LAUR- "0 =-4402

Approved for public release;
distribution is unlimited.

AV\ Eyfre§s?<w\ T@W‘f/a‘/*c
Mave Lo oda Fonction

Title:

Author(s): "\-)15 > §7/7 /pécs w! ,}_ -
6{’@/ Lxem A, ém) ’H'\

Submitted to: Worlkshop o ¢ ++ Tewp’cﬂLﬁ

pf@ér&wmqhﬁ

E\CW‘I’J Fev an sy

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Govemment purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to

publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
Form 836 (8/00)

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States

Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products.. Images are
produced from the best available original
-document. |

Function RECEIVEL
| SEP 2 & 2000
Jorg Striegnitz Stephen A. Smith €
Central Institute for Applied Mathematics ~ Advanced Computing Laboratory
Research Center Jiilich Los Alamos National Laboratory
Germany ' New Mexico, USA
J.Striegnitz@fz-juelich.de sa_smith@acl.lanl.gov

Abstract. We will show how the paradigms of lambda functions and expression templates fit
together in order to provide a means to increase the expressiveness of existing STL
algorithms. We will demonstrate how the expression templates approach could be extended
in order to work with built-in types. To be portable, our solution is based on the Portable

-Expression Template Engine (PETE), which is a framework that enables the development of
expression template aware classes.

1. Introduction

The Standard Template Library (STL) [C++] contains many so called Higher Order Functions (HOFs).

These are functions that take functional arguments and/or return functional results (e.g. for_each,
transform, or £ind_if). Operations passed to HOFs are often very short in code and primarily used in a

local context. Nevertheless, they have to be defined in namespace scope, possibly yielding plenty of

small functions or functional objects respectively. The point of use and the point of declaration may get

more and more dispersed, making code harder to read and understand. :

This problem may even be worse, as it is impossible to pass function templates to STL’s HOFs. In order
to mimic rank-2 polymorphism (passing polymorphic arguments to polymorphic functions) , either
function overloading or the definition of a class with generalized operator() has to be taken into
account (like e.g. in [FC++][SMO00]). Especially the first approach will increase namespace pollution,
while the latter also depends on a class representative, thus, the existence of an object, which has to be
created manually.

A better solution would be to define functions on the fly. This feature is common in functional
programming languages, which offer a special function called lambda to define polymorphic functions.

Our C++ framework FACT! (Functional Additions to C++ through Templates and Classes [FACT])
offers such a lambda function and thereby helps to keep point of use and point of declaration close

- together. As with its functional counterpart, functions obtained by lambda are free of side effects and
therefore may be used in parallel environments as well.

In this article we will discuss the implementation of our lambda functions and show how to implement
expression template aware classes. After giving a short introduction into the lambda functions, we will
show how to build lambda expressions by relying on the Portable Expression Template Engine (PETE).

We will then concentrate on how evaluation is done and conclude with a discussion of performance and
possible future work.

2. The Lambda Function

. A lambda function takes a list of variables (called the lambda list), an expression that may contain any
of this list’s variables (called the lambda expression) and returns a function which usually has the same
. dimension as there are elements in the lambda list. Consider the following example:

lambda(x,y, x + V)

x and y form the lambda list, x + vy is the lambda expression. Since the lambda list has two members, a
binary function is returned.

Evaluation of a function that was created through lambda, is done as follows: first, arguments passed to
the function get associated with the variables of the lambda list - this is done from left to right. Next, all
occurrences of lambda variables in the lambda expression get substituted by their associated values.
Finally, the expression gets evaluated and the result is returned. For instance, applying lambda(x,y, x
+ y) to 3 and 4 goes like this:

1. xis associated with 3 and v is associated with 4
2. substitution yields 3 + 4
3. evaluation leads to 7

Thus, lambda (x,y, x + y) returns a function that calculates the sum of its arguments.

