
Mets-Component

Ly Danielle Sauer
Sandia National Laboratories

ldsauer(l?sandia.gov

-.
$&c+

~Q&# ,& , ,.

Architecture for Software Interoperability $5P @
28!))

Robert L. Clay Rob Armstrong~ $J
TeraScale, LLC Sandia National Laboratories P 1

robert@ terascaletech. com rob @ca. sandia.gov

Abstract
Most existing software is one-of-a-kind, monolithic,

non-interoperable, and consequently, non-reusable. In
addition, this software is dificult to maintain, improve,

and scale. More importantly, this soj?ware is vital to

many enterprises and institutions. Thus, enterprises must
continuously make trade-off decisions between developing
new software and maintaining existing sojlware. The

meta-component architecture (Component Mill) presented
in this paper will enable enterprises to continue using
existing so+are while providing a mechanism to migrate
the so+are into a format (meta-component) that
supports sojlware integration and reuse. This

architecture provides the blueprint for realizing an

environment that suppofis exposing existing soj?ware for
reuse with other (heterogeneous) sojlware while allowing

sojlware development based on reuse. The meta-

components are independent of any component model
used in component technologies. Thus, this architecture
provides components that are, in principle, executable in
any component technology.

1. Introduction

In general, software development remains a
handcrafted activity that obeys laws that can not be
generalized [5][6]. Software developed in this manner

could lead to products being delivered behind schedule,
over budget, with substandard quality, and with one-of-a-
kind solutions. Generally, this software is not
interoperable and can not be reused. Moreover, existing
software may contain critical information or may be core
to the enterprise’s competitive edge. At Sandia National
Laboratories (Sandia), the complexities of these problems
are growing with the addition of multi-physics scientific
computing software developed to execute on massively
parallel and high performance computers. This problem
is having a profound impact on Sandia’s mission resulting
in an initiative being instituted to address this problem.
The initiative is intended to provide an integrated
computing environment that delivers collective tools to
designers, analysts, and others for better, faster, and
cheaper management of the stockpile in the nuclear
weapons complex. Some tools currently being used are
critical to the success of Sandia’s mission, while other
tools are being created to address the initiative. Many

existing tools do not interoperate for reasons including
programming languages, poor design, operating system
platforms, or program approaches (high performance and
parallel computing versus distributed serial computing).

Completing this .initiative will require an infrastructure
that overcomes the software integration barriers among
these heterogeneous tools. The meta-component
architecture (Component Mill) is being used to realize
Sandia’s software interoperability initiative. In general,
the Component Mill is also applicable to industry,
especially in the areas of 1) exposing existing data and
systems for reuse with other heterogeneous software, 2)
having a component-based development environment that
leads to better and cheaper software, or 3) developing
reusable software that can be executed on multiple
component technologies.

Mets-components, the abstract encapsulation of “
components, are core to the Component Mill to expose
legacy data and systems for reuse and integration. These

meta-components can in principle be integrated with or
used by other (legacy and new) software regardless of the
component technologies, development methodologies,
execution platforms, or programming languages. In
addition to meta-components, the Component Mill uses
some key concepts (design patterns, distribution, and high
performance and parallel programming approaches) to
support these capabilities. The meta-component
architecture also provides an environment for creation of
new components from scratch or through composition of
components introduced into the environment or exposed
data and systems. These components are in turn reusable
for creation of other components.

This paper introduces the meta-component
architecture. It starts with an examination of work related
to reuse based on components and then shows how the
Component Mill can be used to fill the hole in the tapestry
of component-based reuse and integration solutions. The
paper proceeds to describe the Component Mill approach
(Section 3) and then presents the meta-component ‘
architecture (Section 4). Then, the application of the
architecture to Sandia’s initiative is discussed (Section 5).
The paper concludes with plan to complete and validate
the architecture (Section 6).

