

RECEIVED
JUL 24 2000
OST

Tl₂Ba₂CuO_{6+δ} AS A MODEL SYSTEM FOR FUNDAMENTAL STUDIES /
OF HIGH TEMPERATURE SUPERCONDUCTIVITY

Final Report

For Period September 15, 1998 – November 14, 1999

Z. F. Ren and J. H. Wang

The Research Foundation of State University of New York at Buffalo
Buffalo, NY 14260

May 22, 2000

Prepared for

THE U.S. DEPARTMENT OF ENERGY

AWARD NO. DE-FG02-98ER45719

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed or represents that its use would not infringe privately-owned rights.

We have no objection from a patent
standpoint to the publication or
dissemination of this material.

Mark P. O'Byrne 7/21/00
Office of Intellectual
Property Counsel
DOE Field Office, Chicago

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Principal Investigator: *Z. F. Ren*

Project Participants:

Senior Personnel: PI: *Z. F. Ren*
Co-PI: *J. H. Wang*

Postdoctoral Fellow: *D. Z. Wang*
S. X. Yang

Ph. D Graduate Students: *J. Y. Lao* (graduated from SUNY-Buffalo with Ph. D degree in Dec. 1999)
W. Li (switched to another group at SUNY-Buffalo with the leaving of Z. F. Ren to Boston College)

Primary Collaborators: *R. P. Vasquez*, California Institute of Technology
D. K. Christen, Oak Ridge National Laboratory

Project Activities and Findings:

During the past year, the PI (Z. F. Ren) moved from SUNY-Buffalo to Boston College as an Associate Professor in the Department of Physics to further enhance the future success of this program. Due to the moving and set up of the new laboratory at Boston College, the project was slowed down in some extent. Nevertheless, the PI and his associates have been able to accomplish the following:

1. The upper critical field study has been carried out on the early samples (made when the PI was still with SUNY-Buffalo). Those samples have either high T_c ($>20K$) with single transition or low T_c but with double transitions. Therefore, there has no definitive conclusion been drawn yet.
2. X-ray photoemission has been used to study the Tl-2201 thin films.
3. In addition, J. Y. Lao has synthesized the epitaxial thallium-containing 1212 films with critical current density up to $10^6/cm^2$ at 77K and zero magnetic field as part of his Ph.D thesis. The success of this research has enabled us to consider using this material as an alternative for $Yba_2Cu_3O_7$ (YBCO) or $TlBa_2Ca_2Cu_3O_9$ (Tl-1223) for long length wire development for applications such as transmission cables, motors, generators, etc.

Journal Publications:

1. J. Y. Lao, J. H. Wang, D. Z. Wang, Y. Tu, S. X. Yang, H. L. Wu, Z. F. Ren, D. T. Verebelyi, M. Paranthaman, T. Aytug, D. K. Christen, R. N. Bhattacharya, and R. D. Blaughter, "Synthesis and Characterization of Chromium-Containing Thallium-Based 1212 Films", *Physica C 333*, 221-228 (2000).

2. J. Y. Lao, J. H. Wang, D. Z. Wang, S. X. Yang, Y. Tu, J. G. Wen, H. L. Wu, Z. F. Ren, D. T. Verebelyi, M. Paranthaman, T. Aytug, D. K. Christen, R. N. Bhattacharya, and R. D. Blaughter, "Synthesis and Characterization of Thallium-Based 1212 Films with High Critical Current Density on LaAlO_3 Substrates", *Superconductor Science and Technology* **13**, 173-177 (2000).
3. R. P. Vasquez, M. P. Siegal, D. L. Overmyer, Z. F. Ren, J. Y. Lao, and J. H. Wang, "Tl Cuprate Superconductors Studied by XPS", *Surface Science Spectra* **6**, 237-253 (1999).
4. R. P. Vasquez, M. P. Siegal, Z. F. Ren, J. Y. Lao, and J. H. Wang, "Chemical Bonding in Tl Cuprates Studied by X-ray Photoemission", *Phys. Rev. B* **60**, 4309 (1999).
5. Z. F. Ren, J. Y. Lao, W. Li, D. Z. Wang, J. H. Wang, C. C. Tsuei, J. R. Kirtley, D. K. Christen, and D. van der Marel, "Physics and Applications of Thallium-based Superconductors", Invited review article in "*RECENT RESEARCH DEVELOPMENT IN APPLIED PHYSICS*" **2**, 291-325 (1999).

Books or Other One-time Publications:

6. J. Y. Lao, J. H. Wang, D. Z. Wang, S. X. Yang, and Z. F. Ren, "Ex Situ Processing of Tl-Containing Films", Book Chapter in "Next Generation High Temperature Superconductors", Published by Plenum Publisher (submitted).
7. Z. F. Ren and J. H. Wang, "Preparation of Superconductive Ceramics", Pages 258 – 315, Chapter 17.3.10, Volume **18**, "Inorganic Reactions and Methods", edited by J. J. Zuckerman and Jim D. Atwood, published by Wiley-VCH, (1999).
8. A. Hoffman, I. K. Schuller, Z. F. Ren, J. Y. Lao, J. H. Wang, D. Girata, W. Lopera, and P. Prieto, "Persistent Photoconductivity in High- T_c Superconductors", Book Chapter in "Application of Spectroscopy to Superconducting Materials", ACS Symp. Series **730**, page 216 – 229 (1999).