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Preface to the Series

The RIKEN BNL Research Center was established this April at Brookhaven National Labo-
ratory. It is funded by the “Rikagaku Kenkysho™ (Institute of Physical and Chemical Research)
of Japan. The Center is dedicated to the study of strong interactions, including hard QCD/spin
physics, lattice QCD and RHIC physics through nurturing of a new generation of young physicists.

For the first year, the Center will have only a Theory Group, with an Experimental Group to
be structured later. The Theory Group will consist of about 12-15 Postdocs and Fellows, and plans
to have an active Visiting Scientist program. A 0.6 teraflop parallel processor will be completed at
the Center by the end of this year. In addition, the Center organizes workshops centered on specific
problems in strong interactions.

Each workshop speaker is encouraged to select a few of the most important transparencies
from his or her presentation, accompanied by a page of explanation. This material is collected at

the end of the workshop by the organizer to form a proceedings, which can therefore be available
within a short time.

T.D. Lee
July 4, 1997



CONTENTS

Preface to the Series

.........................................

Introduction
P. Orlando, P. van Baal and R. Pisarski

Gauge Fields and AdS/(r) CFT
?
1. Kogan

Yang-Mills Theory in (2 4+ 1) Dimensions, Vacuum Wave Function, Mass
Gap, String Tension
V.P. NGt . . . o o o e o e e e e e e e e e e e e e e e e e e

Instantons and the QCD Vacuum Wavefunctional
W. Brown . . . . . .« o i i e e e e e e e e

QCD from a 5-Dimensional Point of View

D. Zwanziger . . . . . ... Lo
Topography on Orbit Space

P. Orland . . . . . . . . e

Gribov Problem and BRST Formulation
K. Fujitkawa . . . . . . . . . . . e

Resolution of the Gribov Problem—or How to Live with the Ambigu-
ity
M. Schaden . . . . . . . . e e

Dynamics and Topology in a Gauge-Invariant Formulation of QCD
K. Haller . . . . . . . e e e e

Physical Charges in Gauge Theories
E. Bagan . . . . . . . e

Renormalization of Metric on Configuration Space
G. Alezanian . . . . . . . . e

Solitons (Monopoles and Dyons) in the Einstein-Yang-Mills Theory in
AdSy
J. Bjoraker . . . . . . . ..o e

Numerical Study of the Gluon Propagator in Landau and Coulomb
Gauge
A. Cucchiers . . . . . . . . .

On Field/String Theory Approach to Theta Dependence in Large N
Yang-Mills Theory
G. Gabadadze . . . . . . . . o

Magnetic Spatial Geometry and the Wu-Yang Ambiguity
R, Khurt . . . . . e

0]
o

(97}
oo



Reduction of Quantum Systems on Riemannian Manifolds with Symmetry
and Application to Molecular Mechanics

S. Tanimura . . . .« .« o o e e e e 94

New Monopole Solutions to the SU(2) Einstein Yang-Mills Equations in
Asymptotically Anit-de Sitter Space

Y. Hosotant . . . . . . .« o e e e e 100
Gravity < Large N Y-M Correspondence

A. Jevicki . . . . o o e e e 105
Gauge Invariant Monopoles for Free

P.van Baal . . . . . . . . e 112
Dynamics of Confinement from 3d Gauge Theories

O. Philipsen . . . . . . . . e e 118
Lattice Gauge Fixing, Elitzur’s Theorem and Abelian Projection

M. Ogilvie . . . . . . . e 124
Smeared Gauge Fixing

J. Hetrick . . . . . . . e e e . ... 130
Lattice Gauge Fixing, Gribov Copies and BRST Symmetry

M. Testa . . . . . . . . e e e e 137
Gauge-Fixing Approach to Lattice Chiral Gauge Theories

M. Golterman . . . . . . . . . e 143
List of Participants

......................................... 149



Introduction

This four-day workshop focused on the wide variety of approaches to the non-perturba-
tive physics of QCD. The main topic was the formulation of non-Abelian gauge theory in
orbit space, but some other ideas were discussed, in particular the possible extension of
the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve
most of the participants in general discussions on the problem. Panel discussions were

PR SR [ R VI IR [P I I RIS, (Y TR 5N ). Y VT MR & [P, N | f.1t
OIgailized L0 IUrvier encourage devaite aid understandiing. iviost Ol tle (alkKsS rougily 1€l

1. Variational methods in field theory.

2. Anti-de Sitter space ideas
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In particular some remarkable progress in three-dimensional gauge theories was pre-

1 xr

sented, from the analytic side by V.P. Nair and mostly from the numerical side by O.
h

Philincan Thic work mav ulti
Daupsen. 101s worx may ult

on the high-temperature quark-gluon plasma.

Many thanks to all participants of the workshop for their contributions and especially
for the high level of discussion which clarified many aspects of field theory. We sincerely
wish to express our gratitude to Pam Esposito, the secretary of the RIKEN-BNL Research
Center. Finally we thank Brookhaven National Laboratory and the U.S. Department of

Energy for providing the facilities to hold this workshop.
Peter Orland (Baruch College, City University of New York)

Pierre van Baal (University of Leiden)

Robert Pisarski (BNL Physics)
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(Gribov Problem and BRST Formulation
< A n\Y Trat

Ay ~ L 4 cen e O Y iy . S
rtment of Physics, University of Tokyo

Bunkyo-ku, Tokyo 118,Japan

1. Motivation

2. A BRST symmetric re-interpretation of the Faddeev-
Popov formula
"BRST invariant summation over Gribov copies”

1. BRST symmetric formulation of the soluble model
of Friedberg et al.

" Agreement with the canonical analysis”

" Gribov horizon is not serious?”
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Resolutibn of the Gribov
Problem — or How to Live
With the Ambiguity

K. Fujikawa('79,'83), P. Hirschfeld('79),
B. Sharpe('84), R. Friedberg, T.D. Lee,

Y. Pang, H.C. Ren('95), L. Baulieu, M. S.,

A. Rozenberg('96,'98), and many others

(talk at BNL on May 26, 1999)
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> sign[F'(g;)] = 0!

F(gi)=0

<~

n/‘\

/ db /dcdc / dg exp[scF(g)]

FP

with the nilpotent BRST symmetry,

sg=c¢, sc=0,; sc=1b, sb=0

g
COMMENT: The model TQFT *“action” is

scF(g) = ibF(g) —cF' (g)c

= the integral is a top#(S1) that does not
depend on F. By deforming to F =V =
x(S1) is Morse's definition of the Euler# of
S1 — which vanishes!= GGP



MORAL: The FP-Integral is a constant on
- a connected set of orbits that may vanish:
x(G=8U(n)xGp) =0

STRATEGY: avoid GGP by either
1)Equivariant cohom. for x(M =G/H) # 0
2)Use BRST to compute a top## 0 of G !

