
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M, (f):je»m 1 — 3 [9 ]cose(b]

o kr 2\4m
Cx(2) [ ,e—jkr 1 3 ra . A .
M (F) = . EJE[&F ]COSGQ)]e"”

For a TE field, M{”, (F) represents a right-hand circularly polarized electric field at

6 =0°, while M{? (F) is the left-hand circularly polarized electric field. Now consider

the far-field representation of N\%), (), from (1-49)

co €M1 [3
N, (r)z 5\ 1m |: cosGG+]<|)]
oy €1 (3
N (F) = P 2"4 [cos66+]q>]

Similarly, for the TM field, N, (F) is the right-hand circularly polarized electric field

and,

when 6 =0°, and N’ (F) is left-hand circularly polarized. At 6 = 0°, these fields are
elliptical.

For a TE field,

~ jkr

ek \/i [cos([)@ cos Osin ¢¢]

- jkr

P (% [sin q>é + cospcos 6&)] ,

M (F)+ M2 (F) = j

M (7)- M2, () ==

‘which represent magnetic dipoles.

For the TM field
e—jkr

N (E)+ NP (F)=7 . 1’%[cosﬁsin¢é+cos¢€)],
— o _ e—jkr 3
N (F)-N2 (F) = o [osecosd)ﬂ squb]

kr

— jkr

(1- HINZ(F)-(1+ j)NZ, (v) = ek \/E’;[cosﬂ(81n¢+cosq)) (sind)—costj))(ﬂ,

and
~ jkr

(l—j)Nf_)](f)—(1+j)Nfl’(f')—e F[cosG(smd) cos¢)9+(sm¢+cos¢)(b]

kr
Equations (I-61), (I-62), (I-63), and (I-64) describe small linear dipoles oriented as E,,

E,, E,.,and E .. dipoles, respectively.
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Explicit forms for the associated Legendre function and its derivative

Explicit Forms for P,"(x)

m
n 0 1 2 3 4 5
0 1 0 0 0 0 0
1 X N 0 0 0 0
2 3x2 -1 YO8 PR 31-x?) 0 0 0
2
3 )= 3x 2 _ _ .2 _ 2\ 0
5x : 3x _35x l 3 le(l X ) 15(1 X ) 0
4 = 2 - 2 _ 2 ¥2 2yt
35x §0x +3 57r : 3x e 157x 1(1—-x2) 105x(l X ) 105(1 X ) 0
5 _ 3 4 2 _ 2 _ 3 2 2\52
s 7;”‘ + Do —15_2.2__%1&_1‘/1_)62 105222 (1~ x?) —1059"2 Li—a?)? | dsa{l-x?) | -04s(1-57)
Explicit Forms for P"(cos0)
m

n 0 1 2 3 4 S
0 1 0 0 0 0 0
1 cos 6 —sin® 0 0 0 0
2 3c0s” 0 -1 ~3sinBcos O 3sin’ @ 0 0 0

2
3 5co0s* 0 —3cos@ _35cos26—lsine 15cos0sin* 0 ~15sin’ 0 0 0

2
4 35cos* 0-30cos® 0 +3 7cos’8 -3cos0 Tcos’B-1 . , -105cos8sin’ 6 105sin* 0 0

-5 ———————sin® 15 ~————sin“ O
8 2 2
P 3 4q_ 2 ig— 29~ 945cos0sin® 0 | —945sin° 0

5| 63cos’9 700808 0 +15¢c0s0 _1521005 0 ;4(:08 6+1Sine 1053005 0 Cosesin29 _1059003 0 lsinBB cosOsin sin

€L




e

Explicit Forms for —5—1’,,’" (x)
X

m
1 4
0 0 0 0 0 0
1 X 0 0 0 0
J1—x?
3x 3 2x% ~1 —6x 0 0 0
Vi-x?
2 3
4530 =1 J15x7 ~1x 15(1-3x7) asx(1-x?) 0 0
2 21— x?
A §28x* 2727 +3 30(4x - 7x%) 105(4x” - 1)(1- +?) ~420x(1 - x*) 0
2 2W1-x*
4 2 5 _ 3 4 2 3 2 Yok,2 Y
[s2het - 1427 1 | (105x° - 1262 +29x s loxt —12x7 41 315150 = Tx 945(1 - x* )(1-5x%) 472551 - %)
8 8y1-x’ 2 2
Explicit Forms for -§~P,,’"(cose)
X
m
1 4
0 0 0 0 0 0
t cos 0 0 0 0 0
sin@ ’
3cosO 320082 0-1 —6cos6 0 0 0
sin 0
3'500520—1 ,21500539410059 15(1—30032 6) 45¢c0s0sinf - 0 0
2 2sin6
p 7cos*0~3cosO p 28c0s* 0 -27cos? 0 +3 30(40036 -7cos’ 6) 105(4cos2 0- l)sinﬂ ~420cosBsin’ 0 0
2 2sin0
152100540—;400320+1 15105c0559—1826'coos30+29cosO _1051500s49—;2c0529+l 31515cos392—7cosesi“9 945si1120(1~5c0329) 4725¢c0s0sin*0
sin




