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Abstract

Using Van Kampen’s normal mode expansion, we solve the initial value problem for
a high-gain free-electron laser (FEL) described by the three-dimensional Nkxwell-
Klimontovich equations. .4n expression of the radiation spectrum is given for the
process of coherent amplification and self-amplified spontaneous emission. It is noted
that the input coupling coefficient for either process increases with the initial beam
energy spread. The effective start-up noise is identified as the coherent fraction of
the spontaneous undulator radiation in one field gain length, and is larger with in-
creasing energy spread and emittance mainly because of the increase in gain length.
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1 Introduction

In a high-gain free-electron laser (FEL), a coherent external signal or the in-

coherent undulator radiation can initiate the FEL interaction to create an ex-

ponentially growing coherent radiation. Such a radiation is a promising source

for future-generation x-ray facilities. Thus, it is important to understand how

the exponential process starts and how the incoherent radiation de~’elops into

a coherent source.
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The FEL initial value problem was solved in Ref. [1,2] using a one-dimensional

(l-D) theorv. The three-dimensional (3-D) initial ~alue problem for parallel“

beam was studied by l-an Kampen’s method in Ref. [3,4] and by a Green’s

function technique in Ref. [5,6]. Recently, Xie [7] studied the initial value

problem including emittance and found that the effective start-up noise in

self-amplified spontaneous emission (SASE) becomes significantly larger with

finite emittance and energy spread.

Inspired by the work of Xie, we explain the solution to the FEL initial value

problem using Y-an Karnpen’s method applicable to the 3-D case including

emittance. JYe then attempt to provide an understanding of the dependence of

the effective start-up noise on beam parameters. Two factors determining the

start-up process are identified. The input coupling coefficient for both coherent

amplification (C.4) and S.ASE is found to increase with the initial energy

spread. The effective start-up noise is shown to be the coherent fraction of the

spontaneous Undulator radiation in the first field gain length, generalizing the

result of Ref. [6] for a. beam with vanishing energy spread and emittance. The

effective start-up noise appears to be larger with increasing energy spread and

emittance mainly because of the increase of the gain length.

2 The Dynamic Equations and the Initial Conditions

It is convenient to use z = 2pkUz, the scaled

entrance, as the independent “time” variable.

distance from the undulator

Here p << 1 is the FEL pa-

rameter [8]. All = 2~/AU, and /\U is the Lmdulator period. The scaled trans-

verse phase-space variables are x = x ~- and p = p ~~, where

z = (J. y). p = (~.r~(~:.dg/ci:).and Ckl = 2TC/,\i is the fundamental radia-

tion frequency-. The longitudinal variables are the relative bunch position f? in
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units of 2n/A1 and the scaled energy deviation ~ = (n/– yo)/(p-~o). To take into

account the discreteness of the electron beam, we employ the K1imontovich

distribution function [9]:

where no is the peak electron volume density, and Ne is the total number of

electrons. Following Ref. [10], the fundamental electric field au is represented

by

(2)

where K is the undulator parameter, [JJ] = Jo(t) – JI (f) (~ = lf2/(4 + 21Y2)),

llu is the complex field amplitude at frequency w = Vckl, and ~ = (v – 1)/(2pj

is the scaled frequency detuning.

In the small signal regime before saturation, we write ~(z) = ~.+ jl (z), where

~. is the initial smooth background distribution, and ~1(z) contains the initial

fluctuation as well as the effects of the FEL interaction and is also treated as

a small quantity. Here we assume that the initial electron beam is matched to

the undulator channel and is uniform in O (this can be approximately satisfied

if the bunch length d~ >> 1). We introduce the state vector

and define the scalar product (@, @’) = ~ d2ZaVa~ + f d25J d2~J d~fvj~. The

lIaxwell-Klimonto~ich equations can be combined as [10]

()

a
7&– W @ = o.

3



Here the operator M is

I

where V1 = 0/(8fi) is the scaled transverse Laplacian, i~ = kB/(2kUp) is the

scaled transverse focusing strength, and ~ = K/ (4~op) is the scaled natural

focusing strength.