2. Related Work

Choose one from column A, one from column B, and

Disclaimer

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or impiy its endorsement, recommendation, or favoring by
the United States Governrnent or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or refiect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image
produced from the
document.

products. Images are
best available original

2

one from column C; presto, you have an application,
Why should software development not be this easy?
After all, this is how the personal computers are
constructed, by selecting off-the-shelf components. It is
this hope of building software programs from pre-
fabricated components that has lured the software
community towards component software. The benefits of
reusability and interoperability have driven both the
research and commercial software communities to
develop a component-based approach to software
development. Today, there are many solutions for
supporting component-based software development,
ranging from research-based (Common Component
Architecture [2], Component Software Engineering [7]) to
industry-based (JavaBeans [13], Enterprise JavaBeans
[13], DCOM [1], COM [3], ActiveX [4]) to consortium-
based (SCIPIO [1 l], OpenDoc [9], CORBA Components
[10]). The ones with the most promise and some industry
momentum are Enterprise JavaBeans, CORBA
Components, and COM/ActiveX. The following sections
provide a quick glance into these technologies and discuss
their limitations while indicating how the Component
Mill addresses these constraints.

2.1. Enterprise JavaBeans

Enterprise JavaBeans (EJB) [13] is Java’s new
component architecture for the development and
deployment of reusable Java server components. EJB is
governed by the Enterprise JsvaBeans Specification,
which defines multiple roles in the EJB environment,
describes how EJB interoperates with clients and existing
systems, indicates how EJB is compatible with CORBA,
and defines the responsibilities for other components in
the system. In particular, an Enterprise JavaBean is a
component (ebean) that executes in an EJB container that
runs within the EJB server. A component is a Java class
that implements the business logic. An EJB container
hosts ebeans and makes the required services (i.e.,
transaction, security, persistence, etc.) available to ebeans
through the interface defined in the specification, thus,
freeing the component to concentrate on the business
logic. An EJB server is the high-level process or
application that manages EJB containers and provides
access to system services. An application client accesses
enterprise beans executing in an EJB container through
the ebean’s home and remote interfaces. The home
interface lists the available factory methods for locating,
creating, and removing instances of the enterprise bean,
where the remote interface lists the business methods
defined in the enterprise bean.

EJB is one of the first major component architectures
with industry support. In a year since its announcement,
there have been numerous vendors supporting the various
aspects of the specification, ranging from tools to support

development of enterprise beans (e.g., VisualCafe and
VisualAge) to EJB servers (e.g., Iona, Inprise, and
Weblogic). One major advantage is the specification of
well-defined interfaces for the definition of components
and deployment environments. This results in an
architecture that supports component creation through
composition, ease of use for component developers, and
reusability. However, there are limitations that may not
make EJB the component architecture of choice. One of
the most critical requirements of a component is for it to

be an independent unit of software that can seamlessly
interoperate with other components regardless of the
developing language, platform, developing methodology,
and program types. Currently, EJB must be developed in
Java, but this restriction may be removed when Sun has
developed the Java to IDL mapping. However, this
approach adds an extra layer to the component model,
which may not be desirable. Another disadvantage of
EJB is the stringent concurrency requirements.
Applications assembled from enterprise beans and
executed in EJB containers are restricted to one process
and a single thread. These limitations make EJB a less
than ideal solution for addressing Sandia’s initiative of
providing an integrated computing environment of
heterogeneous tools and supporting component-based s
software development.

2.2. CORBA Components

OMG is working to extend the OMA platform to
include an infrastructure for programmers to assemble
software from off-the-shelf software components into
sophisticated, distributed applications. This infrastructure
is known as CORBA Components (CCM) [10]. Changes
to the OMA, as well as additional features are required to
support a component-based development model. As of
the March 1999 revised submission to the CORBA
Components RFP, CCM required an extension to the IDL
grammar to support new meta-types and grammar. It also
called for the addition of a component model, a
component implementation framework, a container
programming model, packaging and deployment, a
component meta-model, and a mapping to Enterprise
JavaBeans. CORBA component development begins by
specifying the business logic and any external interfaces
using the extended IDL (called CIDL). The business
logic implementation uses the component implementation
framework as the programming environment. Once the
code is completed, the CIDL compiler generates the
appropriate supporting infrastructure, which is used as
input to create the package for distribution. Similar to
Enterprise JavaBeans, CORBA components are executed
in a container that uses CORBA services to support the
components. ‘

