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Abstract

Using Van Kampen’s normal mode expansion, we solve the initial value problem for
a high-gain free-electron laser (FEL) described by the three-dimensional Maxwell-
Klimontovich equations. An expression of the radiation spectrum is given for the
process of coherent amplification and self-amplified spontaneous emission. It is noted
that the input coupling coefficient for either process increases with the initial beam
energy spread. The effective start-up noise is identified as the coherent fraction of
the spontaneous undulator radiation in one field gain length, and is larger with in-
Creasing energy spread and emittance mainly because of the increase in gain length.
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In a high-gain free-electron laser (FEL), a coherent external signal or the in-
coherent undulator radiation can initiate the FEL interaction to create an ex-
ponentially growing coherent radiation. Such a radiation is a promising source
for future-generation x-ray facilities. Thus, it is important to understand how
the exponential process starts and how the incoherent radiation develops into

a coherent source.
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The FEL initial value problem was solved in Ref. [1,2] using a one-dimensional
(1-D) theory. The three-dimensional (3-D) initial value problem for parallel
beam was studied by Van Kampen’s method in Ref. [3,4] and by a Green’s
function technique in Ref. [5,6]. Recently, Xie [7] studied the initial value
problem including emittance and found that the effective start-up noise in
self-amplified spontaneous emission (SASE) becomes significantly larger with

finite emittance and energy spread.

Inspired by the work of Xie, we explain the solution to the FEL initial value
problem using Van Kampen’s method applicable to the 3-D case including
emittance. We then attempt to provide an understanding of the dependence of
the effective start-up noise on beam parameters. Two factors determining the
start-up process are identified. The input coupling coefficient for both coherent
amplification (CA) and SASE is found to increase with the initial energy
spread. The effective start-up noise is shown to be the coherent fraction of the
spontaneous undulator radiation in the first field gain length, generalizing the
result of Ref. [6] for a beam with vanishing energy spread and emittance. The
effective start-up noise appears to be larger with increasing energy spread and

emittance mainly because of the increase of the gain length.

2 The Dynamic Equations and the Initial Conditions

It is convenient to use Z = 2pk,z, the scaled distance from the undulator
entrance, as the independent “time” variable. Here p « 1 is the FEL pa-
rameter [8]. k, = 27/)\,, and A, is the undulator period. The scaled trans-
verse phase-space variables are & = x\/2k k,p and p = pm, where
z = (r.y).p = (dr/dz.dy/dz). and cky = 2mc/A; is the fundamental radia-

tion frequency. The longitudinal variables are the relative bunch position 8 in



units of 27 /A, and the scaled energy deviation 77 = (v~)/(pv)- To take into
account the discreteness of the electron beam, we employ the Klimontovich
distribution function [9]:
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where ng is the peak electron volume density, and N, is the total number of
electrons. Following Ref. [10], the fundamental electric field a, is represented

by
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where K is the undulator parameter, [JJ] = Jo(€) = J1(€) (€ = K?/(4+2K?)),
E, is the complex field amplitude at frequency w = vck;, and 7 = (v —1)/(2p)

is the scaled frequency detuning.

In the small signal regime before saturation, we write f(2) = fo+ fi1(z), where
fo is the initial smooth background distribution, and f;(z) contains the initial
fluctuation as well as the effects of the FEL interaction and is also treated as
a small quantity. Here we assume that the initial electron beam is matched to
the undulator channel and is uniform in @ (this can be approximately satisfied

if the bunch length &, > 1). We introduce the state vector

d(z) = .
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and define the scalar product (®,®') = [ d?Za,a,, + [ d°Z [d*p [ diif,f,. The

Maxwell-Klimontovich equations can be combined as [10]
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Here the operator M is

Md(z) = B B
o [ (1= 00+ ) 1 (- 2] -

where V, = 0/(0%) is the scaled transverse Laplacian, ks = kg/(2k,p) is the
scaled transverse focusing strength, and k = K/(4y,p) is the scaled natural

focusing strength.

The evolution of the radiation field and the distribution function in the start-
up and the exponential growth regimes is completely determined by Eq. (4)
and the initial value ®{0) of the state vector. The latter is specified by the
external signal a,(0) and the shot noise f,(0) = [ Zg%oe“i”e f1(0). Although
the ensemble average of £,(0) is zero, physically meaningful quantities such as
intensity can be computed by using the relation [9]:
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3 Van Kampen’s Normal Mode Expansion

The initial value problem formulated in the previous section can be solved
by expanding the solution in terms of the eigenvectors of Eq. (4). The coefhi-
cients of the expansion are easily determined from the initial conditions if the
eigenvectors are mutually orthogonal under a suitably defined scalar product.
The procedlire is well-known in quantum mechanics in which all operators are
Hermitian. Here M is not a Hermitian operator, and we employ the extension
of the method developed by Van Kampen [11] in studying the 1-D plasma

waves.




