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ASTRACT

The force exerted on the rotor by an active magnetic bearing
(AMB) is determined by the current flow in the magnet coils.
This force can be controlled very precisely, making magnetic
bearings a potential benefit for grinding, where cutting forces
act as external disturbances on the shaft, resulting in degraded
part finish. It is possible to achieve precise shaft positioning,
reduce vibration of the shaft caused by external disturbances,
and even damp out resonant modes. Adaptive control is an
appealing approach for these systems because the controller can
tune itself to account for an unknown periodic disturbance, such
as cutting or grinding forces, injected into the system. In this
paper we show how one adaptive control algorithm can be
applied to an AMB system with a periodic disturbance applied
to the rotor. An adaptive algorithm was developed and imple-
mented in both simulation and hardware, yielding significant
reductions in rotor displacement in the presence of an external
excitation. Ultimately, this type of algorithm could be applied to
a magnetic bearing grinder to reduce unwanted motion of the
spindle which leads to poor part finish and chatter.

INTRODUCTION

In magnetic bearing systems, a spindle is levitated with mag-
netic fields created by either permanent magnets or electromag-
nets (or both) so that no part of the spindle comes in contact
with the bearings. With permanent magnets, the force exerted
on the rotor can be either attractive or repulsive. A repulsive
force results in a system that is stable without a controller. How-
ever, the force exerted by the permanent magnets cannot be con-
trolled and is limited by the strength of the magnets. With
electromagnets, the force on the rotor can be varied by changing
the current flow in the magnet coils. This results in an active
magnetic bearing (AMB). However, the levitating forces are
attractive. making the system inherently unstable and requiring
the use of a controller.

The force exerted by the electromagnets can be controlled
within £0.05 N, making it possible to achieve precise shaft posi-
tioning. reduce vibration of the shaft caused by external distur-
bances, and even damp out resonant modes. This makes
magnetic bearings a potential benefit for grinding and other
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metal cutting processes, where cutting forces act as external dis-
turbances on the shaft, resulting in degraded part finish. AMB
systems also do not have the wear and lubrication problems seen
by conventional bearings, but require additional electronic and
cooling systems. Furthermore, they are limited in load capabil-

ity

Adaptive control is an appealing approach for these systems
because the controller can tune itself to account for an unknown
periodic disturbance, such as cutting forces injected into the
system. In this paper we show how one adaptive control algo-
rithm can be applied to an AMB system with a periodic distur-
bance applied to the rotor. The purpose is to create an input
signal that would counteract the disturbance and result in mini-
mal motion of the spindle. In an application such as grinding,
this would result in improved part finish, reduction of chatter,
etc. First a model of the experimental system must be developed
to test the proposed control strategy. Then the adaptive control
algorithm will be described and results will be shown.

EXPERIMENTAL SETUP

The bearing system modelled and used for this paper is a modi-
fied MBC500 from Magnetic Moments, Inc. The MBC500 has
two active magnetic bearings, each consisting of four electro-
magnets, supporting the spindle. The bearings are mounted on
top of an anodized aluminum case which houses the electronics
and also acts as a heat sink for the magnets. The spindle is
actively positioned in the radial direction at the bearings and
freely rotates about its long axis. The front panel shows a block
diagram of the system with BNC connections for easy access to
system inputs and outputs. An air turbine drives the shaft to
speeds up to 10,000 RPM.

The system has four on-board analog lead-filter controllers that
levitate the spindle in its default mode. These controllers can be
disabled with switches on the front panel, allowing an external
controller to be implemented. The BNC connections also allow
for an external controller to be wrapped around the on-board
controllers while they are still engaged. The modified version of
the MBC500 include an external electromagnet mounted on the
case near the center of the spindle to be used as a disturbance
source. The magnet can be moved to vary the gap between the
magnet and the spindle, thereby allowing for a large range of
applied forces. The current flow to this magnet is controlled by
an external amplifier.

