


Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Government,

nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or

assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not inffinge privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government,

any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Ener~
Office of Scientific and Technical Information
P.O. BOX 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis .osti.gov

Online ordering http: //www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld. gov

Online order: http: /fwww.ntis.govfordering. htm



SAND2000-2217
Unlimited Release

Printed September 2000

Using Vector Spherical Harmonics to
Compute Antenna Mutual Impedance
from Measured or Computed Fields

Billy C. Brock
Radar/Antenna Department

Sandia National Laboratories
P. O. BOX 5800

Albuquerque, NM 87123-0533

Abstract
The mutual coupling that exists between the antenna elements in an
antenna array can be described with a mutual impedance. The knowledge
of this mutual impedance is critical to the successful desi=w of the array.
Computing the mutual impedance involves integrating vector products of
fields over a surface, but the integrands can oscillate wildly over the
integration surface, and are often difficult to integrate accurately. The
method described here relies on the expansion of the fields in terms of
vector spherical harmonics. The integrations over the closed surface are
performed in closed form, leaving the mutual impedance expressed as a
sum of products of expansion coefficients.
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Introduction
The mutual impedance is a circuit-theory quantity associated with a network. It relates

the current, ik, flowing into one port of the network to the open-circuit voltage, Vj, at

another port. The definition is

where j, k, and m are indices which designate the various ports of the network.
Alternatively, a mutual admittance can be defined,

I

yjk = :
7

v,,,=O:m=l.2 ..-., m*k

which relates

another port.

the voltage, v~, applied across one port to the short-circuit current, ij, at

Mutual impedance (or admittance) exists between the antenna elements in
an antenna array, and knowledge of this mutual impedance (or admittance) is critical to
the successful design of the array. Because of the mutual coupling, the reflection
coefficient looking into an element is different when it is embedded in an array with all
the elements excited, compared to that for the isolated element. Thus, in order to tune the
elements properly for minimum reflection in the active array, the mutual impedance (or
admittance) is needed.

Obviously, one could build an array of antenna elements, and then measure the coupling
between the elements. From this measurement, usually in the form of a scattering matrix,
the mutual impedance (or admittance) is easily determined (see Appendix V). However,
this is not very practical in many situations, when the number of elements is large.

As described below, the mutual impedance can be computed if the electric and magnetic
fields for the elements are known. Often, especially when the array is composed of
small, identical elements, it is practical to measure or compute the fields for the element.
Ideally, these fields should be measured or computed in the array environment, with all
other elements terminated in matched impedances, but not excited. However, this is not
always practical, and, sometimes, useful information can be obtained with the element
fields measured or computed in an environment where it is the on]y element present.

For man y applications, the mutual impedance is needed for many different relative
positions of the two antenna elements. When numerical methods, such as method of
moments, finite-difference time-domain methods, and finite-element methods are used, it
can be very time consuming to compute the fields at each new relative position of the
antennas. Thus, a field representation that allows easy translation to new positions would
be valuable for improving the efficiency of the computation as the relative position is
iterated.

Computing the mutual impedance involves integrating vector products of fields over a
surface. The integrands can oscillate wildly over the integration surface, and are often
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difficult tointegrate accurately. Themethod described here relies ontheexpansion of the
fields in terms of vector spherical harmonics. The integrations over the closed surface
are performed in closed form, leaving the mutual impedance expressed as a sum of
products of expansion coefficients.

The mutual impedance is described in terms of a physical observable called the reaction,
introduced by Rumsey. The reaction theorem is related to the reciprocity theorem
derived by Lorentz, and an understanding of the reciprocity theorem is helpful for
understanding the reaction concept. In the following, the Lorentz reciprocity theorem is
derived and examined in some detail. In order to understand better the generality and
applicability of the theorem, it is derived in a very general form. The medium in which
the elements are embedded is assumed linear and time-invariant, but not homogeneous or
even isotropic. The validity of the theorem does place constraints on the medium, and
these constraints will be stated.

After the discussion of the reciprocity theorem, an expression for the mutual impedance
in terms of the reaction quantity is written. The reaction is a term contained in the
mathematical statement of the reciprocity theorem, and thus the discussion of the
reciprocityy theorem is very relevant to understanding the mutual impedance.

Once the expression for mutual impedance is written, the fields can be expanded in
vector spherical harmonics, and the mutual impedance is ultimately written in terms of
the expansion coefficients. This process is somewhat tedious and is described in detail.
Although the final result may appear unwieldy, it is straightforward to program a
computer to perform the computation. The first advantage, of course, is the avoidance of
the need to integrate a wildly oscillating integrand that is slow to converge. The second
advantage is that mutual impedance can be computed for many sets of element positions,
using a single measurement or computation of the fields around an element.

Lorentz reciprocity theorem
The reciprocity theorem derived by Lorentz [1, 2,3] leads to a reaction concept [3, 4,5]
that is useful for understanding and computing mutual coupling between two antennas, or
more generally, between two sets of source cuments. The reciprocity theorem is
discussed below, but a particularly entertaining discussion of the reciprocity theorem is
contained in Weeks [6]. The reaction quantity, which corresponds to terms contained in
the statement of the reciprocity theorem, was introduced by Rumsey [5]. The reaction
quantity is a physical observable associated with the reaction between the fields of two
sources. In an electrostatic system, Rumsey’s reaction corresponds to the force exerted
by one source of charge on another. He shows that, for monochromatic electromagnetic
fields, the reaction is the difference between the instantaneous and average rates (over
one period) at which one source performs work against the other.

Following [1], the reciprocity theorem will be developed in a general form. It is
important to realize that the theorem is obtained by simply applying certain mathematical
operations to fields associated with two independent sets of sources. The fields are
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required to satisfy Maxwell’s equations, but they are not required to be related to each
other, or even to exist at the same time. However, they are required to be associated with
the same region of space. In addition, one would expect the validity of the theorem to
require that the media associated with each set of fields be the same. While this is true in
the isotropic case, it will be shown below that a more general relationship between the
two media must hold, and that for certain anisotropic media, the media will not be the
same,

The fields will be assumed time-harmonic (monochromatic) with dependence eJW. An

electric current, J, it the usual true physical source for the fields. A fictitious magnetic

current, M, will also be included, because of its convenience in handling the equivalent
sources often associated with the tangential electric-field of apertures in conducting
surfaces. The medium of interest will be assumed linear and time-invariant. However, it
will not be assumed homogeneous or even isotropic. Thus, the medium will be
characterized by dyadic electric permittivity and magnetic permeability, which are not
necessarily symmetric,

ji#ji’,
where ~ indicates the transposed dyadic. The electric displacement field and magnetic
flux density are

D=3.E,

and

B=j. H.

Suppose there exist two sets of independent sources, (Jl, Ml ), and (J2, Mz ). The first

set of sources is associated with the medium (~, ~), and the second source is associated

with the “transposed” medium (~~, F*). At least when the medium is symmetric

( ?$ = ~, ~~ = ~), it is natural to ask whether the two sets of sources are present at the

same time. The theorem to be developed will be valid regardless of whether the sources
are present at the same time. The fields associated with each source satisfy

vxE1=–j@. Hi-M,

vxH1=j&. E1+J,

and

vxE2=–j@’. H2-M2

vxH2=jc!@.E2+j2.

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

The reciprocity theorem is obtained by combining vector products of the fields and
appl yin: vector identities, with the fields subject to (1.5) through (1.8). Thus, the
theorem begins as simply a mathematical relationship that is imposed because the fields
are solutions of Maxwell’s equations. We begin by forming the difference between the
cross product between the electric field of the first source with the magnetic field of the
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(1.10)

second source and the cross product of the remaining electric and magnetic fields. The
divergence of this difference is

V’(E, XH2– E,XH J= H,.(VXE,)-E,.(VXH2 )-H, (VXEJ+E,. (VXHJ. (1.9)

Now, substitute (1.5) through (1.8) for the curl of the fields

V.(E, XH2– E,XH ,)=-j@(H. -F H*- H,c’H2)

+jw(E2-t -E, –E1.:’. E2) .

+E2. J1– E1. J2+H, .M2– H2. M1

Since the transpose of a scalar is that same scalar,

=“x~=(~x”b)=b”=’”~

for all vectors ii, b and all dyadics X. Thus, (1.10) becomes

V-( E1XH2– E2XHJ=E2. J1-E1 .J2+H1. M2– H2. M,, (1.11)

which is the differential form of the Lorentz reciprocityy theorem. Integrating (1.11) over
the volume containing the sources,

jjJv. (E, xH2-E, xHJdv=$$(E, xH2 –E2x H,)-d3
v =iJ(E2J1-E,~2+H1.M2-H’.M*)dv’‘112)

v

where the closed surface Z encloses the volume V, and the surface normal points out of
the volume. The integral form of the Lorentz reciprocity theorem is given by (1.12).

For most situations of interest, the electric permittivity and the magnetic permeability are
scalars or symmetric dyadics, and the two sets of sources are radiating in the same
medium. However, even when the constitutive parameters are non-symmetric dyadics,

(1. 11) and (1. 12) still hold, provided Ez, H2 meet a very special condition: E2, H2 must

correspond to the fields when the second set of sources are embedded in a medium whose
constitutive properties are the transpose of the constitutive properties of the medium in
which the first set of sources are embedded, that is

When the source currents exist in a finite volume and radiate into unbounded space, the
fields are subject to the radiation condition [1]. The radiation condition says that the
electric and magnetic fields become transverse to each other and propagate outward, so
that

liiy(vxE+ jkoixE)=o. (1.13)

Thus, if the surface X is taken to be the surface of the sphere at r + ~, then, assuming
the medium does not change as r + co,
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k -.-I
( .)]E,x Qp’ . ixE,

(.0

-[

_E, ~ kc+-]
( q. ix–,

6.)

“&

Since the inverse of the transpose of a dyadic is the same as the transpose of the inverse,
we can write

F-l =%% >
so that

(~’)-’ ‘(~-’r ‘~.~~+
Substituting (1.15) and (1.16) into (1.14)

Thus, when the magnetic permeability is either a scalar or a symmetric dyadlc,

Iim $$( E1x H2– E2x H,). d3=o.
r+-

2
Inserting (1. 18) into (1. 12) we see that

JJ( E2-J1-E, .J, +H,. M2-H2. MJdv=o,
v

when currents contained in a finite volume radiate into unbounded space, and the
magnetic permeability is either a scalar or a symmetric dyadic.

