

LA-UR- 00 - 4467

Approved for public release;
distribution is unlimited.

Title: Ion Irradiation Effects in the Ceramic Composite
MgTiO₃Er₂Ti₂O₇

Author(s): Enrique Pifarré Montaner, Ecole Europenne d' Ingénieurs en Génie
des Matériaux
Nancy-Barcelona-Saarbrücken-France-Spain-Germany
James A. Valdez, MST-8
Kurt E. Sickafus, MST-8

Submitted to: For Publication in: Ceramic Transactions Proceedings of
102nd Annual Meeting of the American Ceramic Society
April 30-May 2, 2000 St. Louis, MO

Los Alamos NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

RECEIVED

SEP 22 2000

OSTI

ION IRRADIATION EFFECTS IN THE CERAMIC COMPOSITE $MgTiO_3$ - $Er_2Ti_2O_7$

Enrique Pifarré Montaner
Ecole Europenne d' Ingénieurs en
Génie des Matériaux
Nancy-Barcelona-Saarbrücken France-
Spain-Germany

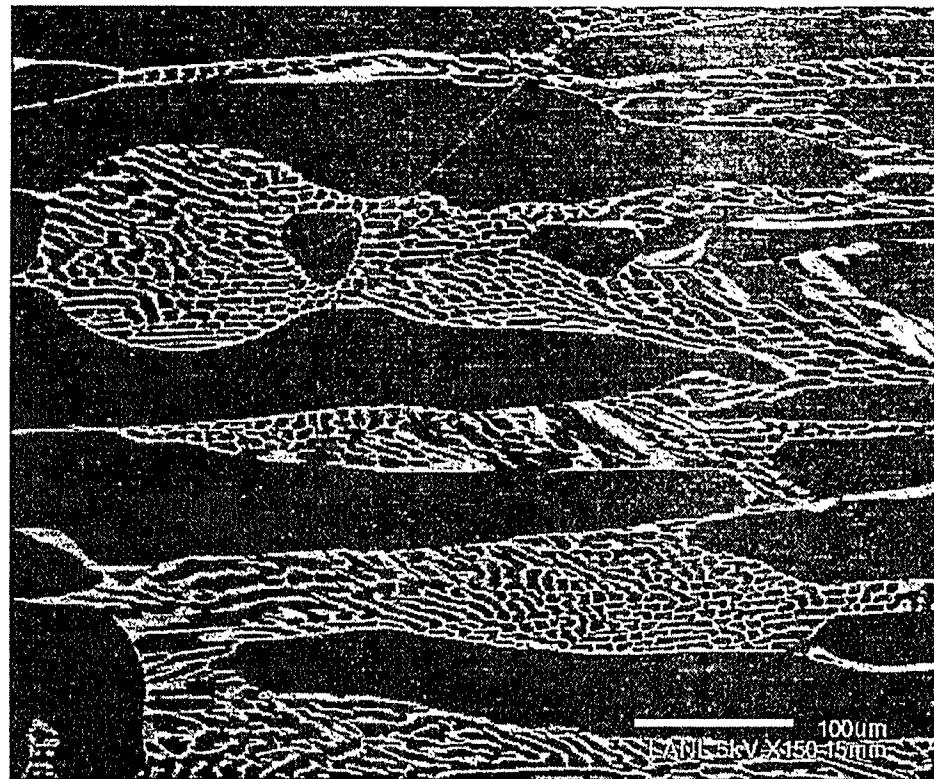
James A. Valdez and Kurt E. Sickafus
Los Alamos National Laboratory
Materials Science and Technology
Division
Los Alamos, USA

ABSTRACT

We have developed a new ceramic-ceramic composite consisting of the mineral geikielite ($MgTiO_3$) as a matrix phase and the mineral pyrochlore ($Er_2Ti_2O_7$) as a minor, second phase. We are investigating this material for use as a possible nuclear waste-form for the immobilization and storage of surplus actinides or high-level radioactive wastes. We performed radiation damage experiments by irradiating composite $MgTiO_3$ - $Er_2Ti_2O_7$ samples along with single crystals of $MgTiO_3$ and $Er_2Ti_2O_7$ (at a temperature of about 120K) with 350 keV Xe^{++} ions to ion fluences ranging from $1 \cdot 10^{14}$ to $1 \cdot 10^{16}$ Xe/cm^2 . Irradiated samples were analyzed using transmission electron microscopy (TEM) and nano-indentation techniques.

