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GAMES WITH ESTIMATION OF NON-DAMAGE OBJECTIVES

Gregory H. Canavan

Games against nature illustrate the role of non-damage objectives in
producing conflict with uncertain rewards and the role of probing and estimation
in reducing that uncertainty and restoring optimal strategies.

This note discusses two essential elements of the analysis of crisis stability omitted from

current treatments based on fust strike stability: the role of an objective that motivates conflicts

sufficiently serious to lead to conflicts, and the process of sequential interactions that could cause

those conflicts to deepen. Games against nature illustrate role of objectives and uncertainty that

are at the core of detailed treatments of crisis stability. These models can also illustrate how

these games processes can generate and deepen crises and the optimal strategies that might be

used to end them. This note discusses two essential elements of the analysis of crisis stability that

are omitted from current treatments based on fust strike stability: anon-damage objective that

motivates conflicts sufficiently serious to lead to conflicts, and the process of sequential tests that

could cause those conflicts to deepen. The model used is a game against nature, simplified

sufficiently to make the role of each of those elements obvious.

A simple game with a given threshold illustrates the mathematical treatment of the

expected gains, losses, and net value. Extension to an unknown maximum threshold shows how

the expected value shifts. It illustrates that for any given value and threshold, there is an optimal

strategy that maximizes the return to the player, but that the maximum payoff decreases and

shifts to larger commitments as the threshold increases, which means that this strategy could take

a very large investment and return comparatively little

That can be improved if the contestant can gain information about the payoff from the

results of a limited number of trials. Efiicient estimation can enable one to cope with threshold

uncertainty that would overwhelm non-estimating strategies. The form of the expected loss and

gain curves also suggest the possibility of inferring the threshold and value from a small number

of trials, but the model suggests that it might be necessary to use exchanges about half as large as

the optima to obtain reliable estimates.

Trajectories starting at large %reshold uncertainties produce negative returns until the

contestant commits significantly. That reduces the variance in the estimate such that the expected

value quickly becomes positive, and rejoins the trajectory for small thresholds, albeit at a much

lower expected value. A - 30-fold increase in roughly doubles the value of commitment at which

the trajectories join and reduces the value at that point by a tolerable amount.
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The model does not explicitly contain some features that are included in fust strike

stability models, but the loss is minor and reparable. It does contain a non-damage objective that

produces gains that can justify conflicts and a value for reducing uncertainty by probing the

reward threshold. That probing maps onto the use of exchanges or crises to test resolve in games

against opponents, which is the core of the treatment of crisis stability.

Single stage game with given maximum threshold. Consider a game in which the

player commits M units of engagement=e.g., progressive levels of political, conventional, or

nuclear forces—in the hope of attaining a reward of magnitude V. To obtain it, M must exceed

some threshold value, which is not known at the outset. If it does, his gain is V - M, i.e., the

reward less the effort expended. If not, it is -M. Assume that the threshold is a random variable

with a uniform distribution from Oto some fixed N. Then for M S N, the probability of success is

S = M/N, the probability of failure = 1- S = 1- M/N, and the expected return is

EV = Expected gain+ Expected loss= S (V -M)+ (1 - S) (-M)

=M/N(V-M)+ (l- M/N)(-M)=(V/N-l)M, (1)

which is shown on Fig. 1 for N = 10 and V = 15. The expected loss has a minimum at M = 5 and

the expected gain has a maximum at M = 7-8. The expected value EV increases linearly from O

to (15/10 - 1)10=5 as M increases from Oto 10.

To maximize EV, the optimal strategy is to choose M = Ofor V/N <0 and M = 10 for

V/N >0. For V/N= Othe EV = Ofor all M. If steps in M could be taken sequentially or the game

played a number of times, as in a sequence of crises, the player could infer V—and hence the

optimal strategy by observing the variation in the gains, losses, and net returns overtime.