Suppose each set of sources is localized and the sets are contained in non-overlapping,

finite, closed volumes VI and V2. The volume integral can be broken into two pieces

JJJ(E2.~,-E,-J2+H1M,-H2M,)dv=JjJ(E2-J,-H2M,)dv
v v,

—mE,.j2-H, .MJdv’
v,.,

where V is a closed volume containing all of the sources, VI is the closed volume

containing only sources J], Ml, and V. is the closed volume containing only sources

~z, M2. Under this condition, (1.41) becomes

jfJ(E2.j,-H2.M1)dv=jJJ(E1 .j2-H1-M2)dv.
VI V2

Suppose we choose to integrate (1.12) over the source-free volume, the volume V less the

two closed volumes containing the sources, V, and V2. The surface integral in (1. 12) will

now contain three separate parts,

%(E,x H2-E,xH, ).&+~(E,xH2-E2x H,).&+fi(E,xH2-E2x H,).a

9
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(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)



where Z is the surface of volume V, and Zl, Z~ are the surfaces of volumes VI and V,,

respectively. In each of the integrals, the direction of d?i is outward from the enclosed

source-free volume. This means that in the integrals over Xl , Z,, & is pointing into the

volume containing the sources. Now, the volume integral on th~right side of (1.12) will
be zero since no sources are contained within the volume. Also, as previously shown, the
integral over the outer surface Z will be zero as we allow r + co. In this case, the
Lorentz reciprocity theorem reduces to

f-J(E,xH2-E, xH, ).d3+(j$(E1xH2-E, xH, ).&=o (1.23)

Reaction and mutual impedance
Now suppose the volume of integration is the closed volume containing only sources

J,, M,, or sources ~z, Mz. In the first case, we have, from (1.12)

#(E,xH2-E2xHJd3= JJJ(E2.J,-ll,.M,)dv, (1.24)
.X, VI

while in the second case,

M( E,x H2-E2x H,). dE=- jjJ(%J2-H,M2)dv. (1.25)

Rumsey [5] defi;es the right hand sides of (1.24~and (1.25) as the reaction, (1, 2),

between source 1 and 2, and (2,1) between sources 2 and 1, respectively. In Rumsey’s

notation, the first desib~ator in (:,:) indicates the source located inside the volume of

integration. Specifically

(l,2)=JJJ(E2 .J, -H2.M1)dv, (1.26)
v,

and

(2,1) =JJJ(E1-J, -HI M,)dV.
v?

(1.27)

From (1.24) and (1.25), we also have

(l,2)=#(E, xH2-E, xH,)d& (1.28)
.XI

and,

(2,1) =(#(E2xH, -E*xH,). dE. (1.29)
z?

Richmond [4] has shown that the reaction can also be written

vjkij = –(jjk), (1.30)

where vj~ is the voltage induced across the open-circuited terminals of source j in the

presence of the fields, (E~, H~ ) , due to current z.~ at the terminals of source k. The fields

(--)E j, H j are the result of appl ying terminal current ij at source j.
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In a multiport network, the currents at each port are related to the port voltages by an
impedance matrix, as follows,

VI

1: ’11

z]* .Zl~ -.. Zln il
. .

v, Z21 “. “. : iz
= . . . . .. . . .. . . .

Vn z~, ... ... z~~ in

Thus, from (1.30) and (1.3 1), the mutual impedance between poflj and port k is

v.
.zjk = +

~k i,,,=0; m#k

-(.@=_A#(EjxHk‘jk _= —_ -EkxHj). d3
lk ijik ijik ~

J
When the fields associated with two antennas are known, then the mutual impedance
between them can be found from (1 .32). In this case, the currents on the antennas need
not be known. Only the fields radiated when each antenna is excited with a known
terminal current are necessary. If necessary, these fields can be obtained through
measurement.

Fields associated with different media

Suppose the two sets of sources are contained within different media, PI,=, for source 1,

and F,, ~z for source 2. With this situation, (1.10) becomes

V.(E1XH2– E,XH 1)=-~~(~,~~1-~1-~~~~)

- E,) ..+j(o(E2-sl .E, -E, .q
-—

+E2-jl– E1.J2+H1. M2– H2 .M1

As shown previous] y, in order for (1 .33) to reduce to the usual forms of Lorentz’s
reciprocity theorem, (1. 11) and (1. 12), the media must have the transpose relationship

:2=?;,

~2=~;-

However, when the fields are associated with media that do not satisfy the transpose
relationship, the reciprocity theorem is not as simple, but still it can be stated that

$$(E, xH2-E2x Hi). &= JjJ(E2. j, -E, .j, +H, .M, –H2.M,)dv
z v

- -H1–E,-:2-E,+H1-F2.H,)dv”+@JJJ(E.=1.El–H2.pi
v

The additional volume integral compensates for the different materials, but now the
integration must be extended to the entire volume where the media properties differ.

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

When the media are isotropic (scalar perrnittivity and permeability), then
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(J$(E,xH, -E2x HJ.dqJJ(E2-j,-E,-j,+H, .M2-H,. MJdv
-2

,+j~ojj(t’E,“E?– f-ml “H2)a’
(1.37)

v

where

E’=&l –&,, (1.38)

and

IJ’=wvv (1.39)

Consider the situation as r + ~. Using (1.13) in the left-hand expression of (1 .37), we
see that

In general, the surface integral does not go to zero as r + co when the different media

extend to r + co. However, it is reasonable to assume that the region of differing media

is finite, so as r + CO, El + p. and ~2 + IAO.With this assumption, the surface integral

does go to zero at r + ~. Thus, in the general case where the currents are contained in a
finite volume of differing media and radiate into unbounded space

v v
(1.41)

–jCOJJJ(Ez . ZI . El – H2 . ~1 -H]) dV
v

Implementation of the computation of the mutual impedance
In order to compute the mutual impedance between two antennas, we will assume that the
near fields associated with each antenna have already been obtained in some manner.
Perhaps, the fields have been obtained through spherical-near-field measurement,
method-of-moments computation, finite-element computation, or some other means that
results in the complex-frequent y-domain phasor representation of the spatial dependence
of the time-harmonic field associated with each antenna. Regardless of how the fields
have been obtained, it will be convenient to write the fields as expansions in a set of
orthogonal vector harmonics. The convenient set associated with spherical coordinates is
the set of vector spherical harmonics [3, 7, 8, 9, 10]. The vector spherical harmonics and
their use in expansions of electromagnetic fields are described in Appendix. I.

Initially, it may seem that this approach unnecessarily complicates the formulation of the
mutual impedance. The motivation lies in the fact that considerable effort is required to
obtain the near electric (or mabmetic) field for a particular antenna element. However, if
this effort is expended once for the element of interest, then the procedure described here
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will allow the mutual impedance with another identical element to be obtained easily, for
any number of different locations of the second element. The second element can be
translated to any position relative to the first element, but we will not consider rotation.
(The method can be extended to include rotation, however.) In addition, the integrand of
(1.32) can oscillate wildly, causing difficulty in obtaining an accurate value for the
mutual impedance by simply evaluating the integral. The use of vector spherical
harmonics allows the integrations to be performed in closed form, and the expression for
the mutual impedance is reduced to sums containing products of expansion coefficients.

In the expression for mutual impedance, (1.32), the fields associated with each element
must be obtained in an environment that is consistent with the presence of the other
antenna. For example, if the fields are obtained for an isolated element, the computed
mutual impedance will be approximate, to the extent that the presence of the second
element perturbs the fields away from the isolated-element fields.

Expansion of the antenna’s field in vector spherical harmonics
We will assume that region around the antenna, in which we wish to expand the field, is
characterized by scalar permittivity, &, and permeability, ~. The electric field is written

as an expansion in the normalized vector spherical harmonics

where the normalized vector spherical harmonics are

[

jm ~}) (kr)Pm (cos6)6 +sin ez~) (kr)~~m (x)
$’‘$L (~)= jc “m”““ 2& sinf3 n X=cos e 1

and

z:)(’w
kr ?2(n+ 1)Pnm(Cos ep

+1 a
[ ( )1[–sine~P~m(x) 1!

7—?_./)kr 6+@~”(cose)?
kr & X=ms!$ sin 0

where

cnm”Ex3
The expansion in (2.1) is often referred to as a multipole expansion [7]. The n = 1 terms
are the dipole terms, while n = 2 corresponds to the quadruple terms, etc. In (2.2) and

(2.3), Z!) (kr) is one of the spherical Bessel’s functions

Z(’)(kr) =n

w) (’w= 1
t;’) (kr); i = 2

jn(kr); i=3 ‘

yn(kr); i=4

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)
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and Pnm(x) is the associated Legendre function of the first kind. The notation used here

is consistent with the notation used by Jackson [7] and by Abramowitz and Stegun [8].

The vector spherical harmonics are described in detail in Appendix I. With the ejwr time

dependence, the M~~ (~) and N(2)n,. (~) represent outwardly propagating waves.

The magnetic field intensity is obtained by substituting (2.1) into curl equation for the
electric field,

H=+jj~ [b:N;L (i-)+b’”m:: (i)]n.m (2.6)
@y ..1 m.-.

.,

The coefficients b~m describe the strength of the transverse-electric (TE) components of

the radiated field, while coefficients b~~ describe the strength of the transverse-magnetic

(TM) components. When the antenna can be enclosed in a sphere of radius a, the series
usually can be truncated at degree n = ka [11], but in critical cases, it maybe advisable
to use n =ka+10 [12].