INTRODUCTION

In this study, we developed a new ceramic-ceramic composite consisting of the mineral geikielite ($MgTiO_3$) as a matrix phase and the mineral pyrochlore ($Er_2Ti_2O_7$) as a minor, second phase. We conceived of this material for use as a possible nuclear waste-form for the immobilization and storage of surplus actinides or high-level radioactive wastes. Previous studies have shown that geikielite, $MgTiO_3$ ($R\bar{3}$) has good radiation damage tolerance.¹ The temperature dependence of ion irradiation damage indicates that annealing mitigates the effects of point defects introduced into the structure by atomic collisions. However, geikielite is a nearly close-packed oxide and generally, only small cations fit into its structure. $Er_2Ti_2O_7$ is a cubic pyrochlore ($Fd\bar{3}m$), a compound in the more general rare-earth (RE) family of compounds with composition $(RE)_2Ti_2O_7$. Pyrochlores are generally not as radiation tolerant as oxides such as geikielite, but they have a relatively open structure that can accommodate large


cations such as actinides. This makes pyrochlores an important constituent in a composite designed to incorporate actinides and to resist self-damage due to alpha particle decay. Our titanate-based geikielite-pyrochlore composites (like SYNROC) may be useful for the encapsulation of high level radioactive wastes, by combining the radiation damage resistance of geikielite and the capability to host surplus actinides in the pyrochlore structure.

To assess the radiation tolerance of our ceramic-ceramic composite, we performed ion irradiation experiments on composite MgTiO_3 - $\text{Er}_2\text{Ti}_2\text{O}_7$ samples (at a temperature of about 120K) using 350 keV Xe^{++} ions to ion fluences ranging from 1×10^{14} to 1×10^{16} Xe/cm^2 . Irradiated samples were analyzed using transmission electron microscopy (TEM) and nano-indentation techniques (in the latter case, the Young's modulus and hardness of the implanted samples were measured). Observations of irradiated samples were also made using light microscopy.

