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ABSTRACT 

One way to reduce uncertainty in scientific measurement is to devise a protocol in which more 
quantities are measured than are absolutely required, so that the result is “over constrained.” This 
report develops a method for so combining data from two different tests for air leakage in 
residential duct systems. An algorithm, which depends on the uncertainty estimates for the 
measured quantities, optimizes the use of the “excess” data. In many cases it can significantly 
reduce the error bar on at least one of the two measured duct leakage rates (supply or return), and 
it provides a rational method of reconciling any conflicting results from the two leakage tests. 
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INTRODUCTIONS . 

One way to reduce uncertainty in scientific measurement is to devise a protocol in which more 
quantities are measured than are absolutely required to calculate the desired answer. For 
example, if one wanted to know the volume of a vessel, one could measure its physical 
dimensions and calculate it that way, and then fill the vessel with water and measure the water’s 
volume by pouring it out into a graduated cylinder. The dimensional measurements and the direct 
volumetric measurement would then cross-check each other, and one would expect to have 
greater confidence in an answer that was some kind of average of the two values for the volume 
than in a result that depended on only one or the other. 

One problem that has to be addressed with such a strategy derives from the near certainty that the 
two calculated values for the desired quantity will not be exactly the same. One then has to 
decide how much weight to give each of them. Sometimes, instead of two completely separate 
values for the desired quantity, one has two test protocols whose results, when taken together, 
add up to more data than is strictly required, but need some disentangling to give two completely 
independent answers. This is the case we are going to meet in considering the data cross-check 
strategy in duct leakage testing. 

DUCT LEAKAGE TESTS 

Two duct leakage tests currently are specified as options in the draft Standard 152P, Method of 
Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution 
Systems, which is being developed by the American Society of Heating, RefXgerating, and Air- 
Conditioning Engineers (ASHEWE). One of these tests, called the fan pressurization test 
involves two steps. First, estimates for the “operating pressures” in the supply and the return duct 
systems are measured. The term “operating pressure” is placed in quotation marks because there 
is no single pressure in a working duct system. Rather, the static pressure is at a maximum (in 
absolute value) near the plenum and declines to near zero at the registers. The assumption of a 
single pressure thus is an attempt to select a likely average value representative of the system as a 
whole. Such an approximation will work well ifthe leaks are scattered throughout the duct 
system, but may give rise to significant errors if the leaks are concentrated either at the plenum or 
the register boots. 

The second step in the fan pressurization test is to pressurize (or depressurize) the house with a 
blower door (an adjustable fan calibrated to measure air flow rate as a function of throat static 
pressure) to some standard pressure, such as 25 Pa. At the same time, a smaller calibrated fan 
(duct blower) is used to bring the pressure difference between the house and the supply or return 
portion of the duct system to zero. The air flow rate through the duct blower is then equal to the 
duct leakage rate to/from outside at the given pressure. 

The final step is to pro-rate the leakage at the standard pressure to the “operating pressure” 
through the use of the relation Q= AP n, where Q is the leakage flow rate, AP is the pressure 
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difference between the inside and the outside of the duct, and n is an exponent that in ASHKAE 
Standard 152P has a default value of 0.6. The impact of uncertainty in this exponent may be 
minimized by using the measured “operating pressure” as the target pressure in the duct blower 
test, so that little or no adjustment is necessary and uncertainty in the exponent is not an issue. 

An alternative duct leakage test called the house pressure test is also available within Standard 
152P. In this test, the leakage flow coefficient of the house envelope is measured with a blower 
door, and this is then used as a standard against which the leakiness of the ducts is compared. 
The connection is made by means of the response of the pressure within the house (relative to the 
attic) when the system fan is turned on and off. If operating the system fan causes the house 
pressure to rise, this means that the return leakage from outside exceeds the supply leakage to 
outside, since a net amount of air is being taken into the duct system from outside and blown into 
the house. If the house pressure falls when the system fan is turned on, then the supply leakage is 
greater than the return leakage. 

This part of the test, which is often called the dominant duct leakage test, provides a value for 
the signed difference between the supply and return leakage rates (i.e., an algebraic sum with 
supply leakage positive and return leakage negative) but it doesn’t give the two values separately. 
To get a second equation, the house pressure test perturbs the system by partially blocking the 
return register(s) enough to cause a significant shift in the pressures within the return duct. With 
the return(s) blocked, the house pressure with the system fan on is again measured, and the extent 
to which this value is different from what it was with registers unblocked provides (in effect) a 
measure of the total supply and return leakage. Knowing the sum and the difference of tlhe 
supply and return leakage rates, one can calculate them separately. The algorithm that 
accomplishes this task also requires values for the operating pressures in the supply and return 
ducts with the return register(s) unblocked and blocked. 

