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PAUL BUNYAN’S BRACHISTOCHRONE
AND TAUTOCHRONE

John E. Hurtado®

In this paper we concern ourselves with modified versions of the traditional
brachistochrone and tautochrone problems. In the modified version of each
problem the constant gravity model is replaced with an attractive inverse
square law, consequently we name these the 1/r? brachistochrone and 1/r?
tautochrone problems. With regard to the 1/r? brachistochrone problem,
we show that the shape of the minimizing curve is formally constructed
from an infinite series of elliptic integrals, and we use a numerical opti-
mal control technique to generate the trajectories. The 1/r? tautochrone
problem is solved using fractional calculus together with Lagrange’s rule
for tautochronous curves.

INTRODUCTION

The most classic problem in all of the calculus of variations is the brachistochrone problem. Indeed,
this problem led to the development of the subject. The problem is to determine the curve joining
two points in a vertical plane, along which a particle falling from rest under the influence of constant
gravity travels from the higher to the lower point in the least time. It is well known that the answer
is a cycloid with its cusp at the starting point. But suppose the two points are far apart and the
constant gravity model is replaced with the attractive inverse square law. What is the shape of the
curve now?

Another classic problem, but in the area of integral equations, is the tautochrone problem.
(Whereas brachistochrone means least time, tautochrone means same time.) The problem is to
determine a planar curve such that the time required for a particle to travel from rest to its lowest
point, under the influence of constant gravity, is independent of its initial placement on the curve.
It is wonderful that, like the brachistochrone, the solution to this problem is also the cycloid. But
again, suppose the initial and final points are far apart and the constant gravity model is replaced
with the attractive inverse square law. What is the solution now? ,

The answers to these two questions are discussed in this paper, which is organized in the fol-
lowing way. We first discuss brachistochrone problems: we review the traditional (constant gravity)
brachistochrone problem; we then introduce, and present an optimal control solution to the 1/r?
brachistochrone problem. Our attention then turns towards tautochrone problems: we review the
traditional tautochrone problem; we then solve the 1/r? tautochrone problem, demonstrate that
the solution satisfies Lagrange’s rule, and discuss two interesting properties of 1/r? tautochrone
trajectories. After we summarize our findings, we present a brief bibliography of brachistochrone
and tautochrone problems in an appendix.
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THE BRACHISTOCHRONE PROBLEMS
The Traditional Brachistochrone Problem

In this section we review the traditional brachistochrone problem. The calculus of variations is used
to obtain a parametric solution that describes a cycloid.

Let the coordinate y measure down from the starting point and let the coordinate z measure
along the horizontal direction. Then the position of the particle, and shape of the curve, is given by
y(z). The time to travel from the higher point a to the lower point b is [1]

/ vity® “"2 as= | " ) s, (1)

where ¢ = dy/dx and ¢ is the constant gravitational acceleration. This equation can be derived
using the conservation of energy. The solution to the brachistochrone problem is the function y(z)
that minimizes the travel time, and it can be determined from solving the second order differential
equation that comes from the associated Euler-Lagrange equation. The function y(z) can also be
determined from solving the first order differential equation that defines the Beltrami identity [2]—
this identity, which is a first integral of the motion, exists when the integrand is not an explicit
function of the independent variable. The Beltrami identity is given by

n_ ,Of
f(y,y)—yg-—

. C, (2)

where C is an unknown constant. Therefore we have

7y VIFP = OV, ®)

or .
y(1+9%) =¢, (4)

where £ = 1/(2gC?). The preceding equation can be separated with the variable y on one side and
z on the other to give

d
= / A 5)
VEy—1
This equation is integrated with the substitution
y(¢) = £sin® ¢ = £(1 — cos 24)/2 (6)
to reveal
2(¢) = £(2¢ — sin 24)/2. Y

The final conditions on z and ¥ are used to determine the constant £ and the final condition on the
parameter ¢; the initial condition on ¢ is zero. These final two equations represent a parametric
solution to the brachistochrone problem and are seen to describe a cycloid with its cusp at the
starting point.