RESULTS for SU(2) gauge group:

on Ty x(Ex/SU(2)) =odd

on Sa, n = 0 sector: x(Ey.4/SU(2)) =1

on S4, n =1 sector: x(&5.4/SU(2)) =even,
etc....

“Cov.” & BRST-inv., SU(2)-LGT in MAG:
x(G = SUR)N) = x(SUR))N =0 =GGP
BUT: x(M = SUR)Y/ULN ~ sy =2N 1
Use U(1)¥ invariant Morse potential:

V. M—R
Vinlgl = VU9 with VU] = Y |TrT+UZ-j
links
to construct the TQFT with an equivari-
ant BRST-symmetry and partition function

x(M).

2
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THE TQFT on M = SU)YN/u(1)N
equivariant BRST algebra of TQFT:

SUij = 0

sg; = —gi(c; +w;) , w; € Cartan
sc; = Cz'2 + [w;, ;] + @5 , ¢; € Cartan
swi = —¢;

s¢p; = O

and multiplier doublets to enforce:
fi[Ug] = Trrgc; = Trmgc; =0
with F[U] = 5V[l19]/5g7;|g__:1

s¢; = |wicl+b; , sbp = [wi,b] — ¢,
so; = 0 , so; = 0
Vi = i , sv; = 0

with o, o,~,7 in Cartan subalgebra.
BRST-algebra is NILPOTENT: 52 =0
BRST-exact action: Spopr([UY,c,c,...] = sW

— 84 _ — — _
W = ZTI’ ‘:Ci(fi[Ug] —+ Ebz) -+ ﬁCZ-QCi —+ YiCq -+ 0,;C;
1
Storr does not depend on w.
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= U(1)N-invariant gauge fixing action:

1 | _ _
> Tt [~ AR - GMU,dl - pirol, ]
sites 1 o

1 >

+E'Di

p; 1S an auxiliary scalar site field that could be
eliminated in favor of a quartic ghost inter-
action. The action is bilinear in the complex
ghost fields

¢; =Ciry —Cit— , ¢ =Ciry +Cir_

which, when integrated, give a sparse deter-
minant that depends on the link configura-
tion {U;;} and {p;}. In a numerical simulation

its gaussian average over {p;} determines the
measure for the link variables.

FlU1 =Y Uijr (TrU L)+ Uy (TrU Ly ) —hec.

— J
g~

gives the variation of V[U] under infinitesimal
gauge transformations.
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THE EQUIVARIANT COHOMOLOGY:
The action is (on-shell) BRST invariant:

SUij —_ CiUij*’UijCj 857; — —fz'[U]/Oé
scie = 0 Spi 2Trroles, Fi[U]]

with SFz[U] = MZ'[U, C]

defining M;[U, c].
HOWEVER: on-shell (using EM’s of ¢, p)

82 2

= infinitesimalU(1)N, parameters ¢

and is nilpotent on U(1)N-invariant function-
als

B:= {A[U,c] = A[U", "], v h e U(1)N}

that do not depend on ¢, p only. On B, s thus
defines an equivariant cohomology

> ={0e€B:sO=0,0%# sE, VE € B}

Observables are in the equivariant cohomol-
ogy and have ghost#=0.
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ONE PROVES (explicitly):

1) (Equivariant) U(1)-LGT is normalizable

2) Expectation values of observables in the
U(1)-LGT are the same as in the SU(2)-LGT
3) <: p; :># 0 in D < 4 dimensions scales
like a physical mass? in the critical gauge
a=g*(11 = nys) + O(g*)

4) Residual U(1)¥-invariance can be “gauge
fixed” to a discrete Z4 with a TQFT whose
partition function is the number of connected
components bg(U(1)N) =1 #£0

5) Equivariant construction of equivalent abelian
LGT for SU(n)-LGT relieson SU(n+1)/U(n) ~
CP, with x(CPy,) =n+1%#0
CONCLUSION: It appears that this construc-
tion is a viable field theoretic alternative to
Dirac’'s quantization. It relies on a nilpotent
symmetry whose global breaking can be an-
alyzed as in other TQFT's (and SUSY).
FOR DETAILS and APPLICATIONS SEE:
1)M.S. Phys.Rev.D59:014508;ibidD58:025016
2)A.Rozenberg,M.S. Phys.Rev.D57:3670
3)L.Baulieu,A.R.,M.S.,Phys.Rev.D54:7825
4)L.Baulieu,M.S. Int.J.Mod.Phys.A13:985
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Dynamics and Topology in a Gauge-Invariant Formulation of QCD.

Kurt Haller?
Department of Physics, University of Connecticut, Storrs, CT 06269

Summary

This investigation addresses the properties of both, the gauge-invariant gauge field,
and the “resolvent field” A](r), one of its essential constituent elements. Both of these
operator-valued quantities were constructed in earlier work.? The resolvent field is a
functional of the gauge field, and it has a pivotal role in our work. It first appears in
the operator that implements the non-Abelian Gauss’s law, where it is folded into II](r),
the canonical momentum for the gauge field and the negative chromoelectric field. In
addition, the resolvent field has an important role in establishing gauge-invariant gauge
(gluon) and spinor (quark) fields. And it also is an important component of the unitary
operator that enables us to carry out a similarity transformation to a representation in
which the low-energy dynamics of QCD can largely be described by a nonlocal interaction
— the QCD analog of the Coulomb interaction in QED.?

We have obtained a nonlinear integral equation that determines the resolvent gauge
field for the SU(2) form of QCD,? in the form AJ(r) = AJ(r)x +.A_;7(r)y , where A7(r)~
and A7 (r)y are displayed on one of the accompanying transparencies. When we treat the
resolvent field (as well as all other fields) in this equation as ordinary functions of spatial
variables, and make an appropriate ansatz delimiting their forms, we obtain a nonlinear
differential equation that associates gauge fields with topological sectors in which the
corresponding gauge-invariant gauge fields live. The topological sectors are characterized
by winding numbers 2(N — n) 4+ 1, where the integer indices N and n correspond to the
r—oo and r—0 limits, respectively, of the magnitude N = g\/ g%A_}(r)géA_](r) . These
limiting values of A are determined by the nonlinear differential equation referred to
above. We observe that the dynamics of QCD — in particular the requirement that it
respect the non-Abelian Gauss’s law — mandates that the r—oo and 7—0 limits of A/
be integer multiples of 7. The dynamical equations, therefore, have an important role

in selecting topological sectors defined by winding numbers that depend on these r—oc
and r—0 limits of N.