Explicit forms for the scalar spherical harmonic and its derivative

nm

Explicit Forms for Y, (cos6)

m
n +2 13 +4

0
0 J_T_ 0 0 0 0
4n

I+
—_

1 3 1 ’ 0 0 0
—5— 0s0 = i #5in@
2 21t
2 - 0
1f—§——3 0s°6 -1 31’—5— *# 5in@cos6 g1f—é— *12%5in* O 0
2Yyo6n 4Y\6n
3 . - , 0
T 3c0s76 - 3cos® 9 3c0s8 -?—3—1/—7—&’“’_—5003 0 L E 2% 6050sin? 0 ;—S-J—le“” sin® @
4m 4\¥3n 30m 8¥5n
4| [ L 35c0570-30co0+3 | 1S [1 ujyTcos’0-3c0s0 . o 15 e Teos’0-1 . oo 2105 [ 1 e ososino 105 [1 it
4 8 4 ¥5n 2 lOn 2 8 ¥35n 16
o dY  (cosO
Explicit Forms for —=*—+ nl )
dcos9
m
n 0 +1 12 +3 +4
0 0 0 0 0 0
1 [3 i_l_ [3 en cos® 0 0 0
47 27 sin®
2 3 —3—0059 + 5 ichos 6-1 3 ’5 52 cosh) 0 0
i 4n 617; sin© 2\Von
3 29— - , 0
3 __’_71? 5C0829 1 + 37 o 1500s29 élcose 15 - 6i12¢(1 ~3cos? 6) i_{g 37_ £1% L0 Bsin O
T sin T
3. ’ . ’ . .
4 3JI——~—-———-——35COS 8- 15¢0s0 ISJ—— e Sl 2cos'0-27cos’0+ 3 'I—S- —l—-ei’2‘b(4cose—7cos30) i-gs— -‘I'~eijs¢(4c0320—l)sina ~-1-0—5~ -—L~ei’4°c050sin20
4n 2 4 2sin@ 2 ¥yiom 8 ¥35n 4 Y 70n

ce




Explicit expressions for the X, (6,¢) vector spherical harmonic:

- ! , 3 . A
XI,O(e’q)) = J’i Efn“sm 0¢

_ N
X, .(6,9)= 7t ”’[G — jcos 9(1)]

X, (0,0)= F ’¢[9 + jcos 9(1)]

3c0s 0-— 1 A
20(0,0) = JW’?

X, .. (6, ([)):i % ’°[cos(96 j(2cos* 0 - 1)43]
Xzyl(e,«p):i % ’¢[cos68+](2005 0- l)(b
22(0,9) -}I %e j2e smBG ]Slnecosﬂtb
X,,(0,0)= :11-\/% 2 sm96+]smecos9¢




Explicit expressions for the £ xX, ,(0,¢) vector spherical harmonic:

LE

i xX,,(0,0)= —];1/ isin@é

txX,_,(6,9)= %w/ﬁ—te”""[jcoseé + (f)]

FxX,,(6,0)= %wf%e”{ﬁcoseé + (f)]

.S 5 3cos?®-1 . A
rXXZ'O(G,(l)):—“] ————Z——“ n 60
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[6(1- 6 3092)f + gosoo]yo=|" L (ar) 22 = ()15
L2 e T a?s| T e = N
I .
[9(1- 0 ,5002)¢ ~ gos00 |0~ (1) 2 = (4) 1w

y _
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Explicit expressions for the N” ' (F) vector spherical harmonics:

(i) (= 20 (kr , 3 . .19 ’ 3 .
Ngg(l‘) = ]——-]% % cosOr — _]-]'(;' 5 [FZI (kr)] 5 2—n— sin 66
2V 139 1 [3

—e [ jcos08 + ‘f)]

N () -
A 4 4t
N(i)(F):—j———Z‘(i)(kr) Fe sin OF + — 19 [rz()(kr)]-l—\/ze
bl ke V4n kr ort ™ 2Van

"”[—j cos 00 + q3]

N (F) = k(:cr) 5 ;i (3cos’ 0 - 1)f — ]—]:—rg;[rzg)(kr)] 5 3cos’0-1 sin
W () gl)k(fr) % —?{ ~# sin 0 cos OF + ?lr——a%[rzz (kr)] ; %e"‘”[j(Z cos* 0~ 1)8 + cos 643]
NO ()=~ zgi;(rkr)% % 7 sin @ cos OF + —I—r—%[rz2 (kr)]% %e”"[—j(Zcos2 8- 1) + cos 6@)]
N (F) = J zg')k(rkr) 2— % ®sin® OF + zl;g;[rzg (kr)]i % ’2"[] sin 6 cos 09 +sin e¢]
NGO (F) = j Z’g)k(rkr)% %e’w sin? OF + ir—a‘ir[ g")(kr)]%\/% 7 jsinBcos 08 - sin 03]

6¢
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Appendix Il — Commutation Relations

Consider the operators V* and V x. The commutator is V*(V x) —(V x)V*. Using the

representation of the operators in Cartesian coordinates, we see that

Vi (Vx)= a-7+a_~7+ a: —a-i+—a—§f+—a—i X
ox dy° dz jldx oy 0z

(o> 9 9*Yo. (9 9 9Vo. (d o 9 )o.]
= >t 7+ 7 X+ >+ >+ T =¥+ 7+ Tt |2 |X
| ox® dy” dz jox ox~ dy° 0z  |dy ox* dy” 9z |0z

d

(o0 9%  9* ), 9(d 9 9\, 9(3 9 ),
il ew vl b Eeweauteweiutews il b Autews Bewsouiewe dulew ol C2 B
| ox{ox® dy" oz dyl ox* dy” 0z Oz| 0x~ dy" 077 | |

= iy‘(JriA+—a—2 X —a—z—+ o +a
ox ayy 0z ox’ oy 07

w
N~

so that .
V3 (VX)-(VX)V* =0.

The commutator is zero, so the operators V> and V x commute.

Let a be a constant vector. Consider V xay,
Vx = ii-kiy +—(?—2 xay
dx dy 0z

=-axVy
Thus, we have the operator anti-commutative relation,
Vxa+axV=0.