The evolution of the radiation field and the distribution function in the start-

up and the exponential growth regimes is completely determined by 13q. (4)

and the initial value @(O) of the state vector. The latter is specified by the

external signal aU(0) and the shot noise ~U(0) = J ~e-z”ejl (0). Although

the ensemble average of jV(0) is zero, physically meaningful quantities such as

intensity can be computed by using the relation [9]:

3 Van Kampen’s Normal Mode Expansion

The initial value problem formulated in the previous

by expanding the solution in terms of the eigenvectors

section can be solved

of 13q. (4). The coeffi-

cients of the expansion are easily determined from the initial conditions if the

eigenvect ors are mutually orthogonal under a suitably defined scalar product.

The procedure is well-known in quantum mechanics in which all operators are

Hermitian. Here M is not a Hermitian operator, and we employ the extension

of the method cleveloped b,y l-an Kampen [11] in studying the 1-D plasma

waves.
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Let us first find theeigenvalues andtheeigenvectors of Eq. (4), defined to be

solutions

()An(z)
e–ip’z$n = e–ip”2

Fn(7j, it, p) s
Solving the eigenvalue equation (p. + M)~. = O,we obtain

and the mode equation

(7)

(8)

Equation (9) is the dispersion relation derived in Ref. [12], which generalizes

the result of Ref. [3,13] to include the external focusing. It can be solved using

a variational principle [13,12,14] and a matrix formalism [14]. In general, a

discrete set of eigenvalues and eigenmodes exists.

To define the Van Kampen orthogonality of these eigenvectors, we introduce

the adjoint eigenvalue equation (fin+ M) ~. = O, where ji. and ~n = (~., ~n)

are the adjoint eigenvalues and eigenvectors of the adjoint operator M, defined

through

(iiItn, 0) = (in, MO). (11)

It is straightforward to shotv that ~. = f:,= d~.~. (=3 (~)) e’@j(7j and that ~.

satisfies the same mocle ec~uation as Eel. (9). I-ie:lce we set .~~ = .~~ and
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fin = pn.

By virtue of Eq. (11), one immediately obtains

(P. - ~m)(~m, Q.)= ($m> M~n) - (MQm> ~n) = 0. (12)

If these normal modes are not degenerate, i.e., pn #p~ foranyn #m, the

Van Kampen orthogonaIity for a discrete ‘set of eigenvectors follows [11]:

(ifm,w.)= dm,n(!in,v.) = c$m,ncn, (13)

where Cn is the normalization for the nth mode and is given by

In the case of degeneracy, an orthogonal set can be constructed through linear

combinations of eigenvectors. For a continuous set of eigenvalues and eigenvec-

tors, one replaces the Kronecker delta function &. in Eq. (13) with the Dirac

delta function [11]. Furthermore, assuming the set of eigenvectors is complete,

we obtain the formal solution for

0(27)= ~ ‘&nCo(o))Vne-z””’,
n n

(15)

Equation (15) can be simplified significantly in the high-gain limit, where the

fundamental mode .40 (iii) dominates because its eigenvalue p. has the largest

imaginary part pl. Dropping all other modes in the summation of Eq. (15),

we obtain the evolution of the electric field in the high-gain regime [10,7]

av(Z: Z) = ~.40(iii)e-ipOz
cl) [/

d2i.40(i)(z.(iif;O) + / d2i / dzji / dtj

x fu(7. ~’7P; 0) / 1
0 d~.40(Z3(T)) eio~(T) . (16)

–m

The first term in the scluare bracket describes the process of coherent amplifi-

cation, which starts from an external signal n.(0). The second term clescribes
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the process of self-amplified spontaneous emission, which starts from white

noise. Equation (16) for the parallel e-beam (with vanishing emittance) re-

duces to those of Ref. [3,5]. The ensemble averaged spectrum of the radiation

intensity (power per unit area) can be computed with Eq. (6):

1 dI 27i

=x= (2p)’6~ ‘[ U”(Z; ‘)12)

[ /
= &lA~(x)12e2”’2 ~2~~,ob d2iAo(@)au(#; O)

2

where lbe~~ = ;@mC3n0.