IE-mail: khaller@uconnvm.uconn.edu
2L. Chen, M. Belloni and K. Haller, Phys. Rev. D 55, 2347 (1997).
3M. Belloni, L. Chen and K. Haller, Phys. Lett. B 403, 316 (1997); L. Chen and K. Haller Quark

Confinement and Color Transparency in a Gauge-Invariant Formulation of QCD, hep-th/9803250; to
be published in Int. J. Mod. Phys. A.
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The program of this work:

I ) Constructing a set of state vectors for tem-
poral gauge (Ag = 0) QCD that obey the
non-Abelian Gauss’'s Law.

II) Constructing gauge-invariant operator-valued
gauge (gluon) and spinor (quark) fields.

III) Transforming the QCD Hamiltonian to a
representation in which the interactions be-
tween the quarks and the ‘pure gauge' compo-
nents of the gauge field are replaced by non-
local interactions between quarks — a non-

Abelian analog to the Coulomb interaction in
QED.

IV) Investigating the gauge-invariant gauge
field — its topology and its multiple recur-
rences in different topologically distinct sec-
tors.
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SOLVING THE ‘PURE GLUE' GAUSS'S LAW:
We first construct a state W |¢) for which

{6;Ng(r)+Jg(r) }W|¢) = 0, where J§(r) is the

gluon color charge density only. We choose a

state |¢) annihilated by 0;M%(r) (they are easy

to construct) and seek a W for which

{ 0N (r) + Jog(r) } Wg) = W o,M(r) |¢),

or, equivalently,

[8;N¢(r), W] = —J&(r) W + BY(r),

where gé(r) is an operator that has g;M¥(r)
on its extreme right. THIS IS A KIND OF AN
OPERATOR DIFFERENTIAL EQUATION.
The commutator [9;M1%(r), W] is, essentially,
an operator derivative of W,

The solution of this equation is:

W = ||lexp (i/drﬂ?(r)l‘l?(r)) |,
where the double-bar bracket denotes a nor-
mal ordering in which all the gauge fields are
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placed to the left of all canonical momenta,
so that when the exponential is expanded, all
powers of XZ(r) appear to the left of any of
the M) (r).

j47(r), is the resolvent field.

__ 8,
Xo(r) = —Aa(r) and  Yo(r) = ;;Ag(r)
appear in The equation for A7(r)

Gauge-invariant operator-valued fields:
Attaching quarks to gluons — the basic idea:

Ge(r) = 8;N(r) + gf**CALNG(r) + j§(r)
and G*(r) = &;N¢(r) + gr A (r)NS(r)
are unitarily equivalent.
Ga(r) = U GU UG,

where Uy = ¢€0eC and Cy and C are given by
Co =1 [dr X*(r)jg(r) and C =1 [drY%(r)j§(r)

51



We have two options for gauge-transforming
operators: in the C representation,

O(r) — O'(r) = exp <——%/Ga(r’) w(r") dr’) X

O(r) exp (é/@a(r’) w?(r’) dr’) ,

where O(r) and O'(r) are in the “common” or
C-representation. Alternatively, we can trans-
form to the N representation, in which case

On(r) =UgtoN e,

and the gauge transformation Opr(r) — O'\(r)
IS expressed as

O\ (r) =exp (—é/ga(r’) w(r") dr’) X
On(r) exp (é/ga’(r’) w(r") dr’) .

It is easy to see that the spinor field (r) is
gauge-invariant in the N representation, be-
cause ¥(r) and Ga(r’) trivially commute. To
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produce ygi(r), this gauge-invariant spinor is
transformed to the C representation:

Yei(r) =Uep () Uzt and LN =Uept(NU?
with the Baker-Hausdorff~-Campbell theorem,

Yor(r) = Ve() $(r) and L (r) = i (r) V().

Similarly,, the gauge-invariant gauge field is

A0 = Ve (AN DTV () +
Ve (r) 8,V H(r)

or, equivalently,

L T
Agri(r) = AL,(0) + [6;; — 1A

Two-color — SU(2) — QCD :

A(r) = AT (D x + AT (D,
where
sm(N)

AT(N)x = g™ x(r) A%(r)
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/\f L
‘L_sm(N)]

AJ(r) = (6in ——57) 5
\ < )

We can set gr® = N and g'rS = N and use
this form of the resolvent field to transform

+ho nAanlinaar intanyv A Fhna nAan
LI T1iviitinicail HILCyi U LN 11uli—

@

|nm|+r\ int
| adi €guation int
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linear differential equation

d;/y + d—E—I-Q [NCOS(N—I—N) —sin(/—\/'+N)}
U

+ 2grgexp(u) {’TA [COS(/—\/'—I—./\/') — 1]
— TCsin(T\T—I—N)} = 0,

where u = In(r/rg), and 74 and 74 are deter-
mined by the gauge field A]. With the ansatz
we have made,

Vo(r) = exp <—’L’7,"\n7'n‘§) ;

so that we can represent [ GI,L(r)] as

Al=0
Ai(r) =77 AL 0] 7 = Va0 Ve(r)
and define the winding number

Q= —7;(247r2)_1eijk/drTr[A,,;(r)Aj(r)A L(N].
This leads to

Q=2(N-n)+1.
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PHYSICAL CHARGES IN GAUGE THEORIES

EMILI BAGAN?

Grup de Fisica Teorica and IFAE. Edifici Cn. Universitat Autonoma de Barcelona
E-08193 Bellaterra (Barcelona). Spain

MARTIN LAVELLE?, and DAVID MCMULLAN?®

School of Mathematics and Statistics. The University of Plymouth
Plymouth, PLJ 8AA. UK

Summary: In QCD colour can only be defined on gauge invariant states. Hence to go
beyond naive QCD partonic phenomenology requires gauge invariant descriptions of quarks
and gluons. Obvious applications include the construction of constituent quarks; the onset
of hadronisation and QCD description of the glue which makes up the pomeron. In this
talk the highlights of a programme to systematically construct and apply such descriptions
of charged states will be presented. The general method will be explained and then tested
in various contexts. In particular we will see that in QED the on-shell Green’s functions
and S-matrix elements for such physical charged states are free of infra-red divergences
at all orders. This result will be shown to be a natural consequence of the emergence of
a particle structure at asymptotic times in our construction. The ultra-violet behaviour
of these fields is studied and is shown to have many attractive properties. In QCD it is
demonstrated that this construction captures the dominant gluonic fields around static
quarks and that a constituent structure emerges at short distances.

