

FINAL REPORT

MODELING SINGLE MOLECULE FLUORESCENCE AND LASING

INTERAGENCY AGREEMENT NO. DE-AIO5-980R22651

Prepared for:

Michael D. Barnes
Chemical and Analytical Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN

Prepared by:

Steven C. Hill
Physicist
Army Research Laboratory
AMSRL-BE-S
2800 Powder Mill Road, Adelphi, MD 20783-1197
(301)394-1813, 4797 (Fax)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Modeling single molecule fluorescence and lasing

Steven C. Hill

Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197

Final Report

In FY 1998 our efforts were in three main areas, all related to detecting single fluorescent molecules[1] and understanding their emission.

1) We completed the calculations and analysis for a paper on spatial photoselection of single molecules on the surface of a dielectric microsphere.[2] Molecules that are oriented parallel to the surface of a spherical microcavity have position-dependent excitation probabilities and a collection efficiencies. The results are different for different polarizations.

2) We completed the modeling and analysis for a paper analyzing single molecule photocount statistics in microdroplets.[3] In this paper we employed a Monte Carlo technique to simulate effects of molecular occupancy, photobleaching, and fluorophor spatial diffusion within the droplet. We discussed the optimization of detection of single molecules in microdroplets.

3) We modeled the images of single molecules in microdroplets and submitted a preliminary report of these images in a paper which also showed experimental results.[4] The computed images depend upon the molecule's position within the microsphere, its orientation and emission frequency, and on the size and refractive index of the microsphere.

For this work we used and modified models and computer codes developed previously,[5, ?] as well as developed new models and codes.

References

- [1] M.D. Barnes, W. B. Whitten, and J. M. Ramsey, "Detecting single molecules in liquids," *Anal. Chem.* **67**, 418A-423A (1995).
- [2] N. Lermer, M. D. Barnes, C-Y. Kung, W. B. Whitten, J. M. Ramsey, and S. C. Hill, "Spatial photoselection of single molecules on the surface of a spherical microcavity," *Opt. Lett.*, **23**, pp. 951-953, 1998.
- [3] S. C. Hill, M.D. Barnes, W.B. Whitten, and J.M. Ramsey, "Simulation of single molecule photocount statistics in microdroplets," *Analytical Chemistry*, **70**, 2964-2971, 1998.
- [4] M. D. Barnes, K. C. Ng, K. P. McNamara, C-Y. Kung, J. M. Ramsey, and S. C. Hill, "Fluorescence imaging of single molecules in polymer microspheres," *Cytometry*, **36**, 169-175, 1999.
- [5] S. C. Hill, H. I. Saleheen, M. D. Barnes, W. B. Whitten, and J. M. Ramsey, "Modeling fluorescence collection of fluorescence from single molecules in microspheres: effects of position, orientation and frequency," *Appl. Opt.* **35**, 6278-6288 (1996).
- [6] S. C. Hill, M. D. Barnes, W. B. Whitten, and J. M. Ramsey, "Fluorescence from single molecules inside of droplets: effects of illumination geometry," *Appl. Opt.* **36**, 4425-2237 (1997).