4

To

Effects of Energy Spread

isolate the energy spread effects in the FEL start-up process, we Iook at

the 1-D limit of the above

is the beam cross section)

The mode Eq. (9) reduces

results by setting A.(z) = 1, J d2it = 2klkUpZ (E

and dropping f d’~ and the transverse Laplacian.

to the 1-D dispersion relation [1]:

(18)

where ~. = v(~) with J d~V(fi) = 1. For a mono energetic beam (i.e., V(q) =

d(~)), this reduces to the cubic equation [8] with a growing, a decaying and

an oscillatory solution. The intensity spectrum of Eq. (17) becomes the power

spectrum of Ref. [1):

dP

- [H.’(w)

CU z

—=zcklClu
= g,~e’i’rz (19)
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where

(20)

(-)dP

du ~
‘Pbeam \av(0)12 (coherent input power),

‘~pck#b
(21)

(-)

dF’ =g~ P%~c2
dti ~ ~~

(effective start-up noise), (22)

(23)

Here pb~a~ = ~be~~~ is the beam power, and p = ~R + i~~ is a function of the

frequency detuning tithrough the dispersion relation. For CA, theamplifica-

tion occurs at the frecluency defined by the frequency of the coherent input

signal. For S.ASE, the frequency dependence is determined by PI(u) in the

exponent of Eq. (19). Thus, g,~ and g~, evaluated at the optimal detuning tio

where the growth rate }~1reaches the maximum, determine the input coupling

to the exponentially growing

P“lo~c2/(2T), respecti~ely.

mode and the effective noise power in units of

In Ref. [1], G = g~g~ has been

distribution and has been found

a Gaussian energy distribution

computed numerically for a flat-top energy

to increase initially with energy spread. For

we compute PI, g<~and gs (Fig. 1) as functions of the rms energy spread @n=

~n/Pand find that both 9.4and 9s increase with ~7f”For a monoenergetic beam)

any initial signal (external or spontaneous) couples equally well to the three

(growing, clecaying and oscillator) modes that have the same normalization.

factor, hence we ha~e the well-known g.~ = 1/9. However, g.~ is larger for a

larger energy spread. approaching 1/4 for the flat-top model ancl 1 for the

Gaussian model. This implies the input coupling to the exponentially growing
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mode is preferred in the presence of energy spread for both C.A and S.XSE.

The increase in the effective start-up noise through gs may’ be interpreted in

the following way. First of alI, gs = 1 for a monoenergetic beam, and the quan-

tity P~omc2/(2x) is approximately the noise power generated from the spon-

taneous undulator radiation in the first field gain length L90 = l/(kUpti) [6].

For a beam with a finite energy spread, the spontaneous radiation spectrum

in the forward direction is the convolution of the beam energy spectrum and

the undulator radiation spectrum with an intrinsic bandwidth 2Aq = Au =

lAw/w - 27r/(kuz):

(~):n’=#(&):nt/d,v(,)su(kuz(,-A.,2,,, (25)

where SU(X) = sinz (Z)/Z2 and

()dP
spent

dwdfl ~ = --m%)’(kuz)’y~mc’ 1.
(26)

is the angular power spectrum with v-anishing energy spread [15], Ie is the

electron current, and 1A = 1704.5 A is the Mfien current. After the first field

gain length z = Lg = (2kupp1)’1, we have

(-)dP
spent

= m0mc2

du ~ 27rp; Jw(w. (~)
9

Here we have used the relation

‘=[=CW2)2]’”
Comparing Eq”. (22) in the form

(27)

(28)

(29)

with Eel. (27). we may interpret the effective start-up noise as the fraction

of the spontaneous undulator radiation in the first field gain length within

!3



the coherent gain bandwidth Aij N N N pi (much narrower than the in-

trinsic undulator bandwidth 2mpI). Using the Gaussian energy distribution in

Eq. (24) and approximating the Lorentzian in the square bracket of Eq. (29)

by another Gaussian, we can carry out the fj-integral to obtain

l}-ith increasing energy spread, the coherent fraction of the spontaneous radia-

tion decreases, but the drop in the growth rate significantly increases the spon-

taneous radiation power in one field gain length, leading to the overall increase

of the effective noise power through gs (as seen in Fig. 1). In fact, for large

values of the energy spread ~~ >> 1, ~R z fiO% —fiv and PI -w 0.76/D: [16],

so that (dP/du)s m ~n increases wit bout bound because the effective noise

power required to start the S.%SE process is infinite!

