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SCIENTIFIC AND TECHNICAL PROGRESS
A, Project Period

June 15, 1989 - March 14, 2000
B. Specific Project Objectives

The major goal of this project has been to gain photophysical and photochemical
insight as to why transition-metal organometallic systems facilitate intermolecular C-H
bond activation reactions with various hydrocarbon substrates. The emphasis of the
research has been to determine the details of the solution photochemistry involved in C-H
activation via quantitative measurements of these processes. Specifically, this has
included:

(@)  characterizing the electronically-excited states of the metal complexes that
are responsible for the photochemistry that leads to intermolecular C-H bond activation;

(b)  determining the absolute photochemical quantum efficiencies of C-H bond
activation reactions for these metal complexes in different hydrocarbon solutions and at
various excitation wavelengths;

(c)  measuring the photophysical properties of these organometallic complexes
at both ambient and low temperatures;

(d)  deriving the nature of the photochemical mechanisms taking place in
solution, including the identity and reactivity of the primary photoproducts and other key
intermediates produced in the reaction pathway; and

(e)  determining the optimum conditions required to perform photochemically-
induced C-H bond activation reactions.

C. Summary of Major Research Activities

An integral part of the research carried out has been the development of a kinetic
procedure for determining absolute photochemical quantum efficiencies of intermolecular
C-H bond activation reactions in fluid solution (1). The method has enabled us to acquire
the first available quantitative data for photochemical transformations in which there are
several overlapping absorbances at the excitation wavelength. Thus, this procedure
accounts for the substantial effects of inner filter absorptions and the fact that these are
changing during the course of the reaction.

These quantitative measurements of the photochemistry have enabled us to
measure and provide a valuable comparison of the C-H bond activation efficiency for
several organometallic systems known to undergo intermolecular C-H bond activation
(2,3). The effects of varying excitation wavelength and changing the hydrocarbon
substrate have been quantitatively determined.  Efforts have been directed at
characterizing the nature of the electronically-excited states and their photophysical
deactivation processes, including analysis of electronic absorption spectra and measuring
low-temperature luminescence spectra.

Importantly, the quantitative photochemistry results have enabled time-resolved
spectroscopic measurements (4) and work in low- temperature liquified rare gas solutions
(5) to be performed successfully on these organometallic systems. Significantly, our




quantitative results have made it possible to elucidate a detailed picture of all the pathways
occurring in the photochemical mechanisms of these important C-H activating
compounds.

D. Overview of Project Findings

Substantial progress has been made on characterizing the solution photochemistry
of rhodium carbonyl complexes that facilitate intermolecular C-H bond activation of
hydrocarbon substrates. This has included an extensive investigation of CpRh(CO), and
Cp*Rh(CO), (Cp = n’-CsHs; Cp* = 1’~CsMes) complexes (2). Significantly, it was found
that the quantum efficiencies for phosphine (PR3) and arsine (AsRs) ligand substitution in
these complexes are dependent on the entering ligand concentration and the nature of the
entering ligand, and we have deduced that there are two ligand field (LF) excited states
with quite distinct reactivities in the photochemical mechanism. Clearly, two different
reaction intermediates are implicated in the solution photochemistry of CpRh(CO), and
Cp*Rh(CO),. The photoreactivity was also studied in triethylsilane (Et;SiH) solution and
contrastingly, it has been found that the quantum efficiencies are independent of entering
Et;SiH ligand concentration at high [Et;SiH], but show a dependence on [Et;SiH] at low
values (see Figures 1 and 2). A kinetic analysis has been applied to these photochemical
efficiencies results in order to elucidate the solution mechanism (2e).

0.01

PPhy

0.008 +

A 'Y Et;SiH

0.002 +

0 : + ;
0 0.1 0.2 03 0.4
(L, M

Figure 1. Plots of photochemical quantum efficiency (§;) versus scavenging
ligand [L] concentration for the 458-nm ligand substitution (L = PPh3 and AsPh3)
and Si-H bond activation reactions of CpRh(CO); in deoxygenated decalin at 293
K.

The photochemistry can be understood by invoking different pathways following
excitation at short and long wavelengths. Upon 313-nm excitation (short wavelength) of
CpRh(CO), in hydrocarbon (RH) solution an upper energy LF state is reached and the
photoreactivity is characterized by facile CO dissociation and high quantum efficiency ($cc
> 0.1) for both ligand substitution and C-H/Si-H bond activation reactions.
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Figure 2. Plots of photochemical quantum efficiency ({;) versus Et3SiH
concentration for the 458-nm Si-H bond activation reaction of CpRh(CO); in
deoxygenated decalin at 293 K.