Let us first find the eigenvalues and the eigenvectors of Eq. (4), defined to be

o [ Az
it = gz [ @) | o
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Solving the eigenvalue equation (u, + M)¥, = 0, we obtain

solutions

Fam 2 [ drdu (st es, ®)

and the mode equation
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where Z5(7) = & cos k3T + {’; sin kg7, and
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Equation (9) is the dispersion relation derived in Ref. {12}, which generalizes
the result of Ref. [3,13] to include the external focusing. It can be solved using
a variational principle [13,12,14] and a matrix formalism [14]. In general, a

discrete set of eigenvalues and eigenmodes exists.

To define the Van Kampen orthogonality of these eigenvectors, we introduce
the adjoint eigenvalue equation (fi, +M)¥, = 0, where fi, and ¥, = (4,, F,)
are the adjoint eigenvalues and eigenvectors of the adjoint operator M, defined

through
(M, ®) = (¥,, Md). (11)

It is straightforward to show that E, = [°_ drd, (Z3(r)) ) and that A,

satisfies the same mode equation as Eq. (9). Hence we set A, = A, and




Hn = pn.

By virtue of Eq. (11), one immediately obtains

(tn = ptom) (T, ©3) = (T, M) — (M, ) = 0. (12)

If these normal modes are not degenerate, i.e., p, # pn for any n # m, the

Van Kampen orthogonality for a discrete set of eigenvectors follows [11]:

(\I’ma ‘Iln) = 5m,n(\pn7 \Iln) = 5m,nCn; (13)

where C,, is the normalization for the n** mode and is given by
2 2 2 - 2 _afo ibg(7) 2
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In the case of degeneracy, an orthogonal set can be constructed through linear
combinations of eigenvectors. For a continuous set of eigenvalues and eigenvec-
tors, one replaces the Kronecker delta function 4y, , in Eq. (13) with the Dirac
delta function [11]. Furthermore, assuming the set of eigenvectors is complete,

we obtain the formal solution for

@(2) = Z —én——\llne"i“”z. (15)

Equation (15) can be simplified significantly in the high-gain limit, where the
fundamental mode Ay(Z) dominates because its eigenvalue ug has the largest
imaginary part p;. Dropping all other modes in the summation of Eq. (15),
we obtain the evolution of the electric field in the high-gain regime [10,7]
a,(Z:2) = é— Ay(z) ‘i""z[/dzf'.%(:ﬁ')au(:ﬁ';0) + /d2f'/d213/d77
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The first term in the square bracket describes the process of coherent amplifi-

cation, which starts from an external signal a,(0). The second term describes




the process of self-amplified spontaneous emission, which starts from white
noise. Equation (16) for the parallel e-beam (with vanishing emittance) re-
duces to those of Ref. {3,5]. The ensemble averaged spectrum of the radiation

intensity (power per unit area) can be computed with Eq. (6):
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where Tpeam = ~Yomcing.

4 Effects of Energy Spread

To isolate the energy spread effects in the FEL start-up process, we look at
the 1-D limit of the above results by setting A,(Z) = 1, [ d*% = 2k1k,pX (T
is the beam cross section) and dropping [ d%p and the transverse Laplacian.

The mode Eq. (9) reduces to the 1-D dispersion relation [1]:

D(p)=p-v- /dﬁév_/i? =0, (18)

where fo = V(7)) with [ dRV () = 1. For a monoenergetic beam (i.e., V() =
4(77)), this reduces to the cubic equation [8] with a growing, a decaying and
an oscillatory solution. The intensity spectrum of Eq. (17) becomes the power

spectrum of Ref. [1]:
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where
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( ) mom (effective start-up noise), (22)
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Here Poeam = Ibeam 1S the beam power, and p = ug +iy; is a function of the
frequency detuning o through the dispersion relation. For CA, the amplifica-
tion occurs at the frequency defined by the frequency of the coherent input
signal. For SASE, the frequency dependence is determined by p;(7) in the
exponent of Eq. (19). Thus, g4 and gs, evaluated at the optimal detuning 7
where the growth rate yu; reaches the maximum, determine the input coupling
to the exponentially growing mode and the effective noise power in units of

promc?/(27), respectively.

In Ref. [1], G = gags has been computed numerically for a flat-top energy
distribution and has been found to increase initially with energy spread. For

a Gaussian energy distribution

V(')—~———1—-—e*< ——ﬁi) (24)
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we compute piy, g4 and gs (Fig. 1) as functions of the rms energy spread &, =
op/p and find that both g4 and gs increase with &,. For a monoenergetic beam,
any initial signal (external or spontaneous) couples equally well to the three
(growing, decayving and oscillatory) modes that have the same normalization
factor. hence we have the well-known g4 = 1/9. However, g4 is larger for a
larger energy spread. approaching 1/4 for the flat-top model and 1 for the

Gaussian model. This implies the input coupling to the exponentially growing




mode is preferred in the presence of energy spread for both CA and SASE.

