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The Institute for Clinical PET (ICP) and the U.S. Department of Energy co-sponsored a

symposium entitled “Research in PET: International and Institutional Perspectives” on

October 23, 1991 at the Loews L’enfant Plaza Hotel, Washington, DC.

The symposium was held the day before the Institute for Clinical PET’s Third Annual

International Clinical Conference, Free entry was permitted for those who registered for

ICP’S conference, and $200 registration fee was charged for non-attendees.

The symposium brought together leading researchers from around the world. The program

focused on the current status of PET research and the direction in which the technology is

leading in regard to future clinical applications.

The Program Chair for the symposium was ICP Immediate Past President, R. Edward

Coleman, M.D. of Duke University. An agenda including speakers and titles of the

presentations is attached.

The whole symposium was recorded on cassette tapes and were available for purchase

through the Institute for Clinical PET. (see attached handout)

Approximately 150 attendees heard presentations on basic PET research that might lead

to clinical applications in the future. The program highlighted the activities of many

leading investigators in the United States and through-out the world. In addition, the

Department of Energy’s Robert Wood discussed research programs at the agency which
focus on the nuclear medicine and PET programs. The priorities for programs sponsored

by the DOE are under review, he told the group.

William Eckelman, Ph.D. from the National Institutes of Health, addressed the potential

directions of PET research. In addition to the traditional aspects of research using PET,

Dr. Eckelman discussed the use of PET in evaluating ethical drugs.

International perspectives on PET research were presented by Bengt Langstrom, Ph.D.
from Uppsala, Sweden; Dominique Comar, Ph. D., from Orsay, France; Yoshihara

Yonekura, M.D., from Kyoto, Japan; and Ludwig Strauss, M.D., from Heidelberg,

Germany. The individuals gave an overview of research in their countries with a focus on

their particular area of interest. Dr. Comar provided information concerning the European

Economic Community Concerted Action on PET, which is providing a focus for activities

in Europe.
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Los Alarnos National Laboratory, MS-F607, Los Alamos, NM 87545

ABSTRACT

In typical GA application, the fitness assigned to a chromosome-represented individurd in the context of a specified

environment takes a deterministic calculable value. In many problems of interest, the fitness of an individual is stochastic,

. and the environment changes in unpredictable ways. These two factors conrnbute to an uncertainty that can be associated

with the estimated fjtness of the individual.

The Kahnan formulation provides a mechanism for a useful treatment of uncertainty within the GA framework. It provides

for tracking the best-estimated fitness, and for assessing the uncertainty of the best-estimated fitness. The stochastic

uncertainty of an existing individual can be reduced by additional evaluation of the fitness. The process (environmental)

noise causes an increase in uncertainty as the age of the last evaluation increases. In a Kalman-extended genetic algorithm,

we want to know the value of re-evaluating an existing solution in the population relative to generating and evaluating new

individuals. A scheme for eftlcient allocation of computational resources among existing individuals and new individuals is

developed.

This Kahnan-Darwin formulation is applied to the problem of maintaining an optimal network configuration of links between

moving nodes, with time-dependent, stochastic blockages. The nodes, for example, could be environmental sensors with

radio transmitter/relays located on vehicles, and the network is configured to provide communication paths from each sensor

back to a central node with minimum message loss. As the sensors move, the optimal network changes, but information

contained within the GA population of solutions allows new optima to be efllciently obtained. The performance of this

approach is explored and results are presented.

1. INTRODUCTION

The Kalrnan Genetic Algorithm (KGA) is an extension of the genetic algorithm (GA)’-3in which Kalman filtering4-bis

applied to the fitness values associated with the population of chromosomes. In the GA, a chromosome represents a trial

solution to a problem. The chromosome has a well-defined measure of fitness within the context of the problem space or

environment. In many interesting applications, the environment is dynamic. The fitness of a given chromosome will change

in time, as changes occur in the environment. In addition, for environments of sufficient complexity, or for environments

with stochastic elements, the fitness of a chromosome is unknowable, and can only be approximated. The Kalman

formulation provides a natural mechanism for extending the domain of application of the genetic algorithm from static,

prescribed problem spaces to dynamic, and complex or stochastic environments.