The 1/r2 Brachistochrone Problem

In this section we introduce the 1/r? brachistochrone problem. By following the method used for the
traditiona) brachistochrone problem, we show that the formal solution of the 1/r? brachistochrone
problem is constructed from an infinite series of elliptic integrals.
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In this development we use polar coordinates rather than Cartesian coordinates to describe the
position of the particle and shape of the curve. We begin with the energy equation for a particle in
an attractive inverse square law gravity field. The energy equation is [3]

v? = 2(Eo + p/7), ' 8

where v is the velocity along the trajectory, Ey is the initial energy of the particle, u is the (positive)
gravitational parameter, and r is the radial distance from the origin. But v is related to a differential
element of the arc length via v = ds/d¢t. Therefore

= /2(Eo + pJ7) dt. (9)

It is also true that ds is related to differentials in the polar coordinates r» and # through
ds® = dr® + r2dé?, (10)

which can be arranged to read
ds =r/1+772/r? do, (11)

where r' = dr/df. Equating the two equations for ds leads to

_ it (12)
V2(Eo + p/7)

The solution to this brachistochrone problem is the function r(6) that minimizes the travel time
given by the integral expression

b . TS b

1 12 /2

t= Tyl d = / f(r,7") do. (13)
o V2(Eo+ pu/r) a

Like before, the integrand is not an explicit function of the independent variable. So, the minimizing

function r(6) can be found from solving the first order differential equation that composes Beltrami’s
identity. Using equation (2), Beltrami’s identity for this problem can be arranged to read

2(1+ 2 /r?) (Eo + p/r) = r*/C2 (14)

Because the particle begins from rest, the initial energy is By = —p /7o, where 7y is the initial radial
position of the particle. Consequently we have

3
1" =T —r - 1, (15)

L1 —r/ro)
where £ = 2uC2.
At this point in the traditional brachistochrone problem, the counterpart to equation (15) was
written in a separated form and a clever parameterization was performed that allowed a single inte-
gration in terms of elementary functions to yield the m1mm1z1ng curve. The current brachistochrone

problem is more challenging.

Writing equation (15) in a separated from leads to

g [ Lo a/m (16)

ro TA/T3 [+ 2 frg —
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where z is a dummy variable of integration and we have taken the initial condition on 8 to be zero.
But within the integration interval it is true that 2/rg < 1. Therefore performing a binomial series
expansion on the numerator gives

7

0= dz B _l_/r dz
ro TA/23/E+ 2frg — 1 210 Jry /23 /8 + /70 — 1
r r

1 zdz 1 x2dzx
878 Jro /T3 L+ xfro — 1 1675 Jry /23 /€ + 2 /7o — 1
5 4 x3dx

1281”3 o \/1:3/£+$/7'0—- 1 (17)
In this form, we recognize the right-hand side as an infinite series of elliptic integrals. That is, each
term has the form [ R(z, /P)dz, where P is a cubic polynomial in z and R is a rational function of =
and the square root of P. The terms on the right-hand side of equation (17) lead to elliptic integrals
of the first, second, and third kind [4]. Elliptic integrals of the third kind become logarithmically
infinite at = equal 0, consequently the path can not travel through the origin. Elliptic integrals of
the second kind encounter an algebraic infinity at z equal infinity, consequently the path must begin
at a finite distance from the origin.

At this point we have gained an understanding of the shape of the minimizing curve of the 1 /72
brachistochrone problem, but there is a problem in pursuing this solution path to completion. The
problem is the computed solution is determined from integral tables that are used to evaluate the
elliptic integrals of the first, second, and third kind. These evaluations rely on the roots of the cubic
polynomial P, which in turn are a function of the unknown constant £, which in turn depends on
the boundary conditions and computed solution! This has motivated us to use a different approach
and pursue a numerical solution path to our problem.

An Optimal Control Approach to the 1/r2? Brachistochrone Problem

In the previous section we found that the solution of the 1/r? brachistochrone problem is given by
an infinite series of elliptic integrals. Unfortunately, we were unable to solve the elliptic integrals and
generate trajectories that are minimizing curves. Consequently in this section present an optimal
control approach to generate trajectories.

The 1/r? brachistochrone problem can be solved by considering the shape of the curve as
a control variable and then determining the control that minimizes the maneuver time from the
higher to the lower point. This approach is discussed with regard to the traditional brachistochrone
problem by Bryson and Ho [5]. We begin by deriving the equations of motion for the particle.