Consider VXTI when there is no additional function to the right. We have
ox dy 0z

=XXX+VXY+ZXZ
=0

foz[—?—i+—a—y+ii)x(xi+ vy +22)

Next consider the operators VXF and F XV . Note that V in VXF is expected to
operate on whatever function is immediately to the right of V XTF , in additionto T,
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unlike in (II-5). Representing the operators in Cartesian coordinates, and explicitly
including the right-hand function, Y, on which the operators operate,

VXFy = 9_;‘;+—Q—‘+-a—i X(xR+ y§+22) v
ox ayy 0z el

_9 'Wi—ﬁ—zwA—-?—XWJF—Q-ZWﬁJF—a—xWA'i L2
FRRASIIFWELL A dy 2o
J

= —xiwi + x-—a—\uy + yiwi - iwﬁ - zi\ui +z—yXx
dy 0z ox oz ox dy (I1-6)

= ——x(_a_.i__a_y)w_ y[_a_ﬁ_iﬁJw_Z[iy _ii)w
dy 0z dz  ox ox~ dy
=—(x&+ y§'+zi)x(if(+i§’ +i2}w
_ ox dy~ 0oz
=-FXVy
so that

VXFy+rxVy =0. d1-7)
Thus, the anti-commutator of the operatorsV X and F is zero.

Now consider V Xty , where F = P/ lf| . We have

r

A
=4><V[%J+%fo
1

=—f~xw—wf><v({—_-]. (I-8)
r

VXry =V x

. 1 . .
=—FXVY +y—FXT
r
=—FxVy
Thus, we also have the operator anti-commutative relation
VXE+EXV=0. (11-9)
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Appendix lll Addition Theorem for Vector Spherical
Harmonics

The vector-spherical-harmonic addition theorem allows a vector harmonic referenced

to

one coordinate system to be to be expanded in terms of vector harmonics referenced to

another coordinate system, which has been translated with respect to the first. The

derivation of this theorem is outlined well by Weng Cho Chew [9]. For a translation such

that F =T+, the addition theorem says [9]
o (B)= 2 At M (F) 4 By, N ().
and "~m
F) =X AvatnnNo (F)+ By M (F),

where

o [j"’ [n (n+1)+n'(n'+1)—n”(n”+l):| ]

Artinin = \/n (n+1)n’(n"+1) =

and

A(m,n,—m' ;00" =1) 29 (k) Y (60,07

27 [n n+l)+n’(n"+1)-n"(n +1)] )

Bn’ mmm »
’ \/n(n +1)n’(n'+1) 7 [-B (m,n,—m’,n’,n )z,,» (krw)Yn.,m_mf (67.07)
and the difference in scaling factors between the definitions of the vector spherical
harmonics defined by Chew [9] and those used here has been accounted for.

In (I1I-1)—~(111-4), the Y, (8,¢) is the scalar spherical harmonic (see Appendix I),

Yn,m(e,q)):\Fz"“) (n =m )P"’(cose) e

47 (n+m)

The choice of which spherical Bessel's function, z (kr) to use in (ITI-1)—(111-4)
depends the relative sizes of " and r”:
Je k), ¥ <’

in MY, (¥) and NV, (¥): 9 (k)= ,
n,m( ) n.m( ) n ( r) hy(l:?)(krr)’r/>r//
and
; h(,z)(kr”) ¥ <r
d By nn: 2 (k)= ’ .

Also, in (III-1)-(111-4)

AQm ol ) = (~1)" \/(2n+1)(2n’+1)(2n"+1)(n n n”)[n 7oon

41 0 0 O)f-m m m-m
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—\/(n' —m (0 +m +1) (7" +m -mY(n"+m-m' - 1)A(m,n,-m’ ~1,n",n" - 1)

B(m,n,~m’,n’,n") = ,2)_’7::'11' +\/(n,+M') (7' —m' +1)(n"—m+m)(n"-m+m’ +1)A(m,n,—m + Ln",n"- 1)}’ (10-9)
n -
+2m'\/(n"—m+m') (n"+m=m)A(m,n,—m’,n’,n" -1)
and ( ho ko h is the Wigner 3-j symbol, related to the Clebsch-Gordon coefficients
m,m, m,

as [9]
j1 jz js (_I)A—h“m3 . . O
: = .] m .]Zm?_ ]2 9—m s (III‘IO)
m m, mj \/2—].;:1(11 NWENE 3)

and the Clebsch-Gordon coefficient is [8]
(j1j3m1m2! j1j2j3m3) =
6(m3 m +m) (j1+j2’j3)!(j3+j1_jz)!(j3+jz'j1)!(2j3+l) , (IH-II)
b (Ji+ i+ i+1)!
(—l)k \/<j1+m1)!(j1_ml)!(jz'*'mz)!(j 'mz)!(js""mS)!(js _'ms)!

' c kGt gy RN —my =) (G +my = KNG — oty + k) (s =y —my +k)!
where

Lm=m
5(m,m')={’m m

O,m=m
h ko
m, m, m,

2

The Wigner 3-j symbol, ( j is nonzero only if m, = —m, —m, and if

n n n
Gt h2J; le1 — j2|. The special case (0 0 O] is nonzero only if n+n"+#n” is an

even integer. Notice that there is a slight difference in the notation used here for
B(m,n,—m’,n’,n"), and that used by Chew [9], who inserts an additional argument,

n”—1, after n”. Since that argument is redundant for the usage here, it has been deleted.

