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PAUL BUNYAN’S BRACHISTOCHRONE
AND TAUTOCHRONE

John E. Hurtadob

In this paper we concern ourselves with modified versions of the traditional
brachistochrone and tautochrone problems. In the modified version of each
problem the constant gravity model is replaced with an attractive inverse
square law, consequently we name these the 1/r2 brachistochrone and l/r2
tautochrone problems. With regard to the l/r2 brachistochrone problem,
we show that the shape of the minimizing curve is formally constructed
from an infinite series of elliptic integrals, and we use a numerical opti-
mal control technique to generate the trajectories. The l/r2 tautochrone
problem is solved using fractionrd calculus together with Lagrange’s rule
for tautochronous curves

INTRODUCTION

The most classic problem in all of the calculus of variations is the brachistochrone problem. Indeed,
this problem led to the development of the subject. The problem is to determine the curve joining
two points in a vertical plane, along which a particle falling from rest under the influence of constant
gravity travels from the higher to the lower point in the least time, It is well known that the answer
is a cycloid with its cusp at the starting point. But suppose the two points are far apaxt and the
constant gravity model is replaced with the attractive inverse square law. What is the shape of the
curve now?

Another classic problem, but in the area of integral equations, is the tautochrone problem.
(Whereas brachistochrone means least time, tautochrone means same time.) The problem is to
determine a planar curve such that the time required for a particle to travel from rest to its lowest
point, under the infiuence of constant gravity, is independent of its initial placement on the curve.
It is wonderful that, like the brachistochrone, the solution to thk problem is also the cycloid. But
again, suppose the initial and final points are far apart and the constant gravity model is replaced
with the attractive inverse square law. What is the solution now?

The answers to these two questions are discussed in this paper, which is organized in the fol-
lowing way. We first discuss brachistochrone problems: we review the traditional (constant gravity)
brachistocbrone problem we then introduce, and present an optimal control solution to the l/r2
brachistocbrone problem. Our attention then turns towards tautochrone problems: we review the
traditional tautochrone problem we then solve the l/r2 tautochrone problem, demonstrate that
the solution satisfies Lagrange’s rule, and discuss two interesting properties of l/r2 tautochrone
trajectories. After we summarize our findings, we present a brief biblio~aphy of brachktochrone
and taut ochrone problems in an appendix.
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In this development we use polar coordinates rather than Cartesian coordinates to describe the
position of the particle and shape of the curve. We begin with the energy equation for a particle in
an attractive inverse square law gravity field. The energy equation is [3]

V2 = 2(E0 + p/T), @)

where v is the velocity along the trajectory, ,?30is the initial energy of the particle, ~ is the (positive)
gravitational parameter, and r is the radial distance from the origin. But v is related to a differential
element of the arc length via v = ds/dt. Therefore

ds = ~~ dt. (9)

It is also true that ds is related to differentials in the polar coordinates r and @ through

ds2 = dr2 + r2dc92,

which can be arranged to read
ds = r~- de,

where r’ = dr/d6. Equating the two equations for ds leads to

The solution to this brachistochrone problem is the function
given by the integral expression

(lo)

(11)

(12)

r(6) that minimizes the travel time

Idb rJ-

/

b

t= d6 =
2(EO + p/?-) a

j (r,r’) dO.
a

(13)

Like before, the integrand is not an explicit function of the independent variable. So, the minimizing
function T(6) can be found from solving the first order differential equation that composes Beltrami’s
identity. Using equation (2), Beltrami’s identity for this problem can be arranged to read

2(1 + rn/r2) (_Eo+ p/r) = r2/C2 (14)

Because the paiticle begins from rest, the initial energy is E. = –p/r., where r. is the initial radial
position of the particle. Consequently we have

(15)

where Y = 2pC2.

At this point in the traditional brachistochrone problem, the counterpart to equation (15) was
written in a sepmated form and a clever parameterization was performed that allowed a single inte-
gration in terms of elementary functions to yield the minimizing curve. The current brachistochrone
problem is more challenging.

