

LA-UR- 00-179

*Approved for public release;
distribution is unlimited.*

Title: THERMAL HYDRAULIC ANALYSIS OF LANL/IPPE/EDO-GP
IMW LBE TARGET

Author(s): HE, XIAOYI/T13
AMMERMAN, CURTT/ESA-DE
WOLOSHUN, KEITH/LANSCE-3
LI, NING/MST-10

Submitted to: AMERICAN NUCLEAR SOCIETY
2000 ANNUAL MEETING AND EMBEDDED TOPICAL
MEETINGS
JUNE 4-8, 2000 SAN DIEGO, CA

Los Alamos NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

5-6823

Thermal Hydraulic Analysis of LANL/IPPE/EDO-GP 1MW LBE Target

Xiaoyi He, Curtt Ammerman, Keith Woloshun, and Ning Li

ADDT, MS HF 854

RECEIVED

Los Alamos National Laboratory

OCT 04 2000

Los Alamos, NM 87544

OSTI

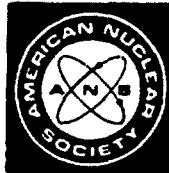
The Accelerator-driven Transmutation of Waste (ATW) concept has been proposed by the United States and other countries to transmute plutonium, higher actinides, and other environmentally hazardous fission products. One of the key components in the ATW concept is a target which, via spallations, produces neutrons to transmute nuclear wastes. Since significant heat is generated during fissioning of the waste actinides, an efficient heat removal system is necessary. Liquid lead-bismuth eutectic (LBE) is an efficient coolant as well as a good spallation target for production of neutrons. The LBE coolant technology has been successfully used in Russian submarine's nuclear reactors.

The International Science and Technology Center (ISTC) has funded the Institute of Physics and Power Engineering (IPPE) and the Experiment and Design Organization-“Gidropress” (EDO-GP) of Russia to design and manufacture a pilot target (Target Circuit One - TC1) that incorporates Russian LBE technology into the ATW concept. The target is going to be tested in the 800 MeV, 1 MA proton beam at the Los Alamos National Laboratory (LANL) in two years. These target experiments will provide

valuable information on the performance of LBE as both spallation target and coolant. They will also help to design target/blanket systems for future ATW facilities.

As a part of the preparation for the beam-on test, we have carried out a thermal hydraulic analysis for the TC1 target. The proton beam from an accelerator is injected into the target through a steel window. Liquid LBE flows in from an outer annulus channel, sweeps over a target window, and flows out from an inner channel. A diffuser plate is placed near the window to enhance flow around the window center, where the heat deposition from the proton beam is maximal. The heat deposition in the target uses the results from IPPE's neutronics calculations. Two scenarios are simulated, one for nominal beam power of 1 MW with an inlet temperature of 242°C and the other for 80% of the nominal one with an inlet temperatures of 235°C. The flow rate of liquid LBE is fixed at 14.2 m³/h.

The thermal hydraulic analyses are carried out using two computational fluid dynamics software packages, FIDAP (licensed by Fluent Inc.) and CFX (licensed by AEA Technology). Both codes were carefully benchmarked and have been extensively used in many thermal hydraulic applications. FIDAP uses the finite-element method while CFX is based on the finite-volume method. Using two independent codes helps to reduce model-related uncertainties.


Up to today, we have carried out simulations with a 2D axi-symmetrical model. Studies with a 3D model are under way. The results from the 2D simulations show that the

coolant flows through the target smoothly without any stagnation zone. This is important because recirculation may lead to undesired temperature buildup. Because of the diffuser plate, the majority of coolant is forced to sweep over the window center and pass through the center hole of the diffuser plate at a high speed (2.0 m/s). This swift flow of coolant plays a key role in cooling the center of the target window, where the energy deposition from the proton beam is the highest.

The calculated temperature ranges from 242 °C to 462 °C. The highest temperature occurs at the vacuum side of the target window center. This temperature range is within the proper working range for both the LBE coolant and the construction materials. The average temperature at the outlet is 360 °C. This temperature increase between the inlet and outlet is consistent with the total energy deposition in the target. There is a 30 ~ 40 °C temperature drop cross the window near the window center. The temperature variation in the target window is negligible 5 cm away from the centerline. The temperature in the diffuser plate varies from 250 °C to 280 °C, which is relatively small compared to that in the window.