As specified, CCM is a component model that supports

3

component composition, programming language and
operating system independence, and interoperates with
Enterprise JavaBeans. A disadvantage is that CCM
requires HOP as the single standard for a data transfer
prototype. From the specification perspective, CCM
addresses our requirements for developing and deploying
components; however, it does not address component-
based high performance computing. In particular, high
performance computing components require knowledge
of the target component locations. In addition, the
connection among high performance components must be
very efficient (e.g., a direct procedure call). CCM is built
upon CORBA distribution mechanism, which is location
transparent and connection speed is not a priority. This
contrasts with high performance components where
locality and speed are critical. The Component Mill fills
this hole in the spectrum of component architectures by
supporting both distributed serial and high performance
components, as well as, the interaction among these types
of components.

2.3. DCOM & ActiveX

Distributed Component Object Model (DCOM) [1] is
Microsoft’s integration infrastructure solution for
implementing components that reside on different hosts.
ActiveX [4] defines a set of services for supporting
component documents. DCOM and ActiveX only support
component development on Windows (effectively).
Furthermore, it does not suppGrt programming language
interoperability. ActiveX is not a component architecture
for general-purpose use, but is designed for the sharing of
document components. Thus, ActiveX using DCOM is
not the solution needed to address Sandia’s initiative due
largely to the strict Windows requirements. The
Component Mill architecture provides the mechanism to
assist in removing these platform restrictions.

2.4. Common Component Architecture

Common Component Architecture (CCA) [2] is a
developing component architecture specification that
supports high performance computing, which targets
networks of workstations, distributed-memory
multiprocessors, clusters of symmetric multiprocessors,
and remote resources. The specification is being
developed by a group of representatives from DOE
laboratories, academia, and industry with the aim of
defining a foundation for definition of standardized sets of
domain-specific component interfaces and for the
interoperability among frameworks and toolkhs
developed by different teams from different institutions.

The CCA working group has defined an overall
architecture for high performance components. In
particular, the specification specializes the interface

definition languages (IDL) to include grammar for
specifying attributes specific to scientific computing
software programs (e.g., parallel linear equation solvers).
CCA components use ports to support surface interfaces
that allow fast and collective interconnects among
components. These components are deployable into any
CCA compliant framework. Currently, the CCA working
group is prototyping the ‘architecture and learning from
the prototypes to improve the architecture.

The CCA is providing a mechanism for reusing high
performance computing software. However, the CCA
does not address= component-based software development
in an environment where applications execute (for the
most part) on a single processor, as well as where the
location of the components that makeup the application
can be located anywhere (location transparent). Since
CCA provides a solution for high performance
computing, the Component Mill adopts this work as a
baseline for addressing parallel and high performance
components.

2.5. Summary and Opportunities for the
Component Mill

The various component-based methods have been used
to develop a component model to create components.
However, these improvements do not directly address
integration of different models and heterogeneous
software, thus providing few opportunities for software
developed based on reuse. This requires an architecture
and sound methodology devoted to these principles.

While different component architectures have
incompatible languages, domains of application, and
functionality, most specify well-known and overlapping
design patterns for their mechanisms of composition.
Moreover, most implementations of various component
architectures can support many mechanisms for
composition even if a mechanism is not admitted by the
component model specification.

Here we propose just such a system that we call the
Component Mill. The Component Mill architecture seeks
to create an infrastructure for integrating heterogeneous
software and supports component-based software
development. An abstract component (meta-component)
is the underlying foundation of this architecture
expressing the design patterns for composition of which
its component model is capable. The following section
describes the specifics of this architecture and explores its
implications for interoperability.

