
.
.

c

5@tiDmo”/971~.
~~~~\vED

‘~~f52/’)()/)

Algorithmic Strategies in Combinatorial Chem&f&~/

Deborah Goldman* Sorin Istrailt Giuseppe Lancia~ Antonio Piccolboni$

Brian Walenz$

Abstract

Combinatorial Chemistry is a powerful new technology
in drug design and molecular recognition. It is a wet-
laboratory methodology aimed at “massively parallel”
screening of chemical compounds for the dkcovery of
compounds that have a certain biological activity. The
power of the method comes from the interaction be-
tween experimental design and computational model-
ing. Principles of “rational” drug design are used in the
construction of combinatorial libraries to speed up the
discovery of lead compounds with the desired biological
activity.

This paper presents algorithms, software develop-
ment and computational complexity analysis for prob-
lems arising in the design of combinatorial libraries for
drug discovery. We provide exact polynomial time al-
gorithms and intractability results for several Inverse
Problems – formulated as (chemical) graph reconstruc-
tion problems – related to the design of combinatorial
libraries. These are the first rigorous algorithmic re-
sults in the literature. We also present results pro-
vided by our combinatorial chemistry software package
OCOTILLO for combinatorial peptide design using real
data libraries. The package provides exact solutions for
general inverse problems based on shortest-path topo-
logical indices. Our results are superior both in accuracy
and computing time to the best software reports pub-
lished in the literature. For 5-peptoid design, the com-
putation is rigorously reduced to an exahustive search
of about 2% of the search space; the exact solutions are
found in a few minutes.

1 Introduction

1.1 The Combinatorial Chemistry Framework
Chemical Indices and Inverse Design Prob-

lems based on them. The area of quantitative
structure-activity relationship (QSAR) identified for

.

~Berkeley, dgoldman@c.%berkeley.edu
tSandia National Laboratories, scistra&s.sandia.gov
$UnivemitYof Padova, Iancia@dei.unipd.it
$UC!Davis, piccolbofhcdavis. edu
f Sandia National Laboratories, bwalenz&s.sandia. gov

chemical compounds various measures, or indices, that
provide correlations with the likelihood of biological ac-
tivity. There are 2D measures (at the level of the chem-
ical graph) aad 3D measures (at the level of coordi-
nates for its atoms in the 3D space). In our context,
“biological activity” is a complex process of molecular
recognition, binding, and possible conformation change
between one small compound, and a large biological
complex (e.g., a protein complex). It is very difFi-
cult to capture the notion of biological activity within
the ilamework of numerical measures at the compound
level. However, some measures were found that that
work well. One notorious example is the Wiener index
defined as the sum of pairwise shortest path distances
between atoms in the chemical graphs of the compound.
It correlates with physiochemical characteristics such
M the boiling point. A variety of chemical topological
(2D) and topographiczd (3D) indices were introduced
and much research was performed towaxds the under-
standing of their correlation with various types of ac-
tivities.

A chemical index is a map from the set of chemical
compounds to the Real numbers. One could think of
the co-domain of thk function as the “activity space”.
Compounds with similar activity are mapped “close”
in the space. Typically huge numbers of compounds are
mapped to identical, or near identical index values. In a
natural way, given some activity level/value, or a region
in the activity space, one wants to design chemical
compounds having that index value, or whose index is
in that region. Solving these types of inverse problems
is the subject of our paper. The input data for these
computational problems are laboratory experiments,
where some lead compounds were identified. The
problem is to generate new laboratory experiments that
will accelerate the likelihood of discovering new, more
powerful, compounds. In order to do so we have to
solve inverse problems based on specific indices. One
wants several solutions for the inverse problem that are
as “diverse” (different chemcial structure) as possible.
Based on them, a new combinatorial library is created,
and new lead compounds are dkcovered.

1



.
.

Chemical Graph Reconstruction Problems, duction of a simple cornputatiomd filter – the flower
New types of graph reconstruction problems occur in compression – and show how it can be used to group
thk area whose solutions are needed for the design of many graphs which have related Wiener indices and
combinatorial libraries. One type involves constructing discard, at once, whole families of unfeasible solutions
graphs or trees having a given topological index. A sec- without examining their members in detail. Our al-
ond type involves selecting chemical fragments from a gorithms can be easily generfllzed to find all (or any)
library and creating “artificial proteins”, called cmnbi- feasible molecule whose topological index of interest is
natorail peptides, that match a given index. within some given range from a specific target. Our

software package OCOTILLO contains the implemen-
1.2 Algorithmic Challenges tations of several algorithms that exactly solve inverse

In thk paper we will consider in particular the problems based on general shortest-paths indices.
Wiener index (the sum of the distances in the graph
between each pair of vertices), which is probably the 1.3 Previous Work
most widely known ([1]). Combinatorial chemistry research started in the

The Wiener index, W, was devised by the chemist early 1990s (see [5, 7, 8, 9] for early developments and