From (III-8) and (III-9), we see that each term in the sum over n”, which is contained in

n n" -1
0

the sum will only contain terms where n+n’+#n” is odd. In addition, each term contains

both A, . . (I-3)and B

n
e minm (I-4), has a factor (O ] This means that

n n n-1 n n n”—1 . .
the factor or , which will be zero unless

-m m m-m -m m'tl m-m'Fl

n” satisfies 1+|n—n' <n”<1+n+n’". Note that when n”:1+ln—n'|,then n+n +n" is

odd for any n,n". Thus, we can write

n'-n l+n+n’ 1 nin+ 1 + n, n, + 1 - n” n” + 1
‘/&z'.m';n,m = 27U ] 1: ( ) ( ) . ( ):| N (III—IZ)
\/n (n+1)n'(n"+1) :z”}=1+|n"—n'l‘ -A(m,n,~m’,n’,n" ~1) Z,E',) (kr0)Y s o (67,07.)




znjn'—n Hntn’ j"’[n(n+l)+n (n +1> I’l”(l’l”'l'l)]

B. . = .
\/n(n-l—l)n’(n’ﬁ—l) <lth-nl-B(m,n,—m’,n’,n") z, (?) (K7 Y e e (67,07

n.m:mn,m

(I1I-13)

3+{n-n'l "

Suppose the expansion of the magnetic field for an antenna is known in terms of vector
spherical harmonics referenced to the origin of the unprimed coordinate system, as
illustrated Figure II - 1. The magnetic field in terms of harmonics referenced to the
unprimed system is

J—-ZE[?)’E N2 (F) + BN (F) | (I-14)

n=1 m=—n
In terms of harmonics referenced to the primed coordinate system, the same magnetic
field is
TE ™ =7
[ntnmnm bnmAnmnm]M() ( )

)=i-¥¥ Y

r
O 3 o d ot HBE A s+ BTt [N (B) |

n.m nrnnm

(II1-15)

Figure I1- 1 Relationship between the unprimed and primed coordinate systems
for the vector-harmonic addition theorem.

Computational considerations for the Clebsch-Gordon coefficient

The Clebsch-Gordon coefficient, (III-11), presents some potential difficulties for the
numerical computation, because it contains products of factorials. While the coefficient
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itself is well behaved when the arguments become large, intermediate products and
factors can cause numerical overflow if appropriate precautions are not taken. The

logarithm of the factorial function can be computed easily for very large arguments, and

should be utilized to avoid overflow. A good approach is to compute the coefficient as

Ja—my )+ ln( Js +my ) ’ln((h

i) )—%m((j1 +jy+ 5+ 1))

) ‘ln( Jo +my)!

ms)!)

follows
(jljzmlm2 j,jzjsmj) (m m; + mz) (2]J + 1)
Ain((+ 2= Js)!) 4 (s + - 12)Y)
+2In((js+ jr —
+1In ((]l +my)! ) ‘ln(
(1) exp| +4In((J
!
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= =
e e

.._.‘
=

w\

+m, —

k)Y =In((4; -

m2+k))

k) - ln((J]+]7 ]-—k))—ln((]1 m, — k))

(%2
(s~

]7+m1+k))

. (lII-16)



Appendix IV — Certain Integrals Containing Associated
Legendre Functions

In the evaluation of the mutual impedance, certain integrals containing associated
Legendre functions are required. These integrals are defined

’ l d M d "
g (n.n ,m)=:’;(l—-x2)EPn ()7 (x)dx, (IV-1)
‘ d
& (n,n’m)=|| P"(x)—P" dx, v-2
()= [| B ()82 (5] av-2)
and
1
7, (n'sm) = [ - L P (x)Pr(x)dx. av-3)
—x
-1
In addition, it will prove convenient to evaluate
(n,n’,m) fP’" Py : (IV-4)
For negative order, we use the convention [7]
P (x) = (~1)" (n=m)! (x) aAV-5)
" (n+m)l " )

Establishing Orthogonality
The associated Legendre functions possess well-known orthogonality properties. The
orthogonality relations are
1 0, nzn
[ Breopr (x)dx = { , (IV-6)
-1 #0,n=n

and

lml# m

1 , {O,
(P (x)dx = (IV-7)

‘11—x2 ¢0,lml:

It will be useful to derive these orthogonality relations, in order to illuminate the
relationship between the various integrals.

Application of the differential equation
The associated Legendre differential equation for integer degree and order is
% _(1 - xz)%f;"’ (x)_ + nn+1) - 112 P'(x)=0. (IV-8)

Multiply (IV-8) by P (x)

n

r B 2

el 2y pr - ™ P (x) = .
P (x)dx_(l x)den(x)~+ n(n+1) = —— | BY (B () =0. (IV-9)
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Interchange n with n” and m with m” in (IV-9), subtract the new equation from (IV-9),
and integrate over —1 < x <1 to obtain

L d 2 d m b oom d 2 d m’ 7
[.B (x)g[(l-—x ), (x)}dx—_LPn (x)a—x—l:(l—x ) B (_x)}a.x

(Iv-10)

1
1—
Applying the integration-by-parts procedure to the first two integrals

-[La- )P ()P ()

a4+ D=+ D] [ PF OB dx~[m? ~m”* ][ =P (OB (0)dx =0
-1 e

pernt, o d d
1-x*)PY (x)— P
(1=x)E: (0)—F"(x) o

2 m d m 1 1 42 __d_ m’ i m
~(1=3)B () —F] (x>_1+j_1(1 x) = BF (1) BT (0)dx . QV-1D)

+[nte+ D=+ D] [ BF )PP o)z~ [m? = m ][

1]-x

P (x)B (x)dx =0

2

Since P"(x) is finite at x =] and %PH’" (x) has no worse than a v/1— xz- singularity at

x ==1, then
’ ’ 1 ! 2 7”2 1 1 ’
[n(n +1)—n'(n’ +1)] j P (x)B] (x)dx [ m* —m™ | j P (X)P"(x)dx=0.  (IV-12)
-1 1] -x"
If m=m", then
1 0, n#n
J. P (x)B7 (x)dx = { , - (IV-13)
-1 #0,n=n

Thus, P"(x) and P/ (x) are orthogonal with weight one over the interval —1< x<1.
Similarly, if n =n", then

J»1 1 m o’ _ {0, |ml # !m'l
. 7B (0B (x)dx =

, (v-14)

1]1—x ¢0,[m|=m'

and P"(x) and P™(x) are orthogonal with weight 1/ (1-x7) over the interval

—1< x <1. Thus, the orthogonality relations have been proven. It remains to evaluate
the nonzero integrals.