The photoefficiency data are entirely consistent with the primary photoproduct
being the hydrocarbon solvated CpRh(CO) monocarbonyl species (2b,e,f,6), which is able
to react in a variety of ways depending on the reaction conditions (see Scheme 1).
However, it should be noted that the alkyl hydride complex, CpRh(CO)(R)H, is also
unstable in this particular system and it has been identified as a reaction intermediate in
flash photolysis; this transient species has a lifetime on the order of milliseconds in the
absence of a scavenging ligand and it undergoes reductive elimination to form [CpRh(u-
CO)L; and subsequently the frans-Cp,Rh,(CO); product (4b). The CpRh(CO)PR; and
CpRh(CO)(SiEt3)H species are stable and have been isolated (2b,e).
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In sharp contrast, the 458-nm excitation (long wavelength) predominantly
populates a lower-energy LF excited state which is characterized by an inefficient (¢ ~
10”*) photosubstitution reaction (see Scheme 2). A ring slippage (n*—> n°) mechanism
involving the cyclopentadienyl ligand (7) has been invoked on the basis of the .. results,
which are influenced by the nature and concentration of the entering PR; ligand. In sucha
mechanism, the competition of a back ring-slip process effectively lowers the reaction
quantum efficiency for photosubstitution. The (n°-Cp)Rh(CO), intermediate is once again
considered to be solvated (2e). The photoreactivity at long wavelength, therefore,
appears to be similar to the thermal substitutional chemistry of this system (8).
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A key feature of the kinetic analysis of the quantum efficiencies is that both of the
LF excited states are extremely short lived and the primary photoproducts are immediately
solvated prior to ligand scavenging or C-H/Si-H bond activation (2¢). Indeed, CO
dissociative reactions typically take place on the timescale of a few picoseconds (9,10) and
we have found that the complexes themselves are non-luminescent at 77 K (2d), consistent
with extremely rapid dissociations from LF states (11).

Much attention has also been paid to understanding the photochemistry of the
analogous (HBPz';)Rh(CO), (Pz' = 3,5-dimethylolpyrazolyl) system following the initial
report of intermolecular C-H activation (12). Recently, we have studied the thermal and
photochemical pathways in alkane solutions at room temperature (3). The thermal
mechanism has been characterized to involve rapid n° <> n° ligand interconversions and
indeed the protonated complex, [{n’-(HBPz';)Rh(CO),(Pz’"H)}Rh(CO),]BF,, is readily
formed on addition of HBF,OEt to (HBPz';)Rh(CO),. The photochemistry is
exceptionally clean in each of the alkanes studied and conversion of the parent complex to
form the hydrido photoproduct takes place completely for each hydrocarbon (see eq 1).

(HBPZ'3)Rh(CO), %., (HBPZ'5)Rh(CO)R)H + CO )



Absolute photochemical quantum efficiencies (¢cu) have been determined for these
reactions and these illustrate that the C-H activation process is strongly dependent on the
exciting wavelength. Very effective conversion (¢cy = 0.31 - 0.34) is attained upon
excitation at 313 or 366 nm (short wavelength) and inefficient conversion (¢cu = 0.010 -
0.011) is observed upon photolysis at 458 nm (long wavelength). The experimental
observations have been again interpreted in terms of different photochemical mechanisms
originating from two low-lying LF states, in which the long-wavelength photochemistry
and the thermal chemistry of (HBPz'3)Rh(CO), are associated with the initial formation of
a solvated (n’-HBPz';)Rh(CO), intermediate that is unable to undergo C-H bond
activation. The reduction in quantum efficiency is then brought about by an effective
ligand rechelation (>~ n°) process of the m’-intermediate. Significantly, we have
prepared the analogous square planar (H;BPz;)Rh(CO), complex (see below) and have
found that it is reactive towards phosphine ligands but not R-H in room-temperature
solution, supporting the conclusion that the above n’-species is unable to C-H activate
hydrocarbons  (3b). In contrast, the short-wavelength photochemisty is
attributed to proceed via an extremely short-lived monocarbonyl (HBPz'3)Rh(CO)
complex that facilitates efficient C-H bond activation. Recent femtosecond flash
photolysis measurements have confirmed that the primary photoproduct formed on UV
excitation is indeed a monocarbonyl fragment which is produced and solvated within 10 ps
(10h). Moreover, it has been determined that (HBPz';)Rh(CO); is not luminescent in 2-
Me-THF or EPA glasses at 77 K (3a,b), consistent with LF levels which are highly
dissociative and short lived (11). Scheme 3 summarizes the postulated photochemical
routes for the various excitation wavelengths.