Single stage game with unknown maximum threshold. Next consider a game in which

the player commits M units in the hope of excee~ng a threshold that can range up to N, which is

not known. If he does, his gain is V -M, and if not, it is -M. If the threshold is a random variable

with’s uniform distribution from Oto N, the probability of success is S = min(M/N, 1), the ‘

probability of failure= 1 -S, and the expected value is

EV = min(IWN,l)(V - M) + [1 - min(IWN,l)](-M). (2)

Figure 2 shows the expected gain, whose origin is at the upper right. For N = 1, the expected gain

rises rapidly to a peak at M = 1, where S = 1 and EV = 15-1 = 14, after which it falls for larger

M. For larger N, the peak drops and shifts to larger M, e.g., for N = 10, it shifts to M = 7, for

which S = 0.7, and the expected gain= 0.7x8 = 5.6.

Figure 3 shows the expected loss, whose origin is at the lower left. There, the expected

loss is small because M is small. For larger M, the peak increases and shifts to larger m, e.g., for

N = 10, the peak is at M = 5, where S = 0.5, and the expected loss = -0.5x5 = 2.5.

Figure 4 shows the expected value EV, whose origin is at the upper right. For N = 1, the

peak at M = 1 is little reduced from Fig. 2. For larger values of N, peak values are reduced and
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shifted to larger M, e.g., for N = 9, the peak is at M = 9, where S = 1, and EV = 1x6 - 0x9=6 -0

=6. For larger N, M increases monotonically, since the gain has been maximized and the losses

continue to compound.

For any given V and N, there is an optimal M that maximizes the return to the player.

However, the maximum payoff decreases rapidly and shifts to larger values of M as N increases,

which means that this strategy could take a very large investment and return comparatively little.

Single stage game with threshold estimation. It is often the case that a contestant can

gain information about the payoff of a game from the results of a modest or limited number of

trials. As an example, consider a game in which each trial reduces the maximum value of the

threshold. Then, as long as the initial value has some ftite value, each unit will reduce the

variance in the threshold, until ultimately the game has abounded and possibly positive expected

value. As a concrete example, assume the initial value of the threshold is N, which is not known

to the contestant, and that each unit reduces the maximum value of the threshold by a factor of 2,

so that the EV after M units is

EV = min(M / N/2”,l)(V - M) + [1 - min(M/ N/2”,l)](-M). (3)

Figure 5 shows the expected gain, loss, and net value as functions of M for N = 2’0and V = 40.

The top curve is the gain, which rises quadratically with M to a maximum of 12 at M = 25. The

bottom curve is the loss, which initially falls linearly, has a minimum at M = 20, and returns to

zero at M = 30. Their sum EV f~st follows the larger losses, passes through Oat M = 23, has a

maximum of 10 at M = 30, and falls to zero at M = 40. For these parameters, the optimum M is

30. Larger values would reduce EV. Smaller values would, too, although M a small as 24 would

produce positive EV. However, smaller positive values of M would produce large losses.

There are some resemblance to Fig. 1; however, Fig. 1 is monotonic in M, while Fig. 5 is

not. The difference is the estimation of N. It reduces the variance for large M even for N = 1,024,

for which Eq. (1) gives probabilities of success <0.01 without estimation.

The strong slopes of the losses for small M might be used to infer N and V from the

results of small or a small number of trials, but Fig 6, which shows the EV for V = 20,30, and 40

indicates that the difference is small for M <10. Thus, it would be necessary to use 15-20 units,

i.e., about half the optimum value to obtain a reliable estimate of N and V.

Multi- stage game with unknown threshold. Fig 7 shows the expected gain from Eq.

(3) as a function of M for a range of N with the origin at the upper rightlIt resembles the gain of

Fig. 2, but the range of N is much larger because of the estimation of N. The peak at N = 2 is at

M=2. At N=32, thepeakisat M= 6, although it is quite small. For larger N, it is not visible.

Figure 8 shows the expected losses, which for N >32 essentially becomes loss - M,

because the probability of success becomes quite small.
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Figure 9 shows EV, which is negative for N >4, but appreciable for smaller N because it

is dominated by expected gain at small N and by loss at large N. The effect of estimation is

shown by two trajectories. The fwst starts from N =5, where the optimal M = O;through an

effective N =4, which would be produced by M = 1; to N = 3, where M = 2; N=2 and M = 3; to

N = 1 where the optimal M = 4. Along this trajectory, the EV increases almost monotonically

from Oat M= O,to O-at M=2, to=2at M=2, to8at M=3, andll atM=4.