DATA CROSS-CHECK STRATEGY IN DUCT LEAKAGE TESTING 

One could imagine several alternative approaches to the data cross-check idea in duct leakage 
testing, but one that appears to be specially promising is the following: 

1) Perform the fan pressurization test for duct leakage, giving separate values for supply leakage 

(Q,,d ad rem-n l=We (Qde1,3. 

2) Perform the dominant duct leakage portion of the house pressure test, that is, the 
measurements of the house pressure with unblocked registers and system fan on and off. This 
provides a value for the signed difference between the supply and return leakage rates (Qsi,clk+rld 
without requiring any pressure measurements within the ducts themselves. The second part of 
this suggested protocol will add very little to the total time and effort required to do the test, but 
provides a significant cross-check on the result, since in principle Qsluk+,,ct should equal Qslcti - 
Qdti. However, because the actual measured values are almost certain to be inconsistent, to a 
greater or lesser degree, it is necessary to develop a rational method for assigning relative weights 
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to the three measured quantities. Presumably this method will need to take account of the 
experimental uncertainties (error bars) for each of them. 

Our objective is to obtain “best” values for the supply and return leakage that will use the 
information contained in the measured value of Qs,cak+r,cak to improve on the values of QslCak and 
Qrfcak that were measured in the fan pressurization test. As a starting point, we note that if we 
define the quantities Q,, bst and Q, best to be those values for supply and return leakage that make 
optimal use of the available information, any candidate value for Q&&t can be expressed in the 

form a, Qslcak + a2 Qrlcak + a, Qsteak+lcak > with the a’s as coefficients to be determined. Two 
separate approaches to this determination have led to the same equations, which are given here. 
The reader who is interested in the derivation of these equations is referred to the Appendix. 

As shown in the Appendix, the three coefficients can be written in terms of a single one that 
appears as a weighting factor, which is written as a in the equation for Qqbtst and as b in the 
equation for Qr,bst: 

Q &bt?st = a Qdcak + ( 1 -a) ( Q,,, + a,,,,,,) 

Q r,imt = b Qrw + ( 1 -b) <a,, - Qsleak+rd (1) 

The values of a and b depend on the uncertainties in the measured leakage rates, and so we need 
to analyze these. In dealing with experimental errors, we are considering random uncertainties 
only. Systematic errors are beyond the scope of the discussion, although errors due to equipment 
calibration are treated as random under the assumption that any given measuring device is chosen 
at random from an ensemble of devices with calibration errors equally likely to be positive or 
negative. 

Let us define the experimental uncertainties as follows: 

e~Qs,bcst = Random uncertainty in Qqbat 

errQr,bcst = Random uncertainty in Qr,best 

emQs = Random uncertainty in Qskak 

errQ, = Random uncertainty in Qrlcak 

errQs, = Random uncertainty in Qs,Cak+,,cak 

The analysis in the Appendix then yields the following equations for a and b: 
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a= 
terQ,12 + <mQJ2 

tmQ, J2 + (emQ, I2 + (errQ,, I2 

b= 
tmQs12 + (mQJ2 

temQsJ2 + WQJ2 + (mQ,,12 
(2) 

Further analysis yields remarkably simple formulas for the uncertainties in Qrbcst and Qr,bcs:l: 

We first note that from Equations 2 it is obvious that a and b are between 0 and 1, and hence the 
uncertainties in Qskrt and Qr,bcst will always be less than the corresponding uncertainties in Qsluk 
and Qdti. This is to be expected, given the additional information provided by QslcakcrlcA. 

BENCHMARK CASES 

To show what the data cross-check strategy can do to reduce uncertainties and reconcile data, let 
us consider four benchmark cases, two with balanced duct leakage and two with unbalanced 
leakage. We will assume in each case that the uncertainties in Qslti and Qdti are each 30% of 
their measured values, and that the uncertainty in Q is 230 ctin. (These values are within 
the range of estimates developed below.) For each of these categories, we’ll examine what the 
procedure does when the values are quite compatible with one another, and what happens when 
they are significantly at variance. It is assumed that all the uncertainties are given at the same 
level of confidence (e.g., 95%). 

Case 1. Balanced Leakage. Comuatible Values. Here we’ll assume: 

. Q = 100~3Ocfin 

. Q;z = 100 f 30 cfm 

. Q ,,,,=0*3ocfm 

Equation 2 yields a=O.67 and b=0.67 and these values in Equation 1 yield Qgbr = 100 cfh and 

Q r.best = 100 &I. The best values of supply and return leakage are no different from the original 

. 

. 



ones because the three inputs are compatible. The error bars, however, have shrunk a bit by 
virtue of Equation 4, by the factor of JO.67 , so that: 

Q s,&& = 100 f 25 cfm Q r,kt = 100 f 25 cfm. 