3. Component Mill Approach

The basic premise of the Component Mill is to provide
an architecture that addresses the integration of

4

.

heterogeneous software (existing and new data and
systems) and supports a development environment based
on reuse. One option to achieving interoperability is to
transform heterogeneous software into an agreed upon
format producing software that interoperates in that
common domain. Recognizing that component
composition relies on implementation of particular
interfaces, a second option is to adopt the interfaces of
heterogeneous software into a common, interoperable
ground, leaving the implementations in their original
language, domain, and bindings. A disadvantage of the
former method is that existing software must be re-written
using the new format. This can be an expensive and time
consuming approach, especially in view of the fact that
the common format chosen for interoperability may itself
become obsolete. The latter method, in general, does not
change the intrinsic makeup of the existing software.
Interfaces to software functionalities are adopted, and are
exposed for reuse. The exposed capabilities (services) are

I

packaged into components that are composable with other
components, supporting integration and reuse. The
Component Mill supports both approaches (re-
engineering and adoption) of exposing existing software.

Figure 1 depicts the Component Mill’s elements and
their relationships to support re-engineering and adoption
techniques for reuse.

As depicted in Figure 1, the Component Mill uses the
adapter design pattern (adapterl, adapter2, adapterN) to
expose existing software (Existing Application, Legacy
Data, and Existing High Performance Application) into
services (serl, se~2, and serN) that are used in the creation
of components (coml and com2). The Component Mill
also supports component construction from scratch “
(corn3) or through composition of existing components
(com4). Component creation is supported by the
Component Constructor (architectural element of
Component Mill).

Component Constructor 1 adapterl
~ IF?lm

I (-M-A -1/’” ‘“ ‘ I JEilkd
coma coml sari Existing High Performance Application

Component Interface

Repoaitcfy Repository I
~~ I ‘-Existing &plication

I Component Mill I

Figure 1. Exposing Existing Software for Integration and Reuse

CORBA Container

CCA Container

Program Z

E
Figure 2. Use of Meta-Components To Support Technology Independence

5

The exposed services and components are stored in
repositories (Interface Repository and Component
Repository, respectively) for continuous reuse. These
components (coml, com2, com3, and com4) are reusable
to create new software and the components are
composable for integrating existing software. Thus, the
Component Mill supports software integration using the
adapter design pattern, the concept of components as
interchangeable software parts and persistent storage.

In addition, the Component Mill architecture follows
the same approach as CORBA Components and
Enterprise JavaBeans in separating components (business
logic) from execution environments and common services
(containers), Components created by the Component
Constructor are free to execute in any component-based
runtime environment (e.g., Enterprise JavaBeans,
CORBA components, etc.), thus, providing technology
and platform independence. Figure 2 illustrates elements
of the Component Mill that support this capability.

As shown in Figure 2, the Component Mill specifies a
mechanism for bridging between the Component Mill
components and the execution environment of choice.
For instance, deploying com3 in CORBA Container only
requires a representation of the Component Mill
components to the CORB A Container mapper (mapperl).
Thus, deploying components in a different execution
environment is a matter of supplying a mapper for that
particular component technology. The mapper bridges
between exposed service interfaces or created meta-
component interfaces to the particular component
technology, thus, it is a shadow mapper. A major
advantage of this approach is the isolation of the
infrastructure from the turmoil of component maturity.
Also, this makes the environment realized by the
Component Mill easier to maintain and improve. A
realization of the Component Mill does not have to stake
the future on one component technology; it can hedge its
bets. In this architecture, the components are meta-
components and can be mapped to any component
technology as long as the mapper exists, and the valences
of the component technology support the functionalities
of the meta-component. Whether or not a mapper exists
depends on a number of factors and is discussed in more
detail in Section 4. Another benefit of this approach is
that components are “thin” components that contain only
its business logic and the necessary surface interfaces for
external interactions and introspection. The executing
environment or the mapper represents all the necessary
mechanics and services. To summarize, the Component
Mill is an architecture that supports integration of
heterogeneous software and provides an environment for
software development based on reuse. With the same
importance, Component Mill components can be used
with any component-based technology. A more in-depth

description of the Component Mill is provided in the next
section.