Harold Wiener in 1947 [2], who found a strong correla- history).
tion between W and a variety of physical and chemical A lot of studies were devoted topological indices and
properties of alkanes, alkenes and arenes. correlations with biological activity [10, 11, 12, 13, 14],

With respect to the inverse problem on unrestricted including an entire book “Chemical Graph Threory”, N.
graphs, we will show that in general it has a simple Trinajstic [15].
solution both in its decision (does a graph with a given Heuristic approaches to combinatorial chemistry
Wiener index exist?) and construction versions. The design problems are discussed in [3, 16].
problem however becomes more complex if we add the
constraint that the graph must be a tree. For this case 1.4 An outline of the paper
we give a pseud~polynomizd dynamic programming The remainder of the paper is organized as follows.
procedure which builds a tree with a given Wiener index In section 2 we introduce some suitable notation. Sec-
(if one exists), but we do not know the complexity of the tion 3 is devoted to the inverse Wiener index problem
decision version. WMe analyzing the inverse problem for general graphs (subsection 3.1) and trees (subsec-
on trees, we come to the definition of a new interesting tion 3.2). Section 4 discusses the problem of recon-
topological property, that is the loads distribution for strutting a tree from its set of splits. In section 5 we
the edges. We show that finding a tree whose edges address the problem of building a peptoid with a given
have given load values is NP-complete, and describe a Wiener index. Subsection 5.1 contains a polynomial
search procedure which solves the problem very quickly algorithm, based on dynamic programming, for find-
in practice. ing one such peptoid, while subsection 5.2 describes a

As far as the construction of peptoids is concerned, fast search procedure capable of listing all feasible so-
our work focuses on inverse problems based on 2D and lutions and reports on our computational results of the
3D QSAR descriptors (which include the Wiener index, OCOTILLO package.
but also the Atom Pairs, the Bemis-Kuntz histogram
of triangles) that have been proven effective in a num- 2 Preliminary Definitions
ber of projects for selecting active molecules from large DEFINITION2.1. (hen a graph G = (V, E), by dG(z,~)
databases. Formulated S.Sgra@ recon+ruction w+ we &nO& the shortest path (i.e. with the smallest
Iems, a typical inverse problem is defined as follows.
Given a combinatorial library for peptides with IV units,

number of edges) between two vertices i and j. If G
is a tree, then dc (i, j) is the length of the unique path

with fragment libraries for every position of maximum between i and j. We simply write d(i, j) if the graph or
size L and an integer W, find a set of high diversity tree is understood from the context.
peptides whose Wiener index is W.

We present a polynomiaJ time algorithm, based on
dynamic programming, for such inverse problem. Fur-

As is customary, we may often denote by n, or n(G),

ther, we describe a software implementation of a search
the number of nodes of a graph. We denote by K. the

.
algorithm, capable of finding all possible solutions, that

complete graph on n nodes. Sn is a star on n nodes (all

outperform the existing methods proposed in the liter-
nodes but one are leaves). Pn is a path of n nodes.

ature (see e.g. [3, 4, 5, 6]). Our strategy is based on
For ease of notation, in the following definition and

an effective pruning of the search space, via the intro-
in the remainder of the paper, when we write ~i,jev,
the summation has to be understood as actually re-



DISCLAIMER

t
This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use wouid not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.



.
.

i

V*

v, v, ““

In order to prove this theorem, we need the follow-
ing lemma:

LEMMA 3.1. For every graph G = (V, E) w“th diameter
2 and Wiener index W, the gmph G’ = (V, E U {e}) for
e # E has Wiener index W – 1.

Proof. Let e = (q, V2). Clearly dG(Vl, VZ) = 2 and
d@ (v1, VZ) = 1. Any other distance is preserved by this
transformation. ■

We are now ready to prove Theorem 3.1.

Figure 1: A 3-peptoid; the three fragments are anchored
on a linear sctiold at positions V1, V2 and V3.

stricted to pairs of distinct vertices.

DEFINITION 2.2. Given a graph G = (V, E), its Wiener
index w(G) is the total node-to-node path length. That

‘@ w(G) = ~i,j~v dG(i, j).

The following graphs are used to describe formally
the problem of the combinatorial synthesis of specific
molecular structures.

Proof. Let Go = S., the star of size n. We have
T.o(GO)= (n – 1)2 and the diameter of Go is two. Let
G1 be the graph obtained by adding to GO an edge not
already contained in it. G1 is either& or has dkuneter
two, and by the above lemma w(G1) = w(Go) – 1.
It it possible to repeat thhi procedure until the graph
obtained is Kn and w(~n) = n(n – 1)/2. At any step,
the lemma guarantees that w(G~) = w(Gk.l ) – 1. Thus
each number in the interval In = [n(n - 1)/2, (n - 1)2]
is the Wiener index of Gk for some k.

Since the intervals overlap for n >4, and including
the interval values for n =4, we find for W >5 there is a
graph G such that w(G) = W. 1,3 and 4 are the Wiener

DEFINITION 2.3. A (chemical) fragment is a graph G index of P2 (a path of length 2), & and P3, resp. To

with a special vertex v denoted as its anchor, or hook- prove that there is no graph G such that w(G) = 2, it

ing point. A peptoid is a graph obtained by join- is enough to observe that the graph on n nodes with

ing in a linear fashion from left to right, k fragments the smallest Wiener index is K., and the one with the