SYSTEM MODEL

An accurate model of the system is necessary for designing and
testing prospective control strategies. Magnetic bearings are
highly nonlinear by nature and. in order to best capture the
effects of those nonlinearities., a Simulink simulation was
designed. A block diagram representation of the system is
shown in Figure 1. This diagram represents the MBC500 with-

out any external controllers, but with the external magnet apply-
ing a disturbance force to the spindle. It is assumed that the
spindle is not spinning, so there are no gyroscopic effects and
the axes are completely uncoupled. The external force is
assumed to be applied exactly at the center of the shaft. The sys-
tem inputs and outputs are also shown.
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Figure 1. Simulink model used to simulate the
magnetic bearing system

When external controllers are implemented, either the feedback
loop containing the lead-filter compensators is broken and
replaced with a computer system which implements the digital
controllers, or an external controller is wrapped around the on-
board compensators, leaving the feedback loop intact. For the
implementation of the adaptive control algorithm presented in
this paper, the on-board controllers are left intact and the exter-
nal adaptive controller is wrapped around the feedback loop.

There are five main components to the system that must be
included in the model: the spindle dynamics, the magnet
dynamics, the on-board controllers, the current amplifiers, and
the position sensors. Each is dealt with in the following sec-
tions. Definitions of the variables and parameters used in the
description of the model and system are given in Table 1 and
Table 2

Spindle Dynamics

Both the rigid and the first two flexible body modes were incor-
porated into the simulation. Because the axes are uncoupled, we

Table 1: Definitions of variables

Xo displacement of center of mass of rotor

x, and x, displacement of rotor at left and right bearings
X, and X, displacement of rotor at Hall Effect sensors

0 tilt of rotor about y-axis

F, and F, forces exerted on rotor at left and right bearings
F, external applied force




Table 2; Definitions of parameters

L =0.269m total length of rotor

I, = 0024m distance from each bearing to end of
rotor

[, = 0.0028 m distance from each sensor to end of

rotor

moment of inertia of rotor around y-

= ~3 2
Iy = 1.5884x10 "kgm axis

m = 0.2629 kg mass of rotor

a = 00107m distance from bearing 1 to external
magnet

b = 0092m distance from bearing 2 to external

magnet

may look at each independently and can assume that the dynam-
ics in each direction are the same (with the exception of the con-
stant force of gravity in the y-direction). On the experimental
set-up, the external force is applied in only the x-direction, so
the equations of motion will be derived only for the x-direction.

Rigid Body Dynamics. For rigid body motion, the spindle
is assumed to move without bending. (Flexible body motion
will be considered in the next section.) Figure 2 shows the spin-
dle from above. The coordinate system and variables are defined
as shown.
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bearing 1 / ; L e X,
~= X -
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y

Figure 2. The spindle shown with variables defined.

The axis are uncoupled, so, assuming the spindle is radially
symmetric, the x- and y-axes will have the same equations of
motion (again, with the exception of the constant force of grav-
ity in the y-direction). As shown in the figure, the sensors are
located just outside the bearings along the spindle and the exter-
nal force, F,, is applied near the center of mass of the spindle in
the negative x-direction.

There are two rigid body degrees of freedom for each axis. This
means that there must be two independent coordinates chosen to
describe the system. In this case, it is easiest to choose the posi-
tion of the center of mass of the spindle, x;, and the angle of
rotation of the spindle from the equilibrium position, 6. The
equations of motion for the rigid body motion in the x-direction
are found by balancing the forces and moments about the center
of the shaft.

SF =miy=F +F,-F, (D

My = 146 = (FZ-F,)(’:-

1
: l,)+§Fe(b—a) )

The clearance at the bearings is £0.4 mm, so small-angle
approximations are appropriate. For rigid body motion, the only
restoring forces are those exerted by the magnets, which are
nonlinear and cannot be included in the linear rigid body state-
space model. Therefore, the state-space system is constructed
such that the forces -- the external force and the bearing forces
on either end of the spindle -- are the inputs and the displace-
ments of the spindle at the bearings and sensors are the outputs.
The state vector is chosen to consist of the displacement of the
center of mass of the spindle, the angle of rotation and their
respective time derivatives. The resulting system is shown
below.
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where ‘RB’ signifies the rigid body matrices and states. The
output of the system depends on the sine of the tilt angle, which
has been approximated as unity.