Functions returned by lambda are of polymorphic type , thus, x and y may be bound to values of type
int, float, complex, string, or any other type that is compatible with operator+. As long as an
appropriate operator+ exists, they even may be bound to values of different type.

Lambda expressions may contain calls to other functions or just return constants:

lambda(a,b,c, sqgrt(sgr(a) + sqgr(c) + sqgrib)))
lambda (x, 2)

Additionally, lambda variables may be placeholders for functions and lambda may return a function that
returns a function as well:

lambda (f,x,y, f(x,y))
lambda(f, f) (lambda(x,y, x+y)})

Moreover, functions returned by lambda are presented in a curried form, which makes them capable of
taking their arguments one at a time and offers the possibility of partial application.

Functions returned by lambda get their arguments by value, thus they do not impose aﬁy side effects.
This makes lambda very useful for parallel environments.

At Jeast four things are needed to develop the lambda function:

® functions of varying signature,

- - @ mechanisms to build and store a lambda list,
® mechanisms to store and manipulate the expression along with
® methods to do the evaluation

Multiple variants of lambda functions are needed, each one taking a different number of lambda
variables - this could be solved through function overloading. There is no need to take care of lambda
variables that don’t occur in the lambda expression, thus, it is sufficient to store them inside the
expression. The remaining task is to develop mechanisms to store, manipulate, and evaluate lambda
expressions. '

With respect to performance, expression templates [Vh95] are considered as a possible way to handle
lambda expressions. Expression templates are nested template structures, used to represent the parse tree
of an expression. They are build during compile time through overloaded arithmetic operators, which -
instead of immediately applying an operation - return objects that incrementally built up the parse tree.
The parse tree is represented in two fashions: as a type tree (the expression template tree) and as a tree of
objects (the expression object - which indeed is an instance of the expression template tree). Template
meta programs [Vh95-2][ECO00] allow one to traverse the expression template tree during compile time
and in conjunction with inlining techniques the expression object could be used to produce efficient
code. / : '

Using template meta programs, substitution of lambda variables could be done during compile time, but
relies on different lambda variables having different types. This is required, because template meta
programs actually get types as arguments and thus, in order to support functions of arbitrary dimension,
arbitrary types of lambda variables are needed:

template <int n>
struct ARG {};

ARG is a suitable representation, because it can be used to form at least numeric_limits<int>::max()
different types, which we assume to be an acceptable limit. For convenience reasons, FACT! offers a
huge amount of predefined lambda variables, all of them defined in the scope of namespace LAMBDA
and thus, the user usually does not need to pay attention on the real type of a lambda variable , but just
types something like using LAMBDA: :x to make the lambda variable x visible in the current scope.

In the next section we will show how to form expression templates out of expressions. containing
instances of ARG by using PETE.

3. Building Lambda Expressions with PETE

3.1. How PETE works

The Portable Expression Template Engine (PETE)[Ha99,PETE] provides the means to make a user
defined class aware of expression templates. PETE supports 45 built-in operators to build expression
objects out of expressions. Besides all C++ mathematical operators and a collection of common
mathematical functions like sin(), it also provides a where(a,b,c) function since the conditional
expressiona ? b : acannot be overloaded.

In order to integrate user defined types, special variants of all these operators need to be added, which
can easily be achieved through PETE’s MakeOperator tool. After creating these operators, there are
three tasks left to make a class aware of expression templates:

® tcll how the type should be stored inside the expression tree
@ add an assignment operator to the user class that takes a PETE-expression
® tell how to access data during evaluation

To see how PETE works, consider the following class:

class Vecl3 {
Vec3 (double i=0.0) { d[0)l=i; d[1l]l=1i; d[2]=i; }
Vec3 (double a,double b,double c¢) { d[0]=a; dl[ll=b; dl[2]=c; }
Vec3 (const Vec3& o) { d[0]=0.d[0]; dl[ll=o0.d[1l]; d[2]=0.d[2]; }

~Vec3 () {1} ,
double &operator|] (int i) { return df[i]; }
double operator[] (int i) const { return d[i}; 1}
private:
double 4[31;

};

PETE’s operators need to know what to stick in the leaves of the expression tree. To offer this
information, the user has to supply a specialization of the CreateLeaf struct:

template <>

struct CreatelLeaf< Vec3 > {
typedef Reference<Vec3d> Leaf_t;
static inline
Leaf_t apply(const Vec3& a) {

return Leaf_t(a);

}

Y

To save space and to avoid unnecessary calls to copy constructors, references to vec3 are stored at the
leaves (PETE identifies references by wrapping them into the Reference struct).