Gl,... , Gk via a path through their hooking points (Fig-
largest is Pm, but W(P2) = 1 and W(K3) =3. N

w-e 1). Note that, when k = 1, a fragment is a spe- The theorem is constructive and leads in a straight-
cial case of a peptoid. For a peptoid D = (U E), by forw~d waY to ~ ~gorithm solving the seaxch problem,
l(D) := &v dG(i, vk) we denote the total distance of that is outputting a graph with the required given in-
all vertices from the n“ghtmost hooking point Uk. ‘“~ dex. Since the size of the graph is polynomial in the
k = 1, 10 gives the total distance from all nodes of a Wiener index and a number cm be represented with a
fragment to its anchor. logarithmic number of bits, this algorithm can be classi-

We cam think of a rooted tree as a special case of fied as pseudo-polynomial — that is, it is polynomial in

fragment whose hooking point is its root. Henceforth the parameters describing the problem but not on the

we have the following definition for rooted trees. size of the representation of the input. More in detail,
the computation time is dominated by the time neces-

DEFINITION 2.4. Given a tree T = (V, E) with root sary to output the graph, that is 0(n2). Since for the
v E V, the total distance of its vertices jl-om the root class of graphs considered n(n – 1)/2 ~ W ~ (n – 1)2,
is /(z’) := &v d(i, v). the time complexity is also O(W).

3 The Inverse Wiener Index Problem 3.2 The inverse Wiener problem for trees

We have developed graph theoretic results for the The problem we will be concerned with in this

reconstruction problem based on the Wiener index. subsection is the following: given a positive integer W,
find whether there exists a tree T s.t. w(T) = W. We

3.1 The inverse Wiener index problem for will consider also the problem of finding such a tree.

graphs Clearly, Theorem 3.1 involves non-trees, and thus it
does not apply to this more constrained setting. Indeed,

THEOREM 3.1. For any W # 2,5 there em”sts a graph there are many integers that are the Wiener index of
G such that w(G) = W some graph but not of any tree. Using an algorithm we



..

will describe in the following, we checked exhaustively
for W <10000 and 159 turns out to be the largest such
example. This experimental evidence together with the
analogy with the case of graphs leads to the following
conjecture:

CONJECTURE3.1. Eve~ positive integer but a jinite
see is the Wiener indez of some tree.

The above conjecture appeared first in [17], where
it wm verified for W up to 1206 by a complete enumer-
ation of all unlabeled non isomorphic trees of up to 20
nodes. If true, it would imply that the decision problem
is trivial, but the proof would not necessarily lead to an
efficient solution of the search problem.

3.2.1 A recurrence relation for the Wiener in-
dex

It is possible to prove a recurrence relation for the
Wiener index of trees which is closely related to the
one we will prove for peptoids in 5.1. Let T = (V, E)
be a tree and (VI, V2) an edge. Let 2’1 = (Vl, El) and
T2 = (V2, ~) be the two trees obtained by removing
(vl, V2). Let us sssume that T and T1 are rooted in VI
and Tz in vz. We have the following recurrence for w(.),
1(.) and n(.):

THEOREM 3.2.

(3.1) n(Z”) = n(TJ + n(Z’Z)

(3.2) 1(T) = Z{T,) + l{Tz) + n(Tz)

(3.3) w(T) = w(T,) + w(T2.) + l(T,)n(T2) +

l(T2)n(T’J + n(Tl)n(T2)

Proof. 3.1 is obvious. To prove 3.2 we use the definition
of Z(.) and rearrange the summations slightly, as follows:

1(2’) = ~ Ci(vl, ?.))
VW

= ~ d(v,,v)+ ~(d(v,,v)+l)+l
KV1 VEV2

= l(T1) + 1(2’2,)+ r@’J

The same technique leads to the
.

‘Narnely:{2, 3, 5, 6, 7, 8, 11, 12, 13, 14,
24,26, 27, 30, 33, 34, 37, 38, 39, 41, 43, 45,

proof of 3.3

15,17, 19, 21, 22, 23,
47,51, 53, 55, 60, 61,

69, 73, 77, 78, 83, 85,87, 89, 91, 99, 101, 106, 113, 147, 159}

~ 4V,W)
V,WEV

~ d(v,~) + ~ d(v,w) +
V,wcvl V,WEV2

~ d(v>w)
Vcvl,wcvz

W(~l) + w(Tz) +

~ (d(v,vl) + 1 + d(v2,w))
Vcvl ,WEVZ

W(T1) + W(T2) + l(T1)n(T2) +

l(T2)n(T1) + n(7’l)n(Tz)

3.2.2 A dynamic programming algorithm for
the inverse Wiener index problem -

This recurrence relation leads naturally to a dy-
namic programming algorithm for the problem of find-
ing a tree T with assigned w(T), Z(T) and n(T) .
The key observation is the following: every tree with
at least one edge can be decomposed in the way dic-
tated by the above recurrence, that is by removing an
edge. Whatever the edge removed, we obtain two trees
T~,i = 1,2, and for each i, w(Ti) < w(T), l(T~) < 1(T)
and n(Ti) < n(T). Let us define a matrix M so that
.MW,L,N be 1 if there is a tree T such that w(T) = W,
1(T) = L, and n(T) = N, Ootherwise. According to the
above recurrence MW,L,Ncan be computed if MWI,LI,NI
is known for every W’ < W, L’ < L and N’ < N. This
implies that it is possible to compute the entries of M,
starting form the initial value Mo,o,l = 1 and evaluating
to Oall the entries correspondhg to W, L, N values out-
side feasible bounds, proceeding in an orderly fashion.

This algorithm solves as well the inverse Wiener
index problem: given W, we compute upper bounds
for the largest L and N such that the triple (W, L, N)
is feasible. Then we fill the matrix M up to the entry
hlw,L,N. If for any L: ~ L, N’ ~ N Mw,L~,N, = O then
there is no tree T such that w(T) = W.

The algorithm can be extended so as to return a
tree with the required properties: as it is customary in
dynamic programming, it is enough to store, whenever
an entry of M is set to 1, the indexes of the two entries
to which the recurrence relation has been successfully
applied.

In our implementation we use a technique related
to dynamic programming called memorization. Instead
of filling the matrix M bottom up, this technique ap-
plies recursively the recurrence relation. To avoid re-