Relationship between the various integrals
Initially the closed-form of the integrals will be obtained for positive order, m = 0.
Negative order, m < 0, will be handled by applying the convention (IV-5), so

- _(n-—m)!(n'—m)! , i
& (n,n, m)—(n+m)!(n'+m)!ji(n’n’m)' (IV-15)

Integrating (IV-9) produces
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j_‘[ (1- xz)gx—Pn'" (x)—;—xﬂ',’"(x)dx =n(n+ 1) _'1 P™(x)P" (x)dx

-’ j‘l{ 1 i}P,,’"(x)Pn',"'(x)dx.

1-x°
Thus, with m = m’, we obtain
4 (n,n',m)=nn+1), (n,n,m)~-m*4 (n,n’,m).
Note that the integrals %,  , and % are symmetric with respect to interchange of n
and n’. This symmetry, along with (IV-17) shows once again that

[ B Er(dx=0,nn'.

Application of recursion relation
The associated Legendre functions satisfy the following recursion relations [10]

n-m+1l n+m
Pm — e — m —'——Pm >
Xr, (X) 1 rz+1( )+2n+1 "“( )
and
(1)L ()= ot () o m) P2, (),
so that
R d n(n—-m+1) (n+m)(n+1)
P o)L pr () =TT pr () - A (%)
(x )dx n (x) 2n+1 n+l (X) 2n+1 " (X)

valid for m > 0.

Substituting »” for n in (IV-21), multiplying by P (x) / (1-x), and integrating, we

obtain
, v d .
Jz(n,n,m):j'_]]:; (x)?d"-x_})n' (x)dx
W(n-m'+1) 1
(2n'+1) -[—I(I_xZ) n (x) 7'+l (x)
(em) (1)
P" (x) P~ dx
¥ (2}’ll+1) J—l (l_xl) n (X) n'-1 (x)
or |
Jz(n,n',m)z (n +m?(n +1)<¢3(n,n'—l,m)—n—(—n——7’11+—l)ﬂ3(n,n'+1,m) whenm =0.
(2n"+1) (2n"+1)

If expressions for the integrals & (n,n’,m) and & (n,n",m) can be found, then

& (n,n",m) can be obtained from (IV-17) and % (n,n’,m) can be obtained from (IV-23)
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(IV-16)

(IV-17)

(IV-18)

(Iv-19)

(IvV-20)

(IV-21)

(IvV-22)

(Iv-23)




1
Evaluation of 4 (n,n',m)= [ P (x) B} (x)dx
-1
The explicit form of the associated Legendre function given by *
miz2 d™

B (x)=(-1)"(1-%%) —=F () S (v-24)

where m 20, and P, (x) is the Legendre function

1 dn ] n
P = “—1) . 1V-25
(9= 5o (1) (Iv-25)
Using (IV-25) in (IV-24)
m m ""/2 1 dn+m 2 n

P (x)=(-1)" (1-x?) T (x*-1)". (IV-26)

Thus, the integral becomes
% (nn',m) = PP (x)PF (x)dx

v o . (IV-27)
1 oy awd™ L, e dTT
=m.‘:1(1—x—) s (.X —1) dxnl“" (x —1) dx
Since we have already shown that (n, n',m) =0 when n #n” (IV-13), we need to
evaluate
[ [rr@]a= L [ (==Y a (x> -1) o (x* -1)" ax (IV-28)
1L H2n (n!)Z -1 dx™m A -
Integrating by parts (n+m) times
1 2
[L[Bro] ax=%(nm)+ 5 (nm), (IV-29)
where
1 n+m N dn+m—k n dk—l S\m dn+m , n !
Jz(”’m)zzzn o ;(_l)k IW(JCZ—I) F((l—f) = (x*-1) )—1 (IV-30)
and
1 n+m . R n dn+m \m dn+m s n
y;(n,m)=§2n ()n!)z [(x-1) dxm[(l—x ) = (x*-1) ]dx. (IV-31)

Applying Leibnitz’ differentiation formula ¥ [14]

" Hanson [12), Stratton [13], Arfken [14], and Mathews and Walker [16] omit the factor (~1)", but it is
included by Jackson [7], Abramowitz and Stegun {8], Chew [9], Lebedev [10], and Balanis [3].

* Leibnitz’ formula for the n* derivative of a product:
d" n! ar d’

S AB (= S A 5 B

s=0
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, (Iv-32)

(k_l)y dk—l—r' S\ dn+m+r 5 u
ik —1-1)1] &' (lﬁx) W(" ”1) i

(n+m)! {d J

e (1-2)
mnl sl(n+m~s)!| dx
=0 dn+m+s R n
.{dxn-rmﬂ (x- —1) :*
Using the binomial expansion, we can obtain the derivatives

ds e df ¢ D{a+1) o
L (1-2)=2_%(- 2
o 1=%) =g 2 KT (a+1-k)

=0

i . (IV-33)

-

, (IV-34)

&, o T+
=2 ) e =g
and

E( 2 _l)a _ (_l)a i (_1)k F(OH-I)(Zk)! g (IV-35)

ka2 kKIT(o+1-k)(2k—g)!
where g is an integer and « is a real number, not necessarily an integer. For
convergence, we require |x| < 1. Note that the infinite sums in (IV-34) and (IV-35) will

terminate when k = o, for o a positive integer. However, if o is not a positive integer,
an infinite number of terms will occur in the sum.