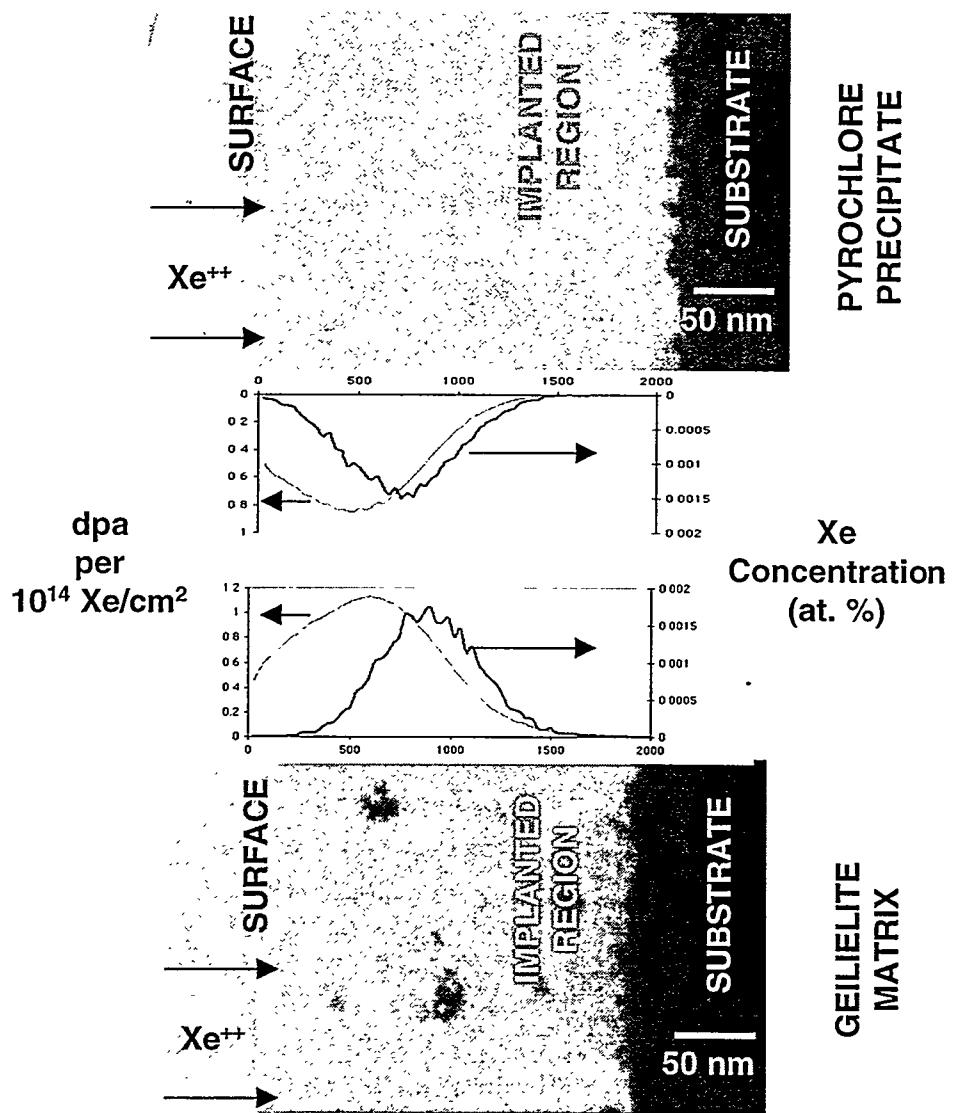
EXPERIMENTAL PROCEDURE

The samples used in this study were: (1) a single crystal of MgTiO_3 ; (2) a single crystal of $\text{Er}_2\text{Ti}_2\text{O}_7$; and (3) a crystalline composite sample with nominal composition MgTiO_3 - 95 mol.% and $\text{Er}_2\text{Ti}_2\text{O}_7$ - 5 mol.%. All crystals were grown using a Crystal Systems Inc. floating-zone crystal growth unit in the Single Crystal Growth Laboratory at Los Alamos National Laboratory. The three crystal samples described above were cut to dimensions of approximately $10\times 10\times 0.5$ mm and polished on one side to a mirror finish. A Rietveld crystal structure refinement of powder X-ray diffraction data obtained from the geikielite-pyrochlore composite sample, indicates that the composition is geikielite 96 mol.%, pyrochlore 3 mol.%, other phases ≤ 1 mol.%. Figure 1 shows the microstructure of the MgTiO_3 - $\text{Er}_2\text{Ti}_2\text{O}_7$ composite sample. This scanning electron micrograph (obtained in secondary electron image mode) indicates that the $\text{Er}_2\text{Ti}_2\text{O}_7$ precipitates (bright objects) are not distributed homogeneously in the MgTiO_3 matrix (dark phase), but rather are aggregated and somewhat lamellar in shape.

Ion-beam irradiation experiments were conducted in the Ion Beam Materials Laboratory (IBML) at Los Alamos National Laboratory. All samples were irradiated with 350 KeV Xe^{++} ions. Ion fluences ranged from 10^{14} to 10^{16} $\text{Xe}^{++}/\text{cm}^2$. Prior to irradiation, each sample was cooled to a temperature of about 120K using liquid nitrogen conduction cooling. Temperature excursions during irradiations were about ± 5 K, as measured using a thermocouple. The Xe^{++} ion doses used in this experiment, in units of $\text{Xe}^{++}/\text{cm}^2$, were: (a) 10^{14} , (b) 2.5×10^{14} , (c) 5×10^{14} , (d) 7.5×10^{14} , (e) 10^{15} , (f) 2.5×10^{15} , (g) 5×10^{15} , (h) 7.5×10^{15} , (I) 10^{16} . Three un-irradiated substrates of MgTiO_3 , $\text{Er}_2\text{Ti}_2\text{O}_7$, and the composite MgTiO_3 - $\text{Er}_2\text{Ti}_2\text{O}_7$, were used as controls for the experiments.