Writing equation (15) in a separated from leads to

0=
IJ

“ _ dz,
‘r~z x3/1+ z/nJ – 1
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where x is a dummy variable of integration and we have taken the initial condition on 6 to be zero.
But within the integration intervsl it is true that x/r. <1. Therefore performing a binomial series
expansion on the numerator gives

Jd
9-0= dx 1“/d dx—

g TOTO% x3/1+ z/rO – 1 Z3/1 + z/rO – 1

Id

1“ X dx

–/J

1“ x2dx—— —
%; .0 z3/t + z/rO – 1 16r~ .O x3/1 + x/rO – 1

5“

–/J

x3dx— —
128r~ .O

. . .
x3/1 + z/ro – 1

In this form, we recognize the right-hand side as an infinite series of elliptic integrals.

(17)

That is, each
term has the form J R(x, ~P)dx, where P is a cubic polynomial in x and R is a rational function of x
and the square root of P. The term$ on the right-hand side of equation (17) lead to elliptic integrals
of the first, second, and thkd kind [4]. Elliptic integrals of the third kind become logarithmically
infinite at z equal O, consequently the path can not travel through the origin. Elliptic integrals of
the second kind encounter an algebraic infinity at x equal infinity, consequently the path must begin
at a finite distance from the origin.

At thk point we have gained an understanding of the shape of the minimizing curve of the l/r2
brachistochrone problem, but there is a problem in pursuing this solution path to completion. The
problem is the computed solution is determined from integral tables that are used to evaluate the
elliptic integrals of the first, second, and third kind. These evaluations rely on the roots of the cubic
polynomial P, which in turn are a function of the unknown constant 1, which in turn depends on
the boundary conditions and computed solution! This has motivated us to use a different approach
and pursue a numerical solution path to our problem.

An Optimal Control Approach to the l/r2 Brachktochrone Problem

In the previous section we found that the solution of the l/r2 brachistochrone problem is given by
an infinite series of elliptic integrals. Unfortunately, we were unable to solve the elliptic integrals and
generate trajectories that are minimizing curves. Consequently in this section present an optimal
control approach to generate trajectories.

The l/r2 brachistochrone problem can be solved by considering the shape of the curve as
a control variable and then determining the control that minimizes the maneuver time from the
higher to the lower point. This approach is discussed with regard to the traditional brachistochrone
problem by Bryson and Ho [5]. We begin by deriving the equations of motion for the particle.

Let the coordinate reference frame {e} be centered at the origin and have unit vector components
(6., &). And let this coordinate reference frame rotate such that 6. is always pointed directly at
the particle. The position and velocity of the particle are then given by the expressions

r = rtr, (18)

r = f~~ + rb2e. (19)

But the particle velocity vector may also be written

v= —vsin~6V+vcosy&, (20)

where v is the particle speed and v is the angle between ETand a unit vector normal to the trajec-
tory (labeled &). Equating the vector components of equations (19) and (20) yields the first two
differential equations of motion

F = —vsin~, (21)

4 = (v/r) Cos~. (22)
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The final differential equation of motion is obtained from differentiating the energy expression given
by equation (8). This leads to

v = (p/#) sin ~. (23)

To determine the shape of the curve that minimizes the maneuver time from the higher to the
lower point, we treat ~(t) as a control variable and solve a minimum-time optimal control problem.
The task is to minimize the performance index J = f dt subject to the preceding differential equation
constraints and appropriate boundary conditions. The boundary conditions are initial and final
conditions on the motion

Initial conditions T(o) = ?-O, e(o) = o, v(o) = o;

Final Conditions r(tf) = rf, O(tf) = Of, v(tf) = free.

These conditions imply that the particle begins from rest and iinishes at a defined point with an un-
specified final velocit y—actually, the final velocit y will satisfy the energy equation. The Hamiltonian
[6] for this problem is

where A., Ae, and A. are the Lagrange multipliers (costates) associated with the three differential
equation constraints. This Hamiltonian leads to the cost ate differential equations

& = (&w/r2) cos y + (2&p/~3) sin7, (25)

Ag = o, (26)

& = ~r sin T – (Ae/T) cos y, (27)

and the optimality condition

o = – (A@/r) sin ~ + (Awp/r2 – AT?J)Cos~. (28)

Also, because the final time is free and the system is not m explicit function of time, the Hamiltonian
must equal zero for all time. Evaluating the Harniltonian and the optimalit y condition at time t = O,
while keeping in mind the initial condition on v, leads to v(O) = 7r/2.