4. Component Mill Architecture

As discussed in Section 3, the Component Mill is an
architecture that supports integration of heterogeneous
software and provides an environment for software
development based on reuse. In addition, Component
Mill components are executable with any component
technology, providing a technology independent

architecture. Figure 3 depicts the architectural elements
of the Component Mill and the relationships among these
elements.

Figure 3 shows that the core of the Component Mill
architecture is the Mets-Component Model. This model is
a formal abstraction of software components to a point
that it is independent of any component technologies
based component representation. XML is the technology
selected to realize this element of the architecture. The
Component Constructor uses the meta-component model
to create components. Components are defined as being
independent, deployable units of software that consist of a
collection of standard interfaces exported to the external
environment (applications or components). In addition,
components must be composable with other components
through their interfaces. The Component Constructor
creates components from scratch, through composition of
other components or exposed services. The Component
Adapter is a specification and interface implementation
for adapting existing software for reuse. There is an
adapter for each exposed capability. This software may
or may not be created from an existing component model.
If the software is not already a component, the adapter
makes it one. All adapters are stored in the lnte~ace
Repository and make the exposed services visible to the
Component Constructor. Analogously, all created
components are stored in the Component Repository, and
the Component Constructor uses the Component
Repository to determine which components are available
for composition to create a new component. The
Component Constructor also uses the Component Locator
to discover components that are managed by other
federated Component Constructors, where the
components are executable in any component technology.
This is realized using the Component Generator, which is
a specification and interface implementation for mapping
the Component Mill component representation to the
particular component technology. In summary, these
architectural elements (Mets-Component Model,
Component Constructor, Component Adapter, Interface
Repository, Component Repository, and Component
Generator) together with their interactions are the
Component Mill. Together, these elements support the

.’

goal of software integration and reuse. The remainder of elements.

6

this section provides a detailed description of these

?
Application Developers 7 @@Component Developers

IY‘ ..,..,.
I n>.-’,

Deployment Development

U____)

Agent-based
repository

Figure 3. Component Mill

Though the Component Mill can map from one
component model to another using the meta-component
representation of composition design pattern, this begs the
question of compatibility between composition patterns.
In other words, regardless of the power of the concept, the
Component Mill cannot express a composition
mechanism that a particular component model cannot
support. The valences of a particular component model,
which can be thought of as the expressivity of the
component model, are limited by its design. The ability
of a particular meta-component to be mapped into a
particular component model representation depends on
what valences the meta-component exercises and whether
the component model can express it. This is less
restrictive than it might at first appear however. For
example, Java Beans has exactly one mechanism for
composition: a Notifier/Listener design pattern. At first
glance it would appear that a CORBA3 component
needing a Facet/Receptical (aka Uses/Provides) design
pattern would be fundamentally incompatible. The
Notifier/Listener pattern specification in Java Beans is too
weak to support the Facet/Receptical pattern in CORBA3,
though the converse is not true. While the JavaBeans
specification is indeed too weak to support this pattern,
Java is not. However, the Component Mill can map the

Facet/Receptical design pattern to a particular
representation in Java not covered by the Beans
specification, but supported by the language in which all
Beans are written: Java. By fashioning the Component
Generator element to always do this FacetlReceptical
translation consistently, CORBA3 components will still
interoperate with CORBA3 components, even when
mapped to a JavaBeans world.

The Component Mill only requires that a particular
component system (EJB, JavaBeans, CORBA3) supports
a particular design pattern and does not rely on the
component system’s specification to have included that
pattern as a composition mechanism. This relaxes the
design space considerably and effectively permits almost
any full-featured component system to participate in the
Component Mill architecture.