References:

1. E. Bagan, M. Lavelle and D. McMullan, “Soft dynamics and gauge theories,” Phys.
Rev. D57. 4521 (1998) hep-th/9712080.

b0

M. Lavelle and D. McMullan, “Color charges and the antiscreening contribution to
the interquark potential.” Phys. Lett. B436. 339 (1998) hep-th/9805013.

3. M. Lavelle and D. MceMullan, “Constituent quarks from QCD.” Phys. Rept. 279, 1
(1997) hep-ph/9509344.

4. E. Bagan. B. Fiol. M. Lavelle and D. MeNullan. ~“Tufrared finite charge propagation,”
Mod. Phys. Lett. A120 1815 (1997) hep-ph/9706515.

ol

. Bagan. M. Lavelle and Do AMeMullan. ~An infraved finite electron propagator,”
Phyvs. Reve D56, 3732 (1997) hep-th /9602083,

"email: bagan@ifae.es

“email: m.lavelle@plymouth.ac.uk
“email: d. mcmullan@plymouth.ac.uk
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Moral: We need to construct operators
that create gauge invariant charges.

How?

Let G be the gauge group and U € G

' = Uy

1 _
AV = ulau 4+ Zu-lou
g

We need h = h[A] € G such that

and use this to define

wph — h*l’wb
Aph = AR

Ypn and App are gauge invariant

h~1 is called a dressing
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Physically relevant variables

Dirac]

Right electric field

Example [Dirac]:

8; A
Yp(x) = exp (—z’e o2 ) Y(x)
we obtain
B (20, )¥p(@)[0) = - —zup(2)]0)

i.e., the electric field of a static charge

ey

1t [e.g., Buchholz]

at physical state space breaks into dis-
tinct superselection sectors labelled by the E flux
distribution at spatial infinity. In the asymptotic
regime the velocity of the charges is also supers-
elected.

Reca

e

v o« F o flux distribution at oo

Demand dressing eq.: EEEt

- Analogy with HQET = sharp momenta
- From asymptotic dynamics:
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IR Structure

Usual on-shell Green’'s functions and S-matrix el-
ements have IR divergences.

The two dressing structures remove these IR di-
vergences (at all orders):

x (minimal) removes soft and K (additional) can-
cels phase. [QED, scalar QED] for both (on-
shell) Green functions and S-matrix elements of
any scattering process.

Note: Have to go on-shell at appropriate point,
e.g., static dressing < p = (m,0,0,0).

We also have explicit full calculations at one loop
order in both QED and scalar QED.

» - - .
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UV Structure

ePropagator: multiplicative wave_function renor-
malisation possible. On-shell & MS schemes

- Scalar QED: ¢y — v/Zody. Where \/Z> becomes
a function (which is IR finite even in the on-shell
scheme) of the velocity

Charge universality.

eUsual physical predictions for IR safe observables
(¢ — 2) hold

—~ - - 60
sLnardae radiusr’



Interquark Potential
e use minimally dressed quark/ antiquark states,

D(y)h(y)h ™ (Y )w(y)|0).

e Take expectation value of Hamiltonian,

1
H=2 /(EgEg + B¢BY)d3z
e Equal-time commutator:

[Ef(2), AS(y)]et = i6%06;;6(Z — ¥)
e At order g2 obtain Coulomb potential:

g°NCF
4rr
where r is separation. This is QED with coloured

icing.

What about QCD with non-abelian ingredients?
e At order g% need dressing to order ¢°

e Find potential to g%

ng(r) = —

4
4 g* NC
VI (r) = — a2 mef’ 4Cy log(ur)
Should be

—B1 =(4-1/3)Cy
Dressing generates the dominant antiscreening con-

tribution to the @ function. It comes from longi-

tudinal glue. The screening contrlbutlon comes
from aauade invariant dlue (oiiase dreasiing 7
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3, Spherically sym. solutions
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Numerical study
of the gluon propagator
in Landau and Coulomb gauge

Attilio Cucchieri

UNEY UD?@U TAT
Bielere old

Abstract

We study numerically the infrared behavior and the influence
of Gribov copies for the gluon propagator in pure SU(2) lattice
gauge theory. We consider the momentum-space gluon propagator
D(k) in the lattice Landau gauge, and the (equal-time) time-
time Doo(k) and space-space Dj;(k) components of the gluon
propagator in the lattice Coulomb gauge. We also address
the problem of discretization errors introduced by the lattice
regularization, and their effects on the ultraviolet behavior of
the gluon propagator. This issue is important in the numerical

evaluation of the QCD running coupling constant using a recently
proposed nonperturbative definition.
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Infinite-Volume Limit

Let us note that the zero-momentum gluon propagator D(0) can
be written as

2
NNy — VY ({0 )
AV 3d Lapu b\\‘i’”} /
where
¢b = V——l S Ab(l’\
H L i HN"T/

AN PR ISR AT 1) R S B lb JEY - R B S
A NONZero vdilue 101 Lile COTISLdiLS QD“ 1S \ll Ldliudu gdUug } d
latdira artifarct ralatrad +A +ha 1icao AF narindis hatinAdargy ~AnAdibiAne
IALLUILT dl LifalLl ICTialtTu LU LIIT uUoLDtT Ui PCIIUUlL UUU”UGI)’ CWUHIUTLIVEHED
and to the finiteness of the volume

Vanishing of D(0)

Zwanziger proved that, for lattice gauge configurations {U} €
€2 and in the infinite-volume limit, D(k) is less singular than
p?~%(k) in the infrared limit. Moreover,

(L — ()
17\ R = U,

LTY _ v ()
ll/ 7 \J

)
)

}

fa Yoy
a0

for almost every H, where Hb COS (kaz) is a “spatially
modulated magnetic field” coupled to A ().
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p(k) — O can clearly be seen for the larger lattice si

1), 642 (). A decreasing propagator as
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Theoretical Predictions: Coulomb gauge

The equal-time space-space gluon propagator (in momentum
space)

D(0) =%35,,D2(0)
D(k) = $3;, DR (k)
D () = s (AL(R) A% (—F))

should be suppressed in the infrared limit due to the proximity of
the first Gribov horizon in the infrared directions.

The quantity

5 — —2 — - — =2
g (k) =k V(k)=gok Doo(k) = gtk

Il

>~ Dgo(k)
b

is a renormalization-group-invariant quantlty smce (in Coulomb

gauge) Z,Z., = 1 . We can evaluate ¢ (k) on the lattice
and check its asymptotic behavior

W =

12/11
by log [p2<fé>/A%;]

in the limit of large momenta p(E) with A = 1.ROGK A

Q%V(k) ~

AlS:
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The Running Coupling Constant

— T T T
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p’ (k) (GeV’)

The quantity p2(E)DOO(E) atB=22forV = 244 (*¥),and V = 284 (O). compared to
the two-loop running coupling constant <~ ;" | - /). We use ¢ = 0.3068 and Ao = 0.9596.