Using the asymptotic expansion of the spherical Hankel’s function, the vector harmonics
in the far-field region are approximated at large radius, r, by

M:; (q E JR+:”’”Xnm(e,()), (2.7)

and

where the

N:; (i) == XXC,. (0)>
kr

(2.8)

radially independent vector spherical harmonic, X~,~, is given by

‘n,m (0,$)= ~~~1
M(i)

‘n (kr) “m

e jmQ

[

~P” (x) $jm P“(c0se)6+sh O& .= jCnm — —
Z’& sin 6 n ,V=cqg 1“

Thus, the far-field expressions for the outward-propagating fields are

and

Suppose we have obtained E(F) at T = FO. Then,

(2.9)

(2.10)

(2.11)

(2.12)

and

14



where (see Appendix I)

and

[1 la
J?x.N(mmm’,n’;~) = Z:)(k~) 2+——

[
a

d) (~d=j-[%z:i)”w]]]&nn<6mmr,
kzf ar

and

tikj=
{

I,k=j

O,k #j”

If the magnetic field is obtained instead of the electric field,

and

Translation of the fields
Although the expression for mutual impedance (1.32) is valid for any two arbitrary
antennas, the array problem is concerned with the mutual impedance between identical
elements. Thus, we will only address the problem of computing the mutual impedance
between identical elements. The translation of the fields is accomplished through the
application of an appropriate addition theorem. The addition theorem for vector spherical
harmonics is described in Appendix III.

Antenna 1 is located at the origin of coordinate system 1 (unprimed), and antenna 2 is
located at the origin of coordinate system 2 (primed). The origin of coordinate system 2
is located from the origin of antenna 1 by position vector i“,

i“ = r“[sin 6mcos ~m~l+ sin O“sin ~“~1+ COS0“21].

The geometry is illustrated in Figure 1. To obtain Z21, the integration h (1.32) will be

performed over a sphere that surrounds antenna 2.

Note that, as illustrated in Figure 1, i- locates the field point on the sphere of integration
from the origin of coordinate system 1 (unprimed), while i’ locates the same field point

from the origin of coordinate system 2 (primed). In fact, during the integration, i’ will

be constant at the value of the radius chosen for the integration, even though the length of
i changes. Also, note that im, which locates origin 2 from coordinate system 1, is a
constant vector; it does not move during the integration. These three vectors are related
as

i=ir+~’

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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The fields for antenna 1 will be expanded in vector spherical harmonics as follows:

(2.20)

and

H,= j~~ ~ [m” (F)+b’w” (F)]n,m n.m n.m n.m > (2.21)
W ..l m.-.

using vector spherical harmonics associated with the unprimed (antenna 1) coordinate
system. However, in order to integrate over a sphere around antenna 2, it is convenient to
express these fields in terms of vector spherical-harmonics associated with the primed
coordinate system.

integration su~ace f antenna 2
i
n

Figure 1 Geometry describing the relationship between the two antennas.

The vector-spherical-harmonic addition theorem says (see Appendix III) that for the
additive relationship i = F’+ F“,

Mf~ (i)= ~ ~,,~,;~,~M~/n,(F’) + Bnr,m.:n,mN:/m,(F’),

n’,m’

and

N$jJ (F)= ~ ~/,m/,n,mN:/m/(F’) + Bn/,mJ;n,mM:/m/(i’) ,
n’.m’

where ~,-~,,,,~ and Bn,.~’,n,~are given in Appendix III. Both the vector spherical

harmonics M~~~.(i’) and N~~~ (F’) contain spherical Bessel’s functions Z}) [kr’), the

specific kind of which is determined by the relative size of r’ and r“ as follows

{

j~, (kr’), r’ < r“
in M~~~,(F’) and N~~~.(i’): Z!) (b’)=

/2(2)(b’), r’> r“”n’

(2.22)

(2.23)

(2.24)

16



Similarly, both sets of coefficients g,~,,~,~ and B~,,~,:~,~contain spherical Bessel’s

functions evaluated at r“, the specific kind of which is determined according to

[

1# (w), r’ < r“
‘n 4z’,m’m.mand B~,,m,:~,m: Zp (h-”)==

jn”(/4/), r’ > rfl “

It should be emphasized that, for the integration over the spherical surface around
antenna 2 (Figure 1), these Bessel’s functions are constant, since r’ and r“ are constant.

Substituting (2.22) and (2.23) into (2.20) and (2.21) gives the appropriate expressions for
the fields associated with antenna 1

and

or

and

Ib%~,(4’.m’;n.m”!’!m’(F’)+‘n’,m’;n,mN!/m’(F’))
E1=~g ““

‘=’‘=-n +b;: ~ (A”?,m.:n,mNym?(F’) + Bn?,mt,n,mM:/m(F’))
n’,m’

.

[

(4b:m ,,m,;.m+ b:: Bn,,m,;n,m) M!%’ (i’)
E,.~$~ ‘

~=1*=-=~’,~’+ (bfm ‘n’,m’;n,m
1

+KP%,m%)wm (i’) ‘

Exchanging the order of summation

and

where

and

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

The pre-subscript is used to designate the coefficients as belonging to the field expansion
for antenna 1.

17



where

and

Mutual impedance
The fields for antenna 1 and antenna 2 have been expanded in vector spherical harmonics
as follows:

The pre-subscripts on the coefficients correspond to the antenna designation. The
superscript showing the type of spherical Bessel’s function used in the vector harmonic is

designated with the superscript (i) in the expressions for El and HI. It is assumed that

the harmonics have already been translated using the translation theorem. Also, the

coefficients ,b~m, and ~b~~. have already been translated using the translation theorem.

As noted above, the types of Bessel’s functions contained in (2.38) and (2.39) depend on
the relative size of the distance from the old coordinate origin to the new coordinate
origin, r“, and the distance from the new origin to the field point, r’.

The mutual impedance between the antennas is, from (1.32)

z~~= z?] = -~~d$’fsinO’de’(El xH2 -E, xH, )-i’.
1112() o

The integrals in (2.42) are of the forms
2X n
j ~~’Jsin e’~0’(Mfj,~ (~’)xM~~, (F)) -F’=
o 0

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

h:’ (b-’)?,$’(b’) 2’,
jCnr,,n,Cn,,n J [

~ f’”+’”’l$~~’j ,n~m (x)$@ (x) – m’P,T’
4n ( )](x):~’” x &

o -1

18



_c ~ h:’)(/0-’) a
,,’.,)1’,,,,,,~nkr, ~[r’z;;’ (kr’)]ye’’’’’+’’’’’’’do’j ~P’” (x) P’’’’(x)+ xl-x’ )” P’”(x): P’” (x) &

[
,1 ,,‘

o -1 — dx “ ‘“ )
2X x

J d.@’Jsinf3’dW(N\~~,(F’)xMf~/,),(i’)). f’ =
00

–C,,r,,,!c,,,,,,
z:) (kr’) a , (~)
~nkr, ~[~k (~~’)]~e’(’’’o’’’’]’do’]~:~

[ )
—~: (X)?:! (X)+ (I- X’)$K: (X):fy’’(x) al

o -1 —

and
2n r,
j d$’jsin e’de’(~~j,,j (F) x N~~!,(i’)). F =
o 0

Each of these integrals contains the factor
2n

J
eJ(m+m’)O’d$’= 2n6~,_~,,

o
so each integral is zero unless m’= –m. Examination of (2.43) through (2.46) indicates
that we only need to evaluate three integrals:

ll(n, n’,m)=~(l -x’)$~m (x)+~~m(x)dx
–1

[ 112 (n,n’,m) = m] ~“ (x)$~;” (x) &
–1

The integrals (2.48) and (2.50) possess obvious symmetry properties:

1, (n, n’,ln) = 1, (n’, n,–m)

11(n.,n’, -m) = 11(n’, n,m)’

and

13(n, n’, m) = 13(n’, n,-m)

1~(n, n’, –m) = Is (n’, n,m)”

It is convenient to express the integrals (2.48)-(2.50) in terms of integrals containing
associated Legendre functions of only positive order, m 20. Since [7]

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

19



we have

11(V’z’,n’z)= (-1)‘\$;;\:\(’-~2):R”(x):R’(x)dx
=(-1)

Jn’-?n)!
q (n, n’, nz)

(n’+ m)!

Jn’-rn)f ‘J[ ()12(1’z,n’,n’z)= (-1) “m ~m x
1

f.& (x) A
(n’+nz)! _l

= (-1)
~ (n’–m)!

(1’z’+rn)!
m~z (n, n’, m )

1, (n, n’,m) = (-l)m+’
(n’–m)! ,1 1

J
—~” (x)~7 (x)&t

(n’+m)!m-_l l-x’

= (-1)
~+1(n’-m)!

- mz@J(n, n’, m )(n’+ m)!

It can be shown that the integrals in (2.54)--(2.56) can be expressed in closed form as
follows (see Appendix 1),

(2.54)

(2.55)

(2.56)

1O;n’+ n odd

2n(n+l)(n+m)!6 (min(n,~’)+~)’ ~ ‘ ‘2”57)=
(2n+l) (n-m)! “’”’-m(min(n,n’) -nz)!; n ‘neven’m>o

12n(n+l) (n+m)! ~ +m(max(n,n’)+m) ’;nJ+n,ven ~<o
(2n+l) (n-m)! “’”’ (max(n,n’)-rn)! ‘ ‘

20



[ 1Jqn,n’,ln) = j Z“ (x)&T(x) (ix
–1

=

and

o;
n’+ n even, for all m

n+n’odd, n>n’, andm=O

2;n+n’0dd, n’>n, andm=O

m~n+,)[ 1“

(n’+ l)(n’+m)(
min(n, n’-l)+nz)!

1 (min(n, n’-l)-m)!

{

n’+ n odd
/

(rnin(n, n’+l)+ m)! ‘ andm>o
–n’(n’+1–m)

(min(n, n’+1)-m)!

[

(n’+ l)(n’+m)
(xnax(n,n’-l)+m)!

1 ((max n, n’ – 1)-m)!

1’

{

n’+ n odd

‘m(2n’+1) (max(n, n’+l)+ m)! ‘ andm<o
_nz(nz+l-m)(max (n,n~+l)-m)!

[
O; n’+ n odd

(mww+m)’; n’+nevenandm>O .
m(min(n, n’)- m)!

= <

(max(n,n’) +m)’ ; n’+nevenandm<O
‘m(max(n, n’)–m)!