The solution to our optimal control problem—i.e., the l/r2 brachistochrone problem—must
simultaneously satisfy the particle differential equations of motion, the costate differential equations,
the optimality condition, the constraint that the Hamiltonian equal zero for all time, and the specified
inkial and final conditions on the state variables r, 6, and v. The initial conditions on the costate
variables and the final maneuver time are unknown, and our numerical approach is to determine
these unknowns so that all the constraints me satisfied. To be clear, let us outline the procedure

1. At time t = O, we know T(O), 0(0), and v(O), We select AT(0), A@(O), and tf.

2. We then integrate the differential equations forward in time while using the optimrdity condition
to determine the control variable ~(t).

3. Finally, we compare the finzd conditions resulting from the integration to the specified values
rf, Of and H(tf) = O, and update our selections &(0), AO(0), and tfbased on the error.

This procedure is a numerical shooting method [7]. Within the solution procedure, the initial
condition on the costate variable ~~ is obtsined from evaluating the Hamiltonirm at time t = O.
Normalizing the gravitational parameter to equal one, we tind Aa(0) = –r;. When the solution
procedure is complete, the shape of the minimizing curve is given in parametric form by r = r(t)
and 0 = (1(t).

Figures 1 and 2 show two l/r2 brachktochrone trajectories. Figure 1 shows a polar plot of the
minimum time trajectory beginning at (To, O.) = (2, O) and ending at (rf, Of) = (1, 105°). The
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missing inkial conditions are (Jr, Ao) = (2.2961, – .1087) and the final maneuver time is 3.7007
seconds. Figure 2 shows a trajectory from a constant (magnitude and direction) gravity model and
a minimum time trajectory assuming an attractive inverse square law. (The constant gravity points
left in the figure.) The minimum time trajectory dips towards the origin more than the constant
gravity trajectory and takes 3.1535 seconds to complete. The constant gravity trajectory takes
3.5454 seconds to complete.

THE TAUTOCHRONE PROBLEMS

The Traditional Tautochrone Problem

As mentioned in the Introduction, the tautochrone problem is concerned with determining a planar
curve such that the time required for a particle to travel from rest to its lowest point is independent
of its initial placement. In this section we review the traditional tautochrone problem. We use the
Laplace transform method to show that the parametric solution to the traditional tautochrone prob-
lem describes a cycloid, which is the same type of curve that solves the tradkional brachistochrone
problem.

Let a Cartesian coordinate reference frame be placed at the destination, and let the particle’s
initial coordinates be x; and yi in the horizontal and vertical directions. Then the travel time is
given aa

(29)

where ds is a differential element of the arc length and v is the particle velocity. But ds and v can
be expressed as functions of the vertical displacement through the equations

where x’ = dx/dy and g is the constant gravitational acceleration. These two equations lead to

J
‘w 4(!/)

‘= o @z=)dy” (32)

The solution to the tautochrone problem begins by determining the function d(~) such that t is
constant, and therefore independent of y~. Equations wherein the unknown function appears under
the integral sign are integral equations, and indeed, equation (32) is recognized as a speciaJ case of
Abel’s integral equation [8]. Two common approaches to solving this equation are Abel’s method [8]
and the Laplace transform method [9]. A solution via the Laplace transform method is highlighted
below.

Let us introduce ~(u) = l/@i, then

But the right-hand side of this equation is the convolution of ~ and q!J,so the Laplace transform of
each side produces

The Laplace transform of V(U) can

or, taking the inverse transform,

t&/s = q(s) @(s). (34)

be determined and substituted into this equation. This gives

~(s) = tJW, (35)
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(36)

From this point, equation (30) can be used to give

~=m, (37)

where 4 = 2gt2 /r 2. This equation is integrated with the substitution

Y(d)= ~sin2dJ= @ – cos%O/2 (38)

to reveal
z(4) = 4(24+ sin 24)/2. (39)

These two equations represent a parametric solution to the tautochrone problem. This parametric
form describes a cycloid with its vertex at the origin, and therefore it has a slightly different form
than the one that describes the solution to the traditional brachistochrone problem.