Let the coordinate reference frame {e} be centered at the origin and have unit vector components
(é-, ép). And let this coordinate reference frame rotate such that €, is always pointed directly at
the particle. The position and velocity of the particle are then given by the expressions

r=ré,, (18)
I = 7é, +rbéyp. (19)

But the particle velocity vector may also be written
v = —vsinyé, + vcos~y ég, (20)

where v is the particle speed and ~ is the angle between é, and a unit vector normal to the trajec-
tory (labeled é,). Equating the vector components of equations (19) and (20) yields the first two
differential equations of motion

7= —vsin-y, (21)
6 = (v/7) cos~. (22)

4




The final differential equation of motion is obtained from differentiating the energy expression given
by equation (8). This leads to

v = (pu/r*)siny. (23)

To determine the shape of the curve that minimizes the maneuver time from the higher to the
lower point, we treat (t) as a control variable and solve a minimum-time optimal control problem.
The task is to minimize the performance index J = [ d¢ subject to the preceding differential equation
constraints and appropriate boundary conditions. The boundary conditions are initial and final
conditions on the motion:

Initial conditions r(0) =79, 6(0)=0, v(0)=0;
Final conditions  r(t5) =75, 6(t5) =05, wv(ts) = free.
These conditions imply that the particle begins from rest and finishes at a defined point with an un-

specified final velocity—actually, the final velocity will satisfy the energy equation. The Hamiltonian
[6] for this problem is

H =1- \wsiny + (Agv/r) cosy + (Ayp/r%) sinvy, (24)

where A, Ag, and A, are the Lagrange multipliers (costates) associated with the three differential
equation constraints. This Hamiltonian leads to the costate differential equations

Ar = (Mov/r%) cosy + (2A /) siny, (25)
g =0, (26)
Ap = Apsiny — (Ag/7) cos 7y, (27)
and the optimality condition
0 = —(Agv/r)siny + opa/r2 — Apv) cOS 7. (28)

Also, because the final time is free and the system is not an explicit function of time, the Hamiltonian
must equal zero for all time. Evaluating the Hamiltonian and the optimality condition at time ¢ = 0,
while keeping in mind the initial condition on v, leads to v(0) = 7/2.

The solution to our optimal control problem—i.e., the 1/r? brachistochrone problem-—must
simultaneously satisfy the particle differential equations of motion, the costate differential equations,
the optimality condition, the constraint that the Hamiltonian equal zero for all time, and the specified
initial and final conditions on the state variables r, 8, and v. The initial conditions on the costate
variables and the final maneuver time are unknown, and our numerical approach is to determine
these unknowns so that all the constraints are satisfied. To be clear, let us outline the procedure:

1. At time ¢ = 0, we know r(0), 8(0), and v(0). We select A\.(0), Ag(0), and ;.

2. We then integrate the differential equations forward in time while using the optimality condition
to determine the control variable ().

3. Finally, we compare the final conditions resulting from the integration to the specified values
rg, 07 and H(ts) = 0, and update our selections A.(0), As(0), and ¢5 based on the error.

This procedure is a numerical shooting method [7]. Within the solution procedure, the initial
condition on the costate variable A, is obtained from evaluating the Hamiltonian at time ¢ = 0.
Normalizing the gravitational parameter to equal one, we find A,(0) = —r3. When the solution
procedure is complete, the shape of the minimizing curve is given in parametric form by r = 7(t)
and 6 = 6(¢).

Figures 1 and 2 show two 1/72 brachistochrone trajectories. Figure 1 shows a polar plot of the
minimum time trajectory beginning at (rq, ) = (2, 0) and ending at (ry, 87) = (1, 105°). The
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missing initial conditions are (A, Ag) = (2.2961, —.1087) and the final maneuver time is 3.7007
seconds. Figure 2 shows a trajectory from a constant (magnitude and direction) gravity model and
a minimum time trajectory assuming an attractive inverse square law. (The constant gravity points
left in the figure.) The minimum time trajectory dips towards the origin more than the constant
gravity trajectory and takes 3.1535 seconds to complete. The constant gravity trajectory takes
3.5454 seconds to complete.

THE TAUTOCHRONE PROBLEMS
The Traditional Tautochrone Problem

As mentioned in the Introduction, the tautochrone problem is concerned with determining a planar
curve such that the time required for a particle to travel from rest to its lowest point is independent
of its initial placement. In this section we review the traditional tautochrone problem. We use the
Laplace transform method to show that the parametric solution to the traditional tautochrone prob-
lem describes a cycloid, which is the same type of curve that solves the traditional brachistochrone
problem.