In the KGA, at any given time, each chromosome has a best-estimated fitness and an uncer@inty associated with that

estimate. The fitness and uncertainty are updated according to the Kalman formulation, as the environment changes with the
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passage of time, and when a chromosome is re-evaluated. Knowledge is acquired’ by re-evaluating an existing trial solution

(thereby decreasing the uncertainty associated with its fitness estimate) or by generating and evaluating a new trial solution.

The principle behind the KGA is simple. The population, consi~ing of N individuals, each with a best-estimated fitness, can

be characterized by the variance V of these N fitness values. When the uncertainty associated with all members of the

population is smaller than V, the population is treated as sufficiently evaluated, and the algorithm wilI generate and evaluate

a new trial solution. However, if any of individuals in the population have uncertainties greater than V, the algorithm will re-

evaluate whichever individual has the highest uncertainty.

The literature contains applications in which GA is used to tune the parameters of a Kalman filter!-” There is also some

research reported as a hybridization of Kalman filtering and GA, in which Kalman filtering and GA are used to optimize two

separate parts of a problem. ‘2’13In previous work,14-’7the author used GA to periodically optimize controllers in the context

of a dynamic environment. The heuristic of including the previous best solution in the next initial population was explored,

but a theoretical formulation underlying the use of GA in noisy, dynamic environments was lacking. In a SciSearch@ search

of 17.5 million technical articles, no reference was found in which a Kalman filter is used as an integral part of the GA
evolutionary mechanism.

2. MECHANICS OF THE KALMAN GENETIC ALGORITHM

The KGA keeps a population of individuals. An individual represents a trial solution to a problem. There is an upper limit, N,

on the population size, and at any given time, there are actually n individuals in the population. The individual, i, has four

elements: 1) a chromosome Wi, 2) a best estimated fitness, fi, 3) an uncefinty, Pi, associated with that estimate, and 4) a

timestamp, Ti, specifying the time that the uncertainty was last updated. The chromosomes can take a variety of forms.’g The

requirements on the form of the chromosome are that it can be transformed into a possible solution of the problem, and that a

set of genetic operators can be constructed for it. For this implementation, the chromosomes are simply fixed length

sequences of bounded integers. A mechanism for transformation from the chromosomal form (the genotype) to the probIem

solution form (the phenotype) must be developed for each problem. As an aid to interpretation of the uncertainty, the

underlying fitness can thought of as the best estimate of fitness, plus or minus the square root of the uncertainty.

When a real-time directed-search algorithm is used in a dynamic environment, the algorithm computational time is

interwoven with the physical time. We consider the case in which an evrduation of the fitness of a trial solution takes a finite

amount of time, ~c.During a given period of time, there will thus be a finite number of trial evrduations that the algorithm

may call for.

A mechanism is required to evaluate the fitness of a solution. In environments with stochastic processes, the result of a fitness

evaluation will be a real-number value that represents the true, underlying fitness value but has an uncertainty associated with

it. If an ensemble of fitness evaluations were to be made on a trial solution, the variance of the ensemble of the resulting

fitness values, R, is taken as the measure of the uncertainty in the fitness evaluation. This variance is analogous to the

observation noise variance of the Kalman formulation, if a fitness evaluation is treated like an observation. R can be

interpreted as the uncertainty with which the result of a fitness evaluation represents the true, underlying fitness of the trial

solution. R designates the variance of the observation noise associated with a single evaluation of a trial solution.

Because the environment is dynamic, the underlying fitness of a given trial solution will change with time. In the Kalman

formulation, this change is attributed to process noise. Like the observation noise, the process noise is characterized by a

variance, in this case designated by Q. Q gives the variance in the change in the underlying fitness of trial solutions during a

specified time interval, due to change in the environment. Lnthis formulation, there is no fixed time interval to use to define
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Q, as is common in Kalman filtering applications. Instead, a “process noise rate”, given by q, is used. The process noise

variance expected after the environment undergoes changes for a time interval dt, is Q = dt q. This presumes that the process

noise variance increases linearly with time interval, although alternative formulations could be used as well. As with any

Kalman application, q can tie specified by knowledge about the environment, or it can be evaluated adaptively.