The l/r2 Tautochrone Problem

In this section we introduce the l/r2 tautochrone problem. Our first attempts at solving th~
problem involved using Abel’s method and the Laplace transform method. We were not successful
in obtaining a solution using either method. Consequently, we employed an uncommon approach
that has been useful in the paat to obtain solutions to other tautochrone problems [10, 11]. This
approach uses the fractional calculus method, and its application in solving the l/r2 tautochrone
problem is presented below.

Begiming with the energy equation expressed in polar coordinates, the velocity of a particle
beginning from rest in an attractive inverse square law gravity field can be written [3]

v = ~2p(l/r – l/rO), (40)

where v is the velocity along the trajectory, p is the gravitational parameter, r is the radial distance
from the origin, and r. is the initial radial position of the particle. Also, a differential element of
the arc length of the curve can be expressed as a function of the radial distance via

ds = ~-dr = @(r) dr, (41)

where 0’ = dQ/dr. From these two equations, the travel time for the particle is

(42)

where a denotes the final radial position of the curve and i = =. Equation (42) is an integral
equation and the solution to this tautochrone problem begins by determining the function ~(r) such
that t is constant, and therefore independent of r..

To use the fractional calculus methods, we first write equation (42) as a semiintegral expression.

Let us introduce the functions g(u) = l/u and ~(u) = u2~(u) so that equation (42) becomes

J
To fj(r)g’(r) dr

atyqi =

a (9(~o) - g(r))~ ‘
or, dividing by the factor x on each side,

(43)
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(44)

I?( ) is the gamma function and the prime denotes differentiation with respect to r. The right-
hand side of equation (44) is recognized as the Rlemann-Liouville integral-bssed definition of the

semiintegral of &r) with respect to the function g(ro) [12, 13]. Using the notation introduced by
Osler [13] this is written as

1 To

qo).g(a)“ —
/

J(r)g’(r) , ~T
~(ro)= r(;) ~ (g(ro) – g(r))z ‘ (45)

so equation (44) becomes

D;$_g(a) ~(r~) = it-.

Taking the semiderivative [12] of each side of this equation

(46)

with respect to g(ro ) gives

We next assume that the composition rule [14],

D:D:f = D:~Q.f, (48)

where ~ is a suitable function, is not violated for our unknown function &r.). (The requirements
for obedience to this rule are that ~ and D~f be differintegrable; we will have more to say on this
in the next section.) Consequently, by way of the composition rule, equation (47) becomes

J(rO) = ~$ro)-g(a)(Win) ,
= it@ D$(rO)_~(a) {1} , (49)

where D~(TO)_g(a) {1} is the semiderivative of the constant value one with respect to g(ro). This

expression is evaluated using the extension [15]

‘~f=w””)

so that we have

Dj(ro)_g(a){1}=
d

{J

1 TO g’(r) 1~dr .
d (9(7-0) – g(a)) r(~) ~ (g(rO) – g(r))’

But the integrand is in the form of a perfect differential, therefore

D:(To)_g(a) {1} = d {~ ~ro [-2 $ ((g(ro) - g(r)) ~)] dr}
d (g(ro) – g(a)) @ ~

{[

To
—— ——

II }d(drdd- da)) ; (g(ro)- ‘(r)); .

– L (9(r0) - 9(7-))-*‘&

(50)

(51)

1
——

/7r (1/rO – l/a)”
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Folding this result into equation (49) yields

or, in terms of the original function ~,

(53)

Fkom this point, we use equation (41) to obtain the differential
problem. After some algebra, we obtain the expression

~=:e

where 4 = 2pt2/n2 and we have retained the positive root.