Besides offering the type of the leaf, createrLeaf provides the apply method to build one. In this case,
it takes a reference to an instance of vec3 and wraps it into the Reference class template. If there is no
specialization of CreateLeaf, PETE wraps leafs into the template class scalar. Thus, the Scalar
wrapper provides a convenient way to differentiate between expression-aware nodes from other objects.

In PETE an expression object has type Expression<T>. To traverse the expression tree during compile
time, PETE offers the function forEach, which has the following general form:

forEach (Expression, LeafTag, CombineTag);

This function traverses the nodes of the Expression object, applies an operation selected by LeafTag at
the leaves, and combines the results from non-leaf nodes’ children according to CombineTag. There are
two default combinator tags in PETE: OpCombine and TreeCombine. OpCombine combines results
according to the operators stored at non-leaf nodes, while TreeCombine is used to combine non-leaf
nodes in order to build a new expression object.

There are also some predefined functor tags. One of them is the class Evalreafl, which stores a single

integer index, accessible through the method vali{(). A functor tag primary serves as a selector while
the real application is done by a specialization of LeafFunctor: '

template <>
struct LeafFunctor<Vec3, EvalLeafl> {
typedef int Type_ t;
static inline
Type_t apply(const Vec3& a,const Evalleafls f) {
return al[f.vall()];
}
}i

This LeafFunctor acts on leafs of type vec3 and performs-the operation selected by EvalLeafl. It
offers the function apply which takes a leaf (of type vec3) as well as an instance of the functor tag and
returns the component of the vector that is identified by the index that is stored in the functor tag.

Componentwise evaluation of vector expressions now is possible by applying forEach to an expression
object. With PETE, this usually is done within the assignment operator of the user’s class: .

template <typename E>
Vec3 operator=(const Expression<E>& expression) {

d[0] = forEach(expression, Evalleafl(0), OpCombine());
d[1l] = forEach(expression, Evalleafl(l), OpCombine() .);
d[2] = forEach{ expression, EvallLeafl(2), OpCombine());

o}

Evaluating expressions with PETE’s forEach function allows for more generic operations than simply
computing the value of an expression. For example, in expressions involving arrays, one could pull out
domain information from the arrays and check for conformance. By selecting different leaf functors and
combiners, very general transformations can be performed on expressions. This general capability will
be used to perform substitutions in lJambda expressions. -

3.2. The Lambda Function

Using PETE, building lambda expressions is quite simple, since PETE’s MakeOperator tool
automatically produces code for all operators that are necessary to build expression objects out of
expressions that contain instances of ArG<i>. The only thing to be done is to tell PETE how values of -
type ARG should be stored in the expression object. As for the vec3 class this is done by supplying a
suitable specialization of CreateLeaf.

The lambda function has to return a function whose computational rule comes from the generic
expression object. With C++, functions could be modeled through functors (classes that provide a
parenthesis - or function call operator). The dimension of this operator depends on the number of
lambda variables that the generic expression object contains. Thus, for every dimension a function
returned by lambda may have, a special class is needed. For binary functions it has the following form: -

template <typename E>
struct 1FUNC2 ({ :
1FUNC2 (const E& e) : e _m(e) {}
1FUNC2 (const 1FUNC2& rhs) : e_m(rhs.e_m) {}
const E& expression() const {
return e_m; '

}

template <typename Al, typename A2>
result_t operator() (Al al,A2 a2) const {

}
private:
E e_m;