The KGA begins operating at time t = G. At this time, the population contains no trials yet (n = O).The algorithm iterates over

four main processes, as shown schematically in Fig, 1. The fmt process updates the uncertainties of the members of the

population to the current time. If an uncertainty was last updated at time Ti, the associated uncertainty increases according to

P= Pptior+q(t– 2) (1)

This is analogous to the Kalman equation that updates the covariance matrix for process noise. The time of the last update is

then advanced to the current time, Ti = t.

*

First Process:

Update Uncertainties

Pi=Pi+q(t-Ti)
Ti=t

Second Process
Evaluate Statistics

V=var(fi), P~=, i~= “

I

n++

generate random trial

evaluate fitness

Reevaluate i.u ‘

Update fitness

I Update uncertainty

Select parents

Cross-over

Mutate

Evaluate new trial
Set uncertainty to R

I

I Fourth Process I
Resort Population on F=f-sqrt(P) )

Set t+= t. and adapt q

Figure1.The Kalman-extendedgeneticalgorithm,shownschematicallyas a cycleover fourmajorprocesses.
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The second process characterizes some statistics of the population that will determine whether to generate a new trial, or re-

evaluate an existing individual. The variance, V, of the best-estimated fitnesses of the individuals in the population is

calculated, as are the identity, i.=, and uncertainty, P.=, of the most uncertain individual. These two statistics are used by the

algorithm to determine which of the three elements of the third process to invoke.

The third process performs a fitness evaluation. There are three alternatives for this third process. If the population is not full

(i.e. ncN), a new random chromosome is generated and evaluated. The second alternative for the evaluation process: if the

population is full, and the uncertainty of the most uncertain individual exceeds the population’s fitness variance (i.e. P.=>V),

the most uncertain individual will be reevaluated. When a re-evaluation is performed (returning a value of g), the previous

best estimate of fitness, fPriO,,is updated using the Kalman observation equation:

f= fpno,+—~:R(g-fptior)
In addition, a re-evaluation reduces the uncertainty P by multiplying by a factor of W(P+R) as follows:

P = PpriorRl(Pptior+ R) .

(2)

(3)

The quantity P/(P+R) is analogous to the gain, K, of the Kalman formulation.

The third alternative for the evaluation process: if the population is full, and the uncertainty of the most uncertain individual

“isless than the population’s fitness variance, a new trial will be generated and evaluated. Traditional GA mechanics are used

to generate new individuals. Two parenk are selected based on their fitness, with more fit individuals being more likely to be

selected. Genetic operators such as crossover and mutation are used to generate a new chromosome from those of the parents.

When a new chromosome is created and evaluated once, the best estimate of fitness f is the result of the evaluation, and the

uncertainty P is equal to R.

The fourth process incorporates the newly evaluated trial appropriately into the population. The best-estimated fitness and the

uncertainty are combined to give an uncertainty-compensated fitness, F, for each individual, given by

(4)

The algorithm thus searches for individuals with high fitness, but discounts the fitness if there is a high associated

uncertainty. The population is sorted by this uncertainty-compensated fitness. If the uncertainty-compensated fitness of the

new chromosome is better than that of the least fit individual in the population, the new individual is added to the population,”

and the least fit individual is discarded. If the population is not yet full, or if an existing individual was reevaluated, the

population is simply re-sorted according to uncertainty-compensated fitness. At any time, the individual with the best

uncertainty-compensated fitness is taken to be the best-adapted solution produced by the algorithm. These four processes

take some time to perform, but the bulk of the time is presumably spent evaluating trials. When the cycle repeats, the time tis

advanced by ~..

3. DEVELOPMENTAL TEST-BED: NETWORK CONFIGURATION OPTIMIZATION

A test-bed has been constructed for developing and experimenting with the KGA in a simulated dynamic, noisy environment.

It has been implemented in Java, with a GUI that allows a user to easily construct scenarios and observe simulations of the

KGA operation.