Let a Cartesian coordinate reference frame be placed at the destination, and let the particle’s
initial coordinates be x; and y; in the horizontal and vertical directions. Then the travel time is
given as
0 ds

)

v

t= (29)
Yi
where ds is a differential element of the arc length and v is the particle velocity. But ds and v can

be expressed as functions of the vertical displacement through the equations

ds = -1+ 22 dy = —¢(y) dy, (30)
v= m: (31)

where z’ = dz/dy and g is the constant gravitational acceleration. These two equations lead to

P ) (32)
o V29 —y)

The solution to the tautochrone problem begins by determining the function ¢(y) such that ¢ is
constant, and therefore independent of y;. Equations wherein the unknown function appears under
the integral sign are integral equations, and indeed, equation (32) is recognized as a special case of
Abel’s integral equation [8]. Two common approaches to solving this equation are Abel’s method [8]
and the Laplace transform method [9]. A solution via the Laplace transform method is highlighted
below. :

Let us introduce 1¥(u) = 1/+/u, then

ty/2g = /0 " b(w) ¥(ai — ) dy. (33)

But the right-hand side of this equation is the convolution of ¢ and %, so the Laplace transform of
each side produces

tv/2g9/s = ¢(s) Y(s). (34)
The Laplace transform of 3(u) can be determined and substituted into this equation. This gives
¢(s) = t+/2g/(7s), (35)

or, taking the inverse transform,




#v) = /297y, (36)

From this point, equation (30) can be used to give

d
@ = Vi1 (37)
where £ = 2gt% /x%. This equation is integrated with the substitution

y(¢) = £sin® ¢ = £(1 — cos 2¢)/2 (38)

to reveal
z{¢) = £(2¢ + sin2¢) /2. (39)

These two equations represent a parametric solution to the tautochrone problem. This parametric
" form describes a cycloid with its vertex at the origin, and therefore it has a slightly different form
than the one that describes the solution to the traditional brachistochrone problem.

The 1/7? Tautochrone Problem

In this section we introduce the 1/r? tautochrone problem. Our first attempts at solving this
problem involved using Abel’s method and the Laplace transform method. We were not successful
in obtaining a solution using either method. Consequently, we employed an uncommon approach
that has been useful in the past to obtain solutions to other tautochrone problems [10, 11]. This
approach uses the fractional calculus method, and its application in solving the 1/r? tautochrone
problem is presented below.

Beginning with the energy equation expressed in polar coordinates, the velocity of a particle
beginning from rest in an attractive inverse square law gravity field can be written [3]

v =/2u(1/r —1/m0), (40)

where v is the velocity along the trajectory, u is the gravitational parameter, r is the radial distance
from the origin, and ry is the initial radial position of the particle. Also, a differential element of
the arc length of the curve can be expressed as a function of the radial distance via

ds = 1+ r2072dr = ¢(r) dr, (41)

where ¢ = df/dr. From these two equations, the travel time for the particle is

Y AN L N,
t_/ro v 2u(1/r0_1/7~)d’ (42)

where o denotes the final radial position of the curve and i = /—1. Equation (42) is an integral
equation and the solution to this tautochrone problem begins by determining the function ¢(r) such
that ¢ is constant, and therefore independent of ro.

To use the fractional calculus methods, we first write equation (42) as a semiintegral expression.
Let us introduce the functions g(u) = 1/u and ¢(u) = u%d(u) so that equation (42) becomes

. " B(r)g'(r)
itv/op= | ——L gy, 43
Vo /a (g(ro) — g(r))? “)

or, dividing by the factor 7 on each side,




e L[ )
o P<%)/a (atro) —a)E “

I'() is the gamma function and the prime denotes differentiation with respect to r. The right-
hand side of equation (44) is recognized as the Riemann-Liouville integral-based definition of the
semiintegral of ¢(r) with respect to the function g(ro) [12, 13]. Using the notation introduced by
Osler [13] this is written as