The trajectory starting at lnN = 10 is somewhat more extreme; as N = would produce

essentially zero EV without estimation. As M increases, EV decreases, reaching= -3 at M = 4. It

then increases, becoming positive at M = 6. By M = 7 it reaches = 6. It then passes over a saddle

point and drops down again to = 7 at M = 8, decreasing linearly thereafter.

Figure 10 shows the variation of EV with M along these estimation-constrained

trajectories. The first for N = 1 peaks at 13. That for N = 5 increases to join it by M = 4 where

the EV is still 11. That for N = 10 ffist decreases and then increases to join at M = 8. Thus a -

30-fold increase in roughly doubles the value of M at which the trajectories join and reduces the

EV at that point by about IW2. With estimation, these penalties are tolerable.

Comments on connection and extension. The models discussed above do not explicitly

contain a number of features that are included in f~st strike stability models, such as frost and

second strikes, value and force targets, spec~lc target sets, strike costs, and optimal allocation of

weapons. However, for current and projected forces, allocations are relatively stable, so strikes

and costs are roughly proportional to weapons. The unit costs included in the models above can

be interpreted as the cost of the other’s strike as well as the physical cost of the systems, so little

is lost by this degree of abstraction. However, if it was necessary to imbed such refinements,

they could be included.

What the final model does contain is an explicit objective-other than darnage to other.

That objective dominates the analysis above. It produces gains that can be large enough to justify

conflicts. It also produces a value of such conflicts in reducing uncertainty by sequentially

probing the value of the gain threshold and the value of the reward. This value maps into the use

of exchanges or crises to test the resolve of the other, when games against an opponent are

studied rather than just games against nature, as studied here. Such an extension is the core

element of the treatment of crisis stab rather than just fwst strike stability.

Summary and conclusions. Games against nature illustrate the objective-seeking and

uncertainty-reducing activities that are at the core of more detailed treatments of crisis stability.

They also illustrate how those processes can generate and deepen crises, as well as the optimal

strategies that might be used to end them. They permit the exploration of two essential elements

of crisis stability omitted treatments based on f~st strike stability: an objective that motivates

conflicts sui%ciently serious to lead to conflicts, and the process of sequential interactions that
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could cause those conflicts to deepen. The model used is a game against nature, simplified

sufficiently to make the role of each of those elements obvious.

The simplest single-stage game with a given threshold illustrates the mathematical

treatment of the expected gains, losses, and net value. Extension to an unknown maximum

threshold shows how the expected value shifts. It illustrates that for any given V and N, there is

an optimal value of M that maximizes the return to the player, but that the maximum payoff

decreases and shifts to larger values of M as N increases, which means that this strategy could

take a very large investment and return comparatively little

That situation can be improved if the contestant can gain information about the payoff

from the results of a limited number of trials. Efficient estimation of the threshold can enable one

to cope with threshold uncertainty that would overwhelm non-estimating strategies. The form of

the expected loss and gain curves also suggest the possibility of inferring N and V from the

results of small or a small number of trials, but the model studied here suggests that it might be

necessary to use exchanges about half as large as the optima to obtain reliable estimates.

Trajectories starting at large N produce negative returns until the contestant commits

about lnN units. That reduces the variance in the estimate of N such that the EV quickly becomes

positive. After passing the saddle point, it rejoins the trajectory for small N, albeit at a much

lower EV. A - 30-fold increase in roughly doubles the value of M at which the trajectories join

and reduces the EV at that point by about M/2, which is tolerable.

This model does not explicitly contain some features included in fust strike stability

models, but for current and projected forces, allocations are relatively stable, so the omission is

not essential. It does contain are an explicit non-damage, which dominates the analysis. It

produces gains that can justify conflicts and value in reducing uncertainty by sequentially

probing the values,of the gain threshold and reward. both are features that map onto the use of. .
exchanges or crises to test resolve in games against opponents; which is the core of the treatment

of crisis stab rather than just f~st strike stability.
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