1

This class stores a generic expression object of type E (that is expected to contain exactly two lambda
variables) and provides a binary function call operator. Since 1Func2 should represent a polymorphic
function, this operator is declared as a template (the return type result_t will be discussed in a later
section). '

The lambda function itself just hasto take some lambda variables, as well as a generic expression object,
and has to return an instance of an appropriate 1FUNC class. Here are examples for lambda functions to
produce binary / ternary functions.

template <int m,int n, typename E>

1FUNC2<E> lambda(const ARG<m>& a,const ARG<n>& b,const E& e) (
return 1FUNC2<E>(e);

} .

template <int m,int n,int o, typename E>

1FUNC3<E> lambda(const ARG<m>& a,consgt ARG<n>& b,const ARG<o>& c,const E& e) {
return 1FUNC3<E>(e };

}

Notice, that the ARG arguments are ignored and only used to choose the variant of lambda to call.
Furthermore, m,n and o maybe any integer values. To make substitution easier, these values get
normalized to 1, 2. .. by some sophisticated template meta programs.

To support functions of arbitrary dimensions, an endless number of 1FUNC classes and lambda functions

are needed. To cover most situations, we developed a code generating tool, that is supplied with the

largest functional dimension to support, and produces a C++ header file that contains all the necessary
definitions. :

4. Applying the Result of a Lambda Function

The purpose of 1FUNC’s function call operator has to be: substitute all lambda variables by the given
arguments and return

® an expression object, if the result type of the expression object is aware of expression templates,
® or the result of evaluation, otherwise.

Since function overloading on return types is not possible with C++, a proxy class needs to be returned -

by 1FUNC'’s parenthesis operator. Before d1scuss1ng this proxy in detail, we will show how to do
substitution.

4.1. Substitution

An expression is represented i two different fashions: as an expression template tree (emphasizing

types) and as an expression object (emphasizing values). Substitution has to be done for both and thus,
for a lambda expression that contains N lambda variables, N type/value tuples are needed for
substitution. These tuples are given by the parameters of 1rFUNC’s parenthesis operator and due to
normalization, association with the corresponding ARG<i> values of the expression object is clear.

Now, substitution simply could be done by template meta programs, but for every argument we intend to
substitute, the full expression tree needs to be traversed. To save compilation time, it is reasonable to
store all type/value tuples in an array, use the integer index that is carried by lambda variables as an
index into it and traverse the expression tree just once. Such an array has to be accessible during
compile- and runtime. Compile time mechanisms are based on types and thus, for every dimension an
array may have, a different type is needed. Fortunately, the greatest possible dimension of the array is
known, because the user once has passed it to the generator tool. Using a type mNIL to indicate that a
specific position of an array is not in use, a single structure is sufficient to implement the array: '

template. <typename Al=mNIL, ..., AN=mNIL>
struct SIGNATURE {

SIG() {}

SIG(Al al) : al_m(al) {}

SIG(Al al,...,AN aN)} : al_m(al),...,al_N(aN) ({}
const ARGI_té& operator([] (const ARG<1>&) const { return al_m; }

const ARGN_t& operator[] (const ARG<N>& ') const { return aN_m; }

typedef Al ARGl_t;

typedef AN ARGN_t;
private:
ARG1_t al_m;

ARGN_t an_m;
}i

template <typename SIG,int n> struct ARG_TYPE { };

template <typename SIG> struct ARG_TYPE<SIG,1> {
typedef typename SIG::ARG1l_t Type_t;

}s

template <typename SIG> struct ARG_TYPE<SIG, N> ({
tyvpedef typename SIG::ARGN_t Type_t;
}i ‘

Through operator[] the SIGNATURE structure offers access to the values. The ARG_TYPE structure
allows access to the argument types. It has not been declared as a member of SIGNATURE, because
specializing a member template without specializing the enclosing template is not allowed with C++. By
introducing the functor tag substitute (that holds an instance of a SIGNATURE struct - accesible through
the member signature), substitution could be done by PETE’s forEach function. Whenever a value of
type ARG is reached, it is getting replaced by the suitable value of the signature:

template <typename SIG,int n>
struct LeafFunctor< ARG<n>, Substitute<SIG> > {
typedef typename ARG_TYPE<SIG, n> Leaf_t;
static inline apply(const ARG<n>& a,const Substitute<SIG>& s} {
return s.signaturel a]; '

}
Y

Any other types remain untouched.