(54)

equation of the 1/r2 tautochrone

(55)

The Satisfaction of Lagrange’s Rule for the l/r2 Tautochrone Problem

In the previous section we obtained equation (55) as the solution to the l/r2 tautochrone problem.
We must remember, however, that ~in arriving at this equation we assumed the composition rule
was true for the unknown function #(r.). Therefore equation (55) should be considered a candidate
solution until it can somehow be confirmed that, indeed, thk solution is valid: Lagrange’s rule
provides such confirmation.

Lagrange’s rule is a sufficient condition on a force, such that the force causes a tautochronous
motion of the system. Routh [16] explains this rule:

LAGRANGE’S RULE: If the equation of motion is

,= ,2;::;— + F(i,.f(z)), (56)

where F is a homogeneous junction of the jirst degree, and t(x) is any function of x, then the time
of arriving at the position determined by f {x] = (1 is constant, regardless of the initial position.

To demonstrate that the solution to the l/r2 tautochrone problem satisfies Lagrange’s rule, we
first derive the equations of motion of our system. The system has two generalized coordinates and
one holonomic constraint expressed in Pfaffian form, viz., equation (55) which is rewritten here

dd
{

d
–ldr=O.

r r3(r – a)
(57)

The equations of motion for this type of system description are given by [17]

d aL aL——— —
dt 6? &

= A&, (58)

(59)

~++ CJ = O, (60)
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where L is the system Lagrangian function, G and Ce are functions that depend upon r and 0, and
~ is the Lagrange multiplier associated with the constraint. The system Lagrangian function is

L = T – V = (F2 + T262)/2 + p/r, (61)

where T and V are the kinetic and potential energies. Consequently, the equations of motion are

r — 7-02+ p/r2 = —ACr, (62)

r28 + 2rr$ = A, (63)

i3-crr =0, (64)

where
1

i

al
cr=– – 1.

r r3(r–a)

Using equation (63) to eliminate J in equation (62) gives

(65)

? – 742 + p/r2 = –c,(r2j+ 27+). (66)

And using equation (64) and its time derivative to eliminate d and 0 gives

Y – rF2c~ + p/r2 = –&(r2c~*2 + Fr2~ + 2r~2cr), (67)

where the prime indkates differentiation with respect to r. Performing some algebra leads to

or, introducing b, = 1 + r2c~, we have

Fully evaluating b. and b; shows that

.. .2 b; P
‘=–r%–%”

at
b; = + 4r – 3a

b“ = r3(r_a)~ r(r– a)’

(68)

(69)

(70,71)

consequently,
.. i2(4r – 3a) pr(r – a)

‘= 2r(r–a) – 04 “
(72)

Equation (72) is the equation of motion of our system, which is a particle falling from rest under
the influence of an attractive inverse square law gravity field, but subject to the holonomic constraint
(expressed in Pfaffian form) that is the candidate solution to the l/r2 tautochrone problem. Thii
equation of motion is nearly in the form required by Lagrange’s rule. Let us then continue to operate
on equation (72) by expanding the first term on the right-hand side to produce

.. ti2(2r – a) af2 _ pr(r – a)
(73)

‘= r(r–a) ‘2r(r–a) al “

Defining ~(r) = r(r – a), we obtain

(74)

10



The last two terms of this expression form a homogeneous function of j(r) and ? of the first degree.
Euler’s homogeneous function theorem can be used to recognize this fact:

EULER’S HOMOGENEOUS FUNCTION THEOREM: Let F be a homogeneous function of order n. Then

8F
nF(x) = ri—,

axi

where x represents the vector of variables and Einstein’s summation

Let

(75)

convention has been used.

(76)

then

so

$ +m~=–‘+2 (
.2

)

~ + f(r) — – ~ = F(i, f(r)).
2j;(r)

; = p.f’(r) F i f(r)),
~+(j

(77)

(78)

where F is a homogeneous function of ~(r) and F of the first degree. Comparing equations (78) and
(56) we see that the equation of motion is now in the form required by Lagrange’s rule. Conse-
quently the time of arriving at f(r) = O, which has solution r = a, is constant regardless of the
initial position. Thus we have fully vahdated the fractional calculus candidate solution to the l/r2
tautochrone problem because the solution satisfies Lagrange’s rule, which is a sufficient condition
for tautochronous motion.