In physical units and in the M S-scheme we obtain Am ~ 475 MeV.
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Gauge Invariant Variables in Gauge Theories
at BNL, May 25-28, 1999

Reduction of Quantum Systems on Riemannian
Manifolds with oyuuut:w.y and npphCadOu vO

Mobolecular Mechanics

Shogo Tanimura

Departmen f F"nmnpprmn Ph'uqn-q and Mechanics

Kyoto Um’uerszty, Kyoto 606-8501, Japan
e-mail: tanimura@kues.kyoto-u.ac.jp
and
Toshihiro Iwai
Department of Applied Mathematics and Physics
Kyoto University, Kyoto 606-8501, Japan
e-mail: iwai@kuamp.kyoto-u.ac.jp

Abstract

e

the group of gauge transformations, respectively. When one tries
to define the moduli space M = A4/G, a singularity arises at a con-
figuration which admits a non-trivial symmetry group. To quantize
the moduli space M we should impose some boundary condition on
wave fuiictions to make them smooth and {0 make the Hamiltonian
self-adjoint.

Molecular quantum mechanics provides a finite-dimensional analog
of the quantum gauge theory. We make a general formulation to
quantize the quotient space @ = M/, which is a reduction of the
Riemannian manifold M by the action of the compact Lie group
(. A stratified bundle and a stratified connection are introduced
as geometric concepts to describe quantization on Q The space of

moetiong on A nraus PPN Hillhart armae
unctions on M Proviaes a nhoert space

quantum system and the reduced Laplacian provides a self-adjoint
operator on the Hilbert space. We also apply the formulation to

tri-atomic molecule to give an concrete example.
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ct
[
2
'
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Notations
A= {A(z)} : configuration space of gauge field
G = {¢(z)} : gauge transformation group :
A AS =g 1Ag+g7dg
M = A/G : moduli space

Difficulty in quantization of systems with gauge invariance
(i) No global section of the bundle 7 : 4 — M.
Global gauge fixing is impossible.
(i) The quotient space M = A/G is not a smooth manifold but an orbifold.
A : reducible connection <= Jdg # e, A9 = A,
which gives rise to singularity in the moduli space.

r‘ S

[ 1]
%, 73auge orbit
¢ L<"\yec-t?«m "
' — M \_/,7&,

Molecular mechanics as a toy model of gauge theories

Singulun'i'oc(

Falling cat phenomenon :

zero angular momentum

net rotation with
zero torque
| Analog in molecular mechanics

Non-separability of rotation and vibration :
(motion of molecule) = (translation) + (rotation) + (vibration)

T T
separable nonseparable
T

centrifugal force, Coriolis force

change of moment of inertia
U useful description

Gauge theory or differential geometry of connections :
The net rotation of the cat with zero angular momentum is described as

a holonomy associated with parallel transport.
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para //e/
Gauge theory for molecules Trang [’Dr'C
M = R®V : configuration space of the N-atomic molecule 3mdeJ I’J—
G = 50(3) ) A=0.
Q = M/G : ‘shape’ space, or reduced configuration space '(
M

dl
e M — Q fiber bundle holen omy
I1 E o X dTy) : connection form on M ln

I:
A=
classical mechanics: Guichardet (1984) ‘;!
quantum mechanics: Tachibana and Iwai (1986) ' Q

Difficulty
existence of “reducible” or degenerated configurations

AN =N

eneric coplanar collinear collision
— o _J

Y
irreducible reducible: dg, gz =g, 9¥e

1
orbifold singularity in @ = M/G

Solution .
vector-valued wave function : 1 : M — C%*+1; 2 y(z)
equivariance : ¥ (gz) = po(9)¥(z), g € SO(3)
boundary condition : p,(£)y = 0 for £ € so(3) such that 6,(£) =0

7%

(L) (Ju)d (T )=0
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Formulation

(M, gar) : Riemannian manifold

G : compact Lie group acting on M by isometry
G: = {g € G| gz = z} : isotropy group at =

g : Lie algebra of G

g, : Lie algebra of G,

H, = (V)1 : horizontal subspace

0; : g — T M : infinitesimal transformations

we : ToM — g/g, : stratified connection form

(HX, pX) : irreducible unitary representation of G

Y : M — HX : equivariant function; ¢ (gz) = pX(¢)¢¥(z) forg € Gandz € M

Dy = dyp — pX{w)y : covariant derivative

IL.:gxg— R, I.(&§1n) = gm(0:(€),0:(n)) : inertia tensor fleld
I, g/g. ®g/g, — R : non-degenerated reduced inertia tensor

(I,)"! :€ g/g, ® g/g, : inverse of the reduced inertia tensor

AX = DYD + AX : reduced Laplacian

DD : horizontal component of the Laplacian or vibrational energy operator
AX = (pX @ pX) o (I)"! : vertical component of the Laplacian

or rotational energy operator

G

——

[ B -f:).{‘ o -‘(L TxM

;w‘ ~>
e """"'\""

B M

- £

— Q=M/G
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Tri-atomic molecule
coordinate systems (g1, g2,¢3) and (p, ¢, x) in Q = M/SO(3):

01 = 7 cosxcos = lmal? — [l
g2 = p? cosxsin ¢ := 2(ry, 73), 'ms
gz = p* sinyx := 2||r; x 2|
T; o M,

1
m j /
vector-valued wave function:

¢(P,X, ¢) = (‘d’e, 'd)e_l, e ,w—z+1, lb;z)
the reduced Laplacian :

—A%%(p, X, 9) gonige field
= —D'Dy — AX —
— ﬁ + éﬁ + i _?2_ +9cot 2 0 4 g L. T :
=8 pae o PPy ) T ey \Be T2 ) (Y
.~ -J
-~
1 (-, 1 . 1 ., vibrational
+;§ {(Jl) + W(Jz) + m(«fa) }1/’, energy
- —d

ro't‘q‘t:'onaﬁ energy.

boundary condition:

3 Sy =0 for x =0,
Jip = Jawp=Jap =0 for p=0

é-\
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What we have done is
quantization of the reduced configuration space @ = M/G with

generalization of the concept of connection from principal fiber bundles to
stratified bundles

definition of the reduced Hilbert space of equivariant wave functions
definition of the reduced Laplacian using the stratified connection

determination of the boundary condition imposed on the equivariant function
at the singularities to make the Laplacian self-adjoint
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New monopole solutions to the SU(2)
Einstein Yang-Mills equations in
asymptotically anti-de Sitter space

by Jefferson J. Bjoraker
and
Yutaka Hosotani

School of Physics and Astronomy
University of Minnesota, May 4, 1999
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Overview

New Monopole solutions to the Einstein Yang-Mills (EYM)
equations.
¢ General formalism and the EYM equations

e Monopole solutions in asymptotically Minkowski space and in

asymptotically de Sitter space.
e New monopole solutions in asymptotically anti de sitter space

¢ Stability of the new monopole solutions.