A comparison of the photophysical processes of the CpRh(CO), and
(HBPz';)Rh(CO), systems illustrates a number of significant features. As noted above,
both molecules are believed to undergo extremely fast ligand dissociation reactions from
LF excited states and, in each case, two different mechanisms involving CO dissociation
and ligand interconversions are determined (2d,f). For CpRh(CO), the electronic
absorption spectrum indeed reveals two LF bands, but for (HBPz';)Rh(CO), only a broad
LF absorption is observed so the assignment of two excited states must be derived from
the photochemical behavior. In both cases the C-H activation photochemistry clearly
arises by rapid CO dissociation and yet, interestingly, the observed ¢cu values are not
dependent on added CO concentration (2,3). Apparently, once the (HBPz';)Rh(CO)
primary photoproduct is formed (and rapidly solvated) it is not able to recombine with CO
to any significant extent and it is subsequently converted completely to the C-H activated
product. Hence, in these Rh systems the photoefficiencies of the C-H activation process
are not influenced by mechanistic events occurring after the formation of the
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primary photoproduct. Instead, the photoefficiencies appear to be determined solely by
photophysical effects and, specifically, by the branching ratio of the dissociative and
nondissociative pathways from the upper LF excited state.

Photoreactivity measurements on CpRh(CO), and (HBPz';)Rh(CO), have recently
been carried out in several hydrocarbon solutions at room temperature (2e,3c). Results
obtained for the intermolecular Si-H bond activation reaction in the CpRh(CO), system

reveal a distinct solvent effect (see Table 1). At any particular exciting wavelength the
photoefficiency values are similar across a range of alkanes but are substantially reduced in
aromatic solvents, even though it has also been determined that the aryl hydrido
Table 1. Photochemical Quantum Efficiencies (¢or) as a Function of Excitation
Wavelength for the Intermolecular Si-H Bond Activation Reaction of CpRh(CO), in
Various Solvents at 293 K2
Aex, NI
n-hexane 0.29 0.078 0.0032
n-heptane 0.29 0.060 0.0023
n-octane 0.22 0.081 0.0026
isooctane 0.31 0.089 0.0026
decalin 0.15 0.060 0.0024
benzene 0.035 0.017 0.00074
db-benzene 0.054 0.024 0.00071
toluene 0.036 0.0074 0.00082
p-xylene 0.061 0.033 0.0014
2Values were determined in triplicate and were reproducible to within +10%
bSolutions contain 0.05 M Et3SiH
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photoproducts are found to be more thermodynamically stable than the alkyl hydrido
species. Similar observations have been made for the (HBPz';)Rh(CO), system (3c). In
each case, the differences in ¢pcy have been rationalized in terms of solvent effects on the
nonradiative relaxation rates from the complexes, and more specifically from the upper LF
levels responsible for the CO dissociative photochemistry (2e,3c). Hence, it can be
concluded that the main influence on the photoefficiency of C-H activation is not the
breaking of the C-H bond itself. Again, the solvent results clearly indicate that it is the
photophysical deactivation mechanism which predominately affects the quantitative C-H
activation chemistry.

A comparison of the electronic properties and photochemical reactivity efficiencies
for a series of rhodium dicarbonyl complexes with the general formula XRh(CO),, where
X = Cp (n’-CsHs), Cp’ (n*-CsHaMe), Cp” (n’-CsHMey), Cp* (n*-CsMes), ind (n*-CsHy)
and acac (CsH70,) (see below), has been carried out (13). The photochemical reactions
of these molecules have been studied under a variety of experimental conditions, where
binucleation, intermolecular Si-H and C-H bond activation, and ligand substitution
processes occur. Modifications of the unique ligand in this system enables the
photoefficiency of the CO dissociation reaction to be substantially changed. The absolute
reaction quantum efficiencies (¢.) are markedly different and strongly wavelength
dependent for each of the molecules studied (see Table 2). The values of ¢.. decrease in
the order CpRh(CO), > Cp'Rh(CO), > Cp*Rh(CO), >> (acac)Rh(CO), > (ind)Rh(CO),
and vary by over three orders of magnitude depending on the complex chosen and the
excitation wavelength employed.
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Table 2. Photochemical Quantum Efficiencies (§.,) for Conversion of XRh(CQ), to their Corresponding
Photoproducts at 293 K*®

ber
reaction products Aex = 313nm Aex = 366nm Aex = 458nm

CpRhy(CO); 0.30 0.078

CpRh(CO)SiEt:)H 0.30 0.078 0.0032
CpRh(CO)cy 0.30 0.078

Cp'Rh(CO)(SiEtz)H 0.0023
Cp*,Rhx(CO); 0.15 0.033

Cp*Rh(CO)(SiEt;)H 0.15 0.032 0.00017
Cp*Rh(CO)cy 0.15 0.034
(ind),Rhy(CO)s 0.019 0.0084
(ind)Rh(CO)cy 0.018 0.0074
(acac);Rhy(CO), 0.042 0.0082
(acac)Rh(CO)cy 0.041 0.0083

* All values are accurate to +10%.
® Concentrations of entering ligand are 0.05M in each case.