Trajectories of the l/r2 Tautochrone Problem

Although we have shown that

:=:=
(79)

is the solution to the l/r2 tautochrone problem, we must still integrate this equation to obtain the
trajectories. Unfortunately, we have not found expressions that provide the exact solution to thk
integral. But before we discuss a numerical integration solution, let us look more closely at thk
equation.

We first recall that t is related to the travel time through the equation t = 2p$/7r2. Conse-
quently, for a particular trajectory defined by initial and iinal positions, 4 must be such that the
radical remains positive. That is,

t > r3(r– a)/a (80)

throughout the motion. But r decreases during the trajectory from ro to a, so the right-hand side
is largest at r = r.. Therefore we require

1?> rj(ro – a)/a, (81)

and as a result we set 4 as
1 = ~r~(ro – a)/a, where ~ >1. (82)

Now notice that the right-hand side of the differential equation equals infinity at the end point
r = a. To bypass this hazard we introduce the parameter v such that

r3(r —a) =olcos2~, (83)
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which leads to

(84)

But
dr –2al cos 7 sin y

%= r2(4r – 3a) ‘
(85)

so
de –2d? sin2 ~

~ = r3(4r – 3a)’
(86)

where r must be determined from the quartic equation given by equation (83). The limits of ~ can
be discovered using equations (82) and (83):

Initial condition (~ = ro) y. = COS–*@,

Final condition (r = a) y. = 7r/2,

where we have retained the positive roots. The trajectories can now be numerically determined, and
to be clear, we outline the procedure:

1. The initial and final values of r are selected. These are labeled To and a respectively.

2. A final value for d is selected—the initial value is taken as O. Thk specified value ia labeled f3..

3. A value for ~ is selected and 1 is computed from equation (82).

4. Equation (86) is numerically integrated over the interval -y E [cos- 1 ~, ff/2], while r is
determined from equation (83).

5. If the final value of f3 resulting from the integration does not match the desired final value
specified in step 2, then ~ is adjusted, 1 is recomputed, and step 4 is repeated.

There are two interesting properties regarding l/r2 tautochrone trajectories:

1.

2.

Suppose ~ = 1 but the final value of $ resulting from the integration is greater than l?., which
is the desired final value. Then there is no tautochronous curve that connects (r., O) to (a, 0.).
But because there exists a O*that is congruent to 8. (modulo 2r), a larger ,0 can be determined
so that a tautochronous curve connects (ro, O) to (a, O.). This situation is illustrated in Fig. 3.
The initial position is (To, O) = (2, O), and the desired final position is (a, Oa) = (1, 7r/2). The
solid line, which corresponds to@ = 1, shows that there is no tautochronous curve that connects
(2, O) to (1, T/2). The dashed line shows, however, that by increasing ~ to 5.6422 we are able
to reach (1, 5~/2), which also locates the desired &al position.

Setting 0 = 1, a trajectory can be generated that begins at (ro, 0) and extends to (a, 61), where., .. —,.
a is a final radial position and 61 is the final angular position that corresponds to this choice
of a and the fact that ~ = 1. Notice, however, that because of the congruency of O and the
decreasing nature of dr/dO, the final point can instead be reached at a later time by selecting
the appropriate larger value of ~. Therefore the ~ = 1 trajectory represents a minimum-time
tautochronous curve: a brachistochrone-tuutochrone curve, if you will. Figure 4 shows a family
of brachistochrone-tautochrone curves, which begin at r. = 2 and extend to a range of a values.

CONCLUSIONS

In this paper we investigated a modified brachistochrone problem wherein the constant gravity
model is replaced with an attractive inverse square law. The shape of the minimizing curve of the
l/r2 brachktochrone problem is formally constructed from an infinite series of elliptic integrals.
Trajectories were generated by employing a common numerical approach wherein the shape of the
curve is treated as a control variable and the control that minimizes the maneuver time from the
higher to the lower point is computed.
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We also investigated a modified tautochrone problem wherein the constant gravity model is
replaced with an attractive inverse square law. Factional calculus together with Lagrange’s rule
for tautochronous curves was used to solve the l/r2 tautochrone problem. While there may be no
tautochronous curve that strictly connects an initial position to a desired final position, the congru-
ency of the angular variable allows all points to be reached. The congruency of the angular variable
also allowed us to define minimum-time tautochronous curves, which we named brachistochrone-
tautochrone curves.