Figure 1. Scanning electron micrograph (secondary electron imaging mode) obtained from a region of the as-grown composite sample with nominal composition MgTiO_3 – 5 mol.% $\text{Er}_2\text{Ti}_2\text{O}_7$.

The Monte Carlo code TRIM² was used to estimate the ion range and the profile of displacement damage in the Xe-ion irradiation experiments. The projected range and the damage peak of 350 KeV Xe⁺⁺ ions, for a 5° angle of incidence, were estimated to be 170 nm, using a density of 7.045 g/cm³ for Er₂Ti₂O₇ pyrochlore and 180 nm, using a density of 3.89 g/cm³ for MgTiO₃. The damage level in the peak damage region was estimated to be 13 displacements per atom (dpa) for pyrochlore and 23 dpa for geikielite, for the largest dose of this study: 1×10^{16} Xe⁺⁺/cm².

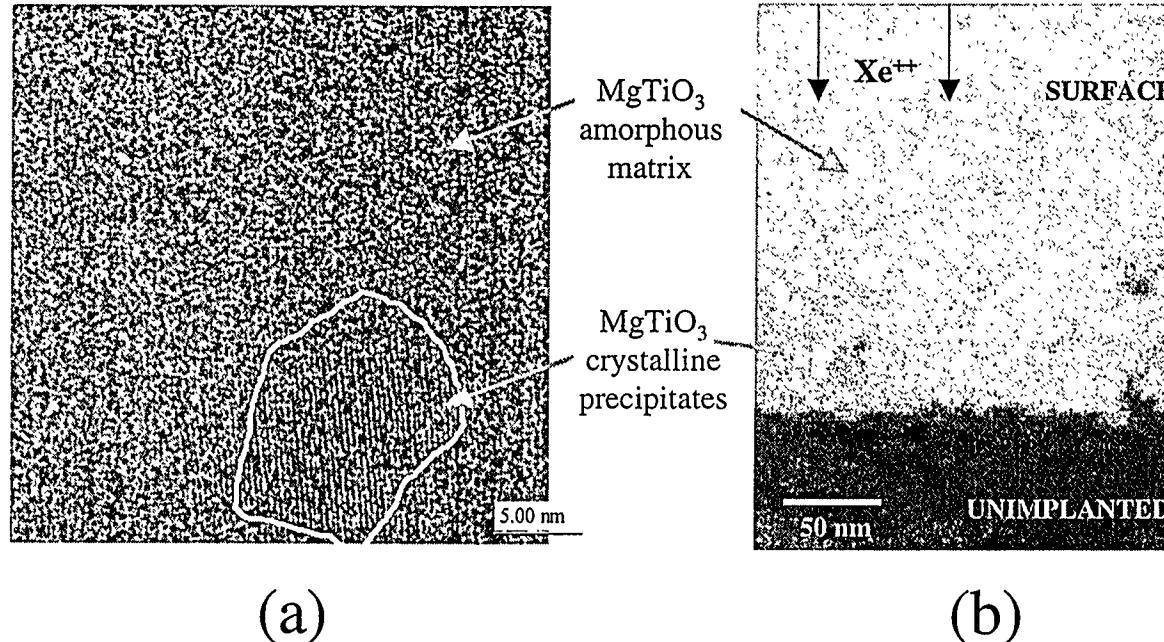

Some of the irradiated composite MgTiO₃ - Er₂Ti₂O₇ samples were prepared in cross section for examination by transmission electron microscopy (TEM). The radiation-induced microstructures were examined in a Phillips CM-30 electron microscope operating at 300 keV. Bright-field (BF) imaging and microdiffraction techniques were used in the TEM analyses. Other characterization of irradiated samples included light microscopy, high resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD).