Flexible Body Dynamics. Only the first two bending
modes are considered for this simulation. The mass and stiffness
matrices for the shaft are taken from the MBC500 manual and
are essentially the free-free modes of the shaft and damping was
found experimentally to be approximately 1.3% for the first
bending mode and 0.15% for the second bending mode. The
modal equation for the x-direction in matrix form is then

Md+Ca+Ka = P (7

The state-space system for the flexible body dynamics can be
developed in the same manner as the rigid body equations.
They are expressed here as

Yep = CrpXrp &)

The inputs and outputs for this state-space system must be the
same as the rigid body system, but the state vectors will be dif-
ferent,

The total displacement of the shaft is the combined contribution
of the rigid and flexible body displacements. In other words,

Yior = Yra+Yrp (10

This displacement is then the input for the position sensors.

Hall Effect Sensor Dynamics

The sensors for this system are two orthogonal Hall-effect sen-
sors at each shaft end. The sensors are actually located closer to
the ends of the shaft than the bearings (see Table 2 and Figure 2)
but we will make the approximation that they are collocated.
The nonlinear sensor output is

Vioonse, = 5000X;+24x10°X;? (11)
for i = 1,2, where X; is measured in meters. Figure 3 shows the
relationship between the sensor voltage and the displacement of
the shaft. The figure also shows a plot of the above equation lin-
earized about the equilibrium position (X; = 0).

Nonlinear Charactenstic of Hall Effect Sensors
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Figure 3. Graph of sensor nonlinearity

As the plot shows, the output is relatively linear for low deflec-
tions but the nonlinearity becomes more pronounced with larger
displacements (X;> 1.5x10™ m). The nonlinear relation is used
in the Simulink model, but, as the system usually runs with dis-
placements less than 0.15 mm, the linearized relation could also
be validly used.

Lead-Filter Compensator Dynamics

Since electromagnets can only exert an attractive force, each
bearing consists of four magnets, two magnets each in the x-
and y-directions. There is an analog lead-filter compensator for
each of the magnet pairs. Each uses the voltage from the corre-
sponding sensor as input and produces an output voltage. The
transfer function for the compensators is

v _ ( 1.41(1 +8.9x107%s)
control — 3 _5
(1+33x107s)(1 +2.2x107s)

JVSCRSK ( 12)

These analog compensators can be removed from the feedback
loop so that a digital controller can be implemented. However,
for the purposes of this paper, the analog compensators were left
in so that the adaptive controller could be implemented without
exceeding the limitations of the dSpace components.

Current Amplifier Dynamics
The actuator current amplifier converts the control voltage to a
current for the electromagnet according to

0.25

J=—22
1+22x107s

(13)

control

The amplifier, in essence. acts as a low-pass filter with a break
frequency of, filtering out the very high frequency content of the
input signal.
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Electromagnet Dynamics
The force exerted by one electromagnet on the shaft is

ApgNT
PRl (14)
4g

where A is the cross-sectional area of the magnet, 1, is the per-
mittivity of free space, g is the gap between the electromagnet
and the rotor, and N is the number of coils in the magnet, each
carrying current /. For the MBC500 at equilibrium, the gap is
0.0004 m and there is a bias current of 0.5 amps. If we define x
as the displacement from equilibrium and & as A p0N2/4 then
the total force on the shaft at one bearing due to both magnets
(in one direction) is

2 2
1,-0.5 I;+05
Fi=k ¢ ) 5~k i ) 5 (15)
(x; +0.0004) (x;—0.0004)

fori = 1, 2. Note that the force is proportional to the square of
the current in the wire and is inversely proportional to the square
of the gap width. This represents the strongest nonlinearity in
the system. This relationship is plotted in Figure 4 for a range of
displacements and currents.