APPENDIX

We use this section to briefly mention and discuss other brachistochrone snd tautochrone problems.

Brachistochrone Problems

E.J. Routh in A Tkeatise on Dyuam”cs of a Particle, Articles 590 to 606 (Dover Publications, Inc.,
New York, New York (1960)), h= much to say regarding brachistochrone problems. In Theorem
III, Article 599, Routh shows that the brachistochrone from point to point in a field U + C, where
U is a known function of the coordinates and C’ is a known constant, is the same as a path of a free
particle in a field U’+ C’, provided

R 1U’+(Y= ~~.

In Article 605, Exercise 1, the reader is asked to show that if the brachktochrone is a parabola
when the force is parallel to the axis, then the magnitude of the force is inversely proportional to
the square of the distance from the directrix. In Article 606, several central force brachktochrone
problems, but with non zero initial velocity, are discussed. In Article 606,. Exercise 4, the reader is
asked to show that the cissoid Z(X2 + y2) = 2a& is a brachistochrone curve for a central repulsive
force from the point (–a, O) which at the distance r from that point is proportional to r/(r2 + 15a2)2,
the particle starting from rest at the cusp.

In Exercise 5, page 44 of a text by A.R. Forsyth (Calculus of Variations, Cambridge University
Press (1927)), one is asked to show that an elhpse is a brachistochrone between two points on its
range, under a central force to one focus varying inversely as the square of the distance from the
other focus.

In the Encyclopedic Dictionary of Mathematics for Engineers and Applied Scientists (1.N.
Sneddon editor, Pergamon Press, Inc., New York (1976)), it is mentioned that the brachistochrone
problem of a particle under the action of a central force has solution

e= I du

{c,/(l? -v) -IP}* ‘C2’

where E is the total energy, V is the potential energy, u = l/r, and c1 and C2 are constants of
integration. Our expression for O in the l/r2 brachistochrone section of this paper satisfies this
equation.

The brachlstochrone with coulomb friction was studied by N. Ashby et al., in the American
Journal of Physics (Vol. 43, No. 10, October, pp. 902–906 (1975)). This problem was also studied
as a singular control problem by S.C. Lipp in SIAM Journal of Control and Optimization (Vol. 35,
No. 2, March, pp. 562-584 (1997)).

The relativistic brachlstochrone was studied by H.F, Goldstein and C.M. Bender in the Journal
of Mathematical Physics (Vol. 27, Issue 2, pp. 507–511 (1986)).
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Tautochrone Problems

E.J. Routh inA Tkeatise on Dynamics ofa Particle, Article 211, hasmuch tosayregardingtau-
tochrone problems. He mentions that if any rectifiable curve is given, then a proper force to produce a
tautochronous motion can at once be assigned. A catenary is a tautochronous curve for a force acting
along the ordinate equal to m2y, where m is a constant. The equiaxgukir spirzd is a tautochronous
curve for a ~mear central force pr tending to the pole. And, the epicycloid and hypocycloid are
tautochronous curves for a lineax central force tending from or to the center of the fixed circle.

Routh has more to say in The Elementary Part of a Tkeatise on the D~=”cs of a System oi
Rigid Bodies, Articles 488 to 499. In Article 491, a theorem due to Lagrange shows that if the motion
is tautochronous in a vacuum, then the motion is also tautochronous in a medium whose resist ante
varies as the velocity. In Article 495, tautochronous motion on any rough curve is discussed. And
in Article 499, a system having one degree of freedom and described by 2T = m202, U = $(0), has
tautochronous motion if U = C{s m dO}2.
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Figure 1 A l/r2 Brachistochrone Example

Figure 2 Comparison of l/r2 and Traditional Brachistochrone Trajectories

Figure 3 A l/r2 Tautochrone Example

Figure 4 A Family of Brachistochrone-Tautochrone Curves
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