Nano-indentation (or ultramicrohardness) was used to investigate the near-surface mechanical properties of the irradiated samples. In these experiments, a Nano Indenter[®] II instrument (Nano Instruments, P.O. Box 14211 Knoxville, TN 37914) at LANL was used to determine the Young's modulus (E) and the hardness (H), by the continuous stiffness method.³ In this method, the applied load and the indenter displacement are continuously increased in each indentation test. The load range for these experiments was approximately 0-4 mN, with a maximum displacement of 100 nm. The latter choice was made in order to avoid influences from the un-implanted substrate. A fused silica sample was used as a control sample for these experiments.

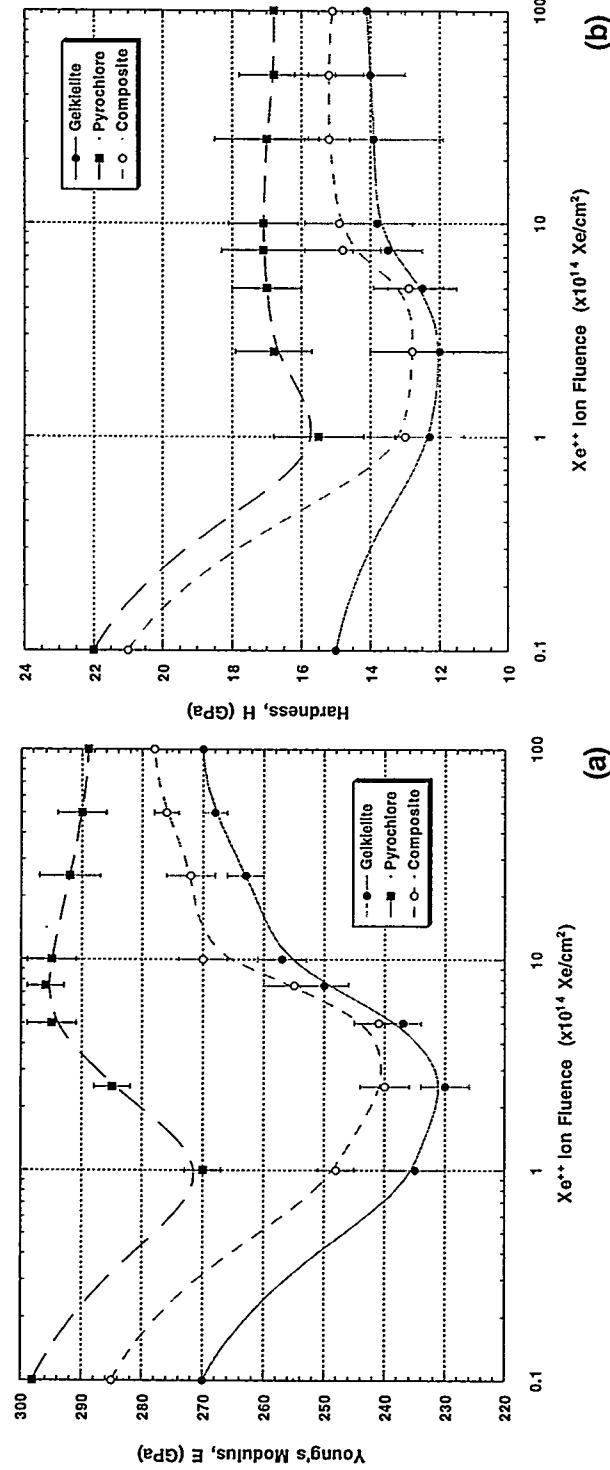
RESULTS AND DISCUSSION

Fig. 2 shows cross-sectional TEM results obtained from a MgTiO₃ - Er₂Ti₂O₇ composite sample irradiated at 120 K with 350 keV Xe⁺⁺ ions to a fluence of 5×10^{14} Xe⁺⁺/cm². The top image in Fig. 2 is a bright-field (BF) micrograph obtained from a pyrochlore precipitate located at the surface of the implanted sample, while the bottom BF micrograph was obtained from a region of implanted geikielite matrix. The arrows on the left side of the BF images indicate the direction of the incident Xe⁺⁺ ions. Each arrow also points directly to the top surface of the respective phases. It should be noted that the thickness of a typical pyrochlore precipitate, impinging on the surface of the irradiated composite sample, was very much greater than the depth of the implantation (precipitates were at least several microns thick).

A continuous amorphous layer was found in the ion irradiated region of the Er₂Ti₂O₇ pyrochlore precipitate (Fig. 2). The fact that the irradiated region is amorphous was confirmed using micro-diffraction (results not shown here). The


Figure 2. Transmission electron microscopy (TEM) bright-field (BF) images obtained from an $\text{MgTiO}_3 - \text{Er}_2\text{Ti}_2\text{O}_7$ composite sample irradiated with 350 keV Xe^{++} ions to fluence $5 \times 10^{14} \text{ Xe/cm}^2$ at 100 K (top BF image from an $\text{Er}_2\text{Ti}_2\text{O}_7$ pyrochlore precipitate; bottom BF image from a region of MgTiO_3 geikielite matrix). Also shown are results of Monte Carlo simulations (based on the computer code TRIM) showing the implanted Xe profiles for 350 keV Xe^{++} ions in MgTiO_3 and $\text{Er}_2\text{Ti}_2\text{O}_7$, as well as displacement damage distributions in both oxide phases.