(undefined n’+n even andm = O

The integrals necessary for the computation of the mutual impedance can now be written.
Substituting (2.57) into (2.54)

I

O;n’ + n odd

Z, (n,n’,m) = (-l)m

i

2n(n + 1)~ _m(n’-m)! (tin(n,n’)+ m)! n’+neven

(2n + 1) “n’ {(n’+m)! (min(n,n’)-rn)!; andm>O

2n(n + 1) &~,~+ m
(n’- m)! (max(n,n’) +m)! n’+ n even

(2n+l) {(n’+m)! (max(n,n.’) -m)!; andm<O

Substituting (2.58) into (2.55)

(2.58)

(2.59)

(2.60)
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12(n,n’,1’n) =

O; n’+ n even

(-1)’”

(2n’+1)

~nz+l) (n’-w)! (fin(n,n’-l)+ m)!

1.
(n’-l+m)! (min(n,n’-lm )!)! fn,’+n odd

J,(n’+l-m)! (fin(n,n’+l)+ m)! ‘ \andm20
–n

(n’+m)! (min(n, n’+l) -m)!

\(-1)~” (~’+1) (

n’–m)! (max(n, n’–l)+ m)!

(n’-l+nz)! (max(n,n’-lwz)!)!
1

1 ,.

(2rl’+1)

[

,(n’+l-rn)! (max(n,n’+l)+m)! ‘

‘n (n’+rn)! (max(n,n’+1)-nz)!
~

Substituting (2.59) into (2.56)

1~(n, n’, m.) =

n’+ n odd

andm<O

O; n’+ n odd

~ ~)n+,m (n’- m)! (tin (n,n’)+m)!—
(n’+nz)!( min(n,n’)-nz)!; “+nevenandm20

(-~y+l ~ (n’-m)! (max(n,n’)+m)l
.,

(n’+nz)! (max(n,n’) -m)!; n ‘nevenaLndm<o

The integrals contained in (2.42) are

(2.61)

(2.62)

(2.63)
h:” (k+:’ (b’)

jCn,mCn,m [12(n, n’,nz) -1, (n’,n,m)]~~,.~,
2

2n
J d@’~sin E1’d9’(N~/~ (F’) xM~~ (F’)). F’ =
o 0 (2.64)

( ) ‘,[r’z(’) (kr’)j[I, (n,n’,m) -~1 (n,n’,m)]8m,.m-~n,mcnm h:;,;’ ~ ~.,

22



and
?n
J d$’~sin 0’dO’(N~j~ (i’) x N~~ (i’)). i’ =
o 0

jc ~ ;[r’h;” (kr’)]$[r’z$’(kr’)]
n’.m [12 (V2’,wz) -12 (n’,n, wz)]am,.mjn.m

2kzr’z
where, as stated previously,

i

~ ~ (27’2+1)(H?4!
E,m

n(n+l)(n+ m)!

Substituting the fields, expanded in vector spherical harmonics, into the integral for the
mutual impedance leads to

Z,*= Z21

I

lk-._—— j—
ili2 zq-l .’=l

rnin(n,n’)

z
~=-tin(n. n’)

. F’d@

FdO’

Writing (2.67) in terms of the integrals described above, the mutual impedance is
.,

1‘$~~m’’$j’~)cn’”cn,m[
/+,n,mGn,n (kr’)[1, (n,n’,nz) -11 (n’,n,nz)]

z~~= z?, =–-
Z]z~ ,,,+ +Bn,n.,mHn,nt(kr’)[1, (n,n’,nz) -12 (n’, n,m)]

1
where

\

‘::)Y):[w’w)]-‘;’fr:’)$[~’z:’(k~’)]”Grin, (kr’) = kr

~[r’h;’) (kr’)]$[~’z$) (k,’)]
Hn,,L,(kr’) = h:z) (kr’) z:) (kr’) + ar k~r,~

(~fj(=j)

(2.67)

(2.68)

(2.69)
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Appendix I — Vector Spherical Harmonics

General vector harmonics
The vector wave equation is

v2F+k2F =vv-F–vxvx F+k2F=o. (I-1)

Three independent solutions of (1-1) are [13]

F= L=v~, (I-2)

F= M=vxa~, (I-3)

and

F= N=+ VXM=+VXVX5W, (I-4)

where v is a solution of the scalar wave equation

v’~+k’y=o, (I-5)

and ii is a constant unit vector. That L is a solution of (I-1) is easily demonstrated. We
have

v2L+k2L =vv@#)-vxv x(vy)+vk2~.

Since V x VW -0, we have

V(v’ly+ I@)= 0.

Substituting M into (I-1)

V’m+k’m =v’(vxayf) +k’(vxalp).

Since Vz commutes with V x (see Appendix II), we see that

Vx(v%yr+k%yf) = vxa(v’~+k’@ = 0.

Similarly, substituting N into (1-1)

‘2N+k2N=v2FvxMl+k2
Again, using the commutation property of Vz and V x

V’N+”N =~Vx(V2M+k2M) =0.

From (I-3) and (I-4), we see that

V.M=O,
and

V. N=O.

Also, from (I-2)

VXL=O,

and since v is a solution of the wave equation,

V- L= VzV=–k%y.

When the curl operator, V x, and ~ are anti-commutative (which is true when
5 = constant or ii = ~ , see Appendix II), the vector harmonics are also related by

(I-6)

(I-7)

(I-8)

(I-9)

(1-10)

(1-11)

(1-12)

(1-13)

(1-14)
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M=vx&w= –axvv=–ax L=+vx N. (1-15)

Vector harmonics in the spherical coordinate system
In the spherical coordinate system, the requirement that ~ be a constant can be relaxed to
the extent that it can be replaced by the radial unit vector ~ [13], because the curl
operator, V x, and ~ are anti-commutative.

The set of vector spherical harmonics used here is based on the normalized vector
spherical harmonics and notation as defined in Jackson [7]

%m(e,@= 1 ~Xvyn,m ($,0),
JJ-)

where Y~,~(6, ~) are the scalar spherical harmonics given by

ynm(e$)=m~(co
and P~m(x) is the associated Legendre function given by *

%“ (x)= (-1)” (1-x’ )”’2~~(x) ,

where P. (x) is the Legendre function

~ (x) =*:(X’ -1)”.

For negative order, m, [7]

~-m (x) = (-l)m :; :;!: ~“ (x) ,

so that

Yn,_m(0,$)= (-l)m Y;m (e,@) .

The scalar spherical harmonics, Y~~ (e, ~) are orthonormal [7], so that

The explicit form for X~,~ is

(1-16)

(1-17)

(1-18)

(1-19)

(1-20)

(1-21)

(I-22)

“’Hanson [ 12], Stratton [ 13], Arflcen [14], and Mathews and Walker [ 16] omit the factor (–l)”, but it is

included by Jackson [7], Abramowitz and Stegun [8], Chew [9], Lebedev [10], and Balanis [3].
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q

~~m(cos6)e
jmQ”

e
(z~+l) (n-m)! sine

Xn,m (F)= j
4mZ(n+l)(n+nZ)! +Sined

-#” (x)
I

e’m’d ‘
X=cose

or

From (1-21), we see that

–my* (e,$)e+m~cose%-m(~)=(-1)” ~ —J-d ~Y;m (9,($)$
n n+l sin e “~ 1

The usefulness of the vector spherical harmonic derives from the fact it forms a solution
of the vector wave equation as

V’zf) (kr)xn,m (e,~) + It’z$) (Iw)xn,m (0,$) = 0,

where z:) (h) represents any of the spherical Bessel’s functions

fh~’) (kr);i = 1

z(i)(kr) =

1

hf) (kr); i = 2
n

j~(kr); i=3 “

ly~(kr-);i=4

V x z!) (b) X~,m (f3,~) is also a solution of the vector wave equation, since the

operators V2 and V x commute (see Appendix II),

( n (~) n,m(e>o))+k’(vxz!) (kr)X.,m (e,o)) =0
V2 Vxz(’) k X

Thus, z:) (kr) X~,~ (0, ~) and V x z!) (kr) X~,~ (0, @) are both harmonic solutions of the

wave equation. The two types of vector spherical harmonics are defined in terms of X~~

~:: &x (i)

k
Zn (kr)X,,. (e, qq=; VXM:; .

It is obvious that M~~ and N~~~ correspond to the general M and N harmonics defined

in (I-3) and (I-4) for the special case

since

~xw(’w‘o

(I-23)

(I-24)

(I-25)

(I-26)

(I-27)

(I-28)

(I-29)

(1-30)

(I-3 1)

(I-32)
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It will be useful to note that

vxNj: =vx; vxz}~)(kr) xlm(e,$)=vx+vxm::

– ;Vv “m;: –AVM(’)
3

—
k

[m

and since V” Mj~ = O, and M~~ is a solution of the wave equation, we see that

M;: _ 1_lvx N(O
l,m “

This is the same result as (1-15) for the general vector-harmonic case.