) ¢(r)g’(r)
y(ro) 9(a) $(ro) I‘( )/ g(’r')) 7 dr, (45)

so equation (44) becomes
1 . .
D roy-g(a) H(r0) = it/ 2p/m. (46)
Taking the semiderivative [12] of each side of this equation with respect to g(ro) gives
: -4 g 3 :
D} rey-s(e)Dithor—ota) $70) = Doy gy (t/207) (47)
We next assume that the composition rule [14],
DiDZf = D9y, (48)
where f is a suitable function, is not violated for our unknown function ¢(rg). (The requirements

for obedience to this rule are that f and D% f be differintegrable; we will have more to say on this
in the next section.) Consequently, by way of the composition rule, equation (47) becomes

~ ES .
3(r0) = Doy o0y (#2077
1
= it7/20/7 DYy ooy 111 (49)

1
where D;(TO)_ o(@) {1} is the semiderivative of the constant value one with respect to g(r¢). This
expression is evaluated using the extension [15]

k=2 (nity), (50)
so that we have
1 B d 1 g
Dgiroy—ta {1} = d(g(ro) — g(a)) {F(%) a (g(ro) - g(r)? dr} . o

But the integrand is in the form of a perfect differential, therefore

ﬂ.-

Do W = gz A= | |23 (o) = a)) ] ar}
= T =T {—%[(gm) —g(r»%] a }
—=(g(ro) — g(r))*
1
Ve 1ja) (52)




Folding this result into equation (49) yields

. ity/20
= 53
9(ro) w/1/ro — 1/a (53)
or, in terms of the original function ¢,
t2p
¢(T0) = 2 N
wrgy/1/a —1/rg

From this point, we use equation (41) to obtain the differential equation of the 1/r? tautochrone
problem. After some algebra, we obtain the expression

dd 1 ol
%_;\}1'3(1'—41)_1’ (55)

where £ = 2ut? /7% and we have retained the positive root.

(54)

The Satisfaction of Lagrange’s Rule for the 1/r? Tautochrone Problem

In the previous section we obtained equation (55) as the solution to the 1/r? tautochrone problem.
We must remember, however, that in arriving at this equation we assumed the composition rule
was true for the unknown function ¢(rg). Therefore equation (55) should be considered a candidate
solution until it can somehow be confirmed that, indeed, this solution is valid: Lagrange’s rule
provides such confirmation.

Lagrange’s rule is a sufficient condition on a force, such that the force causes a tautochronous
motion of the system. Routh [16] explains this rule:

LAGRANGE’S RULE: If the equation of motion is

5= 32 f(z)
f(=)

where F' is o homogeneous function of the first degree, and f(z) is any function of z, then the time
of arriving at the position determined by f(z) = 0 is constant, regardless of the initial position.

+ F(z, f(z)), (56)

To demonstrate that the solution to the 1/7? tautochrone problem satisfies Lagrange’s rule, we
first derive the equations of motion of our system. The system has two generalized coordinates and
one holonomic constraint expressed in Pfaffian form, viz., equation (55) which is rewritten here

1 al
= _1dr=0.
de P —a) dr=0 | (57)

The equations of motion for this type of system description are given by [17]

ddL oL

Tor s (58)

d 8L 8L

21255 B0 Acg, (59)
erf + o = 0, (60)
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where L is the system Lagrangian function, ¢, and ¢y are functions that depend upon r and 4, and
A is the Lagrange multiplier associated with the constraint. The system Lagrangian function is

L=T-V = +r%0%)/2+pu/r, (61)

where T and V are the kinetic and potential energies. Consequently, the equations of motion are

7 —16% 4+ p/r? = ~Aep, (62)
720 + 2rrf = A, (63)
0—cr=0, (64)
where
cr = 1 al 1. ' (65)

Using equation (63) to eliminate A in equation (62) gives
7 — 16 + pfr? = —co(r?6 + 2ri). (66)
And using equation (64) and its time derivative to eliminate 6 and 6 gives
7 —ri2c2 + p/r? = —cp (r2ci? + Fric, + 2rite,), (67)
where the prime indicates differentiation with respect to r. Performing some algebra leads to

_plladrd)

— _ 8
(1+r2c2) r2(1+r2¢2)’ (68)
or, introducing b, = 1 + r2¢2, we have
b I
. 229
=TT, T, (68)
Fully evaluating b, and b]. shows that
al 4r — 3a
b, — — ¥ = —bp—m—, 70,71
r Ts(T—a), T TT(T_a) ( )
consequently,
02 . _
P (4r —3a)  pr(r a). (72)