4.1. Meta-Component Model

The Component Mill, using the Component
Constructor, supports creation of components from
scratch, through composition of existing components or
exposed services. The Component Constructor uses some
formal abstract representation to capture and create

7

components. The representation must capture the
semantics of the component surface interfaces without
depending on any component technology based

representation. More importantly, the representation must
be sufficiently rich such that the component interfaces can
be mapped to any component technology representation
of a component, hence “meta” components. The Meta-
Component Model describes this formal representation.
Key parts to the model are: 1) the component identity, 2)
the component standard external interfaces, 3) the
component factory, and 4) the component definitions.
Specifically, the Mets-Component Model uses ports to
represent the component external interfaces. The Meta-
Component Model supports four basic ports: Facet,
Connector, Events, and Inspector. Facet is an interface
that exposes a set of business logic to the external
environment and allows clients or applications to interact
with the component. A component may have several
facets, each representing a different user perspective of
the component. The Connector is an interface that
provides interactions between components. This interface
supports composition of components to create new
components. In the default case, this port is implemented
as a direct- connect port, which implies that a connection
between two components must be as efficient as a direct
method call. This is required to support high performance
component connections. The Connector ports are
specialized into distributed connector ports to support
remotely distributed connections between components.
Events are ports that emit particular events to, or receive
specific events from a connected port. Lastly, an
inspector is a port that dynamically reads the external
environment to determine its capabilities based on this
information. The Component Constructor uses the Meta-
Component Model to define components.

4.2. Component Constructor

The Component Constructor is core to the architecture.
Using the Meta-Component Model, it provides the
infrastructure for construction and creation of software
components from scratch, through composition of
existing components or exposed services. After suitable
pre-configuration of the legacy software, the Constructor
provides the users the capab~lity to automatically browse
legacy data, legacy services, and existing components to
create new components dynamically. That is, amorphous
legacy software is converted to a component by adapting
facets to the original software. The Constructor uses the
Interface Repository to retrieve exposed services.
Similarly, the Constructor depends on the Component
Locator to retrieve existing components from the local or
remote Component Repository. The Constructor uses the
Component Generator to export software components
stored in the Component Repository into various
component forms (i.e., Enterprise JavaBeans, CORBA

Components, COM, etc.). Once components are
exported, they can be deployed in the supporting server.
For example, Enterprise JavaBeans components are

deployable into EJB Container and are supported by the
EJB Server.

The Component Constructor is part of a decentralized
federation of Component Constructors. This implies that
each Component Constructor manages its own set of
federated Component Constructors. To be part of a
federation, the Component Constructor must be able to
import from at least one other Component Constructor in
the federation. T-he Component Constructor that exports
to a remote Component Constructor has an export
contract with the remote Component Construct. The
remote contract is an agreement between an importing
and exporting Component Constructors.

4.3. Component Adapter

The Component Mill architecture supports both re-
engineering and adoption approaches to integration. Re-
engineering integration is supported through the re-
construction of existing software into components using
the Component Constructor. Adoption integration is .
realized with the Component Adapter. A Component
Adapter is a reification of the object adapter [8] that
provides the logic for mapping legacy software into a
representative that is understandable by the Component
Constructor. There must be an adapter for each exposing
capability. All adapters are registered with the
Component Mill and are stored in the Interface
Repository, which is used by the Component Constructor
to make the exposed services visible to the users.
Specifically, each adapter must consist of multiple
elements. The first and required element is the IDL that
describes service signatures that are either retrieved
legacy data or maps to one or multiple combinations of
legacy system services. Another item is the necessary
logic to export the mapping of the IDL to the legacy data
and systems. An optional item is the logic to support
distribution (i.e., stub and/or tie files) if the legacy data or
systems are located remotely and the package is described
using XML. The Component Mill architecture supports
both static and dynamic deployment of the adapters. The
static deployment allows the adapters to be loaded into
the Interface Repository during the Component
Constructor activation process. Static deployment
requires that the location of the adapter be specified to the
Component Constructor.

4.4. Repositories

The Component Constructor uses the Component
Repository to store the components for tracking and for
Component Constructor federation activities. Similarly,

-.

8

the Interface Repository tracks the component adapters
that are adapted by the Component Constructor. In
particular, they record the adoption interfaces and the
associated package information. The tracked interfaces
are used by the Component Constructor to provide the
users with exposure to legacy data and systems.