Electromagnet Forca

Current (A)

Ossplacement (m}
Figure 4. Graph of force exerted by the
electromagnets versus current and displacement

As shown in the figure, the output forces become very non-lin-
ear and large as the displacement and control current become
large. In normal operation, the displacement is rather smal}
(x,< 110} m) but the control current may still fluctuate widely
because of the dynamic characteristics of the controllers.
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Modeling the closed loop system

Because of the many nonlinearities in the system, a linearized
state-space model was not sufficient to model the system accu-
rately. The biggest source of nonlinearity is the magnets, since
the force they exert is inversely proportional to the square of the
displacement and directly proportional to the square of the con-
trol current. Near equilibrium and at steady state, this force can
be approximated as linear with a sgring constant of 10,500 N/m,
but outside this region (x;>5x10" m), the approximation is
invalid. Another smaller source of nonlinearity is the Hall effect
sensors. A linear approximation for these is good to

X;= 1.5x10”" m. Because of these limitations, the nonlinear
model was used.

For the implementation of the adaptive control algorithm pre-
sented below, the on-board analog controllers are left in the
feedback loop and the external adaptive controller is wrapped
around the feedback loop.

ADAPTIVE CONTROL ALGOTRITHM

An adaptive controller calied the amplitude-phase adaptive con-
trol algorithm (APACA) was designed to augment the lead-filter
compensator. The purpose of APACA is to predict and compen-
sate for the external disturbance, whereas the purpose of the
lead-filter compensator is simply to levitate the spindle.

APACA is based on the MIT Rule. The MIT Rule was one of
the first adaptive algorithms and is based on minimizing the cost
function

J(a)y = ze? (16)

B —

where e is the error signal -- in this case, the displacement of
the spindle -- and « is the parameter to be varied. This leads to
the discrete equation

an+1) = a(")‘Ye(")g_é (17

where g—gl is known as the sensitivity derivative.

APACA is designed to be used for external disturbances which
are sinusoidal, have a known and fixed frequency, and oscillate
between zero and some fixed amplitude. An example of this
type of disturbance is grinding. where the force is always in one
direction. for example the positive x-direction, and varies with
the rotational speed of the tool. and so has a constant, known
frequency content. Figure 5 shows a block diagram representa-
tion of how APACA fits into the total system with the non-adap-
tive lead-filter compensators.
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Figure 5. Block diagram including adaptive controller

APACA calculates successive estimates of the amplitude and
phase of a complimentary input sine wave that will combine
with the disturbance to create zero net motion. The signal from
the adaptive controller must go through the amplifier and mag-
net dynamics before driving the spindle motion through the
bearing magnets. Therefore even if the exact disturbance time
history is known, it cannot simply be inverted and used directly
to cancel itself out. Also, in grinding applications, the amplitude
of the disturbance may not be known, but the frequency most
likely will be. If the frequency is not known, it can be deter-
mined by using an FFT (fast Fourier transform) algorithm on
the Gutput signal to determine the dominant frequencies, and
then those frequencies can be used in APACA.

Two parameters are varied in determining the output of
APACA; the amplitude of the wave A and the phase shift from
the disturbance wave (actually computed as a time delay T
where 0 = oT). The output then looks like

¥4 = A(sin{wr + T) +1) (18)

where o is the frequency of the disturbance and is assumed to
be known.

The two variable parameters are calculated according to a modi-
fied MIT Rule. The sensitivity derivative is replaced by the time
derivative of the error signal in the time delay equation and by a
constant in the amplitude equation (which is absorbed by the
constant ¥, ). The error signal in the time delay equation is
replaced by the disturbance signal. These modifications lead to
the recursive equations which form the basis of APACA,

Aln+1) = A(n) +7,e(n) (19)
de(n)
Tn+l) = T(")""{TT‘[(”) (20)

SIMULATION AND HARWARE

These equations were implemented in Simulink using the
parameters shown in Table 3.