computation of the same entries, intermediate results

.



get stored in M. It can be thought of as a top-down
version of basic dynamic programming. It is worth not-
ing that without storage of intermediate results the time
complexity would blow-up exponentially, because of the
repeated recomputation of the same entries in M. This
technique is valuable when an algorithm can be termi-
nated without filling completely the matrix M. Other-
wise, the number of entries evaluated is the same, but
there is a slight overhead due to function calls and stack
management. For our problem, memorization turns out
to be much faster for “yes” instances. For example,
(524,36,19) is a “yes” instance and requires less than one
second to compute, while (525,36,19) is a “no” instance,
requiring 145 seconds. This example is rather extreme,
but this behavior is absolutely consistent. This evidence
prompts for further research along different lines:

● quantify and analyze this asymmetry between
“yes” and “no” instances;

● exploit it to make the computation more efficient (is

it safe to “give up” after a reasonably short running

time? In exploiting the recurrence, is it faster to
compute many entries in parallel and stop when the
first successful computation is over?)

As a further algorittilc refinement, already ex-
ploited in the above mentioned experimental results,
we adopt also a divide and conquer strategy, whenever
possible. Since there are many possible ways of using
the recurrence relation, we try first the ones for which
n(’T1) E n(T2). This way we proceed directly to the
smzdlest possible sub-problems. This approach is in-
effective in the worst case (consider W = (N – 1)2,
L = N – 1,that is a star on IV nodes), but suggests a
sensible order in which to proceed.

The pseudo-code is given in Appendm A.

3.2.3 Recurrence relations for the Wiener in-
dex of bounded degree trees and k-ary trees

Often the graphs of molecular structures have in-
trinsic constraints on the degree of the nodes. For in-
stance, when the nodes represent individual atoms and
edges chemical bonds between them, we obtain a graph
whose maximum degree is not greater than 4 ([15]).

Unfortunately, Theorem 3.1 does not apply to
bounded degree graphs. On the contrary, the use of
graphs with high degree seems essential to its proof.
The situation is better for trees, since we can develop
recurrence relations of the same kind of the one in Theo-
rem 3.2, and this recurrences lead to dynamic program-
ming algorithms similar to the one just shown. Let us
first deal with bounded degree trees. Besides the quan-
tities used so far — w(.), 1(.) and n(T) — we need two
more definitions,. Let mdeg(.) be the maximum degree

of a tree and rdeg(.) the degree of its root. As for The
orem 3.2, let T = (V, E) be a tree and (v1, VZ) an edge.
Let 7’1 = (Vl, El) and T2 = (V2, J?%)be the two trees ob-
tained by removing (q, VZ). Let us assume that T and
T1 are rooted in V1 and T2 in vz. We have the following

THEOREM 3.3.

mdeg(T) = max(nuieg(Tl ), mdeg(Tz),

rdeg(Tl) + 1, rdeg(T2) + 1)

rdeg(T) = rdeg(Tl ) + 1

Together with Theorem 3.2, Theorem 3.3 character-
izes the existence of a tree with the required properties
and thus can be used to define a dynamic programming
algorithm. This time, though, the matrix &f contain-
ing the partial solutions will have five dimensions, to
account also for mdeg(.) and rdeg(.). The worst case
bound for the running time has to be updated accord-
ingly.

We turn now to k–ary trees. To develop a recur-
rence for the Wiener index in this case, we still rely on
the quantities that proved useful so far — namely w(.),
1(.) and n(T) —, but we decompose a tree in a differ-
ent way . Instead of using cuts as before we exploit the
definition of k–ary tree. Let T = (V, E) be a k–ary tree
and let Ti = (Vi, Ei) be the k subtrees hanging from its
root. We can prove a yet more complex recurrence for
the Wiener index in this case.

THEOREM 3.4.

(3.4) n(T) = ~ n(TJ + 1

(3.5) 1(T) = ~(l(Ti) + n(T,))

(3.6) w(T) = ~(zu(TJ + 1(TJ + n(T’J) +

~l(Ti)n(Tj) + ~2n(TJTZ(Tj)

~#~ i<j

The proof is similax to the one for Theorem 3.2 and
will be omitted.

4 The SPLITS reconstruction problem

In this section we address the following tree reconstruc-
tion problem: Find a tree such that for each edge the
sizes of the two shores of the cut that the edge defines
are equal to some given input values, or report that no
such tree exists. As we will see, this problem is closely
related to the inverse Wiener index problem for trees.
We start with some definitions.

DEFINITION 4.1. For a tree T = (V, E) we define the
split an edge e c E, denoted by s(e) as the number of



nodes on the smallest shore of the unique cut identified
b~ e. The load of the edge, denoted by l(e), is the number
s(e) x (n – s(e)) of paths in T which contain the edge e.

By using the loads, we can rewrite the Wiener index
for a tree as w(T) = ~ec~ l(e).

The last bit of the Wiener index and the last bit
of n are not independent, as the following proposition
shows. This result appears also in [17, 18], where it
ia derived by considering trees as bipartite graphs and
arguing on the parity of paths. We give a much simpler
proof.

PROPOSITION4.1. Any tree with an odd number of
nodes has an even Wiener index.

Proof. For each edge either s(e) or n – s(e) is even, so
the load is even. ■

The problem of finding a tree of a given Wiener
index asks therefore to find n – 1 loads whose sum is W.
This prompted us to the following question: assume we
are given such loads; can we find the tree? Since for a
fixed n the loads uniquely determine the splits, we can
rephrase the problem as: given splits S1, . . . , s~–1 find