2r(r — a) al

Equation (72) is the equation of motion of our system, which is a particle falling from rest under
the influence of an attractive inverse square law gravity field, but subject to the holonomic constraint
(expressed in Pfaffian form) that is the candidate solution to the 1/r? tautochrone problem. This
equation of motion is nearly in the form required by Lagrange’s rule. Let us then continue to operate
on equation (72) by expanding the first term on the right-hand side to produce

. (2r—a) ar? pr(r —a)
T -a 2(r-a  al (73)
Defining f(r) = r(r — a), we obtain
o= 2 f,(r) _ a,,‘~2 _ /l,f(”')- (74)

TR T2 at
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The last two terms of this expression form a homogenous function of f(r) and # of the first degree.
Euler’s homogeneous function theorem can be used to recognize this fact:

EuLER’s HOMOGENEOUS FUNCTION THEOREM: Let F be a homogeneous function of order n. Then

nF(x) =z; gj, (75)
where X represents the vector of variables and Finstein’s summation convention has been used.
Let .
P, £0) = 5505 - 4002, (76)
then oF oF P2 2
d —_a B g
1o+ 05 =5+ 1) (5275 — &) = F G S0, (77)
So ,
F= el r o)), (78)

where F' is a homogenous function of f(r) and 7 of the first degree. Comparing equations {78) and
(56) we see that the equation of motion is now in the form required by Lagrange’s rule. Conse-
quently the time of arriving at f(r) = 0, which has solution r = a, is constant regardless of the
initial position. Thus we have fully validated the fractional calculus candidate solution to the 1/r?
tautochrone problem because the solution satisfies Lagrange’s rule, which is a sufficient condition
for tautochronous motion.

Trajectories of the 1/r2 Tautochrone Problem

Although we have shown that

dé 1 al

= =1 79

dr  r\ 73(r—a) (79)
is the solution to the 1/7? tautochrone problem, we must still integrate this equation to obtain the
trajectories. Unfortunately, we have not found expressions that provide the exact solution to this
integral. But before we discuss a numerical integration solution, let us look more closely at this
equation.

We first recall that £ is related to the travel time through the equation £ = 2ut?/n%. Conse-
quently, for a particular trajectory defined by initial and final positions, £ must be such that the

radical remains positive. That is,
£>r3(r—a)/a (80)

throughout the motion. But r decreases during the trajectory from r¢ to a, so the right-hand side
is largest at r = rg. Therefore we require

£> r3(ro —a)/a, (81)
~and as a result we set £ as

£=pBri(ro—a)/a, where B>1. (82)
Now notice that the right-hand side of the differential equation equals infinity at the end point

r = a. To bypass this hazard we introduce the parameter -y such that

r3(r — a) = alcos® 4, (83)
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which leads to

de
i tan-y/r. (84)
But i 2ad .
dr _ —2alcosysiny
dy  r2(4r—3a) ’ (85)
0
dd  —2alsin’®~y (86)

dy  r3(dr— 3a)’

where r must be determined from the quartic equation given by equation (83). The limits of v can
be discovered using equations (82) and (83):

Initial condition (r =rg) 9 = cos™! \/1/8,
Final condition (r = a) Yo =T/2,

where we have retained the positive roots. The trajectories can now be numerically determined, and
to be clear, we outline the procedure:

. The initial and final values of r are selected. These are labeled ry and a respectively.
. A final value for ¢ is selected—the initial value is taken as 0. This specified value is labeled 6,.
. A value for 3 is selected and £ is computed from equation (82).

=W N

. Equation (86) is numerically integrated over the interval v € [cos™!+/1/8,7/2], while r is
determined from equation (83).

5. If the final value of 0 resulting from the integration does not match the desired final value
specified in step 2, then 3 is adjusted, £ is recomputed, and step 4 is repeated.

There are two interesting properties regarding 1/r? tautochrone trajectories:

1. Suppose 3 = 1 but the final value of 8 resulting from the integration is greater than @,, which
is the desired final value. Then there is no tautochronous curve that connects (rp,0) to (a,8,).
But because there exists a 6, that is congruent to 8, (modulo 27), a larger g can be determined
so that a tautochronous curve connects (rg,0) to (a,f.). This situation is illustrated in Fig. 3.
The initial position is (r,0) = (2,0), and the desired final position is (e, 8,) = (1,7/2). The
solid line, which corresponds to 8 = 1, shows that there is no tautochronous curve that connects
(2,0) to (1,m/2). The dashed line shows, however, that by increasing 3 to 5.6422 we are able
to reach (1,57 /2), which also locates the desired final position.