The explicit forms for the normalized vector spherical harmonics are

‘m ~(i)(k~)Pnm(COS6)e’m%
Mf; (~)= jJ-l-(2rz+l) (n-m)! sin(3 n

47cn(n+l)(n+m)!
+sin ez~) (kr)~~m (x) ~im”d

X=COSe

and

~~~ (~)= jd(2rz+l) (n-m)!

4?m(n+l)(n+m)!

.

Z:) (kr)
n (n + 1) P~m(cosf3) e~’W

kr

Since

=[-silltlde~~x) ,=o,e’+%~m(cFxxn,m (e,(p)= j

we see that

or

and the transverse part of N$~ (i) is simply

(I-33)

(I-34)

(I-35)

(I-36)

(I-37)

(I-38)

(I-39)

(1-40)

These normalized vector spherical harmonics differ from those defined by Chew [9] and
Stratton [13]. The harmonics used by Chew must be multiplied by a factor of
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~/~m to Produce thenormalized lKHTIIOIIiCS,andfrom those defined bY Stratton

d(2n+l)(n -m)!
must be multiplied by a factor of j (–1)~ to yield the normalized

4mZ(n+l)(n+m)!

harmonics. Hanson [12] uses normalized harmonics almost identical to those used here.
However, Hanson’s harmonics, which are written with a different notation, must be

multiplied by a factor of j (rn/ m )~ to produce the ones defined here. The relation

between Hanson’s notation and that used here is

[1,1

m

M!!m (F)= j ~ qgn (F),
m

and

A far-field representation of the vector spherical harmonics is obtained for out-going

waves, where the Z: (kr) become h!) (kr). Since

~-j’r n r.(n+p+l)
P (lb)= j“+’ — xh- ,=Op!r(n-~+l)

(2jki-)-p ,

the approximation for the far field region is,

h:’) (kr) s j“+’ ~ askr+~,

and

Thus, in the far field region,

‘~~ (~)=_ jne-~kr
i

(2n+l) (n-~)! j~ p(cosg)a+sine d

[ 1
--#” (x) $ ejmQ,

kr 4nn(n+l)(n+m)! sinf3 “ X=COSe

and

w (0 =‘n-:’”Lmmsin’~’m(x).=...e%zm(cose)$lelmo>o>
or simply

(1-41)

(1-42)

(I-43)

(I-44)

(I-45)

(1-46)

(I-47)

(I-48)

(I-49)

for the normalized vector spherical harmonics.
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The orthogonality integrals for the normalized vector harmonics are [7]

WM,m(m, rz;rn’,n , ‘ ‘nedem:~ “(J@:J*‘“r) = J:n dcpjo s
, [BCB12]

= ‘f) (kr)25nn’8mm’

and

or, expanding (I-5 1),

(1-50)

(1-51)

YN.N(m, n;m’, n’;r) =

and

When r is small, the f component of N~~ can be significant. However, it will be

necessary to expand a measured field in terms of the vector spherical harmonics, and the
? component of the field is typically not measured. Thus, for small r, the use of (I-52)
for the normalization can produce an emor. Instead, we need the orthogonality integral

for the transverse part of N~,~

(I-54)

5nn&m> (I-52)

(I-53)

Special combinations of the vector spherical harmonics

Consider the far-field representation of M[~I (i) obtained from (I-48)
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and

(I-55)

Fora TEfield, M~~l(~) represents atight-hand circulmly polarized electtic fieldat

6=0°, while M~~)(F) istheleft-hand circularly polarized electric field. Now consider

the far-field representation of N~~l (F), from (I-49)

~[‘i~,(~)=<: ‘-COS66+j~]fE’o
kr 2 47T

7

and,

~*&[cos06+j$]e’Q

N;:)(~) = e“’”

Similarly, forthe TM field, Nj~l (5) istheright-hand circularly polarized electric field

when e = 0°, and N~~)(~) is left-hand circularly poltized. At 6 # 0°, these fields are

elliptical.

which represent mab~etic dipoles.

For the TM field

Equations (1-61), (I-62), (I-63), and (I-64) describe small linear dipoles oriented as E@,

(I-56)

(I-57)

(I-58)

(I-59)

(1-60)

(1-61)

(I-62)

(I-63)

(I-64)

Ee, Ed~., and El,,. dipoles, respectively.
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;xplicit forms for the associated Legendre function and its derivative

Explicit Forms for ~~(.x)

4

5

m

o I 1 I 2 I 3 I 4 I 5

1 0 0 0 0
~ .~h” o 0 0 0

3X2-1 -3X4= 3(1-X’) o 0 0
-

5+Y3– 3X
-3&lJ3 15X(1-X’) -15(1-X’)3’2 o 0

2 2
35+x”– 30X2+3 . 7X3– 3x IT---Y .-7 X2–1,. ,, –In<w(l _ ~2\312 In<(l _ ~2\2 o

63x5 – 70x3 + 15x _1521x4 –14X2 +1
Ji=F lo5X..q_x’) ._io59x2 -1 ~_x2 3/2

()
945X(I -x’ )2 -945(1 - x’ )5’2

8 8 2 7, , — 8 , 1

Explicit Forms for ~~(cos 6)

I 1?1

n I o I 1 I 2 I 3

01 1 I o I o I o

1 cm 0 –sine
2 3cos20-1 –3sin Qcos0

t

3

4

2

5cos3f3-3cose _35cos’@-15ino
- 0
L &

35COS4e–30cos2 0+3 _57cos3e-3cose5in6
8 2

0 0

3sin20 o

15cos Osin2 f3 –15sin30

~57COS2&lsin26 –105cos0sin30

2

5 63cos56- 70cos36+15cosE3 _152ic0s4e –14c0s2e+l sine ~053COS3 0– Costl sin2 e _1059c0s2e–1 x

8 8 2
m (3

2

4

0

0
0

0

105sin4 (3

945cosOsin4e

5

0

0

0

0

0

-945sin56



Explicit Forms for :Rfl(x)

m

n o 1 2 3 4 5

0
.

0 0 0 0 0 0
1 1 0 0 0 0

&

2 3x 2X2 -1
3—

-6x 0 0 0

J=

3 35X2–1 J5X3 –11X 15(1-3A?)
r

45X (1-x’) o 0

2 242

4 ~ 7X3-3x s 28x4 - 27xZ+3 30(4X- 7x3) 105(4X’- l)J~ -420x(1 - X2) o

2 24=

5 ~521x4 -14A-2 +1 ~5105x5 -126x3 +29x _io515x4 -12X2 +1
31515X3-7XJ=

945(1-.X2)(1-5X’) 4725x(l ‘X2)312
8 84= 2 2

Explicit Forms for $ E:(cosO)

m

n o 1 2 3 4 5

0 0 0 0 0 0 0

1 1 Coso 0 0 0 0
sin e

2 3cosf3 ~2cosw -6cosf3 o 0 0

sin0

3 35 COS2EI-I 315cos3e-llcose 15(1- 3COS2e) 45cos0sin0 0 0
2 2sin6

4 57 COS30–3COS8 528cos40–27cos20+3 30(4cose -7 COS3e) 105(4cos20 - I)sinO –420cosf3sin20 o

2 2sin0

5 ~521cos40- 14cos20+l 15105cos59-126cos30+29COS0 _10515COS4EI-12 COS26+l ~1515cos3e –7coso~ine 945sin20(1-5cos29) 4725cosOsio36

8 8sin0 2 2



Exdicit forms for the scalar s~herical harmonic and k derivative#- . .. . . . .. —- . . . . . —--- _

Explicit Forms for ~,,,,,(cos 0)

m
n o il fz *3 i-4

o

r

1 0 0 0 0
z

1

r

3

r

13*. o 0 0
— Cos0
47’C

T~ ~e ‘0sinf3

2

r

5 3COS20–1

r

35~– —--.-e*j”sin~cos O
r

3 h,,+ sin, ~ o 0
X2 2 6n < 6n

3

r

7 5cos3f3-3cosf3

r

37 _e*j~
r

5cos%lsino 15 7_e*j20
r

57 0
G 2

7–
4 31t 2

cos0sin2 0
Z_ 3on

~i ~eiiW sin30

4
r

~ J_ 35cos4e-3ocos20+3

r
g Qj$ 7COS3(3– 3(y3s(3 15

r

1 #j20 7cos2e - I Si,,zo
sinO

105

r
~ I #j3$ 105

r
1 ~+~’W~illle

471 8 4 571 2 4 10n cos6kin3e
2

—— >-
8 357I 16 7071

dq,,,,(cos e)
Explicit Forms for

d Cos e

m
n o *1 tz *3 +-4

o 0 0 0 0 0
1

r
3

/_–

+~ ~ekj$ Coso o 0 0

G -2 27C sinf3

2

r
3 &cose

r’

2

*Z ~e*j@ 2COS 9 – 1

r

—C~j2@ Cosg
o

2 67c sinO

3

$_
~ 7 5cos2e-1

If
+3 ~eijf$ 15cOs~e–llCOSe.—

471 2 –4 31t 2sin0 fi~wcos? +ge:’’cos,si., 0

4
r

~ ~ 35cos3e–15coso

r

I + 28cos413-27cos20+3*E —e-J@ 15
F( ‘ #j*’$ 4cos9–7cos3e

4X
.—

2 4 Sn 2sinfl 2 Ion ) *:&’’’3””J’)J’-’)’”” -y&i’4”’”’’’’”2°



%

Explicit expressions for the X,,,,,,(6, O) vector spherical harmonic:

X1,-1(9!@=#’&Q[6- jcose$

IIX2,0(6,@) = j -& 3c0s~e -1 sin El$

X2,_,(f),$)= jJ#e-J”[ Cos $6- j(2cos2 e - 1)$]

X,,,(O,$) = ~J~eJ”[cos06 + j(2Cos.26 -1)$]

%,,-2(0,4) = ~~e-’’$[sin 06- jsin 9c0seij]

x2,2(e,@= -~~e~’”[sin eii+ jsin ecOse$]



Explicit expressions for the f x x,,,,,l(e,$) vector spherical harmonic:

J[fx X,,_,(El,$) = ~ $e-Jo jcosf% + $]

J_[fx X1,1(9,$)=++ej” -jcos66 + $]

Fx X2,.,(6,$)= +Je-jo[j(2cos2 0-1)6 + cose~]

[[
i x X2,[(0, $) = ~ ~ej$ -j(2cos29 - 1)6 i- cos O$]

fxX2,_2(f3,$)=+ ~e-~2”[jsin0cos66 +sin6$]
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Exp/icit expressions forthe~\~~,l(F) vector spherica/ harmonics:



c
o.—
iii
E
8
E—

40



Appendix II — Commutation Relations

Consider the operators Vz and V x. The commutator is Vz (V x) – (V x) Vz. Using the

representation of the operators in Cartesian coordinates, we see that

[ )( )

V’(vx)= 1+<+~ G+$f+:i x
ax’ ay- az’ ax .

= VV2 x

= (Vx)v’

so that

V’(vx)-(vx)v’=”o.

The commutator is zero, so the operators V’ and V x commute.

Let ii be a constant vector. Consider V x ~V,

=–zlxvql