Y ang-Mills Equations

No Regular Static solutions -> Repulsive in nature.

Einstein equations

No Regular Static solutions -> Attractive in nature.

If one couples the attractive gravitational fields and the repulsive
Yang-Mills fields together, are there static solutions?

YES-- This was done by Bartnik and Mckinnon (BK) in 1988 for
purely magnetic Yang-Mills fields in Minkowski space.

Black hole solutions were found soon after, as were solutions in
asymptotically de Sitter space.
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Ansatz for the SU(2) Yang-Milis fields.

Most general Ansatz found by Witten (1977):

ga— ($2—1)

¢1 2 TjZaq
3 2 €jakLk + 'ﬁ(aja'r — mjma) + Aq

r2

a

x
Ap :AO—'I‘_ (1)

where Ap, A1, ¢1 and ¢, are functions that depend only
on r and t.

Gauge invariance allows us to gauge rotate A and remain
general.

Gauge rotations:
e Line up A, with the z axis.
e Rotate about =3 (i.e. S = eigﬁ).

e Rotate about S = exp[if(r)rs3/2], where f(r) is
some arbitrary function of r

The result is:

1
A= o [uTsdt + (wr1 + wr2)db 4+ (cot O3 + wre — wr1) Sin6d¢] .
e

3
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Yang-Mills equations in curved space

Using the static metric
ds? = —f(r)dt® + h(r)dr® 4 r2d0 + r? sin? 6d¢.

The Yang-Mills (YM) equations are,

—ww' + &'w = 0.

The last equation vields, w = Cw where C is some con-
stant. A constant rotation S = exp(im3C/2), allows us
to set w = 0.
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Energy momentum Tensor

The energy

(.C)

The components of T, are:

2,,2

1 1U'w

4re?

Too = (2 FER W) 4 7 +

,w/)2 1 (1 2)2
1 ( . ) |

h +3
2

1 1 u2'w2

T = 47r62( 2 “Ih- 1(“')2+f"1 +
1 (@)? 1(1-w )2

72 2 r4 ’

and,

22
Toy =T33 = ! <(1 T;U ) +f_1h“1(u/)2>.

4e?
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Figure 1: Profiles for calorons at w = 0. 0.125. 0.25 (from top to bottom) with p = 1.
The axis connecting the lumps. separated by a distance = (for w # 0). corresponds to the
direction of &. The other direction indicates the distance to this axis. making use of the
axial symmetry of the solutions. Vertically is plotted the action density. at the time of its
maximal value. on equal logarithmic scales for the three profiles. The profiles were cut off
at an action density below 1/e. The mass ratio of the two lumps is approximately w/@.
Le. zero (no second lump). a third and one (caual masses). for the respective values of w.
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e ey e

Figure 1: For the two ffigures on the sides we plot on the same scale the logarithm of the
zero-mode densities (cutoff below 1/e®) for w = 1/8 (left ¥~ / right ¥*) and w = 3/8
(right ¥~ / left ¥+), with § = 1 and p = 1.2. In the middle figure we show for the same
parameters (both choices of w give the same action density) the logarithm of the action
density (cutoff below 1/2¢?).

Figure 3: Zero-mode density profiles for the two zero-modes of the lattice caloron (left)
on a 4 x 163 lattice for £ = (1,1,1), created with improved cooling (¢ = 0). The profiles
fit well to the two zero-modes for the infinite volume analytic caloron solution (shown
on the right at y =t = 0) with w = ! and constituents at §; = (2.50,0.12,0.95) and
7> = (1.38,—0.24,2.67), in units where § =/, = 1 (or a = 1) and the left most lattice point
corresponding to £ = z = 0. The plots give the added densities of the two zero-modes.
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Lattice Gauge Fixing, Elitzur’'s
Theorem and Abelian
Projection

Mike Ogilvie
Washington University
St. Louis, MO USA

Consequences of Elitzur's Theorem
Lattice Gauge Fixing

Abelian Projection and Abelian Dominance

hWONh =

Lessons
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uge Fixing

-fixir nfmld d(x)

YA\

ili e
applied to an nflxed field

Analytic Control of Lattice G

It is very convenient to introduce an

L A AV @Y |

au
which takes values in G. This fields are
configuration as

Q

gu(®) » 8,(x) = p(x)g,(x)¢*(x + 1)

so that 'g'u(x) is used wherever the gauge -fixed Tleldl s required. The
gauge fixing function depends on g, which is to say both g and ¢. The
expectation value of an observable O is qwen by
0) = 2 [[dg7eSste1 —L__ f [d1eS181 O
s Lg - 77 Zyle] LJ
wneie
o ’l. N VP~ /. A |
Ser = 35 22118, + 8,007 ]

Z4s is needed for gauge invariance

In the limit A - «, the procedural implementation of this formula is

equivalent to the LUIIIHIUHIy used algorithm for lattice gauge fixing,
modulo Gribov copies.

] Farmally ¢
Ly 11 L

® The opnprn’rm function 7

A Adws e e o)

It

Fadeev-Popov determinant.

®  This lattice formalism sidesteps the problem of Gribov copies.

By construction,gauge invariant observables are evaluated by
integrating over all configurations. Gauge-variant quantities
receive weighted contributions from Gribov copies.



Projection without Gauge Fixing

Projection to an abelian subgroup for lattice field configuration is carried
out by maximizing the overlap of each link with an element in a
subgroup H in the trace norm. For analytical purposes, we generalize
the projection process. The weight function for this projection is:

Sprailg.h] = 2| Tr(gthi + hig) |
[

Expectation values are given by

1 - S 1 .
0) = = |[do]e"¢l8] dhleSeeileh] O
(0) = 3 [ldg1estr 7L [la

where
Zprejlgl= [[dh]eSmteh]

* Reduces to usual case if O depends only on the g fields. Z,.,;[g]

ensures that the £ fields behave as quenched variables, and have
no effect on the distribution of g fields.

® Computationally, this can be implemented as a Monte Carlo
simulation inside a Monte Carlo simulation.