Substitution indeed can be done during compile time: apply is a static inline function that does not
change it’s arguments. Thus, a call to it can be optimized away.

4.2. Evaluation

Not only expression templates have to be considered during evaluation. The result of evaluation also
should be reusable for other expression templates. For instance,

using LAMBDA: :X;
using LAMBDA::vy;

Vec3 a,b;
lambda(x,y, x + y)(a,b) - Vec3(1,2,3)

should yield the same code as a + b - Vec3(1,2,3) does.

The easiest way to achieve this, is to use PETE’s Expression class template as a wrapper for the
previously mentioned proxy class, thus doing a template specialization. The class to be wrapped must
memorize the signature that has been passed to 1runc’s function call operator, as well as the generic
expression object, since this is essential to do evaluation. It should have a member function that
performs substitution and returns the monomorphic expression. In FACT! this class is called
FACT_PETE_ROOT and the specialized expression type is

template <typename E,typename S>
struct Expression<FACT_PETE_ROOT<E,S> > { ... };

Usually, evaluation is triggered through a call to an assignment operator. The assignment operator has to
be a member function and therefore, overloading for built-in types is not possible. Anyway, something
similar is needed to allow assignment from a lambda function which returns a built-in type, like for
instance int i = lambda(x,y, x + y)(2,3). A possible solution is to supply a conversion operator
which allows us to convert an expression object into the type of the result it represents. This requires
knowledge of the result type of an expression, but fortunately, PETE offers suitable mechanisms to
obtain it. Using the compose tag OpCombine, PETE uses several template meta programs to compute the
result type. If necessary, the user can specialize from some class templates to specify the return type for
computation for his own classes. This cannot even be done on an argument type level, but PETE also
allows to specify different return types for different operators (e.g. Matrix plus Matrix yields a Matrix
while Matrix multiplication yields a vector).

Once the return type of the expression object is known, it is quite easy to determine wether it is aware of
expression templates, or not. If the result type T is nor aware of expression templates, then
CreateLeaf<T>::Leaf_t is equal to Scalar<T> and thus, the following meta programs can be used to
select the return type.

struct mTRUE {};
struct mFALSE {};

template < typename COND, typename' THEN, typename ELSE>
struct mIF {. typedef mTHEN Type_t; : };

template < typename THEN, typename ELSE >

struct mIF<mFALSE, THEN, ELSE> { typedef mELSE Type_t; 1}

template < typename T1,typename T2 >

struct 'mEQUAL { typedef mFALSE Type_t; };
template < typename T > :

struct mEQUAL<T,T> { typedef mTRUE Type_t; };

// This proxy gets returned in the case where
// the result type of the expression object is a
// built-in type
template < typename E, typename R >
struct CLE2N {

static inline R apply(const E& e) {

return forEach(e,EvalLeafl (0),0OpCombine());

"}
};

//-This proxy gets returned in the case where
// the result type of expression object is aware of
// expression templates
template < typename E, typename R >
struct CLE2E {

static inline R apply(const E& e) {

return R({ e.expression());

1

};

template <typename E, typename R>
struct RetFLA {
typedef typename mIF< typename mEQUAL<typename CreateLeaf<R>::Leaf_t,
Scalar<R>
>::Type_t,
CLE2N<E, R>, :
CLE2E<E,R>
>::Type_t Type_t;
1

Notice, that CLE2E relies on the result type having a constructor from Expression. To avoid implicit
conversion, this constructor should be declared explicit.