The test problem is to configure a network of radio links connecting a set of nodes to a collection point. The task is to

maintain a good configuration of links as the nodes move. This test application derives from a system of atmospheric aerosol

sensors mounted on vehicles, which deliver their data via radio links to a collection point. Each sensor collects a stream of

data, which it then lnnsmits via a low-power radio link. A sensor node may transmit directly to the collection point or to

another node. A node can receive and repeat data from other sensors. The network of links thus is an acyclic, directed graph
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(i.e. a wee)Withtheb~e being theco~lectionpoint,and the sensorsforming the othernodes.Eachradiolink formsan edgeof
the graph.

In its pure, unconstrained form, this problem admits an algorithmic solution (via Dijkstra’s shortest-path tree algorithm).19-2*

The existence of this solution does not render the application trivial, because slight variations in the problem definition, as

would be encounter&1in practice, make this problem NP-complete. 19Examples of such vtiations include: a COIw.trairW on

the number of links a given node may receive and retransmi~ a bandwidth limitation on the transmission channels or a

degradation in transmission fraction with increased message trtilc; a maximum number of links in a path to the collection

point; or the possibility of redundant paths, where a node may transmit to more than one r~eiver. Optimization of a complex

network with routing and bandwidth constraints is not amenable to algorithmic approaches, but can be attacked with GA.22

The existence of an algorithmic solution for the pure form of the problem does allow the performance of the KGA to be

assessed relative to the sequence of optimal solutions.

The nodes are treated as executing a random walk witldn a prescribed area. (The vehicles are not dedicated to the sensors, but

are engaged in other activities.) The movement of the nodes makes the problem environment dynamic. As the nodes move,

the transmission probability along the links changes, and the optimal network configuration also changes.

A prescribed area on the ground of arbitrr@ shape and size is represented on a 2D Cartesian cell grid. The cell size, and the

number of cells spanning the two dimensions, are adjustable. A baseline scenario has been constructed, in which each cell

represents a 160 by 160 meter square, and a grid of 125 by 125 cells covers a 20 by 20 km area. In this baseline scenario, the

vehicle/sensor/nodes are restricted to a roughly 10 by 20 km elliptical region as shown in Flg 2.

Figure2. Examplescenario,showinga user-prescribedregion,25 randomlyplacednodes,and a randomlygeneratedlinknetwork.The
collectionpointis shownas the opencircle.

Let S designate the to~l number of nodes, exclusive of the collection point. The baseline scenario contains 25 sensor nodes.

These vehicle-mounted sensors can be initialized by assigning each sensor to a random cell within the prescribed area. Only

one sensor can occupy a cell. Fig. 2 shows the locations of 25 randomly placed sensors.

Each node establishes a radio link to another node or to the collection point, to transmit its own data, and any data it receives

from other nodes. Each node has a unique ID in the range of one to S. The receiver of a node is specified by an integer in the

range of zero to S. A value of zero indicates that the link is transmitting directly to the collection point, while any other value

specifies the ID of the receiving node. The network configuration is completely specified by giving the receiver for each

5



,

node.19This requires a total of S integers, each in the range Oto S. A node can not have itself as a receiver. The number of

distinct network configurations is then Ss. For 25 sensors, there are 8.9(10)34possible network configurations.

In this implementation, only valid spanning-trees configurations (including the collection point) are considered, i.e. all nodes

and the collection point are included in the graph, and there are no cyclic paths in the graph. l%is reduces the size of the

problem space. A simple algorithm is used to generate random trees, as follows. All nodes are initially unconnected. An

unconnected node is selected at random. A receiver is selected at random from the set containing the collection point and all

connected nodes. The selected unconnected node takes the randomly selected receiver to be its receiver, and then becomes a

connected node. This process is repeated until all nodes are connected. A randomly generated network linking 25 sensors to a

collection point is shown in Fig. 2. The 25 integer representation of this network is { 81917181220202011021 O2020

1312122024120618 1221}. Node 1 transmits to node 8, while nodes 10, 12 and 21 transmit to the collection point, etc.