®* Asp - oo, the usual projection algorithm is reproduced

® Alternative (Faber, Greensite and Olejnik, 1998) for
SUQ2) - Z(2)

2= sign(TrrUp) = Y cax®(Uy)

a
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Consider a Wilson loop W in a representation Sof H with no
self-intersections:

%ﬁ(hl“hn) Jl]z(hl) 2]3(h2) DJ ]l(hn)

1. Expand the weight function in characters of the group G:

exp| FrTr(g*h+h%g) | = D duca(p)ra(h*e)
where

cep) = 5 | (@) 2ulyexp| FrTr(g +57) ]
Zproj[g] is given by
mej[ ] H Co(p gl) ~ H Co(p)

{ l
where Ty is given by

Colp,g)) = J‘ (dhy) expl: “=Tr(gihi+ hjg ):I
Note that

P! < To(gm,p) < P2

2. Integrate over all possible gauge transformations:

Consider two adjacent links on the curve g, and g...1. We
integrate over the variable ¢,, on the common site.

_‘. (d¢m)D1 . gm‘lﬁm)Dz,'Slka(¢mgm+l)

_ 1 a
- da ()amam+l5kmlm+lD[”:'}<m+| (gmgm'H )
m



Key Result.

: tne vvilsOn iO‘p as measured in the 8

a um of Wilson loops in the
each weighted by the number of
dependent perimeter

OeStOlaSp%w.

irréducible representatlons 0
times § appears in a and by

reanormalization factor which

INZTINJIT T T ICALTIL.CALIV T LAV LWV Yviiliwvii

cc:m"‘
cn

Strict Bounds
Using the bounds on Ty we can obtain the upper bound

(F k) < D (ealple? )" | () W) (x*(81.-8m)

ith a corresponding lower bound when M, is replaced by M,.

3

Op = mMin o,
a

independent of p, where the minimum is taken over all

trilng it Thico e
representations a that have a non-zero contribution. This result

relies only on gauge invariance, does not depend strongly on the
projection subgroup, and is independent of dimensionality. Center

o~~~ o~ VAV S Ry

symmetry is important.

Example SU(2) projected to U(1)

5'1/2 = min Oj
=1/2,3/2
and
5’3/2 = min Oj
j=3/2.5/2,
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Lessons

* Elitzur's theorem tells us that lattice operators defined via
gauge fixing can always be reduced to explicitly gauge
invariant operators.

* Lattice gauge fixing is really not very much like continuum
gauge fixing. Lattice Landau gauge does not reduce to
continuum Landau gauge in the naive continuum limit.
Lattice gauge fixing assumes that integration over all field
configurations is the correct prescription for defining the
functional integral.

* Landau gauge propagators can be viewed as propagators
of composite objects or as complicated, extended objects.

* Coulomb gauge fixing has much in common with other
lattice techniques for constructing improved operators,
such as smeared operators.

* String tension measurements on projected gauge theories
with or without gauge fixing give the same answers as the
underlying gauge theory. This is independent of
dimension, and unrelated to any scheme for confinement.
The choice of subgroup is not important, as long as it
contains the center of the group. Such measurements give
no information on confinement mechanisms.



Smeared Gauge Fixing

James E. Hetrick
hetrick@cliodhna.cop.uop.edu

Physics Department
University of the Pacific
Stockton, CA 95211
USA

Abstract

We present a new method of gauge fixing to standard lattice Landau gauge,
Max Re Tr 3, ; Uy .z, in which the link configuration is recursively smeared;
these smeared links are then gauge fixed either by by standard extremization
for SU(2), or by constructing a “gauge tree” which diagonalizes the links for
SU(3). The resulting gauge transformation is simultanteously applied to the
original links. Following this preconditioning, the links are gauge fixed again
as usual.

We find that this method is generally free of Gribov copies and for physi-
cal parameters, generally results in the gauge fixed configuration with the

globally maximal trace.

The method is hindered by the stability of instantons while smearing, and it
is hoped that an alternative smearing method will help.
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1 Imtroduction

There are two deficiencies of gauge fixing on the lattice:

1. The Gribov problem: that gauge fixing leads to multiple solutions of
the gauge fixing condition.

2. The Smoothness condition: if one alters the gauge condition so that it
is free of Gribov copies (like axial gauge) it is generally not smooth, and
difficult to compare to perturbation theory which usually uses Landau
gauge.
Below we present a method for addressing these two issues which is both simple and fast. It
has so far been free of Gribov copies, and usually produces the smoothest (Max Re Tr 3_, , U,,)

configuration.

2 Iterative smearing

By smearing we define new links V}, from the old ones U, by the definition

smeare: _ 1 ~ ~ ~ N
vemered(a) = e {Uu(@) +w Ty [Vl = 2)Unle = 2)Us(o = 9+ )

+ V(@) Uz + )Uf(@ + )]} (1)

where w is the weight for the staples, normalized so that V™***4(z) = 1 when all U,’s on the
r.h.s of eq. (??) are 1. Pictorially:

xXw
Xw

smeared /
Vi 1 - x1 ,_/

= ——— e

A

Xw

XWw

e After smearing each link is reunitarized.
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3 Smearing as gauge covariant cooling

As we smear the configuration is transported toward the trivial gauge orbit (F,, = 0), ie.

it is cooled. Furthermore this cooling is gauge covariant:

If starting configurations U and U} are related by a gauge transformation G47,
then the corresponding smeared configurations V* and V;? are related by the same

gauge transformation G45.

We can say that smearing (with w < w,) transports the entire fiber toward the trivial orbit,

preserving the vertical structure, as depicted in Figure ?77.

G G
A A
VA
/\\/\ U,
G%B
<——— Smearing Gy

=3 Physical

Trivial G-Orbit
Oorbit

Figure 2: Gauge structure of the smearing process: Physical degrees of free-

dom (~ 1/8) change horizontally and gauge degrees of freedom are repre-
sented as vertical.

132



On the trivial orbit, the unique minimal Landau gauge fixed configuration is easy to find:
V”Landau gauge __ (D#)l/n,‘ (3)
where there are n, links in the p—direction.

We compute the gauge transformation Gyp that rotates the smeared links V), into D}/ e
and apply this gauge transformation to the unsmeared links U,, which rotates the original
links to a unique point DL. Because the gauge fixed surface is nonlinearf, the resulting
D' does not satisfy the Landau gauge condition. However the point D' along the orbit is
unique. Thus, every starting configuration is taken to D’ by the gauge transformation which
takes its smeared version to D. From D' we gauge fix as usual by extremizing I(U,,G):
this results in a unique Landau gauge fixed configuration.