Several processes appear to strongly influence the photochemical reactivity of
these XRh(CO), derivatives. On higher-energy excitation the carbonyl dissociation
mechanism is predominant and this is characterized by high reaction quantum efficiencies
and supported by the ample spectroscopic evidence noted above. However, in all the
complexes studied here, there is a distinct reduction in photochemical efficiencies upon
excitation at longer wavelengths, suggesting that a different reaction pathway takes place
here. The drop in photoefficiency is understood to be associated with the different nature
of the reaction intermediates occurring on excitation into the lower-energy absorption
bands of these complexes. As noted above, for the CpRh(CO), complex this has been
assigned to the presence of a ring slippage (n*—>n’°) mechanism occurring at lower-energy
excitation. A similar argument is put forward for the methylated cyclopentadienyl
derivatives, but the reduction in ¢., over the whole wavelength manifold studied is thought
to be due to other factors that lead to enhanced nonradiative deactivation of the excited
state, including increased vibrational deactivation and the possibility of intramolecular
agostic interactions involving a methyl group (see Scheme 4). For the (ind)Rh(CO),
complex, a ring-slippage intermediate, along with the possibility of an intramolecular 1’
interaction occurring in the formation of the slipped (1°-ind)Rh(CO), species (see Scheme
5), may also contribute to the quantitative photochemical observations. Finally, the
quantitative photochemistry of (acac)Rh(CO), is rationalized with the incorporation of a
dechelation/rechelation pathway occurring at long-wavelength excitation (see Scheme 6).




Scheme 4

Me
Me'S/.\ 7Me
Me CH,
oC” ¢oH
Me Me Me
Mei@ym hv MeQ/,\ Me|__ L Mc-iQ?Me
Me™ ™t Me Mo [ Me | CO Megp Me
oC o oC co o¢ L

Scheme §
@ ho = / L,-CO —_

Rh —= | KN\ -~ Rh

VRN Rh VRN

oc Cco AN oC L
oC CO
Scheme 6
CO
hv, 366 nm
/ e
L
-CO

O, CO

7N\ H /Rh\

o co | o L

hv, 313 nm, -CO

k CO\R" /




In related work, we have also explored the quantitative photoreactivity of some
metal cluster complexes. Metal clusters present new avenues for activation and catalysis
and, yet, our knowledge of the photochemistry of such complexes is rather limited. The
photoisomerization of face-capping benzene triosmium clusters have recently been studied
as a model for arene activation (14), so we have recently investigated the photochemical
decarbonylation reaction arising from triosmium cluster complexes containing 2-
mercaptopyridine ligands (15). In our study, we determined that the photochemistry is
exceptionally clean and involves the nitrogen of the mercaptopyridine ligand replacing a
carbonyl ligand on the third osmium atom of the thiolate-bridged triangle. Quantitative
measurements of the reactivity have been obtained. This work follows our earlier
investigation of the photochemistry of high-nuclearity Os-Hg clusters (16).

The excited-state properties of several other organometallic complexes have also
been investigated. Recently, we have studied the luminescence of W(CO),(4-Me-phen)
(4-Me-phen = 1,10-phenanthroline) in room-temperature and low-temperature glassy
solutions and in acrylate thin films (17). This system exhibits dual emission bands from
triplet-centered metal-to-ligand charge transfer *MLCT) excited states and the lower
energy band has been found to intensify and undergo a substantial blue shift as the acrylate
polymerizes. The changes in luminescence properties have been associated with an
intriguing rigidochromic effect affecting the lowest *MLCT excited state (17). The
organometallic complex, fac-CIRe(CO);(4,7-Ph,-phen) (4,7-Ph,-phen = 4,7-diphenyl-1,10-
phenanthroline) has also been found to be a good spectroscopic probe for monitoring
polymerization of aromatic cyanate ester monomers (18). The luminescence
rigidochromic effect has been characterized for other organometallic complexes and we
have demonstrated that these molecules are excellent spectroscopic probes of
polymerization in both thermosetting and photoinitiating polymer systems (19).