In the end, Expression<FACT_PETE_ROOT<E, S> > should provide a cast operator that returns a proxy of
type RetFLA<E, R>: : Type_t, Where R is the type obtained by

ForEach<E, GetLeafType, OpCombine>: :Type_t; (the tag GetLeafType returns the type/value of a
leaf).

Finally, 1FuNc2’s parenthesis operator should return an object of type
Expression<FACT_PETE_ROOT<E,SIGNATURE<A1,A2> > >

4.3. Partial Application

Partial application means to bind the first £ parameters of an nary function to some specific values by
yielding an n-k dimensional function. Thus, instead of replacing all lambda variables, partial application
means to replace just the first k£ variables. In practice this means to add some more functional operators

to the 1Func classes. Consider for example 1runc5, then four additional parenthesis operators are
needed. One that takes a single argument and returns an object of type 1FUNC4: '

template <typename A>

1FUNC4<typename ForEach<E, Substitute<SIGNATURE<A> >, TreeCombine>::Type_t >
operator () (A a) {

return forEach(e, Substitute<SIGNATURE<A> >(SIGNATURE<A>(a)),TreeCombine());
) .

another one that takes two values and returns an object of type 1FUNC3, and so on.

Obviously, partially applying the result of a lambda function still yields a generic function and it is
important to notice that type checking does not happen until full application occurs. Unfortunately this
causes hard to read error messages e.g. if a suitable operator does not exist.

5. Using C++ Functions within a Lambda Expression

Using a C++ function inside a lambda expression - as we have shown it above - is not possible, because
applying a function usually forces a C++ compiler to produce code to execute that function. As with the
overloaded mathematical operators, C++ functions should appear in the expression object rather than be
executed. Furthermore, it is desirable to enable the user to pass lambda variables to a C++ function,
which usually won’t fit a C++ function’s signature. Thus, a different representation for C++ functions is
needed.

We already mentioned in [St00] that our curry function helps to shift the representation of a function
into a form that we have control of. Utilizing this, it is not difficult to allow C++ functions to be used
inside a lambda expression, if the user applies the curry function to it before. In short, the curry
function is somewhat similar to STL’s ptr_func function: it takes a pointer to a C++ function and
returns a functional object.

Since it is necessary to store functions and their arguments inside the expression tree, a new structure
template called NODEX (X is a placeholder for the dimension of the function) was developed. NODEX is a
more general counterpart to PETE’S UnaryNode, BinaryNode and TernaryNode structure templates. It
offers a comparable functionality (storing an operation as well as some arguments, providing several
access members), but also offers a cast operator that allows a NODEX object to be converted into the type
that would results from applying the stored operation to the stored operands.

Depending on the dimension the user has passed to the generator tool, x different NODEX structures are
needed. Any of these may occur as argument to any of PETE’s mathematical operators - yielding
thousands of overloaded operators. To avoid this, the function call operator of the functor returned by
curry, returns a value of type NODEX that has been wrapped into the structure template FUNCTION - thus,
it returns a value of type FUNCTION<NODEX>. The FUNCTION structure acts as a proxy class: it offers a
conversion operator that is identical to the one of the wrapped NoDEX class, making it possible to write
€.g. cout << curry(sin) (3.0).

Finally, PETE’s MakeOperator tool can be used to produce operators for the class template FunCTION
and it is possible to do

#define sqr curry(sqr)
#define sqgrt curry(sqrt)
1ambda(a,b,¢,, sgrt(sgr{a) + sqgri{c) + sqgr(b)))

Since we have shown in [St00] that curry comes at no extra cost, we used a preprocessor directive to
avoid typing curry (sqr) / curry (sqrt) all the time.