The increase in the effective start-up noise through gs may be interpreted in
the following way. First of all, g5 = 1 for a monoenergetic beam, and the quan-
tity pyomc?/(2x) is approximately the noise power generated from the spon-
taneous undulator radiation in the first field gain length Ly = 1/(ky0v/3) [6].
For a beam with a finite energy spread, the spontaneous radiation spectrum
in the forward direction is the convolution of the beam energy spectrum and
the undulator radiation spectrum with an intrinsic bandwidth 2An = Av =

Aw/w ~ 27 [ (ky2):

(d_fi)ipmﬁ( i ) [ anv S, (kurtn - Avj2), (25
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where S,(z) = sin®*(z)/2? and
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is the angular power spectrum with vanishing energy spread [13], I, is the

electron current, and [4 = 17045 A is the Alfven current. After the first field

) . (27)
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gain length z = L, = (2k,ppr)~", we have
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Here we have used the relation
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Comparing Eq. (22) in the form
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with Eq. (27). we may interpret the effective start-up noise as the fraction

of the spontaneous undulator radiation in the first field gain length within




the coherent gain bandwidth A7 ~ AP ~ p; (much narrower than the in-
trinsic undulator bandwidth 27 u;). Using the Gaussian energy distribution in
Eq. (24) and approximating the Lorentzian in the square bracket of Eq. (29)

by another Gaussian, we can carry out the 7-integral to obtain

2
<%§) ~ p;/erZ§2 exp (— 262/{);ti ,u,z) 1 1—2 2 (30)
s 1 7 7 + 262/ u3
With increasing energy spread, the coherent fraction of the spontaneous radia-
tion decreases, but the drop in the growth rate significantly increases the spon-
taneous radiation power in one field gain length, leading to the overall increase
of the effective noise power through gs (as seen in Fig. 1). In fact, for large
values of the energy spread &2 > 1, ur & 7y ~ —&, and p; = 0.76/57 [16],
so that (dP/dw)s o« &, increases without bound because the effective noise

power required to start the SASE process is infinite!

5 Effects of Emittance

We now return to the full 3-D Eq. (17) and consider SASE (the second term)
only. Assuming that the betatron oscillations are slow on the scale of the gain

length, we take kg7 < 1, Z3(7) = &,
= 1 =2 1252
8a(r) = [ - 5(8° + 28%) — o] 7. (3

and integrate [ dz?(d//dw) to obtain the SASE power spectrum
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where &, = 0,v/2k k,p is the scaled transverse beam size and is related to the
beam emittance € = 55!:'.3 /k1. If we further assume that the external focusing
strength kg is much larger than the undulator natural focusing k, which is the
case in x-ray FELs such as the Linac Coherent Light Source (LCLS) [17], we
can neglect k%2 in comparison with ? in Eq. (32) and identify the effective

start-up noise power as

dpP PIOME [ o e z? d*p P’
-— | = a7 |A xp | — = Xp | —==
(dw ) s 2muj / FlAo(@) exp 252 ) ) 2rk3al exp 2k352

x /dﬁV(ﬁ) [1 + (’7_’—’1{12 ”“Rﬂ ‘1. (34)

Equation (34) provides a similar phase-space convolution as the spontaneous
undulator radiation when the effects of electron angular spread is taken into ac-

count [18], exéept that the spectrum response function is a Lorentzian instead

A—p2/2-0

55, ) at one field gain length. Identifying

of the undulator spectrum S,(
pr as the bandwidth of 7 (or 7) as in Sec. 4 and /7 as the rms angular
spread of the fundamental mode (or 2L, = (k,urp)~" as the Rayleigh length),
we may interpret the effective start-up noise as the phase-space convolution

of the spontaneous undulator radiation in the first field gain length with the

coherent fundamental laser mode.

For numerical computation, we approximate Ay(Z) = exp(—w|Z|?/52), where
' = wg + wy is a complex number characterizing the Gaussian fundamental

mode. Equation (32) can be written as

dP 5 POTCS o
~ 3d 3d P70 I s
a5 S e e, (35)
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where
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For example, using the current LCLS design parameter [17], we have 6, = 2.8,
o, = 0.45, k = 0.07, and ks = 0.29. The fundamental guided mode has a
complex growth rate pop = —1.2 + 0.42¢ and a mode profile determined by
w = 0.64 — 0.30¢ at the optimal detuning 7, = —1.0 [10]. Hence we obtain

% =~ 0.3 and ¢3¢ = 2.3, both larger than the values with vanishing energy

spread and emittance.

6 Conclusion

In summary, an analvtical solution to the initial value problem in a high-gain
FEL is obtained via Van Kampen’s method, including the effects of beam
energy spread and emittance, as well as the diffraction and guiding of the
radiation. In the absence of any external signal, the effective start-up noise
is shown to be the phase-space convolution of the spontaneous undulator ra-
diation in one field gain length with the coherent fundaﬁental laser mode.
Compared with the 1-D, cold beam solution [1,2], the input coupling coeffi-
cient for CA and SASE is larger with finite energy spread, and the effective
start-up noise also appears to be larger with beam energy spread and emit-
tance mainly due to the increase in gain length. Fluctuation in initial electron
velocities (due to beam energy spread and angular spread) do not seem to

contribute to any additional start-up noise.
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Fig. 1. The behavior of py, g4 and gs as functions of the rms energy spread
gn = op/p for a Gaussian energy distribution.
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