The temperature distribution in the target with 80% nominal beam power is similar to that with nominal beam condition. The highest temperature still occurs at the vacuum side of the window but is reduced to 412 °C. The temperature drop in the window reduces correspondingly to about 25 °C.

In summary, we have carried out thermal hydraulic analyses for the LANL/IPPE/EDO-GP 1MW LBE target. It is shown that the current design is suitable for the beam-on tests. The diffuser plate successfully enhances the coolant flow around the window center but still manages to avoid generating circulation zone downstream. The temperature range is within the proper operation range for both the LBE coolant and the structural materials.

CALL FOR PAPERS

AMERICAN NUCLEAR SOCIETY
2000 ANNUAL MEETING
AND EMBEDDED TOPICAL MEETINGS
June 4-8, 2000
San Diego, California

SUMMARY DEADLINE: Postmarked by Friday Jan. 7, 2000
--

This is the official call for papers for the ANS 2000 Annual Meeting. You are encouraged to submit summaries of papers describing work that is NEW, SIGNIFICANT, and RELEVANT to the nuclear industry. To facilitate an adequate review, a summary of your paper must be in the mail to ANS headquarters by January 7, 2000. The National Program Committee will then review your summary and will notify you of their decision to accept or reject it by February 23, 2000. ANS will publish all accepted summaries in the TRANSACTIONS. You will present your paper orally at the meeting and are expected to register for the meeting. You may publish the completed paper elsewhere if you wish, but your summary becomes the property of ANS. Under no circumstances should your summary or full paper be published in any other publication prior to presentation at the ANS meeting. It is your responsibility to protect classified or proprietary information.

GUIDELINES FOR SUMMARIES: Authors must adhere to the guidelines below or the Program Committee may reject their summary. Questions about subject categories may be directed to the representatives listed on page 4.

CONTENT

1. *Introduction*—state the purpose of the work.
2. *Description of the actual work*—must be NEW and SIGNIFICANT.
3. *Results*—discuss their significance.
4. *References*—if any, must be closely related published works. Minimize the number of references. Do not present a bibliographical listing.

LENGTH

1. Use at least 450 words, excluding tables and figures.
2. Use no more than 900 words, including tables and figures.
3. Count figures and tables as 150 words each. Use no more than three figures or tables.
4. Limit title to ten words; limit listing of authors to three or fewer if possible.
5. Exclude references from word count.

TABLES AND FIGURES

1. Tables and figures will be reduced to fit one column (7.5 cm) or two columns (~15 cm). Use lettering that will be at least 1 mm high after reduction.
2. Use high-quality glossy photographs or reproducible black-on-white drawings. Attach to original copy of summary.
3. Put each table or figure on a separate page.

FORMAT

1. Type your summary **double spaced** on one side of the page only.
2. Use SI units (with English units following in parentheses, if desired). Exceptions are made for eV and barns.
3. List references numerically at the end of the summary and use superscript numbers in the text.
4. You are encouraged to submit your summary on a computer disk *in addition* to the typed copy. See instructions on p. 3.

PAGE CHARGE

ANS charges \$165 per final printed page (prorated) of your summary in the TRANSACTIONS. Attach your institutional purchase order, with purchase order number, to the original copy of the summary. Otherwise, ANS will bill you personally.

TO SUBMIT A SUMMARY

Fill out pages 2 and 3 of this Call for Papers and attach copies of them to your original and three copies of your summary. Mail all four sets, postmarked by *January 7, 2000*, to:

Raymond H. Gabaldon III, Technical Program Chair
Attn: TRANSACTIONS OFFICE
American Nuclear Society
555 North Kensington Avenue
La Grange Park, IL60526 USA

YOU MUST SUBMIT FOUR COMPLETE SETS OF YOUR SUMMARY, INCLUDING PAGES 2 AND 3 OF THIS CALL FOR PAPERS, BY JANUARY 7, 2000.