The expected transmission fraction over a link depends on the length of the link. For short distances, the expected

transmission is neatly perfect, because the signal is much higher than the noise. There is a scale distance, d, where the

expected transmission fraction across a link is reduced to one halfi for significantly longer transmission distances, the

transmission fraction will be very small (extinction and the l/# antenna gain relation degrades the signal, which becomes

obscured in noise.) There is another scale distance, w, which characterizes the distance over which the transmission fraction

drops from near one to near zero. A pararneterized formulation is used for the transmission fraction from node i to node j:

(5)

where dij designates the distance from node i to node j. l%e transmission as a function of distance is shown in Fig. 3 ford =

5000 m and w = 100 m. If the path from a node to the collection point contains a sequence of links, the total transmission

fraction from the node to the collection point is simply the product of the transmission fractions of each link in the path.

0 2000 4000 6000 8000 10000

Transmission Distance (m)

Fig.3. The transmissionfractionacrossa link,as a functionof the lengthof the link,&ing the parameterir.edformulationwithd=5000m,
andw=ltllm.

The fitness of a network configuration can be ch~actefized in a variety of ways, depending on what is important in any given

application. For the test-bed application, the network configuration fitness is simply the average, over all nodes, of the

transmission loss from each node to the collection point. The goal of maximizing transmission fraction is then equivalent to a

goal of minimizing message transmission loss. For the random network shown in Fig. 2, the average message loss is 0.94594.
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The shortest-path algorithm was used to generate the network that minimizes the transmission losses from each node to the

collection point. The shortest-path tree algorithm minimizes the sum of the weights associated with all edges in the paths

from any node to the root node. The algorithm can be used by equating the weight associated witk an edge to the natural log

of the inverse of the transmission fraction. Then minimizing the sum of the weights along a path is equivalent to maximizing

the total transmission fraction along the path. The shortest-path network is shown in Fig 4, where the sensors have the same

locations as in Fig. 2. For this network configuration, the average message loss fraction is 0.03185, which is representative of

25 sensors in a 10 by 20 km elliptical area, where the transmission range scale is 5 km.

Fig.4. The shortest-pathtree for 25 randomiylocatednodes.

The dynamic environment is implemented as follows. A simulation is run in which the time is advanced in steps of duration

‘c..During each time step, the fitness of one network configuration is evaluated, as prescribed by the KGA. In addition, during

each time step, a sensor may move, causing a change in the environment. In order to explore sensitivity of the KGA to

process noise, the expected change in fitness during a time step can be varied by controlling how often sensors are moved.

The process noise rate is then calculated adaptively, using a fried-gain recursive filter and the observed fitness changes

caused by the sensor movements. If, for example, sensors are moved (to one of the eight nearest-neighbor cell locations) at a

rate of one movement per 500 time steps, the process noise variance is found to average approximately 8.5lE- 11 in a time

step. During the 100 time steps which would be required to re-evaluate all members of a 100-member population, the process

noise would be -1 OE-8,corresponding to a typical fitness change of -0.0001. This process noise level is about one part in

300 of typical near-optimal network conf@rations in the baseline scenario. In a simulation starting with the sensor

configuration shown in fig. 2 and incurring 500 sensor movements, the fitness of the shortest-path tree network configuration

varies over the range of 0.0295. to 0.0335. If the links in tie initial shortest-path network configuration were left unchanged

during these 500 sensor movements, the fitness would be significantly degraded.

The observation noise, R, is implemented as follows. The transmission fraction over a link depends not only on the length of

the link, but also on stochastic factors such as the atmospheric condhions and line-of-sight obstructions. These stochastic

factors contribute to the observation noise that gives variation in the actual fitness of a network cotilguration. In the test-bed,

process noise is added to average transmission fraction of a network.configuration whenever it is evaluated. An evaluation of

the fitness of a given network configuration for a given set of node positions is artificially given an error, by adding
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(3r- 1.5)sqrt(R), where r is a random number between Oand 1. This produces a distribution of observation noise with a

variance of R.

An implementation of the genetic algorithm is used which takes a sequence of integers as its chromosome, where the integers

are bounded inzero to a specified maximum value. In this case, the chromosome has S integers, each in the range of [0, S].