a tree T such that the edges of T have the given input
splits. This is a problem of tree reconstruction and the
set of splits can be viewed as yet another topological
property that characterizes a family of trees. Further-
more, the problem of reconstructing a tree from its
set of splits is interesting on its own. Unfortunately,
the reconstruction problem turns out to be NP-complete

THEOREM 4.1. The problem, SPLITS, of reconstruct-
ing a tree from its set of splits is NP-complete.

Proof. We reduce from the problem, 3-PARTITION. In
this problem we axe given a bound, B, and 3m elements,
S1,. . . , Ssm) such that for each i c {L . . . ~3m}, B/4 <
Si < B/2. The problem asks whether there exists a
partition of the {si} into into 3-element disjoint sets
such that the sum of the elements in each set is B.

We map the instance of 3-PARTITION to the
following instance of SPLITS: the value B + 1 ap-
pears m times and, for each i, we include the values,
Sj, S~— l,..., 1. If we are given a yes instance of 3-
PARTITION, we can build a tree in the following way:
the root has m children (an m-star) each corresponding
to a 3-element set in the solution to 3-PARTITION and
then departing from each of these there are three paths
of length equal to the size of items that belong to that
set. It can be easily verified that we obtain the given
splits. Conversely, suppose we are given a tree with the
set of splits listed above. We show that it is necessarily

of the form we just described. Inductively, the tree must
necessarily contain 3m paths of length mini{s~} consist-
ing of edges with splits min{si), min{s~} – 1, . . . ,1 (for
example, each edge with a split of two must necessar-
ily be connected to an edge with. a split of one). At
thk point, we conclude that, in fact, we must have 3m
similar paths of length si each starting from an edge
with split Si (which contain the former paths) since we
are now only able to attach loads ~ min{si} and, by as-
sumption on the s~sizes, max{si} <2 min{s~}: for each
edge with splits between rnin{sj} + 1 and maz{si}, the
only edge with smaller load that we can attach must
have load exactly s – 1. Fhmlly, alao from the bounds
on the Si, we infer that exactly three paths depart from
each leaf of an initial m-star, the edges of whkh all
have split size B + 1. As above, the Si values of the
edges depaxting from the star edges provide a solution
to the instance of of 3-PARTITION. Since the reduction
is clearly polynomial time computable, this completes
the proof of the theorem. H

The problem of reconstructing a tree from its set
of splits can be solved by the following enumerative
algorithm. Sort the splits so as to have S1 z . . . z
sn_l = 1. Starting with a tree consisting of a single
node of weight n, we insert the edges one at a time,
ending up with a tree on n nodes, each of weight 1. At
step k we

1. look -exaustively– for a node i whose weight wi is
larger than sk

2. augment: attach to node i a new node node j,
setting wj := Sk and decreasing wi to w~ – sk.

Note that at step 1 we may have to break ties.
The presence of these ties is what makes the algorithm
exponential, since we may have to backtrack from a
wrong choice. It is not immediate that this algorithm
does indeed work. For instance, the sorting of the si
is crucial, as the following example shows: Take n = 4
and S1 = S2 = 1, S3 = 2. Then there is no way of
placing the split 2 after having placed the two splits
1. So we need to show that it is enough to consider
the sorted permutation of the splits out of the (n – 1)!
possibilities.

PROPOSITION 4.2. If S1 ~ . . . z s~-1 is a YES
instance of SPLITS, then the algorithm terminates with
a feasible solution.

Proof. We may reason backwaxds by starting from
the tree and finding the correct sequence of nodes to
augment. Let T be a feasible solution. Give weight 1 to
each node of T and repeat the following operation, for



9

k = 1 ton – 1, until T has only one node. Take a leaf i
of T of minimum weight among the leaves. Let (i, j(k))
be the unique edge out of i. Delete node i and increase

~j(k) ~ ~j(k) := wj(~) + Wi. By looking backwards at
the sequence of trees thus obtained, we see a possible run
of the algorithm which augments on j(k – 1),...,j(l)

creating edges of decreasing splits. ■

This argument also implies that for YES–instances
there always exists a choice of nodes to augment which
requires no backtrack, and indeed this is what hap-
pened on the vast majority of small examples which we
tried initially, before proving that the problem is NP-
complete. We then performed a more exaustive testing
in the following way. We generate an unlabeled tree,
uniformly at random (as described in [19]), then com-
pute its splits and try to reconstruct it (or a different
feasible solution).

Ten instances for each value of n = 10,20,...,100
were solved immediately, while for n ~ 110 the algo-
rithm started incurring in some long runs every once in
a while. By performing the selection at step 1 in an or-
derly fashion (i.e. try the available nodes by increasing
order of weight) we solved all generated problems, for n
up to 300, in less than 1 second each. The good average
performance raises an interesting theoretical question
on the probability that the search aJgorithm may find a
solution withouth backtracking (or within a small num-
ber of tries) on a tree generated u.a.r.

5 Inverse Problems for Peptoid Design

In this section we consider the following problem. In
the framework of combinatorial chemistry we are given
a fragment library, and values (lists, histograms) for
some index. We want to find combinatorial peptoids
(a compound of elements from the given library) that
match exactly that index.

5.1 A dynamic program for peptoid construc-