In a related study the photophysical properties of the organometallic complex,
W(CO).(en) (en = ethylenediamine), have also been investigated. This complex is one of
the few organometallic complexes that clearly exhibits both singlet and triplet lowest
energy ligand field (LF) excited states in the absorption spectrum (20). It, therefore,
presented an excellent opportunity to study the wavelength-dependent behavior of
photosubstitutional processes in detail and to compare these results to the wavelength-
dependent C-H bond activation efficiencies that we determined in the CpRh(CO), and
(HBPz';)Rh(CO), systems. Quantitative results for the photochemistry of W(CO).(en)
have been obtained and, importantly, they reveal unequivocally that the singlet and triplet
LF excited states undergo quite separate dissociative pathways. The photoreactivity from
the lowest-lying triplet state has been determined to proceed with a significantly reduced
photoefficiency compared to be corresponding singlet level.

The quantitative photochemistry of CpFe(CO).I in room-temperature solution has
also been measured at several excitation wavelengths. The photoreactivity observed at
long wavelength is exceptionally interesting as it has been shown to involve heterolytic
cleavage of iodide from the metal center (21). We have found that this photochemistry is
cleanest and most efficient at wavelengths longer than 600 nm and that excitation in this
region provides a new way of effecting Fe-I dissociation in the CpFe(CO),.I complex. This
work is significant because it facilitates an improved synthetic pathway to azaferrocene.

Recently, we have begun to study the photochemistry of [CpFe(arene)]X (arene =
benzene, toluene, napthalene, pyrene; X = PF,, BF,, SbFs, AsFs, CF;SO; complexes) (22).
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This system is an effective cationic photoinitiator for the polymerization of epoxy resins.
Our studies have been again directed at determining the quantitative photochemistry with
a view to learn about the mechanism of photoinitiation in solution at several excitation
wavelengths. The mechanism of the photoreaction is understood to involve an initial arene
slippage step. The photoefliciency results have revealed that the system exhibits a strong
excitation wavelength dependence and that the photochemistry does not occur solely from
the lowest-lying LF triplet excited state (22b,c), as previously thought.

Finally, we have begun to explore new avenues for organometallic photochemistry.
A series of novel trinuclear metal complexes containing fac-(diimine)Re(CO);
chromophores and a stilbene-like bridging ligand have been synthesized and they exhibit
photoswitchable luminescence in CH;CN arising from photoinduced intramolecular energy
transfer from the fac-(diimine)Re(CO); chromophores to the bridging ligand (23).
Additionally, two luminescent triangle and square complexes have been prepared by self-
assembly reactions of XRe(CO)s and the corresponding bis-monodentate ligands (see
Scheme 7). The structures of these molecules have been confirmed by a variety of
techniques including NMR spectroscopy, IR spectroscopy, FAB® mass spectrometry and
elemental analysis (24). Similarly, a series of heterometallic square complexes have been
prepared by self-assembly between BrRe(CO); and (pyterpy).M(PFs),, where M = Fe, Ru
or Os (see Scheme 8). The luminescence and host-guest chemistry of these complexes
have also been investigated (25). Our rapid progress in this area has stimulated an
extensive study of the luminescence, electrochemical, and host-guest properties of a series
of squares, triangles and dimers involving Re(I) chromophores (26). It is apparent that the
cavities inside these molecules may act as catalytic microreactors and that these systems
may also serve as molecular sensors. In this regard, we have recently synthesized a new
luminescent rhenium (I) polypyridyl-based complex that acts as a receptor for a variety of
inorganic anions (27). This receptor molecule (see Scheme 9) shows high affinities for
halides, cyanide and acetate anions with binding constants as high as 10*-10° M and a
detection limit as low as 10° M in CH,Cl, solution. One of the most exciting aspects of
this system is that the molecule is such a simple, yet highly sensitive, luminescent metal-
complex receptor.
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E. Major Research Accomplishments and their Significance

We have provided the first quantitative photochemical measurements for a number
of important C-H bond activation processes. This has involved a determination of the
effectiveness of photochemical C-H activation at several excitation wavelengths in each
system and also for different hydrocarbon substrates. Arising from these measurements is
fundamental knowledge concerning the photochemical mechanism, including information
on the nature of the electronically-excited states and primary photoproducts formed upon
light excitation. An understanding of the photophysical processes and their influence on
the C-H bond activation reactivity is also emerging for several systems. This quantitative
photochemical information is essential in elucidating reaction mechanisms and supporting
other measurements using time-resolved and low temperature techniques.
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