Thus, we have the operator anti-commutative relation,
Vxa+axv=o.

Consider V x F when there is no additional function to the right. We have

(II-1)

(II-2)

(II-3)

(II-4)

(II-5)

Next consider the operators V xF and FxV . Note that V in V x F is expected to

operate on whatever function is immediately to the right of V x F, in addition to F,
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unlike in (II-5). Representing the operators in Cartesian coordinates, and explicitly

including the right-hand function, v, on which the operators operate,

––fxv~—

so that
vxihy+Fxvly=o.

Thus, the anti-commutator of the operators V x and ~ is zero.

Now consider V x FV, where f - r/lrl. We have
——

.–-fxvyf
Thus, we also have the operator anti-commutative relation

Vxf+fxv=o.
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Appendix Ill Addition Theorem for Vector Spherical
Harmonics

The vector-spherical-harmonic addition theorem allows a vector harmonic referenced to
one coordinate system to be to be expanded in terms of vector harmonics referenced to
another coordinate system, which has been translated with respect to the first. The
derivation of this theorem is outlined well by Weng Cho Chew [9]. For a translation such
that F = F’+ F“, the addition theorem says [9]

and

(111-1)

N:~(i)= ~ &m;n,mNym(F) + lln,mr,.mmym)(i’) , (III-2)
n’,m’

where

&’,rn>;n,m=

2~jn’-n

[

~ j“[n(n+ l)+n’(n’+l )-n”(n”+l)]

1

(III-3)
n(n + I)n’(n’+ 1) .- .A(wz, n,-m’, n’, n”-1)# (kr;)Y~.,m_m/(0; ,$;) ‘

and

B~,,~,,~,~=
2njn’-”

[

~ j“ti[n(n +l)+n’(n’+l) -n”(n”+l)] 1 (HI-4)
n(n+l)n’(rz’+1) n“ -B (m,% -m’, n’, n“) 2$) (krw”) yn.,m_m, (e:, ~~, ) ‘

and the difference in scaling factors between the definitions of the vector spherical
harmonics defined by Chew [9] and those used here has been accounted for.

In (111-1)–(111-4),the Y~,~(f),@) is the scalar spherical harmonic (see Appendix I),

Yn,m(e,O) = i’(2n +1) (n -WZ)!pm ~cose)ejm,

4n (n+m)! n

The choice of which spherical Bessel’s function, z!) (kr-), to use in (IH-1)-(111-4)

depends the relative sizes of r’ and r“:

{

jn,(kr’), r’ < rm
in M~~~,(F’) and N\!m, (i’): Z$) (b’)=

h(2)(b’), 7-’>r“’n’

and

[

Iz$)(b”), r’ < i-m
in ~.m’:..m and B.’,m’~.,m:z$) (kr”) =

j.. (h-”), r’> r“ “

Also, in (111-1)-(111-4)

(III-5)

(III-6)

(III-7)

A(m,n,-nz’,n’,nm) = (-l)m
i

(2n+l)(2n’+l)(2n”+l) n n’ n“ n n’ n“

47-C
( I 1

OOO–mm’ m-m”
(III-8)
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-J(n’-m’)(n’+rn’+l)(n”+m-rn’)(n”+m-nz’-l)A(m,n,-m’- l,,n”n1)l)

B(m,n,–m’,n’, n”) =
T/J

/

(III-9)
- + (n'+m')(n'- m'+l)(n"-m +m')(n"-m+ m'+l)A(m, n,-m'+l,n',n"-I) ‘

+2m’ (n”–m+m’)(n” +m–m’)A(m, n,–m’, n’,n”–1)

a“d(:l: ~Jis the Wi=gner 3-j symbol, related to the Clebsch-Gordon coefficients

as [9]

[: ~ :31=(-&(’’m1’2m2’’’’m3
and the Clebsch-Gordon coefficient is [8]

( )jl jzml~z jl j2 j3m3 =

a(m,,m,+m) (j1+~2-j3)!(j3+j1-j2)!(j3+j2-j, )!(2j3+l)
(jl+j2+j3+l)!

(111-10)

, (III-1 1)

“x
(-l)kJ(j,+m,)!(j1-q)!(j2+~2)!(j2-~2)!(j3+m3)!(j3-m3)!

“ –k)!(jl –ml–k)!(j2+~zk!(jl + j2 –J3 –k)!(j3– j.+ml+k) !(j3-jl-rnz+ k)!k

The Wigner 3-j symbol,

K i :)7

is nonzero only if m, = –ml – mz and if

[1n n’ n“
jl + jz ~ j~ ~ jl – j2 . The special case o 0 0 is nonzero only if n + n’+ n“ is an

even integer. Notice that there is a slight difference in the notation used here for

B (m, n, –m’,n’, n“), and that used by Chew [9], who inserts an additional argument,

n“ – 1, after n“. Since that argument is redundant for the usage here, it has been deleted.

From (III-8) and (III-9), we see that each term in the sum over n“, which is contained in

both ~,,~,,~,~ (III-3) and ll~.,~,m,~(III-4), has a factor
[~: ‘“~’l-Thismeansthat

the sum will only contain terms where n + n’ + n“ is odd. In addition, each term contains

(

n n’ n“–1

H

n n’ n“–1
the factor or

1

, which will be zero unless
–m m’ m–m’ –m m’fl rn-m’~1

n“ satisfies l+n–n’~n”~l+n+n’. Note that when n“=l+ n–n’, then n+n’+n” is

odd for any n,n’. Thus, we can write
“

2njn’-n I+n+n’

A?2’.rn’,n.m = x

.jn [n(n+l)+n’ n’+1( )-n”(n”+I)]
(111-12)

n (n + 1)n’(n’+ 1) ~-.l+l~-~’\..A(m, nm–,n,,n”n”– 1) Z!.) (kr~)Y~.~_~, (e~,,$~,) ‘
3+\n–n’1,...
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and
.

27Ej”’-n I+n+n’

z

j“ [n(n+l)+n’ (n’+ 1)-n”(n”+l)]

%.m’:.,m=
~ (n + 1)~’(n’+ 1) ;:;::~{~l.“B(m>n, –m’,n’, rim.)z::) (kr:) Yn.,m_m.(e;,$;.) “

Suppose the expansion of the magnetic field for an antenna is known in terms of vector
spherical harmonics referenced to the origin of the unpnmed coordinate system, as
illustrated Figure 11-1. The magnetic field in terms of harmonics referenced to the
unprimed system is

H(i) = _j&}m~n[b~N~~(F)+b~~M~J(F)].

In terms of harmonics referenced to the primed coordinate system, the same magnetic

.

/’
A!
x

.-!
z

\
At

Y

Figure 11-1 Relationship between the unprimed and primed coordinate systems
for the vector-harmonic addition theorem.

Computational considerations for the Clebsch-Gordon coefficient
The Clebsch-Gordon coefficient, (III-1 1), presents some potential difficulties for the
numerical computation, because it contains products of factorials. While the coefficient
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itself is well behaved when the arguments become large, intermediate products and
factors can cause numerical overflow if appropriate precautions are not taken. The
logarithm of the factorial function can be computed easil y for very large arguments, and
should be utilized to avoid overflow. A good approach is to ‘compute the coefficient as
follows

( j,@,~91j,L@%) = ~(%j% +%)JH.“

iln((jl +j~-j~)!) ++ln((js+jl-jz)!) -

++1n((~3+ ~2–~l)!) –+ln((~l+ j2+j3+ l)!)

++ln((jl +~l)!)++ln((jl –q)!)++jr~((.jz +%)!)

-~(-l)k exp +~ln((j, -rn,)!)+~ln((j, +m,)!)++ln((j, -m,)!)
k

-In(k!)-ln((j, +j, -j, -k)!) -ln((jl-nzl -k)!)

-In((j, i-m, -k)!) -ln((j, - j,+nzl+ k)!)

-ln((j~- j,-m, +k)!)
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Appendix IV — Certain Integrals Containing Associated
Legendre Functions
In the evaluation of the mutual impedance, certain integrals containing associated
Legendre functions are required. These integrals are defined

q(n,n’,m )=)(l-x’);~” (x)$z~(x)h,
-1

[ 1

&j ($z,n.’,rn)= j g“ (X):57 (x) dx,

-1

and

In addition, it will prove convenient to evaluate

For negative order, we use the convention ~;]

~-m(x) = (-l)m (n-m)!~m (x).
(n+~)!

Establishing Orthogonality
The associated Legendre functions possess well-known orthogonality properties. The
orthogonalit y relations are

and

J

1 1

{l’I’ l’/

o, m#m’
—~m (x)q’ (x)& =

-’1—X2 #O, m=m’

It will be useful to derive these orthogonality relations, in order to illuminate the
relationship between the various integrals.

Application of the differential equation
The associated Legendre differential equation for integer degree and order is

Multiply

[ 1[
~ (1-x’) $~”(x) + n(n+l)-~

1
~m(x)=o.

(IV-8) by @(X)

[ 1[P~T’(x)-$ (l–xz)~~”(x) + n(n+l)–
1

+ @(x)~m (x)= 0.

(IV-1)

(IV-2)

(Iv-3)

(IV-4)

(IV-5)

(Iv-6)

(IV-7)

(IV-8)

(IV-9)
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Interchange n with n’ and w with m’ in (IV-9), subtract the new equation from (IV-9),
and integrate over –I<x<l to obtain

J:, .( )d[(
1 [ 1

P“’x~ l-x’) :~”(x) dx-J-:, c”(x): (1-xl&(x) &

Applying the integration-by-parts procedure to the first two integrals

(1- X’)%T’(x):R”(x) ‘ -f, (1 - x’): n”(x) :@(x)dx
-I

-(1 - X’)Z”(X):R?(X) ‘ + J:l (1 - X’):q’(x)+g”(x)dx