tion

THEOREM 5.1. One can compute in polynomial time
whether there exists a peptoid with a given Wiener
index, W, and, if so, output a solution.

Proof. We use a dynamic programming algorithm sim-
ilar to the algorithm given to find a tree of a particular
Wiener index. Note that W is bounded by a polyno-
mial% the size of the peptoid, iV, and the library size,
L. Assume we have precomputed the Wiener indices of
the fragments in the library. Number the anchors along
the peptoid, say from left to right, by 1 through N. We
build up our peptoid from left to right by adding a frag-
ment from the library to each anchor sequentially. Let

.,

1(.) denote the sum of the distances to the rightmost
anchor in a peptoid, or the sum of the distances to the
anchor of a fragment from our library (which is just a
peptoid with one anchor). Remove the edge linking the
rightmost two anchors of a peptoid, P, leaving a smaller
peptoid, P’, and a fragment, F. The dynamic program-
ming algorithm follows from the recurrences which we
present below. Note that by storing one solution (if one
exists) in each entry of the table we build, we can out-
put a solution with Wiener index W if one exists. The
recurrences follow.

n(P) = n(P’) + n(F)

1(P) = l(P’) + n(P’) + 1(F)

w(P) = w(P’) + w(G) + n(P’)l(F) +

n(F) Z(P’) + n(P’)n(F).

5.2 A Fast Enumerative Algorithm
In this section, we present a general method for

inverse problems based on shortest-paths topological
indices. We also present results from our software
package OCOTILLO on actual combinatorial libraries.

THEOREM 5.2. The Wiener index of a linear-scaffold
peptoid constructed with fragments (Figure 1) is

NN N

W = ~ ~ [?2ilj + (j – ‘i)TZ;f’lj + ‘rtjli] + ~ wi

i=l j=i+l i= 1

where ni is the number of nodes in fragment i, w~ is the
Wiener index of the fragment and li is the sum of the
distance from each node to the anchor.

Proof. Consider the compound in Figure 1. When we
compute the shortest path between any two atoms,
there are two cases: either the two atoms are in the
same fragment, or they are not. For all pairs of atoms
that are in the same fragment we pr-compute the sum
of the distance between e~h pair and denote this value
w — it is just the Wiener index of the fragment.

For pairs of atoms that are in different fragments,
the shortest path between the two atoms is always
through the two anchors associated with the fragments.
We break thk path into three components:

1. The shortest path from atom i to its anchor.

2. The shortest path along the sctiold.

3. the shortest path from atom j to its anchor.



*
.

The sum of distances between all pairs of atoms in
two dtierent fragments is:

P(a, b) = ~ ~ d(i, va) + Cl(va,vb) + d(vb, j)
iEF. jEFb

iEF.

where UCis the anchor atom of fragment a and n~ is the
number of atoms in fragment a.

The Wiener index is now the sum of P over all pairs
of fragments, plus the sum of the Wiener index of the
individual fragments.

i.=1 j=i+l i= 1

If, as in our case, the sctiold is a linear chain, then the
distance from the anchor of fragment i to the anchor of
fragment j is Ij – il, and,

NN N

W = ~ ~ [TZilj + (j – i)rknj + njli] + ~ wi
i=l ‘@j+l k=1

■

We can rewrite the Wiener index equation as

NN NN N

W9n6f II-&x

Figure 2: The percent of constructed flower-
configuration peptoids that need to be examined in de-
tail. A histogram of the number of peptoids with a spe-
cific Wiener index follows almost the same curve, which
explains why the pruning algorithm does not prune uni-
formly for all Wiener index — there are just more pep-
toids that match.

The proof closely follows that for Theorem 5.2 and is
omitted.

We let D be the difference between F on a set
of fragments and W on a set of fragments given the
ordering m

NN

D(x) = W – F = ~ ~ (j – h(i)%(j).

.&l jd+l

For a given set of fragments, the ordering, Tmi., with
the smallest Wiener index is also the ordering with the

W = ~ ni ~ 1; + ~ ~ (j – i)ninj + ~ (w; – nili) smwest value of D. This forms our pruni~g sewch.
If the Wiener index we are Iooklng for is smaller than+=1 i= 1 i=l j=i+l i= 1

Suppose that we treat the entire sctiold ss a
single vertex, for example, in Figure 1, we would
compress V1, V2 and V3 to a single vertex. In effect,
we have constructed a peptoid with an unordered set
of fragments, rather than an ordered list of fragments.
This is called the flower compression, and is at the heart
of our fast search method.

*THEOREM 5.3. The Wiener index of a j?ower-
compressed peptoid is

NW N

minD + F we do not need to check any orderings for
the correct Wiener index.

for each set of N fragments do
if minD + F ~ Wt~,9ei ~ mrwD + F then

examine all orderings of the set of fragments for

Wtarget.
else

discard all orderings of the set of fragments.

As a first approximation to the minimum and
maximum, we cam replace each ni with the smallest or
largest value of n in the peptoid, for example,

NN
N3– N

minD ~ ~ ~ (j – i)n~in = ~ n~in.
kl j=i+l



i

Ma

Sa46 I

2946 / \

2846 /
I

6= /

i2c- / \
i ,,~ /
F

Mu I \

1142 /
\

w% ~{

)1
-m 4,s0 82m ram lea m 248W 2w30 .s2K0 36940 41CC0

WOw In&x

Figure 3: The CPU time required to search.

However, thk bound is very weak — at Wiener index
9000, we need to examine 32.8% of the peptoids in
detail, compared to 4.7% when using the optimal values
for minD and maxD.

CONJECTURE 5.1. Given nl < nz < . . . < nN, the
orden”ng for the optimal minimum value of D is:

{

2i–1
7rm~n(i) =

if i ~ fV/2

2(IV-i+l) ifi> N/2

CONJECTURE 5.2. An algorithm to compute the order-
ingfor the optimal maximum value of D, given nl S
nz~... ~ n~, is:

LP := 1; L := O;
&:= N; R:=O;

for i:= N downto 1 do
if R ~ L then

rmaZ(LP] := i; LP := LP -t- 1; L:= L i-n~;
else