2. Setting 8 = 1, a trajectory can be generated that begins at (ro,0) and extends to (a,6;), where
a is a final radial position and 6; is the final angular position that corresponds to this choice
of a and the fact that 8 = 1. Notice, however, that because of the congruency of # and the
decreasing nature of dr/d#f, the final point can instead be reached at a later time by selecting
the appropriate larger value of 3. Therefore the 8 = 1 trajectory represents a minimum-time
tautochronous curve: a brachistochrone-tautochrone curve, if you will. Figure 4 shows a family
of brachistochrone-tautochrone curves, which begin at r¢ = 2 and extend to a range of a values.

CONCLUSIONS

In this paper we investigated a modified brachistochrone problem wherein the constant gravity
model is replaced with an atiractive inverse square law. The shape of the minimizing curve of the
1/r? brachistochrone problem is formally constructed from an infinite series of elliptic integrals.
Trajectories were generated by employing a common numerical approach wherein the shape of the
curve is treated as a control variable and the control that minimizes the maneuver time from the
higher to the lower point is computed.
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We also investigated a modified tautochrone problem wherein the constant gravity model is
replaced with an attractive inverse square law. Fractional calculus together with Lagrange’s rule
for tautochronous curves was used to solve the 1/r? tautochrone problem. While there may be no
tautochronous curve that strictly connects an initial position to a desired final position, the congru-
ency of the angular variable allows all points to be reached. The congruency of the angular variable
also allowed us to define minimum-time tautochronous curves, which we named brachistochrone-
tautochrone curves.

APPENDIX
‘We use this section to briefly mention and discuss other brachistochrone and tautochrone problems.
Brachistochrone Problems

E.J. Routh in A Treatise on Dynamics of a Particle, Articles 590 to 606 (Dover Publications, Inc.,
New York, New York (1960)), has much to say regarding brachistochrone problems. In Theorem
III, Article 599, Routh shows that the brachistochrone from point to point in a field U + C, where
U is a known function of the coordinates and C is a known constant, is the same as a path of a free
particle in a field U’ + C’, provided

o1

4U+C

In Article 605, Exercise 1, the reader is asked to show that if the brachistochrone is a parabola
when the force is parallel to the axis, then the magnitude of the force is inversely proportional to
the square of the distance from the directrix. In Article 606, several central force brachistochrone
problems, but with non zero initial velocity, are discussed. In Article 606, Exercise 4, the reader is
asked to show that the cissoid z(z? + y?) = 2a3® is a brachistochrone curve for a central repulsive
force from the point (—a, 0) which at the distance 7 from that point is proportional to r/(r? +15a2)2,
the particle starting from rest at the cusp.

U+ =

In Exercise 5, page 44 of a text by A.R. Forsyth (Calculus of Variations, Cambridge University
Press (1927)), one is asked to show that an ellipse is a brachistochrone between two points on its
range, under a central force to one focus varying inversely as the square of the distance from the
other focus.

In the Encyclopaedic Dictionary of Mathematics for Engineers and Applied Scientists (IN.
Sneddon editor, Pergamon Press, Inc., New York (1976)), it is mentioned that the brachistochrone
problem of a particle under the action of a central force has solution

0 / du te
= 2

{a/(B-V)—-u}t
where F is the total energy, V is the potential energy, u = 1/r, and ¢; and c¢2 are constants of
integration. Our expression for & in the 1/72 brachistochrone section of this paper satisfies this
equation.

The brachistochrone with coulomb friction was studied by N. Ashby et al., in the American
Journal of Physics (Vol. 43, No. 10, October, pp. 902-906 (1975)). This problem was also studied
as a singular control problem by S.C. Lipp in SIAM Journal of Control and Optimization (Vol. 35,
No. 2, March, pp. 562-584 (1997)).

The relativistic brachistochrone was studied by H.F. Goldstein and C.M. Bender in the Journal
of Mathematical Physics (Vol. 27, Issue 2, pp. 507-511 (1986)).
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Tautochrone Problems

E.J. Routh in A Treatise on Dynamics of a Particle, Article 211, has much to say regarding tau-
tochrone problems. He mentions that if any rectifiable curve is given, then a proper force to produce a
tautochronous motion can at once be assigned. A catenary is a tautochronous curve for a force acting
along the ordinate equal to m2y, where m is a constant. The equiangular spiral is a tautochronous
curve for a linear central force pr tending to the pole. And, the epicycloid and hypocycloid are
tautochronous curves for a linear central force tending from or to the center of the fixed circle.