thickness of the amorphous pyrochlore layer is about 180 nm, i.e. about 10 nm greater the projected range for 350 keV Xe^{++} ions in $Er_2Ti_2O_7$, as estimated using TRIM simulations. For geikielite, TRIM simulations regarding the thickness of the implanted layer agree with TEM observations. Both TRIM and TEM (Fig. 2) indicate that the thickness of the implanted layer is about 180 nm.


In the lower BF image in Fig. 2, obtained from the $MgTiO_3$ geikielite matrix, regions of two different contrast are apparent in the ion irradiated region. The micro-diffraction pattern from this region (shown as an inset in Fig. 2) suggests that the implanted area is crystalline. Nevertheless, HRTEM observations were made in this region in order to better assess the structure of the irradiated layer in regions containing the geikielite matrix. Figure 3 shows an HRTEM image (Fig. 3a) and a TEM-BF image (Fig. 3b) obtained from a region of irradiated geikielite matrix. Some of the small dark-contrast features in the BF image (Fig. 3b) are found to be crystalline in the HRTEM image (these regions exhibit lattice fringes in Fig. 3a). The remaining light-contrast areas in Fig. 3b are primarily amorphous, as determined by the absence of fringes in the HRTEM image (Fig. 3a).

For the ion fluence of $5 \cdot 10^{14} Xe/cm^2$ in Figs. 2 & 3, the peak displacement damage dose for the $MgTiO_3$ is estimated (by TRIM) at ~ 1.1 dpa, while for $Er_2Ti_2O_7$, the peak displacement damage is about 0.65 dpa. Under the 120K irradiation condition used in these experiments, this dose renders the pyrochlore phase fully amorphous, while the geikielite phase is partially amorphized. Both of these observations are in reasonable agreement with previous observations on pure geikielite and pure pyrochlore. Mitchell et al.¹ observed fully-amorphized $MgTiO_3$ by a peak dose of about 2.7 dpa, for irradiations at 170K using 400 keV Xe^{++} ions. No observations of the radiation response of pure $Er_2Ti_2O_7$ have been published. However, Wang et al.⁴ observed amorphization of a similar pyrochlore, $Gd_2Ti_2O_7$, by a dose of ~ 0.4 dpa at 200K using 0.6 MeV Ar^+ ions. These results suggest that no enhancement in radiation resistance is gained by incorporating the pyrochlore phase in a composite. Both the pyrochlore and the geikielite phases amorphize at approximately the same rates in the composite as they do in their monolithic forms.