~~~~(~) := i; R, := Rp - 1; R:= Ri-ni;

For example;

i 1 2 3 4 5 6 7 8

ni 2 5 8 13 17 18 19 28
n~mim(4 2 8 17 19 28 18 13 5
n~~o. i 28 18 8 2 5 13 17 19

Bbth conjectures have been extensively tested.
As seen in Figure 2, not many flower peptoids pass

the test.
Computational Results. We tested the perfor-

mance of the pruning algorithm by searching for a five-
fragment peptoid using a fragment library with 350

amine fragments (resulting in 164 different w,l,n values)
for each position. This configuration results in 2.6e12
possible peptoids.

A brute force enumeration using the w, 1,n compu-
tation explained earlier required 51,786 cpu-seconds, or
50.5e6 peptoids per second. For comparison, we can
estimate that without the w, 1,n computation, the enu-
meration would be at least (350/165)5 % 43 times as
long — about one month of CPUtime — without even
considering that the Wiener index computation is also
more difficult. Applying the flower-compression prun-
ing algorithm achieves a significant speedup u can be
seen in Figure 3, requring anywhere from 540 seconds
(4,860e6 peptoids per second) to 3,500 seconds (750e6
peptoids per second).

6 Acknowledgements

The authors would like to thank Jean-Loup Faulon
and Diana Roe for useful discussions regarding this
paper. This work was supported in part by Sandia
National Laboratories, operated by Lockheed Martin
for the U.S. Department of Energy under contract
No. DEAC04-94AL85000 and by the Mathematics,
Information, and Computational Science Program of
the Office of Science of the U.S. Department of Energy.
D. Goldman was supported by an American Fellowship
from the American Association of University Women
Educational Foundation.

References

[1]

[2]

[3]

[4]

[5]

[6]

Fiftieth Anniversary of the Wiener Index, Discrete
Applied Mathematics Special Issue, Vol. 80, no. 1
Gutman, I., Klavzar, S. and Mohar, B. eds., 122 pages,
1997
Wiener, H., Structural determination of paraflin boil-
ing points, J. Amer. Chem. Sot., 69 (1947) 17–20
Sheridan, R., P. and Kearsley, S., K., Using a Ge-
netic Algorithm To Suggest Combinatorial Libraries,
J. Chem. Inf. Comput. Sci., 35 (1995) 310-320
Venl@asubramanian, V., Chan, K. and Caruthers, J.
M., Evolutionary Design of Molecules with Desired
Properties Using the Genetic Algorithm, J. Chem. Inf.
Comput. Sci., 35 (1995) 188-195
Gordon, Dougl~ J., Bellott, Emile M., and Tenen-
baum, Boris, Using a Genetic Algorithm to Select an
Optimum Combinatorial Library Using a Subset of
Available Input Materials, Exploiting Molecular Di-
versity: R&ning Small Molecule Libraries, La Jolla,
Cfllfornia, February 1-5, 1999.
Singh, Jasbir et. al., Application of Genetic Algorithms
to Combinatorial Synthesis: A Computatorial Synthe-
sis: A Computational Approach to Lead Identification
and Lead Optimization, J. Am Chem. Sot., Vol. 118,
(1996), 1669-1676

J1

.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

* [20]

...