!i%epopulation size is 100 individuals. The first 100 individuals are created as random tree configurations. When the

algorithm determines that a new trial solution should be generated, two parents are selected. This selection is based on fitness

rank, with the most fit individual being 2.5 times more likely to be selected than the median fit individual. Generation of new

individuals uses two-point cross-over, followed by mutation and a repair step. The cross-over causes complete genes (i.e.

integers in Oto S) to be taken from the parents into the child: there is no splitting of genes. The mutation step selects two

genes at random, and resets them to new random values, corresponding to a receiver node selected at random from those

connected to the collection point. The repair step ensures that the resulting network configuration is an acyclic spanning tree

rooted on the collection point. Every gene that is part of a valid tree is retained – those that are not are replaced with alleles

that correspond to a link to a connected node. If the algorithm determines that an existing individual should be re-evaluated,

no new chromosome is generated.

4. RESULTS

A simulation was run in which the obsemation noise variance, R, of the fitness (the message loss fraction) was set to lE-8.

Since the message loss fraction of good configurations is around 0.03, the standard deviation of the observation noise of lE-4

is about one part in 300, which can be considered to be a low level of observation noise. For this case, the process noise

variance is approximately 8.51E- 11 per time step, which is achieved by moving the sensors at the rate of one movement per

500 time steps. As described above, for a population size of 100, this process noise standard deviation is below one part in

300, which can be considered to be a low level of process noise. Fig 5 shows the fractional error of the actual fitness (average

message loss rate, with observation noise removed) of the best member (lowest uncertainty-compensated message loss

fraction) of the population relative to the fitness of the shortest-path network configuration, i.e. (f-f~)/fw Initially, when the

KGA has evaluated only one random configuration (that shown in Fig. 2) the loss of the best contlguration is 0.94594, while

the loss with the optimal configuration is 0.03185, so the fractional error of the KGA relative to optimal has a high initial

value of 2870Y0.As the KGA generates and evolves its population of trial solutions, the fractional error is seen to drop. After

about 20,000 trial evaluations, the best solution in the KGA population is within 0.170 of the optimal solution. In this case,

the KGA often attains the optimal solution.

During the 250,000 time steps of the simulated run, the KGA evaluated 100 random configurations, generated and evaluated

55,674 new configurations, and re-evaluated existing configurations 194,226 times. When the observation noise is low, the

algorithm spends 22% of its resources on new trial solutions, and 7870 on re-evaluating existing solutions. Note that once a
population has converged somewhat on the optimrd configuration, when a new trial is generated, it will have a larger

uncertainty than the bulk of the population. If the fitness of the new trial is good enough to earn it a place in the population,

the algorithm will then re-evaluate the new trial until its uncertainty drops below the population variance.

Several events can be seen in fig. 5 as spikes in the fractional error. These occur when the motion of the sensors causes the

optimal network configuration to undergo a significant restructuring. The fractional error between the best KGA solution and

the optimal solution may rise to a few percent on these occasions, but then drops back down as the KGAdiscovers the new

configuration. Note that these recoveries require one or two thousand time steps, compared to the 20,000 time steps required

to reach near-optimal solutions beginning from scratch.
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Fig.5. The fractionalerrorof the messagelossfractionof the bestKGAsolutionrelativeto that ofie optimatnetworkconfiguration,
showinghowcloselythe KGAtracksthe optimatnetworkconfiguration.Thereis onetriat evaluationper time step.The processnoise
varianceis approximatelyIOE-10per timestep,andobservationnoisevarianceis 1OE-8,for 25 sensornetworkstartingfromthe kwations
shown in Fig. 2. The loss fraction of the optimalconfigurationrangesfrom0.0295to 0.0334. .. . . -

A second case was mn in which the process noise was increased by a factor of about 100. ~is was accomplished by moving

the sensors at a rate of one sensor motion every 50 time steps, which results in a process noise variance that averaged 9.26E-9

per time step. This corresponds to a process noise standard deviation of about 0.001 in 100 time steps (one for each member

of the population), which is about 3% of the fitness of near-optimal configuratio’m. As shown in fig. 6, this increased process

noise degrades the ability of the KGA to track the optimal network cotilguration. Where the optimal contlguration has a

message transmission fraction that varies from 0.0264 to 0.0357, with an average value of 0.02978 <excluding the first 20,000

time steps), the KGA has an average messageloss fraction of 0.03093 during the same period. On average the KGA solution

is 3.970 worse than the optimal configuration, excluding the first 20,000 time steps, at this process niose level of 390.For this

case, there is little change in the resource allocation between re-evaluation and new trial generation: the KGA called for new

rnal solutions in 21.1% of time steps.