When o =n, an integer, the derivatives also can be expanded into another useful form as
follows (using equation 0.432-3 from Gradshteyn and Ryzhik [15]),

d’ (x2 —l)n = n!im(zqf)

t gt
4 2072k xa 2k (3 1) (IV-36)

dx? = kY q-2k)!(n—g+k)!
or
d? 2\7 q inifa/2) k q ! —2k __g-2k 2\n—q+k
—A\l=x") =(-1) n! -1 297 x T 1= x7 . Iv-37
g1 X) =t 3 () Ki(g—2k)\(n-q+k) (1-x) V=7

This form is useful for evaluating the derivative at the values x = *1, but only when the
exponent is an integer. For o = n, an integer, if g > 2n, all the terms in (IV-36) and

(IV-37) will be zero (n — g + k is always negative). Additionally, if g <n, there will
always be a factor of ( 1- xz) so that
d? 5 \"
?d;c—q—(l—x‘) =0 wheng<n, (IV-38)

and, when g = n, there will be a single term

x=*1
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& (1 - xz)n

n

=(F1)"n!2". (IV-39)
x=+1
Note that the +1 on the left side of (IV-39) correlates with the F1 on the right side.
When g = 2n, the derivative has only a constant term

j}; (1-%*)" =(-1)" (2n)". (IV-40)

q n
We see from (IV-36) that —Zj;—(]—(xz - 1) can only be nonzero if n < g <2n. Thus, in

x=11

n+m—k

n+m—k 4

! k=1-t 1
& (n,m), the factor [ (x2 — 1) } is zero for k >m , while {—‘1—,;_7_—(1 - xz) :I
dx
-1 -1
will be zero for k <m+1. Therefore, % (n,m) will be zero and
1
1

J._ [R,'" (x):]2 dx =4, (n,m,n,m)

- ‘ . (Iv-41)
B (_l) 1 Y n+m (n + m)] qrms L\ armes R n
2 (nl)’ L= 2(; st(n+m=s)t @™ (=) g ()
The left derivative in (IV-41) is zero everywhere unless s = n —m , while the right
derivative is zero everywhere unless s <n —m . Thus only the term with s = (n - m)
will contribute to the integral, and
2 -1 ) (n+m)lp1, ,  \n
[ )] o= 2 (20)t (nvm) [ (x*-1) ax. (IV-42)

2 (nlf (n=m)!

Letting x =cos 6, we obtain [15]

[ (22 =1 adx=(-1)" [Tsin™" 646 = (~1)" 2

(em)! . ml _
(2n+1)”—( 1) e )1“(1/2). (IV-43)

Since (2n)!!=2"n! and (2n—-1)!!=2"T(n +‘7)/\/}£— [8], it follows that
(2n)!  (2n)!

= ={(2n-1)!,
yar (22
and we obtain the well-known result [8]
2 !
4 (n,n,m) = J._ll[an (x)] dx = (2n2+ 1) EZ i:;y whenm=0. (IV-44)

Using the convention for negative order (IV-5)

KA (n,n,-—m) = J:l] [Pn_'" (x)]2 dx

) . av-45)
Z[(_rz_—_n_z_)l} J'_Il[ﬂm(x)]zdx:< 2 (n-m)! when m =0

(n+m)! 2n+1)(n+m)!
Thus, combining (IV-44) and (IV-45), we have
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Owhenn'#n

“m)=( P (x)P" = ! ]
% (n.n',m) j_l P™(x)P7 (x)dx 2 (n+m)! when o (IV-46)
(2n+1) (n—m)!
1
Evaluation of 4 (n,n',m)= fl ! = P" (x) P (x)dx
-X
-1
Inserting (IV-26) into the integrand of % (n,n",m),
% (n,n',m) = J:L 1 - :IPH’” (x)P"(x)dx
o , : (IV-47)
1 i 5 m-1 dn +m ) " dn+m 5 n
=mj‘_l(l—x ) dxn/+m (x "'1) dx”m (x —1) dx
where we require m = 0. We integrate by parts p times
I { s preorr oo -
- l-x7
( p -1 dk—l el dn'+m o dn+m—k n 1
1) —| (1= —(x* -1 2-1 V-4
L e e e - | - v
2"+"'n'!n! B Gatiald N n dP L \m-1 dﬂ'+m o
0 [ e E[(l"‘ L () }dx
Applying Leibnitz’ product differentiation formula to (IV-48) gives
1 1 - m _
[ L_xz]pn, ()P (x)dx =
dn+m—k !
O (1) 2\l
g( 1) [dxn+m—k (X 1) ] (IV-49)

B 1 -k-l (k—l)! 4 oy drrmes N {
S szgs!(k—l—s)![dxk""‘ (1-+) ][W(x 1) L

P s n 1 drs - dn'+m+5 o
o [ S of [ ) | e - e

We see that the right-hand factor in the sum outside the integral in (IV-49),

k~1-s _
(x2 - 1) , is nonzero only when m —n <k <m, while W(l - xz) 1

dn+m—k
dxn+m~k

is nonzero only when m < k —s < 2m —1. Thus, the nonzero contribution occurs for
k=m and s=0,sothatfor p=m

x=%1 x=+1
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f_’,[ : }f:?‘<xm"'<x>dx=