[21]

Gallop, Mark A., Barrett, Ronald W., Dover, WNkun
J., Fodor, Stephen P. A., Gordon, Eric M., Applica-
tions of Combinatorial Technologies to Drug Discov-
ery. Background and Peptide Combinatorial Libraries,
Journal of Medicinal Chemistry, Vol. 37, No. 9 (1994)
1233-1251
Zheng, Weifan, Cho, Sung Jin, and Tropsha, Alexan-
der, Rational Combinatorial Library Design. 1. Focus-
2D: A new Approach to the Design of Targeted Com-
binatorial Chemical Libraries, J. Chem. Inf. Comptit.
Sci., Vol. 38, (1998) 251-258
Zheng, Weifan, Cho, Sung Jin, and ‘lkopsha, Alexan-
der, Rational Combinatorial Library Design. 2. Ra-
tional Design of Targeted Combinatorial Peptide Li-
braries using Chemical Similarity Probe and the In-
verse SAR Approaches, J. Chem. Inf. Comput. Sci.,
Vol. 38, (1998) 259-268
Carhart, Raymond E., Smith, Dennis H., and
Venkataraghavan, R., Atom Pairs as Molecukw Fea-
tures in Structure-Activity Studies: Definkion and Ap-
plications, J. Chem. Inf. Comput. Sci., Vol. 25, No. 25
(1985) 64-73
Bemis, Guy W. and Kuntz, Irwin D., A fast and ef-
ficient method for 2D and 3D molecular shape de-
scription, J. Computer-Aided Molecular Design, Vol.
6 (1992) 607-628
Good, Andrew C. and Kuntz, Irwin D., Investigating
the extension of pairwisedistance pharmacophore mea-
sures to triplet-based descriptors, J. Computer-Aided
Molecular Design, Vol. 9, (1995) 373-379
Rouvray, D.H., The Search for Useful Topological
Indices in Chemistry, American Scientist, Vol. 61, No.
6, (1973), 729-735.
Sabljit, Aleksandax and Tkinajsti&, Nenad, Quantita-
tive structure-activity relationships: the role of topo-
logical indices, Acts l%arm. Jugosl., Vol 31, (1981),
189-214.
‘llrinajstic, N., Chemical Graph Theory, CRC Press,
1992.
Gillet, V. J. and Wlllett, P. and Bradshaw, J. and
Green, D.V.S, Selecting Combinatorial Libraries to
Optimize Diversity and Physical Properties, ..7.Chem.
Inf. Comput. SCZ.,Vol. 39, No. 1 (1999) 169-177
Lepovi6, M. and Gutman, I., A Collective Property of
Trees and Chemical Trees, J. Chem. Inf. Comput. Sci.,
Vol. 38, No. 5 (1998) 823-826
Bonchev, D., Gutman, I. and Pokmaky, O., Parity
of the Distance Numbers and Wiener Numbers of
Bipartite Graphs, Commun. Math. Chem., 22 (1987)
209-214
Wllf, H. S., The Uniform Selection of Free ‘Rees,
Journal of Algorithms 2 (1981) 204-207
Brown, Robert D. and Martin, Yvonne C., Use of
Structure-Activity Data to Compare Structure-Based
Clustering Methods and Descriptors for Use in Com-
pound Selection, J. Chem. Inf. Comput. Sci., Vol. 25,
(1985) 64-73
Brown, Robert D. and Martin, Yvonne C., The Infor-

[22]

[23]

[24]

A

mation Content of 2D and 3D Structural Descriptors
Relevant to Ligand-Receptor Binding, J. Chem. Inf.
Comput. Sci., Vol. 37, (1997) 1-9
Needham, Diane E., Wei, I-Chen, and Seybold, Paul
G., Molecular Modeling of the Physical Properties of
Alkanes, J. Am Chem. Sot., Vol. 110, (1998), 4186-
4194
Plunkett, Matthew J. and Ellman, Jonathan A., Com-
binatorial Chemistry and New Drugs, Scientific Amer-
ican, April 1997, 69-73
Mohar, Bojan, A Novel Definition of the Weiner index
for Treea, J. Chem. Inf. Comput. Sci, Vol. 33, (1993),
153-154

Appendix: pseudo-code for dynamic
pro-~arnming ‘algorithm for the inverse
Wiener index problem

In the pseudo-code description of the algorithm that fol-
lows, we assume that the matrix M has been initialized
to a value “undefined” but for 34.,0,1 = 1.

tree (W,L,N)
if N3– N<6WV(N–l)2>WVL <N–l VL>
N(N – 1)/2 then

return O
if MW,L,N # undefined then

return kfw,L ,jV
if N = 1 then

return O
for NI := N/2 to N – 1 do

N2:=N– N1
for L1:=N1–lto L–N2do

L2:=L– L~– N2;
for WI := LI to W – LIN2 – L2N1 – N1N2 do

W2 := w – W1– L1N2 – L2N1 – N1N2
if tree(W1, Ll, Nl) = 1 A tree(W2, L2, N2) =

1 then
MW,L,N := 1
return 1

for L1:=N1–lto L–Nldo
L2:=L– L~– Nl
for WI := L1 to W –L1N2 – L2N1 –N1N2 do

W2:= w – WI – LIN2 – L2N~ – N~N2
if tree(W1, Ll, IVl) = 1 A tree(W2, L2, N2) =
1 then

MW,L,N := 1
return 1

A4w,L,N := O
return O