A third case was run which was the same as the first, except that the observation noise variance was increased by a factor of

100, to a moderate level of 1.E-6. The process noise remained at the low level of 1E-10 per time step. The observation niose

standard deviation (0.001) is about 3% of the fitness of near-optimal configurations for this third case. Fig. 7 shows how the

KGA is able to track the optimal cotilguration at this noise level. After an initial period of 20,000 time steps, the KGA

configuration is on average 1.92% worse than the optimal configuration. At this observation noise level, significantly more

resources are allocated tore-evaluation of existing trials: new trial cotilgurations are generated and evaluated in only 8.1% of

the time steps.
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Fig. 6. The fractional error of the message loss fraction of the best KGAsolution relative to that of the optimal network configuration. The

case is identical to that shown in Fig 5, except that the process noise variance is increased by a factor of 100 to a value of approximately

1OE-8 per timestep.
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Fig. 7. The fractional error of the message loss fraction of the best KGA solution relative to that of the optimal network configuration. The

case is identical to that shown in Flg 5, except that the observation noise variance, R, is increased by a factor of 100 to a value of

approximately 1OE-6.
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5. CONCLUSIONS

The overall conclusion of this work is that the Kalman formulation can be integrated into the genetic algorithm formulation

in a compelling way to create a Kalman-extended genetic algorithm that can perform ongoing directed searches in dynamic,

noisy environments. The extension of a population of individuals, each with a fitness, by associating an uncertainty with the

fitness of each individual, is conceptually clear, and easy to implement. The mechanics of updating the best-estimated fitness

and the uncertainty after are-evaluation follow directly from the Kalman formulation. The very simple implementation of the

KGA, where a new trial is generated and evaluated whenever the uncertainty of the most uncertain individual is less than the

variance of the population fitnesses, has been found to work through experimentation in a test-bed.

The KGA can be viewed as a mechanism to allocate resources between the two complimentary activities of re-evaluating

existing solutions for changing conditions, and generating new solutions. The allocation depends on the level of observation

noise: the more uncertain the observations are, the more resources must be dedicated to re-evaluation of existing solutions.

Even when observation noise is low, however, a somewhat surprising result is that only 21 or 22% of effort should be

expended on new solutions, while the remainder should go tore-evaluating existing solutions.

At low levels of process and observation noise (-&3.3%),the KGA was shown to be able to maintain near-optimal solutions.

At moderate observation noise level (*3%), the KGA was still able to maintain configurations with fitness values within an

average of 2% of the optimal configuration. At moderate process noise level (*3%), the KGA was able to maintain

cotilgurations with fitness values within an average of 490 of the optimal configuration.

In contrast to the traditional GA wherein a bigger population is better, in the KGA there is an optimal population size. If the

population were too large, the KGA would waste time evaluating relatively poor individuals that have grown obsolete (i.e.

whose uncertainty has increased too much). There are indications that the optimal population size can be re-evaluated on an

ongoing basis, using R, q q, and V.

The formulation presented here was developed with simplicity as a criterion. Alternative forms maybe more effective. For

example, the uncertainty-compensated fitness, which is used to rank the individuals in the population, could be a more

complex function of the best-estimated fitness, the uncertainty, and/or the square root of the uncertainty. The criteria for

selecting which individual to evaluate next could depend on the best-estimated fitness in addition to the uncertainty. The

population fitness variance could also be formulated differently.

When a new trial is generated and evaluated, its uncertainty is generally much higher than that of the existing individuals.

The new trial should therefore be re-evaluated several times to reduce its uncertainty to a level at which a valid comparison

can be made to the existing individuals. Less fit trials can be discarded at higher level of uncertainty, improving the

efficiency of the algorithm. This is an avenue for improvement of the formulation presented here, in which a new trial is

compared with the population after only a single fitness evaluation.
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