+[n(n + 1) - n’(n’+ l)]j~, ~~’(x)~m(x)ti - [m’ - m“]J~l&~?(x)~~(x)dx = O

Since P~m(x) is finite at x =*1 and ~ P~m(x) has no worse than a 4=-singularity al

[72(7I+ 1)- 72’(72’+l)]j~,~T’(x)~m (x)dx - [m’ - m“]~~l+~?’(x)~”’(x)h = O.

If m = m’, then

Thus, P~m(x) and P~7(x) are orthogonal with weight one over the interval –1 S x S 1.

Similarly, if n = n’, then

J
1 1

{H

o, m#m’
—~m (x) Pn”’(x)dX =

.I1–xz #O, m=m”

/
and P~m(x) and P~~’(x) are orthogonal with weight 1 (1 – X2) over the interval

–1 S x S 1. Thus, the orthogonality relations have been proven. It remains to evaluate
the nonzero integrals.

Relationship between the various integrals
Initially the closed-form of the integrals will be obtained for positive order, m 20.
Negative order, m <O, will be handled by applying the convention (IV-5), so

~ (n,n’,–m) =
(n-m) !(n’-rn)!

(n+m)!(n’+m)!%( n’n’,m).

(IV-1O)

(IV-1 1)

(IV-12)

(IV-13)

(IV-14)

(IV-15)

Integrating (IV-9) produces

48



J:,(I-+/T(x) : @(+ix = rz(rz+ l)J:, ~“ (x)~? (X)dx

1
(IV-16)

1

~[ ]
–mz — Pnm(x) Pn7’(x)dx

–1 1–X2

Thus, with m = m’, we obtain

~ (n,rz’,m)= rz(n+1)#0 (n, n’, m) -mz~~ (n, n’, m). (IV-17)

Note that the integrals YO, ~ , and MS are symmetric with respect to interchange of n

and n’. This symmetry, along with (IV-17) shows once again that

J* ~m(X)~7(x)dX=0,n#n’. (IV-18)
–1

Application of recursion relation
The associated Legendre functions satisfy the following recursion relations [10]

n–nz+l
xPnm(x) = ~n+l ~:, (x)+ =~:, (x), (IV-19)

and

(x’ -l)~~m (x)=TZX~m(x)-(n+m)%!l(~), (IV-20)

so that

Substituting n’ for n in (IV-21), multiplying by P~m(x)/(1 – Xz ) , and integrating, we

obtain

~, (n,n’,m) = j~l~m (x)~~.~ (x)~

=_n’(n’–m’+l) 1 1

J
(2n’+’) -’(1 -X2) R”(X) R:1(X)A’

(n’+m)(n’+1) I 1

J+ (2n’+1) ‘1 (1-x’) ‘m ‘X)RT-* ‘x)&

(IV-21)

(IV-22)

or

@,(n,n’,m) =
(n’+ m)(n’+1)

43 (n, n’–l, m) –
n’(n’–m+l)

(2Y2’+1) (2rz’+1)
@3(n,n’+l, m) whenm. 20. (IV-23)

If expressions for the integrals @O(n,n’,m) and @~(n, n’, m) can be found, then

~ (n, n’, m) can be obtained from (IV-17) and @z(n,n’,m) can be obtained from (IV-23)
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Evaluation of q (~,~’,~) = ~ R“(x)R? (x)dx

–1

The explicit form of the associated Legendre function given by 1

E“ (x)= (-1)” (1- x’)””~E (x)

where m 20, and P. (x) is the Legendre function

~ (x)=*-(X’ -I)n.

Using (IV-25) in (IV-24)

~“ (x)= (-1)” (1 -x’)m’2 &&(x’ - I)n .

Thus, the integral becomes

@o(n, n’,ln) = j:, K“ (x)Pn7 (X)dx

=
2.+.;,n,J~,(I-X2)m~(XZ -l)n~(x’ -I)n’dX”. .

Since we have already shown that @O(n, n’, m) = O when n #n’ (IV-13), we need to

evaluate

J~l[zm(x)l’~=
z~.:n,)~ J11-x2)m~(x2 -l)”~(x’ -~)n~.

Integrating by parts (n+ m) times

J~IIEm(X)l’dX = q(n,m)+~(n,m),

where

2 (j’ y) ’-’ :::-k
@x(n>m)= ~n (x2-lr&((l-x2)m~(’~ -lY) ‘,

-1

and

Applying Leibnitz’ differentiation formula * [14]

‘ Hanson [12], Stratton [13], Arfken [14], and Mathews and Walker [16] omit the factor (–1)”, but it is

included by Jackson [7], Abramowitz and Stegun [8], Chew [9], Lebedev [10], and Balanis [3].

(IV-24)

(IV-25)

(IV-26)

(IV-27)

(IV-28)

(IV-29)

(IV-30)

(IV-3 1)

* Leibnitz’ formula for the I/h derivative of a product:

&[A(x)B(x)]=~ “ ‘A(x) +B(x)
,=0s!(n – s)! &’-S dx’

50



(IV-32)

(-l)n+m * ,

Hz~n (n !)2 -1 x
n+m

- 1)” ~
~=o1“[d

n+m+s

( )]

n
X2–1

h n+m+s

Using the binomial expansion, we can obtain the derivatives

and

$A’-’’)a”x_. r(~+l) ,,
“ w)’ ~!~(a+pk)x ,

= ~ ;:1)
k r(~+l)(2k)! 2k–q

k=q/2 k!r(~+l-k)(2k–q)!x

where q is an integer and a is a real number, not necessarily an integer. For

convergence, we require x <1. Note that the infinite sums in (IV-34) and (IV-35) will

terminate when k = a, for cx a positive integer. However, if u is not a positive integer,
an infinite number of terms will occur in the sum.

When ct = n, an integer, the derivatives also can be expanded into another useful form as
follows (using equation 0.432-3 from Gradshteyn and Ryzhik [15]) ,

%(x’-’)”‘n’in~)~,(q_2&n_q+/+2q-2kxq-2k(x2-’)n-q+k-
or

(IV-33)

(IV-34)

(IV-35)

{IV-36)

~(l-x’)n =(-l)qn!’n~)(-l~ k,(q_2kj[n_q+k),2q-2kx’-2’ (1-x2)”-”+’. (IV-37)
k=O

This form is useful for evaluating the derivative at the values x = *1, but only when the
exponent is an integer. For a = n, an integer, if q > 2n, all the terms in (IV-36) and

(IV-37) will be zero ( n - q + k is always negative). Additionally, if q <n, there will

always be a factor of (1 – Xz ) so that

3(1-XT =Owhenq<n,
.K=+l

and, when q = n, there will be a single term

(IV-38)
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~(’-”r ‘w “2” - (IV-39)
x=?I

Note that the tl on the left side of (IV-39) correlates with the 71 on the right side.

When q = 2n, the derivative has only a constant term

~(1-x’)” = (-1)” (2n)! (IV-40)

We see from (IV-36) that ~(’’-l)n can only be nonzero if n S q S 2n. Thus, in
I=fl

[

1

d n~m–k 1

#k (n, m), the factor ( )]
[

dk-1-t

~+m_k ‘2 – 1 n ( )]
~m

is zero for k > m, while —-
& –1

~k-,-, 1– x
–1

will be zero for k < m +1. Therefore, .@X(n, m) will be zero and

The left derivative in (IV-41) is zero everywhere unless s 2 n – m, while the right

derivative is zero everywhere unless s S n – m. Thus only the term with s = (n – m)

will contribute to the integral, and

J:,[E”(X)]d’ =
(-1)” (2n)! (n+m)! 1

J (X’-qndx.
2an (n!)z (n –nz)! ‘1

Letting x = cos 6, we obtain [15]

Since (2n)!! = 2“n! and (2n –l)!! = 2“ r(n ++)/fi [8], it follows that

(2n)! (2n)!

R=(2n~!!=(2n -l)!!,

and we obtain the well-known result [8]

(n+m)!
~ (n,n,vz)= j~l[~”(x)]’ a = (zn~l) (n -m)! whenm 20.

Using the convention for negative order (IV-5)

~ (n,n, -m) = j~l [~-m(x)]’ dx

[1= (n-m)l ‘ 2 (n-m)!
- JIRm(X)l’dX= ~2,2+1) ~n+m)~ Whenm~O(rz+m)!

Thus, combining (IV-44) and (IV-45), we have

(IV-42)

(Iv-43)

(IV-44)

(Iv-45)
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I (0 when n’ # n I
#j. (n,n’,rn)= f, ~,m(x)q~(x)dx =12 (n+m)!~henn=n

(2n+l)(n-vZ)!

Evaluation of q (w~’,vz)= ]~~m (x) R’!(X)CZX
_,l–x-

Inserting (IV-26) into the integrand of KJ (n, n’,m),

[1
g~ (n, n’, nz) = JJ, & ET (x) Prim(x)&

=
2.+&,J:,(’-x’)m-’ g(x2-’)n’~(x2-Y~’. .

where we require m 20. We integrate by parts p times
1 1

J[ ]— ~? (x)~m (X)dx =
-1 1—X2

I [ ( )] 1~(-l)k-’ :;:, (l-x’)”-’g x’ -1 “ ;;:-’ (x’ -l)n 1.
1 k=l——

Qn+n’nz!~!

[
‘< (l-’’)g-’g ‘2-’”’ :( )]+(–l)p (:1 ::::.p (x’ –1) ~p

Applying Leibnitz’ product differentiation formula to (IV-48) gives
I 1

J[ ]— P=T(x)~m (X)dx =
-1 1—X2

1io[ 1

–1 ‘-’
~n+m-k n

( )]
~x2–1 .

k=l dx

1=
‘y+”’n’!n!

.~ ,,~;::~’,),[:::;, ~1_x2).-j[ ~n’y (X2 _l).’]

dxn‘m+’
-1

1[‘(-l)PJ:l=(x’-mix’h[f=(+”-]][::::S (+”+]
We see that the right-hand factor in the sum outside the integral in (IV-49),

:::::k(X2+ 7
~k-1-,

is nonzero only when m – n S k < m, while )~k_l_, (1 – X2 ‘-*
~=fl Z=*I

(IV-46)

(Iv-47)

(IV-48)

(IV-49)

is nonzero only when m S k –s S 2m – 1. Thus, the nonzero contribution occurs for
k=rnand s=O, sothatforp2rn
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1 I‘-’’m-’[$(x’-’~l[~
(l-x’)m-’][g(x’ -lY] 1

=
Z“+”’n’!n!

[
‘ ‘]:.,(:!,),[s(l-x’)m:][:::s(x’-lr~l+(-l)’ J~l ~;:~P (X’ - )

The integrand in (IV-50) will be nonzero for.s 2 p – 2 (m – 1) and ss n’ – m. If we take

p = n +m, the integrand is nonzero only when n –m + 2 <s < n’–m .

At this point, we have not specified the relative size of n’ and n. If we choose n 2 n’,