Figure 4 shows results obtained from nano-indentation experiments on unirradiated and irradiated samples of: (1) geikielite single crystal; (2) $Er_2Ti_2O_7$ pyrochlore single crystal; and (3) a geikielite - $Er_2Ti_2O_7$ pyrochlore composite. The plots in Fig. 4 show how Young's modulus (Fig. 4a) and hardness (Fig. 4b) vary with Xe^{++} ion fluence, for an indenter displacement of 80 nm. These plots were obtained using measured E and H values at fixed indenter displacement, in load-displacements measurements on each sample. The standard deviation of the measurements is also shown in Fig. 4. These results represent a rather unique nanoindentation behavior for irradiated ceramics. For geikielite, pyrochlore, and

Figure 3. (a) High-resolution transmission electron microscopy (HRTEM) image and (b) cross-sectional TEM image obtained from a region of MgTiO₃ phase in an MgTiO₃ – Er₂Ti₂O₇ composite sample (same sample as in Fig. 1) irradiated with 350 keV Xe⁺⁺ ions to a fluence of 5×10^{14} Xe/cm² at 100 K. At this dose, the irradiated MgTiO₃ consists of isolated crystalline regions in an amorphous matrix.

Figure 4. (a) Young's modulus (E) and (b) hardness (H) as a function of 350 keV Xe⁺⁺ ion fluence for three different samples: (1) MgTiO₃ (geikielite); (2) Er₂Ti₂O₇ (pyrochlore) and (3) an MgTiO₃ - Er₂Ti₂O₇ composite sample. Measurements were made using the nanoindentation technique with an 80 nm indenter displacement.

the composite, both E and H exhibit an initial decrease with increasing Xe ion fluence, followed by some recovery at high dose. At the highest Xe ion doses in Fig. 4, both the geikielite and pyrochlore phases are fully-amorphized. It is expected that amorphous phases will exhibit the lowest moduli and hardnesses. This is observed in Xe-ion irradiated spinel ($MgAl_2O_4$), for instance.⁵ Reasons for the recovery of E and H at high ion fluence are unclear at this time.

CONCLUSIONS

We have developed a new ceramic-ceramic composite consisting of the mineral geikielite ($MgTiO_3$) as a matrix phase and the mineral pyrochlore ($Er_2Ti_2O_7$) as a minor, second phase. The geikielite exhibits higher radiation tolerance than the pyrochlore phase in the composite, but the pyrochlore phase is an important constituent because it serves as an actinide host phase. There seems to be no enhancement (or degradation) in the radiation resistance of either the geikielite or the pyrochlore phases when placed in a composite environment.

REFERENCES

- ¹J. N. Mitchell, N. Yu, K. E. Sickafus, M. Nastasi, and K. J. McClellan, "Ion Irradiation Damage in Geikielite ($MgTiO_3$)," *Philosophical Magazine A*, **78** [3], 713-25 (1998).
- ²J. F. Ziegler, J. P. Biersack, and U. Littmark, *The Stopping and Range of Ions in Solids*. Pergamon Press, New York, 1985.
- ³W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," *J. Mater. Res.*, **7** [6], 1564-83 (1992).
- ⁴S. X. Wang, L. M. Wang, R. C. Ewing, G. S. Was, and G. R. Lumpkin, "Ion irradiation-induced phase transformation of pyrochlore and zirconolite," *Nucl. Instr. and Meth. in Phys. Res. B*, **148**, 704-9 (1999).
- ⁵K. E. Sickafus, C. J. Wetteland, N. P. Baker, N. Yu, R. Devanathan, M. Nastasi, and N. Bordes, "A Comparison Between the Irradiation Damage Response of Spinel and Zirconia due to Xe Ion Bombardment," *Materials Science & Engineering*, **A253**, 78-85 (1998).