Table 3: Simulation parameters

parameter value
Ta 1x107
Tr 1107
sample time 0.1 ms

These parameters were found through testing the controller in
simulation and on the experimental setup and trying to find a
balance between short convergence time and stability. Like the
MIT Rule, a poor selection for v, and y; (a value that is too
large) may result in system instability. However, values that are
too small will result in long convergence times and a system that
won’t be able to adapt to changing disturbances.

RESULTS

The system was tested in simulation with a disturbance input of
0.5 N and frequency of 100 Hz. On the hardware, this corre-
sponded to an input current of 2.3 amps. The results are shown
in the following figures. In order to increase the stability of the
system, APACA is not implemented in the simulation until after
the transient rigid body motion has been damped out by the on-
board analog controllers. The time at which APACA is turned
on is marked on the plots. The maximum range of the spindle
motion is +40x10~ m, but normal operating range is

+15x107° m, so the displacement of the spindle shown in
Figure 6 and Figure 7 is near the limit of the normal operating
range. There was a small amount of noise injected into the cur-
rent amplifier signal in the simulation in order to determine its
effects on the adaptation algorithm. The power of this noise was
determined from steady-state experimental data.
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equilibrium position approximately 2 seconds after the control-
ler is implemented.

In the simulation, APACA attenuated the amplitude of oscilla-
tion at bearing 1 and bearing 2 by -10.5 dB and -8.5 dB respc-
tively. On the hardware, the oscillation was decreased by -5.3
dB at bearing | and -7.6 dB at bearing 2. These results are sum-
marized in Table 4.

Table 4: Experimental and simulated attenuations of
oscillation amplitude

-2

Simulated Experimental
bearing 1 -10.5dB -53dB
bearing 2 -8.5dB -7.6dB

-4
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Figure 6. Graph of x1 displacement with controller on
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Figure 7. Graph of x2 displacement with controiler on

Figure 6 shows the simulated displacement of the spindle at
bearing 1 in the x-direction and Figure 7 shows the displace-
ment at bearing 2. (Since the external force is not applied at the
center of the spindle. the results at bearing I and bearing 2 are
not identical.) For 0 <1< I s, the external force is applied with
just the analog lead-filter compensators in place. This results in
oscillation about a value offset from zero. At 1 = 15, APACA is
turned on and begins to add its signal to the system input. The
displacement is quickly reduced and the spindle reaches its

The output signal of APACA is shown in Figure 8. In the simu-
lation, the final values to which A and T converge are 0.286 V
and 3.3x107's respectively. This corresponds to an amplitude of
0.25 N and a phase shift of 0.033 rad, or 1.9°. Since there are
two bearings acting to counteract the external force, we would
expect each to exert a force with an amplitude of half of the
external force. The phase shift is due to the dynamics of the
magnets and amplifiers.

Expenmental and simulated APAC output

1 T T g T T T

Voltage {V)

o 2 4 ] b: ] 10 12 13

Time (s)
Figure 8. APACA output for experimental and
simulation

Due to the complexity and uncertainties of the bearing system.

the experimental results did not match with the simulated results
as closely as expected. Fortunately, this data provides an oppor-
tunity to increase the accuracy of the simulation for future con-
trol algorithm design and testing
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CONCLUSION AND FUTURE WORK

The two parameter adaptive control algorithm presented here
yielded considerable reduction in steady-state displacement in
both simulation and experiment for an externally applied sinu-
soidal load. Future enhancements to the current design will
include four parameters to adjust in the output; the amplitude of
the sine wave, the frequency of the sine wave, the phase shift,
and the offset from zero. These enhancements will allow the
algorithm to handle a constant disturbance, a sine wave oscillat-
ing about zero, or a sine wave of unknown or slowly varying
frequency.

Ultimately, this type of algorithm will be applied to a magnetic
bearing grinder. A picture of a grinder rotor/bearing system is
shown in Figure 9. This system is currently installed in a test
stand so that system identification and control algorithm testing
can begin with an actual grinding system.This algorithm could
help reduce unwanted motion of the spindle which leads to poor
part finish and chatter.

Figure 9. Magnetic rotor/bearing system for grinder
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