4.5. Component Generator

The Component Constructor uses the Component

Generator to export components stored in the Component
Repository into representations supported by the various
existing component technologies (i.e., Enterprise
JavaBeans, CORBA Components, COM, etc.). If the
components are to be deployed on the Component Mill
supported containers (CM and CCA Containers) then
either none or very little mapping is required. The

Component Generator is an interface specification that
allows Component Mill components to be deployed on
any component technology.

The Component Generator uses the adapter pattern to
map the Component Mill component representation into a
particular component model used by the particular
component technology. During the component generation
phase and if the exporting components contain exposed
services, the Component Generator automatically
produces the appropriate bindings to the legacy data and
systems using the data provided by its adapter. Similarly,
if the generated component consists of other components,
the Component Generator generites the necessary binding
to the sub-components regardless of the location. In
addition, each extracted component has built-in
authenticating and authorizing information to control
access to the component.

4.6. Component Locator

The Component Constructor uses the Component
Locator to retrieve components from the local Component
Repository and any federated Component Constructors
within the search path. One possible implementation is to
use intelligent agents to actively search the Component
Mill federation space to provide the current Component
Constructor with information about remote components.
Another option is to the conventional federation approach
to determine remote components.

5. Component Mill Application

The Component Mill aids in the realization of the
Sandia initiative to provide an integrating computing
environment to the nuclear weapons designers and
analysts. The Component Mill serves as a blueprint for
integrating the heterogeneous software and providing an
environment for reusing components. The realization is
planned in stages, with the first stage being to develop the

Meta-Component Model for component abstraction and
creation. The second stage is to adopt legacy data and
systems to expose their services for reuse, where this
adoption is governed by the Component Adapter interface
specification and recommended adoption techniques. The
third stage requires development of a mapper using the

Component Generator to a particular component
technology. At this point, with some manual
manipulation, the instantiation of the Component Mill
will be realized. The fourth stage involves implementing
the Component Constructor to automate component
creation and adoption of existing software and mapping to
particular technologies. The fifth stage introduces the
Component and Interface Repositories to store
components and exposed services. The last stage adds the
Component Locator for broader reuse. Currently, Sandia
is developing stages one and two concurrently with plans
to complete the instantiation of the architecture within the
next year

Sandia is also planning to deploy the realized
infrastructure in increments. The first phase is to create
reusable components either through adoption of existing
capabilities or by creating new components. In the
second phase, Sandia’s development process will be -
modified to include reusing components and integrating
existing capabilities. The benefits (software reuse and
integration) of the Component Mill will be realized with
completion of the second phase.

In the first phase of deployment, Sandia is scheduling
to adopt the various existing software into components, as
well as to create components from scratch as needed. An
example of reusable capability is the Combine service of
GJOIN [12]. GJOIN is a stand-alone tool used at Sandia
to assemble multiple meshes to create a finite element
model. Also, it is written in FORTRAN, only has
command-line driven interfaces, and can only execute on
the Unix platform. Some software products need the
Combine capability, but they are deployed in a different
execution platform. GJOIN Combine service can be
made available to these products by providing
CombineAdapter to the Component Constructor. The
CombineAdapter is an instantiation of the Component
Adapter specification. Once the service is exposed to the
Component Constructor, it can be used to create the
MeshManipulation component, which is stored in the
Component Repository. For instance, if Applica~ionX is
an EJB program, then the MeshManipulation component
is converted to enterprise bean using the
CMtoEJBGenerator, which is created using the
Component Generator specification. Thus, with the
Component Mill, the GJOIN Combine server is reusable
regardless of the executing technology without the need to

maintain multiple versions of the MeshManipulation
component or changing the original capability.

.