1-x7

I N T 1 AT . (IV-50)
N e
h 2n+n' n/! n! i dn+m—p ' d p-s -1 dn'+m+-.v .
’ 2 " p: 2\” 2 ”
[ el - 3 s!(p_s)z[dxp—s (1-) J[E_( e
The integrand in (IV-50) will be nonzero fors > p—2(m—1) and s <n'—m. If we take
p =n+m, the integrand is nonzero only when n —m+2<s<n’—m.
At this point, we have not specified the relative size of #” and n. If we choose n>n’,
we see that no value of s allows a nonzero integrand. We simply obtain
, 1 m m
5 (i) = ['| s B opr oas
0 when n"+n odd
, (IV-51)
(n"+m)! i ,
={————— when n'+neven,n=n’, andm>0
m(n' —m)!
undefined when m =0
Noting the symmetry of & (n,n’,m) with respect to n and #’, and using the convention
(IV-5) for negative order (m < 0), we write
% (n,n',m) = J.l ! P (x)P"(x)dx =
3 288 _} 1 _ .x2 n n
[0 when n’+n odd
(min(n,n')+m)! ,
when n"+n evenand m >0 (IV-52)

J m(min (n,n') —m)!

(max (n,n')+m)! ,
- when ' +n evenand m <0

m (max (n,n’) ——m)!

undefined when m =0

Note that . (n,n’,m) is undefined when m = 0. However, in cases where the integral is

multiplied by m, letting m go to zero prior to performing the integration takes care of the
problem.

54




1
Evaluation of (n,n',m) = J(l - xg)%ﬂm (x)%ﬂ”’ (x)dx

-1

The relationship between  (n,n’,m), % (n,n’,m), and &% (n,n’,m) is given in AIV-17).

Substitution of (IV-46) and (IV-52) into (IV-17) gives

0 when #n”+n odd
in(n,n")+m)!
Jl(n,n',m):<2n(n+l) (n+m)! S, — m(mm(n n/) m) when n'+nevenandm>0|,
(2n+1) (n—-m)! (mm(n,n )—m)!
] ’ !
Zn(n+1) (n+m) Snn +m(max(n,n,)+m) when n'+nevenand m <0
\(2n+l) (n—m)! (max(n,n —m)! '
where
5 - O whenn#n’
"%~ |l whenn=n’
Evaluation of ¢ (n,n",m)= j[ ; P’ (x )}zx

The relationship between % (n,n’,m) and % (n,n’,m) is given by (IV-23). Substitution
of (IV-52) into (IV-23) gives

(
0; n’ +neven
- '
(n'+1)(n'+m)(“““ aal *’")
% ( ) 1 (rmn m)’ n’+n odd
}’l = { ————
e m(2n’+1) ., (mm n,n’+1) +m)' andm >0
-n (n +1—m)( 1 :
min (n,n" + m)
, , (max (n,n" 1)+ m)!
n+lin+m
1 ( " )(max (n,n=1)- m)’ n’+n odd
m(2n’+1) (max (n,n"+1 +m)‘ and m <0
— ’ ’ 1_
n(n+ m)(max nn+1 )'

Note that (IV-54) does not give %, (n,n',m) when m =0 if n”+n is odd. Because

% (n,n’,m =0) is undefined, (IV-23) cannot be used to obtain &% (n,n’,m) when m=0.

Taking a direct approach, and integrating (IV-2) by parts, with m =0,
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(IV-54)




A 00)= [ 22 () 2 )|

-1

1 ) (IV-55)
_ po 0 1 0 0
=R, ][R () s
Thus, we have
0; !
,(n,0,0)+ 4 (w',n,0) = B (1) BY (1)~ PP (~1) B2 (~1) = {2_ T avse
Substituting (IV-26) for m =0 into (IV-2)

5 (n0)=[[ 2 ()2 2 ()| s

-1

1 » av-s7)
1 dn 5 n dn + ) o
T2 ntnt -[[dx (¥ -1) G (1) }dx
Integrating (IV-57) by parts one time
i n-1 n'+1 . 1
L (-1 L (x2-1)
, 1 dxn dxn
&% (n,n ,O) v ! . (IV-58)
- 2" nln"l 2 g P d
[ S (2 =) S (2 -1)
| L dx i
From (IV-38), we see that the first term in the brackets is zero. The integral can be
further evaluated by the integration-by-parts procedure. Applying this procedure a total
of n times,
, _ (_1)" -1 s " dn'+n+1 5 o
%(n‘,n,O)—m:[(x -1) W(x -1)" dx. (IV-59)
From (IV-40), we see that
dn'+n+l , o ,
—mr (¥ ~1) =0 whennzn’. (IV-60)
Thus, we have
% (n,n",0)=0whenn2n’. av-61)

Using this information with (IV-56)
0;n+n" even
& (n,n,0)=<0;n+n"oddand n>n’. Iv-62)
2;n+n"oddandn’ >n
The complete integral is
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5 onttm) = [ [ 27 () 2 ()]

% dx

rO n’+ n even, for all m
n+n'odd,n>n",andm =0

2;n+n’odd,n">n,andm=0

(mm n,n —l +m)'

n+1)(n" +m
1 ( )( )(mm nn —1 m)’ {n'-&n odd
_Jm(2n"+1 1 ' and m >0
—Jm( ) _n,(n,+1_m)(mm n,n’+ )+m)
(mm(nn+l) m)’
A —=1)+m)!
(n"+1)(n"+m) (max(n n, ) m)
1 (max(n,n —1)—m)! .{n'+n odd
m(2n’+1) (max(n,n'+l)+m)! " landm<0

_ Id ’ 1_
n(n' m)(max(n,n'+1)—m)!