Routh has more to say in The Elementary Part of a Treatise on the Dynamics of a System of
Rigid Bodies, Articles 488 to 499. In Article 491, a theorem due to Lagrange shows that if the motion
is tautochronous in a vacuum, then the motion is also tautochronous in a medium whose resistance
varies as the velocity. In Article 495, tautochronous motion on any rough curve is discussed. And
in Article 499, a system having one degree of freedom and described by 2T = m?6?%, U = f(#), has
tautochronous motion if U = C{ [ mdf}*.

ACKNOWLEDGMENT

This study was inspired by Problem 78-17, Paul Bunyan’s Washline, in Volume 20 (1978), Number
4, of the SIAM Review. '

REFERENCES

[1] Goldstein, H., Classical Mechanics, Addison-Wesley Publishing, Reading, Massachusetts, 1980,
Chapter 2, Section 3.

[2] Weisstein, E.W., Encyclopedia of Mathematics, Chapman and Hall/CRC, New York, New York,
1999, pp. 107.

[3] Battin, R.H., An Introduction to the Mathematics and Methods of Astrodynamics, ATAA Edu-
cation Series, American Institute of Aeronautics and Astronautics, Inc., New York, New York, 1987,
Chapter 3, Section 3, Equation (3.17).

[4] Byrd, P.F., and Friedman, M.D., Handbook of Elliptic Integrals for Engineers and Scientists,
Second Edition, Revised, Springer-Verlag Publishing, Berlin, Germany, 1971, Section 230.

[5] Bryson, A.E., and Ho, Y.-C., Applied Optimal Control, Revised Printing, Taylor & Francis,
Pennsylvania, 1975, Chapter 2, Section 7, Problem 6.

[6] Ref. 5, Chapter 2, Section 2.3, Equation (2.3.4).

[7] Junkins, J.L., and Turner, J.D., Optimal Spacecraft Rotational Maneuvers, Elsevier Science
Publishers, New York, New York, 1986, pp 228.

[8] Pogorzelski, W., Integral Equations and their Applications, Pergamon Press, Inc., Long Island
City, New York, 1966, Vol. 1, Chapter 1, Section 1.

[9] Andrews, L.C., and Shivamoggi, B.K., Integral Transforms for Engineers, SPIE Optical Engi-
neering Press, Bellingham, Washington, 1999, Chapter 5, Section 5.

[10] Oldham, K.B., and Spanier, J., The Fractional Calculus, Academic Press, Inc., New York, New
York, 1974, Chapter 10, Section 2.

[11] Kamath, S.G., “Relativistic tautochrone,” Journal of Mathematical Physics, Vol. 33, Issue 3,
1992, pp. 934-940.

[12] Ref. 10, Chapter 3, Section 2, Equation (3.2.3); Chapter 7, Introduction.

14




[13] Osler, T.J., “Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite
Series,” SIAM Journal on Applied Mathematics, Vol. 18, 1970, pp. 658-674, Section 3, Equation
(3.1).

[14] Ref. 10, Chapter 5, Section 7. ‘
[15] Ref. 10, Chapter 3, Section 2, Equation (3.2.5).

[16] Routh, E.J., The Elementary Part of a Treatise on the Dynamics of a System of Rigid Bodies,
Dover Publications, Inc., New York, New York, 1960, Article 490.

[17] Ref. 1, Chapter 2, Section 4, Equations (2-29) and (2-30).




Figure 1
Figure 2
Figure 3

Figure 4

A 1/r? Brachistochrone Example
Comparison of 1/ and Traditional Brachistochrone Trajectories
A 1/r? Tautochrone Example

A Family of Brachistochrone-Tautochrone Curves

16




270

Figure 1 A 1/r? Brachistochrone Example

— 1/ gravity model
= = constant gravity model

90

60

Figure 2 Comparison of 1/r? and Traditional Brachistochrone Trajectories




180

210\

270
Figure 3 A 1/r? Tautochrone Example

90

180

210\

270
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