9

6. Conclusions and Future Work

The Component Mill is an architecture based on meta-

components to create an environment for software
integration and reuse. Core to this architecture is the
Component Constructor, which uses the Meta-Component
Model to create components from scratch, through
composition of existing components or exposed services.
Legacy data and systems are exposed using the
Component Adapter, which uses the concept of adapter
design patterns. The adapters are stored in the Interface
Repository for retrieval by the Component Constructor.
Analogously, all components created by the Component
Constructor are stored in the Component Repository for
reuse. The Component Constructor relies on the
Component Locator to determine availability of
components for reuse. The Component Locator searches
its local repository and migrates to remote repositories
that are within its visibility. Components are deployable
in any component technologies supported with the
Component Generator. If existing technologies are not
sufficient, then the Component Mill specifies two
containers tailored to provide the necessary services that
addresses Sandia’s needs. One of the containers is used
to host massively parallel and high performance
components (CCA Container) while the remaining
components are executable in the CM Container. All
these architectural elements interact in a specific manner
to support the Component Mill architecture, which is used
for software integration and reuse.

The architecture has positive implications for both
San&la and industry. For industry, the Component Mill is
useful to expose legacy data or applications that are
critical to the success of companies that have reached
their limits in both scalability and modification
improvements. At Sandia, the Component Mill is being
used as a blueprint for realizing the vision of providing an
integrated computing environment to the designers,
analysts, and support personnel for stockpile stewardship
of the nuclear weapon complex. Within the next year,
Sandia is planning to provide an instantiation of the
Component Mill through incremental development.
Validation will be done at each increment, where the
components and each of the architectural elements will
have built-in mechanisms for validation. Validation
criteria include the numbers of reuses per component,
number of heterogeneous software interoperating, and the
scalability of the integration.

After the first instantiation of the Component Mill,
lessons learned will be incorporated in the architecture.
The fust instantiation will not include the Component
Locator or a federation of the Component Constructor.
These will be added in the second year. The first
implementation of the Component Locator will use
simple federation policies. In concurrence with the first

instantiation development, intelligent agents are being
designed and implemented to enhance the federation
policies. Other future work will include automation of the
component-based software engineering process and
development of intelligent agents to more effectively
support maintenance and management of the
environment.

7. Acknowledgements

Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy under Contract DE-
AC04-94AL85000.

8. References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

R. Abernety, R. Morin, and J. Chahin, COM/DCOM

Unleashed, Sams Publishing, 1999.

R. Armstrong, D. Gannon, A. Geist, K. Keahey, S.
Kohn, L. McInnes, S. Parker, and B. Smolinski,
Toward a Common Component Architecture for
High-performance Scientific Computing, In
proceedings of Super Computing, 1999.

D. Box, Essential COM, Addison-Wesley, Reading,
MA, 1998.

Chappell, D. Understanding ActiveX and OLE,
Microsoft Press, 1997.

B.J. Cox, There is a Silver Bullet: Reusable
Components, Byte, 15, 10, (October), 209-218,
1990.

B.J. Cox, Planning the Software Industrial
Revolution, IEEE Software, 7,6, (November), 25-33,
1990.

Developing a Handbook for Component-Based
Software Engineering, Proceedings of the
International Workshop on Component-Based
Software Engineering held in conjunction with 21s’
International Conference on Sojiware Engineering
(ICSE), Los Angelas, CA, USA, May 17-18,1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, Reading, MA,
1995.

A. Meadow and J. Feiler, Essential OpenDoc:
Cross-Pla#orm Development for 0S/2, Macintosh,
and Windows Programmers, Addison-Wesley,
Reading, MA, 1996.

‘

.

10

[10] Object Management Group, CORBA Components,

OMG TC Document orbos/99-02-05, March 1999. [13] Sun Microsystems, Enterprise JavaBeans
Specification, Version 1.1, August 9, 1999.

[111 SCIPIO Consortium, SCE’10, (available at
http://www.scipio. erg/). ‘ [14] Sun Microsystems, JavaBeans Specification,

Version 1.01, July, 1997.

[12] G. Sjaardema, GJOIN: A Program for Merging Two
or More GENESIS Databases, Sandia Report,
SAND92-2290, Sandia National Laboratories, 1992.

.