(IV-63)
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Appendix V — Relevant Network Parameters

The relationship between the S parameters and the admittance matrix

Define terminal voltages and currents at the ports of a two-port network as V|, I, and
V,.1, at ports 1 and 2, respectively. The port voltages and currents can be related

through the admittance matrix
L) _[¥ %W
I 2 Y’.Zl YZZ V2 .

For a microwave network, the ports are typically fed with transmission lines. In this case,
it is convenient to describe the response in terms of incident and scattered port voltages,

V.7,V , respectively. These port voltages are related through the scattering parameters

‘/1_ — Sll SlZ Vv1+
Vi LSy Sullvi

Associated with the incident voltage is an incident current, I;, which flows into the port.

Similarly, associated with the scattered voltage is a scattered current, I, , flowing out of

the port. The incident and scattered voltages and currents are related by the transmission-
line wave admittance, Y ; at the respective ports

Ili _ YO,I 0 V}i
L] L0 Y.jv
n_[veL v
Vz Vz+ Vz—
while the total port current is

Ly i I (Y. O AN
L L] L] [0 Y|V (V)

with the reference direction into the port. Substituting (V-2), (V-3), (V-4), and (V-5) into
(V-1) gives the relationship between the admittance matrix and the scattering parameters

The total port voltage is

(1= S8,;) (148, ) + S1,5,, v 28, v
Yy Yo] | G+S0(1+8,)-8,8, »  A+S8)(1+5,)-5.8,
I:YZI YJ - 28, 1+ 5,) (1= 8,,) + S5, '
| A+S)(1+5,) =828, 7 W+ S)(1+5,)- 5.8
Similarly
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(V-1)

(V-2)

(V-3)

(V-4)

(V-5)

(V-6)




—(YO.I - Yu ) (Yo,z + Yzz) + Y12Y21 —2leYo.z

I:S“ Slz:‘ (Yn +Y0.1)(Y22 +Yo.2)'leYzl (Yn +Yo,1)(Y22 +Yo.2)—Y12Y21
—2Y, )Yy, (YO.I +¥, )(Yo,z = Yzz) +Y,Y,

_(Yu +Yo,1>(Yzz +Yo.z)_erY21 (Yn +Y;),I)(Y22 +Yo.z)“Y12Yz1 i

In general, for a multiport network

I=Y-V

VvV =S.V*

IF=Y, V*

V=V'+V~
and

I=I'-I" =Y,- (V' -V)
so that
Y=Y, (1-8)(1+S)"

and

S=(Y,+Y) (Y, -Y)

(V-7)

(V-8)
(V-9)
(V-10)
(V-11)

(V-12)

(V-13)

(V-14)

The relationship between the S parameters and the impedance matrix

Define terminal voltages and currents at the ports of a two-port network as V,, I, and
V,.,1, at ports 1 and 2, respectively. The port voltages and currents can be related

through the impedance matrix
‘/l — Z 11 Z 12 I 1
VZ Z 21 z 22 I 2 -

For a microwave network, the ports are typically fed with transmission lines. In this case,
it is convenient to describe the response in terms of incident and scattered port voltages,

V.7,V , respectively. These port voltages are related through the scattering parameters

‘/1_ — Sll SIZ Vv1+
Vz_ SZI S?..?. V2+ .

Associated with the incident voltage is an incident current, I;, which flows into the port.

Similarly, associated with the scattered voltage is a scattered current, I; , flowing out of

the port. The incident and scattered voltages and currents are related by the transmission-
line wave impedance, Y, at the respective ports

2] (2, o7 [w
Izi 0 ZO.2 Vzi ‘
v v
V, V; Vz'

The total port voltage is
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(V-13)

(V-16)

(V-17)

(V-18)




while the total port current 1s

Ly nn| I _|Za O B v
L| | 5 0 Z, v, vy
with the reference direction into the port. Substituting (V-16), (V-17), (V-18), and (V-19)

into (V-15) gives the relationship between the admittance matrix and the scattering
parameters

(1'*'311)(1—522)"'512521 2517
Zy, . Zy,
{Zu lejl _ (1 - Sll )(1 - Szz) - SIZS?_] (1 - Su)(l - Szz) - 512521
Z,, Z, 28, (I“Su)(“’ Szz)+512S21
Zy, Zy,
_(I-Sll)(l_sn)_SlZSZl (I—Su)(l—svz)_sxzsm i
Similarly
(Zu - Zo,1 ) (Zzz + Zo.z) =24y 221220,1 ]
{S“ Su] 3 (Zu +Zy, ) (Zzz + Zo.z) —ZyZy (Zn + 2y, ) (Zzz + Zo.z) -ZyZ,,
Sll S 222120,2 (Zn + Zo.1 ) (Zzz - Zo,z ) - anm
_(Zu + ZO.] ) (Zzz + Zo,z) - ZIZZZI (Zn + Zo‘x ) (Zzz + Zo.z) - ZIZZZI i

In general, for a multiport network

V=271,
V' =S8-V*,
V=27, I,
V=V'+V~,
and
I=I'-I"=Z;'- (V' -V},
so that
Z=(1+S)(1-8)" Z,,
and

S=(Z-2,)(Z+1Z,) .
From either (V-8) and (V-22) or (V-14) and (V-28), we see that

Y=2Z",
just as one would expect from the definitions of admittance and impedance in the network.
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(V-19)

(V-20)

(V-21)

(V-22)
(V-23)
(V-24)
(V-25)
(V-26)
(V-27)

(V-28)

(V-29)
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