we see that no value ofs allows a nonzero integrand. We simply obtain

——

O when n’+ n odd

(72’ +77-2)!
when n’+ n even, n > n’, and m >0

m(n’–rn)!

undefined when m = O
I(

Noting the symmetry of X3 (n, n’, m) with respect to n and n’, and using the convention

V-5) for negative order (m< O), we write

[1
~ (n,n’,zn)=J:: * ~T (x)~m (X)dx =

Owhen n’+ n odd

(mwn,n’)+owhen n’+ n even and m >0
m(rnin(n, n’)-m)!

(m=++++
‘m(max(n, n’)–m)!

undefined when m = O

when n’+ n even and m < C

1“(IV-50)

Note that W5(n, n’, m) is undefined when m = O. However, in cases where the integral is
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(IV-51)

(IV-52)

multiplied by m, letting m go to zero prior to performing the integration takes care of the
problem.



Evaluation of q (~,~’,~) = ] (I - X2)$~m (X)~RY (x)&
-1

The relationship between ~ (n, n’, m), @O(n, n’, m), and ~ (n, n’, nz) is given in (IV-17).

Substitution of

q (n,n’,nz)=

~IV-46) and (IV-52) into (IV-17) gives

O when n’+ n odd

2n(n +1) (n+m)! ~ _m(fin(~~’)+~)’
(2iz + 1) (n-m)! “’n’ (min(rz,iz’) -m)! ‘hen “+n‘Venandm20 ‘

2n(n + 1) (n+ m) !~ +m(maxtn,n’)+~)’
(2n+l) (n-m)! “’”’ (max(n,n’)-m)! ‘hen “+n ‘Ven andrn’0

where

\

O when n #n’
~n,nr=

lwhenn= n’-

[ 1
Evaluation of q (n,n’,m) = ~ R“ (x)f~T (x). czx

–1

The relationship between #2 (n, n’, m) and YS (n, n’, m) is given by (IV-23). Substitution

of (IV-52) into (IV-23) gives

O; n’+ n even

WQ(n, n’, rn) = .
1

ln(2n’+1)

1

(n’+ l)(n’+nz)
(min(n, n’-l)+rn)!

1.
(min(n, n’-l) –m)! ~n’+n odd

~

(min(n, n’+l)+m)! ‘ ~andm>o
-n’(n’+1-m) .

(mm(n, n’+l)– m)!

[

(max(n, n’–l)+m)!’

‘n’+l)(n’+m)(max(n~ ’-’@-@

H–m(2n’+1) (max(n, n’+l)+ m)!
–n’(n’+1–nz)

(max(n, n’+l)– m)!

n’+ n odd

andm<O

Note that (IV-54) does not give gz (n, n’, m) when m = O if n’+ n is odd. Because

(IV-53)

(IV-54)

X5 (n, n’, m = O) is undefined, (IV-23) cannot be used to obtain @z(n, n’, m) when w = O.

Taking a direct approach, and integrating (IV-2) by parts, with m = O,
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[ 1Jj (n,n’,o)= j ~“ (x):~? (x) (ix
-1

Thus, we have

q (n,n’,o)+q (n’,n,o)= ~“(l)~?(:

Substituting (IV-26) for m = O into (IV-2)

[
q (n,n’,o) = j ~“ (X):R?

-1

Integrating (IV-57) by parts one time
.-

Ig+’ -T’gk-’r’‘
W2(W’z’,c))= Zn+n’:,nrf

“ --~s(-ra’-i’~
From (IV-38), we see that the first term in the brackets is zero. The integral can be
further evaluated by the integration-by-parts procedure. Applying this procedure a total
of n times,

From (IV-40), we see that

:::::1 (X2 -17 ‘0 ‘henn2n’

Thus, we have

~- (n, n’,0) = O when n 2 n’

Using this information with (IV-56)

3, (n, n’, o) =

The complete integral is

O;n -tn’ even

O;n+n’oddandn~n’.

2;n+n’oddandn’>n

(Iv-55)

(IV-56)

(IV-57)

(IV-58)

(IV-59)

(IV-60)

(IV-61)

(IV-62)
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[ 1Jz(n,n’,m)= j E“(x)&T (x) (lx
-1

o;
{

n’+ n even, for all m

n.+n’odd, nzn’, andm=O

2;n+n’0dd, n’>n, andnz=O

1

m(27’z’+1)

1

–m(2n’+1)

(n’+l)(n’+m)
(min(n, n’–l)+nz)!

(rnin(n, n’-l) -m)!

(min(n, n’+l)+ m)!
–n’(n’+I–m)

(min(n, n’+l) -m)!

(n’+ l)(n’+ m)
(max(n, n’– 1) +m)!

(max(n, n’-l) -m)!

(max(n, n’+l)+nz)!
–n’(n’+I–m)

(max(n, n’+1)–m)!

“n’+ n odd

andm>O

{

n’+ n odd

andm<O

(IV-63)
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Appendix V — Relevant Network Parameters

The relationship between the S parameters and the admittance matrix

Define terminal voltages and currents at the ports of a two-port network as ~, II and

Vz, Iz at ports 1 and 2, respectively. The port voltages and currents can be related

through the admittance matrix

For a microwave network, the ports are typically fed with transmission lines. In this case,
it is convenient to describe the response in terms of incident and scattered port voltages,

~.+,~.-, respectively. These port voltages are related through the scattering parameters

Associated with the incident voltage is an incident current, 1,+,which flows into the port.

Similarly, associated with the scattered voltage is a scattered current, Ii-, flowing out of

the port. The incident and scattered voltages and currents are related by the transmission-

Iine wave admittance, YO,iat the respective ports

The total port voltage is

~l=[~++[v~

while the total port current is

1 .1-1

1, 1; _ 11-

12 ‘I; 1; =

with the reference direction into the port.

M ‘k ‘

‘ 1[[-[-]“Yo, o ~+ _ v,-

0 Y0,2 l?; v,- ‘

Substituting (V-2), (V-3), (V-4), and (V-5) into

(V-1) gives the relationship between the admittance matrix and the scattering parameters

(l-s,, )(l+sg,)+s,,s,, y 2s,2--

[ 1[

Y

LI Y12 = (1 +sll) (1+ $2) – S,2S,, 0’1 – (l+s,, )(1+ s,, ) –s,2s,1 0“

Y2, Y,, 2s2,

1

(l+s,l) (1–s22)+s12s21 y .--
Y

–(l+sll) (1+s22)– $2$1 0’2 (1+ S,, )(l+ S22)– S,2S21 0’2

(v-1)

(v-2)

(v-3)

(v-4)

(v-5)

(V-6)

Similarly
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(Yo, –q, )(Y0,2+ Y,2) + ~2Y2, –2q,Yo,

[ 1[

$1 $2 = (~, +Y0,1)(Y22 +Y0,2) -q2Y2, (y, + Y,, )(Y22i ~., ) -q,Y2,

52, 522 –2Y2,Y02 (Yo.1 + y]]) (YO.2 - Y22 ) + Y12Y21

(L +Yo,l)(% + YO,z) -W’21 (L +Yo,l )(L2 + YO. J -LA 1

In general, for a multiport network
I= Y-V

V-=s. v+

If=yo. vf

v=v++v-
and

l=l+-I-=YO. (V+- V-)

so that

(v-7)

(V-8)

(v-9)

(v-lo)

(V-II)

(V-12)

Y= YO(l-S)(l+S)-l (V-13)

and

s = (Y. +Y)-’ (Y. -Y) (V-14)

The relationship between the S parameters and the impedance matrix
Define terminal voltages and currents at the ports of a two-port network as ~, 11 and

Vz, 12 at ports 1 and 2, respective y. The port voltages and currents can be related

through the impedance matrix

For a microwave network, the ports are typically fed with transmission lines. In this case,
it is convenient to describe the response in terms of incident and scattered port voltages,

~.’, ~-, respectively. These port voltages are related through the scattering parameters

(V-15)

Associated with the incident voltage is an incident current, l;, which flows into the port.

Similarly, associated with the scattered voltage is a scattered current, 1,:, flowing out of

the port. The incident and scattered voltages and currents are related by the transmission-

Iine wave impedance, YO,iat the respective ports

(V-16)

(V-17)

The total port voltage is
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while the total port current is

:1=3-;1=[2:’Lrpmj (V-19)

with the reference direction into the port. Substituting (V-16), (V-17), (V-1 8), and (V-19)
into (V- 15) gives the relationship between the admittance matrix and the scattering
parameters

(l+ S,J(l-S22)+W,2 zs~~

[ 1[

z,, 212 (1-s,, )(1-s2,)-s,2s2, 0“1 (1-s,,)(1-s22)-s,2s2,‘0”

Z2, 222 = 2s2,

1

(1-$,)(1+ s,,) +$,s,, ~ “

(1-s,, )(1-s22)-s12s2, ‘0” (1-s1,)(1-s22)-s,2s2,0“
Similarly

(Z,l – 20,1) (222+ 2072)- 212% 22,22.,,

[ 1[

s,, s,, (% + 20,1) (222 + 20,2) – %% (211 + 2.,, ) (2,2+ 2.,2) -21222,

s S22 =21 2.%2”,2 (-% + 20,1) (L2 – 20,2) – %221

(211 + 20.1) (222 + 20,2) – %221 (% + 20,1) (-%2 + 20,?) – %221 !

In general, for a multiport network

V= Z”I,
V-=s. v+,
vi=zo.l*

v = v+ + v-’,
and

( )l=l+– I-= Z;l - V+– V- ,

so that

Z=(l+s)(l-s)-’zo,

and

S=(z-zo)(z+zo)-’.

From either (V-8) and (V-22) or (V-14) and (V-28), we see that
y=z-1,

(V-20)

(V-21)

(v-22)

(V-23)

(V-24)

(V-25)

(V-26)

(V-27)

(V-28)

(V-29)
just as one would expect from the definitions of admittance and impedance in the network.
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