6, Lambda Variables as Placeholders for Functions

In order to enable lambda variables to be placeholders for functions, the only thing to do is to add a
unction call operator to the ARG structure that returns an instance of NODE x whose operation is
represented by a lambda variable (to allow this node to be used in an expression, it has to be wrapped
into the FUNCTION template as well). Now, the previously shown lambda expression could be rewritten
like this:

#define sqr curry(sqr)
#define sqgrt curry(sqrt) .
lambda(f,a,b,c, sqgrt(£(a) + £(c) + £(b))) (sqr)

Note that there is a partial application - £ is a placeholder for a unary function and is bound to sqr.

7. Performance

To estimate the performance of our lambda function, we used the expression template aware vec3 class
that has been described in an earlier section. We measured the time to add four instances of vec3 by
using these methods:

® loop: we manually coded a loop that iterates through the vector components and performs the
addition,

@ expression templates: we simply wrote e = a + b + ¢ + d, were a - e are all of type vec3 and
let PETE do necessary optimizations, ’

® lambda function: we used lambda (w,x,v,z, W + x + v + z)(a,b,c,d).

All those expression were evaluated fifty million times on a SunUltra 10 with a 333MHz UltraSparclli
processor. We used Kuck and Associates’ KCC version 4.0 with either SUN’s C 5.0 or Gnu’s C 2.95.2
as possible backend C compiler. Furthermore, we investigated GNU’s C++ compiler 2.95.2.

As you can see from the above image, there indeed is no performance penalty if using our lambda
function with KCC. Applying a lambda function to built-in types we obtained similar results: using KCC
there was no difference in runtime between applying a lambda function and "directly” adding some
built-in types.

8. Conclusion

We have shown that the lambda function offers a convenient and efficient way to keep the definition and

application of functions close together. Since there are no side effects with lambda functions, they are
very useful in parallel environments and thus, we considered to use them to build stencil objects for
POOMA [POOMA]. We could invent a compact notation for stencils using lambda functions (such as a
= stencil(lambda(x, x(1) - 2 * x(0) + x(-1)))(b))). Unlike the current implementation of
POOMA stencils, the definition of the stencil can appear at the point of use. With the lambda function

description, it would be easy to manipulate stencils, for example to compose them, or to form
multi-dimensional products of one-dimensional stencils. '

In a future project we will try to extend our lambda approach in order to become a Turing complete
sub-language for C++. This will not only make C++ an interesting target platform for developers of
compilers for functional languages. We also think of investigating, if template meta programs will allow
us to use our lambda technique to build a real compiler (e.g. use it to produce SSE or MMX code on an
Intel CPU). Moreover, extending the lambda language such that a lambda expression may contain
function definitions (e.g. let/letrec expressions) may yield the possibility to do context sensitive
optimizations through template meta programs.

References

[C++] International Standard, Programming Languages - C++, ISO/IEC: 14882, 1998

[Ha99] Scott Haney, James Crotinger, Steve Karmesin, and Stephen Smith: PETE, the Portable
Expression Templates Engine, Dr. Dobbs Journal, October 1999

[PETE] PETE home page: http://www.acl.lanl.gov/pete

[Vh95] T. Veldhuizen: Expression Templates, C++ Report, June 1995

[Vh95-2] T. Veldhuizen: Using C++ Template Meta Programs, C++ Report, May 1995
[EC00] U. Eisenecker, C. Czarnecki: Generative Programming, Addison Wesley, 2000
[MS00] - B. McNamara, Y. Smaragdakis: Functional Programming in C++

[FC++] FC4+ home page: http://www.cc.gatech.edu/~yannis/fc++"

[POOMA] POOMA home page: http://www.acl.lanl.gov/pooma

[St00] J. Striegnitz: Making C++ Ready for Algorithmic Skeletons, Internal Report IB08-2000,
Research Center Juelich

[FACT] FACT! home page: http://www fz-juelich.de/zam/FACT

Runtime (seconds)

Lambda Expressions

40,00
30,00
20,00
10000
000 - ok
KCC/SUN C KCC/GCC GCC/PETE
Eloop 030 0,30 559
W expression template 030 030 1837
O lambda expression 0,30 - 0,30 36,44