5 Effects of Emittance

We nowreturnto the full 3-D Eq. (17) and consider SASE (the second term)

only. Assuming that the betatron oscillations are slow on the scale of the gain

length, we take i~~ <1, Z~(~) x 7’,

and integrate ~ dx2(dI/d~’) to obtain the

J

.ASE power spectrum

(31)



(-’222!)>(33)

where 6Z = OZ= is the scaled transverse beam size and is related tO the

beam emittance c=6~k5/kl. Ifwefurther assume that the external focusing

strength E8 is much larger than the undulator natural focusing i, which is the

case in x-ray FELs such as the Linac Coherent Light Source (LCLS) [17], we

can neglect i2Z2 in comparison with p2 in Eq. (32) and identify the effective

start-up noise power as

Equation (34) provides a similar phase-space convolution as the spontaneous

undulator radiation when the effects of electron angular spread is taken into ac-

count [18], except that the spectrum response function is a Lorentzian instead

of the undulator spectrum SU(q-~~~-z ) at one field gain length. Identifying

PI as the bandwidth of T (or U) as in Sec. 4 and ~ as the rms angular

spread of the fundamental mode (or 2L~ = (kuplp)’1 as the Rayleigh length),

we may interpret the effective start-up noise as the phase-space convolution

of the spontaneous undulator radiation in the first field gain length with the

coherent fundamental laser mode.

For numerical computation, we approximate AO(Z) = exp(–wl&12/5~), where

w = w~ + wl is a complex number characterizing the Gaussian fundamental

mode. Ecluation (32) can be written as

dP 3d :M P?omc2 ~?~t[ z
—=.9A~s ~T ?CL’

(35)
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where

9:d
“ ‘-’i~f%l”xd~’ ‘T’+:) exp[-9(T’+T2)2-:v~(T’+ T2)] ‘2[1+ tk;5:(T, + 7,)][1+ 4W + 2W7:(T, + 7-,)]

9:d z%Y&’o’ ‘:p[-%(’1-’2)2-2(p[1+ ik;a:(~, - 7-2)][1 + 4WR+ 2W7:(7-,- T,)]“

For example, using the current LCLS design

37 = 0.45, k = 0.07, and ip = 0.29. The

(36)

parameter [17], we have 6, = 2.8,

fundamental guided mode has a

complex growth rate p. = –1.2 + 0.422 and a mode profile determined by

w = 0.64 – 0.50i at the optimal detuning fio = – 1.0 [10]. Hence we obtain

9id % 0.3 and g~d = 2.3, both larger than the values with vanishing energy

spread and emittance.

6 Conclusion

In summary, an anal~-tical solution to the initial value problem in a high-gain

FEL is obtained via I-an Kampen’s method, including the effects of beam

energy spread and emittance, as well as the diffraction and guiding of the

radiation. In the absence of any external signal, the effective start-up noise

is shown to be the phase-space convolution of the spontaneous undulator ra-

diation in one field gain length with the coherent fundamental laser mode.

Compared with the 1-D, cold beam solution [1,2], the input coupling coeffi-

cient for C.A and S.+SE is larger with finite energy spread, and the effective

start-up noise also appears to be larger with beam energy spread and emit-

tance mainly due to the increase in gain length. Fluctuation in initial electron

velocities (clue to beam energy spreaci and angular spread) do not seem to

contribute to any additional start-up noise. s
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Fig. 1. The behavior of

a~ = On/p for a Gaussian
PI, o and 9s EM functions of the rms energY SPread
energy distribution.
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