~——— Smearing

Gauge fixed
surface

S» physical

Trivial G-Orbit
orbit

Figure 4: Gauge fix V, to D, and use the same G to fix U, to D,,.

tFor U(1) gauge fields the resulting configuration D}, lies on the gauge fixed surface
and satisfies the Landau condition, because U(1) gauge transformations are linear.
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number of copies

number of copies

number of copies

beta = 2.0
40 T T

ss | | |

30 |-

=}

25 |-
20 |- |

15 -

5 | .
OJ ' 1 n.m L n” 1 nﬂ ﬂ L

0.7844 0.7846 0.7848 0.785 0.7852 0.7854 0.7856 0.7858

beta = 1.75

T T T T T T T T T T

14 |- 1/ —l

12

10 |

N I ﬂJﬂ 1 e/ 1 D

o
0.7476 0.7478 0.748 0.7482 0.7484 0.7486 0.7488 0.749 0.7492 0.7494 0.7496 0.7498

—=

beta = 1.5

T T T

N |

0.719 0.7195 0.72 0.7205 0.721 0.7215 0.722
<Tr U>

Figure 7: Standard Gribov copies and the unique copy | from smearing.
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0.98 |
0.96 |
0.94 k
0.92 |

09 |

Tr <Plg>

0.88 |-
0.86
0.84 [—

0.82 |-

0.8 L ~1_ 1 i — 1 1

0 2 4 6 8 10 12 14
Gauge fixing sweeps

Figure 8: The gauge fixing history of the smeared links showing that I(V,, G)
1s very smooth.

Tr <Plg>

T T T T T T
0.7495 |-
0.749 |-
0.7485 |-
0.748 |-
0 100 200 ‘ 300 400 500 600 700

Gauge fixing sweeps

Figure 9: Gauge fixing histories: standard Gribov copies (- - -) and the unique
copy (—) from smeared gauge fixing.
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* We end by summarizing our algorithm in its simplest form:

e Recursively smear a configuration U, into V,,. We have found that smearing
coefficient w ~ 0.3 works best, and have used as stopping condition that
+Tr (O) be within 1075 of 1.

e Gauge fix V, by extremizing, I(V,G) = ¥, ,Re Tr G'(z)V,(z)G(z + ), and
apply the same gauge transformation to U,,.

o Finally, gauge fix U, as usual, by extremizing I(U, G).
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Lattice gauge fixing, Gribov copies
| and
BRST symmetry

Massimo Testa
Physics Dept. University “La Sapienza”
Rome-Italy

Abstract
We discuss the problem of quantisation of Gauge Theories in
presence of Gribov ambiguities.
In particular, through a very simple example, we argue that, in the
framework of ghost formalism and BRST quantisation, Gribov copies are
probably harmless.
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Toy abelian model

(zero dimensional prototype of BRST symmetry with
compact variables)

M. Testa Phys. Lett. B 429 (1998) 349

Take:
U=e™
and define:
'ﬂfa
N= |dA
~rtfa

The “gauge-fixed” version of the functional integral is:

N’ =

L

dA ] dAJdedce™™" e

a

where § denotes the (idempotent 8° = 0) BRST
transformation:
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N’ suffers from the Neuberger disease. Going
through the same steps as before, we conclude: N’ =0

This can also be checked through an explicit calculation:

4

+oo __0_5112 ) ,
N'=1 dA T dAf dedee 2" ¥ Bg e We _

a
n

- T dAJdAe 3 MWD 14y =

- ——

f(AY
\/——Tdf(A)e 2 -

for periodic f(A).

Why should f(A) be periodic?

In order to satisfy BRST Identities

(crucial to show independence on o of gauge-invariant

observables):

(o) =0
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In fact, if:

"= 8[cF(A)] = iAF(A)—EF'(A)c

we have:

(TY= | dA ] dA[dedce " "™ =
s . d . LA

ix

for periodic “gauge fixing condition”, f(A), and F(A).

In particular, for a =0:

yi4
o,

PR =2
N'=1lim ] dA] dle 2" eMPfiA)=

a—>0 7w —o0

a
V.4

=21 ] dA f(A)S(f(A))=0

a

which displays the Gribov nature of the paradox (a
periodic f(A) has an even number of alternating zeroes).

140



Solution

0=0,
+o0 oo )
P(x) - Z 5(x n%{t—) — .__a__. Zemax = _a_ Zez}».x
a 272: n=—co 27’[ n=—co
A, =na

so that N’ = N” where:

(we extend the formulation with the inclusion of a A
term)

T
- (04

o0
N'=ay §dae?

n=—co T

%
Anf(A)f (A)

a

This formulation admits BRST symmetry. under:

oc =i,
and we haves
T
R ~SR
L S(Tf(A
J‘dAf dedee 2 L1/
N =—o0 z

a

oy orisece onder these transtoemations is enough for
all porposes (oauve mvartanes)
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We can now chose a “gauge tixing” f(A) such that:
2 27
f(A+—a*)=f(A)+"‘;

which evades Neuberger’s argument ( f(A) has an odd
number of zeroes), still leaving a periodic integrand.

The mechanism 1s general:

since f(A) is not periodic, exp(itd, f (4)) is only periodic
for integer 1’s.

When a — 0 we recover the continuum BRST
formulation (Fourier series -->Fourier integral):

+ oo aA:

iV = tima § fane e ) -

a

(

—— Iy

dA Td/l e > A:e"“"”f'(A)

a
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AGENDA
Tuesday 25 May
Morning
9:00 Registration - Rm. 2-160
9:45 Opening Remarks
10:00 I. Kogan Gauge Fields and AdS/CFT (45 min.)
10:45 Coffee
11:00 V.P. Nair 2+ 1 Yang-Mills Theory (45 min.)
11:45 Lunch
Afternoon
13:30 W. Brown Instantons and the QCD Vacuum Wave Functional (30 min.)
14:00 Coffee
14:30 Panel Discussion - The Variational Principle in QCD -
W. Brown, I. Kogan, E. Moreno, P. Orland (chair) (1 hr.)
15:30 Rest for all jet-lagged participants
Wednesday 26 Maj
Morning
9:15 D. Zwanziger A Confinement Scenario in the Coulomb Gauge (45 min.)
10:00 P. Orland Potential Topography on Orbit Space (45 min.)
10:45 Coffee
11:00 K. Fujikawa The Gribov Problem and BRST Formalism (45 min.)
11:45 Lunch
Afternoon
13:30 M. Schaden Resolution of the Gribov Problem (30 min.)
14:00 K. Haller Dynamics and Topology in o Gauge-Invariant Formulation of
QCD (30 min.)
14:30 Coffee
15:00 E. Bagan Gange-]nvariant Charged Variables (30 min.)
15:30 Panel Discussion - What Do We Really Know About Orbit Space?
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