The main benefit here is not a great reduction in the error bars (though there is some reduction) 
but a~confirrnation that the leakage values as measured by fan pressurization are probably quite 
good. 

Case 2. Balanced Leakaoe. Tncomuatible Values. Here we’ll assume: 

. Q,,~=100~3Ocfin 

. QaMk = 100 f 30 cfin 

. Q Icak+rlcak = 100 f 30 cfm 

These are incompatible because the measured values of supply and return leakage are the same, 
yet the dominant duct leakage test gives a value significantly different from zero. Since the error 
bars are the same as before, Equation 3 again yields a=O.67 and b=0.67. Equation 1, however, is 
different, yielding Q&&t = 133 cfin and Qr,bst = 67 &II. The error bars are the same as in the 
previous case (since a, b, and the original error bars are the same), so that now 

Q qbcst = 133 f 25 cfi Q r,bcst = 67 f 25~cfrn. 

This seems like a fairly good compromise among the original data, with Qqbcst, Qr,besb and 

Q qbcst - Qr,k,, being about one error bar away from the original Qslcak, Qrlcak, and Qslcak+r,cak, 
respectively. These values probably represent a closer approximation to the truth of what is 
going on than the original Qslcak and Qrlsak. 

Case 3 Unbalanced Leakage. Comuatible Values. Here we’ll assume: 

. Qslcak = 100 It 30 cfin 

. Q = 200 f 60 cfin +_ 

. Q = -100 A 30 
Sieak+dC& 

ciin 

Equation 3 yields a = 0.83 and b = 0.33. Equation 1 then gives Qqbcst = 100 cfrn and Qr,bst = 
200 C&I. The equality of the “best” values with the original values of supply and return leakage is 
not surprising since Qsleak+rlcak is consistent with them. The fact that Qs,cak+rlcak has been measured 
reduces the error on the return side by the factor J0.33, from 60 cfin to 34 cfrn. The supply 
leakage error is affected very little since a is so close to unity. So our “best” values with errors 
are: 

QbCSt = 100 f 27 cfin Q r,kt = 200 f 34 cfnl. 



The benefit here is confirmation of the leakage values as measured by fan pressurization, coupled 
with a reduced error bar on the return leakage. 

Case 4. Unbalanced Leakage. Incompatible Values. It is not uncommon for the dominant duct 
leakage test and the fan pressurization test to disagree on whether supply or return leakage is 
greater. Here is an example: 

. Q &_&= 100~30cfm 

. Q ,,cak = 200 + 60 cfin 

. Q &__+rt& = 50 * 30 cfm 

Fan pressurization indicates greater return leakage than supply leakage, while the dominant duct 
leakage test says the opposite. How is this resolved? Equation 2 yields a = 0.83 and b = 0.33. 
Equation 1 then gives Qqht = 126 cfm and Qr,_ = 100 cfm. The procedure weighs the 
uncertainties in the measured quantities to see which it “believes” more than the others. In this 
case, the larger uncertainty in the measured return leakage weighs against it, and the compromise 
result has the system supply-dominant. Our “best” values with errors are: 

Q Sk, = 126 f 27 cfm Q r,kt= 100 f 34 cfm. 

Note that Qsbat - Qr,bcst = 26 f 43 cfin (combining the two error bars by quadrature addition) so 
the system could be balanced or even slightly return-dominant consistent with the “best” results 
obtained here. The benefit here is a best compromise between divergent results from the two test 
methods that does the least violence to any of the data. 

These examples (especially Case 3 and Case 4) show how the inclusion of the dominant duct 
leakage test can reduce the uncertainty in the duct leakage values. Critical to the project is a 
reasonably accurate assessment of the relative uncertainties in the individual measurements. In 
Case 4, for example, one would suspect that the error estimate for either the return leakage 
measurement by fan pressurization or the dominant duct leakage test might be too low. On the 
other hand, errors are random and once in a while one expects to be outside even a 95% 
confidence limit. The fact that the individual leakage measurements (via fan pressurization) often 
give the opposite sign on the dominant duct leakage to that obtained using the fan-on and fan-off 
house pressures should motivate the use’ of a test that includes all of this information. 

ESTIMATING THE MEASUREMENT UNCERTAINTIES 

The above analysis differs from previous duct leakage tests in that the result depends on estimates 
of the measurement uncertainties for the three input quantities QSld, QrtcA, and QS,_,_icak. It’s 
therefore important to consider how these uncertainties should be estimated in terms of the 
measured quantities from which they are calculated. 
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Uncertainties in Osleak and Orleak 

The simplest analysis of errors in the fan pressurization test would be that for a one-point test, in 
which a duct leakage flow coefficient (C in the expression C AP” ) is determined at some pressure 
A, and then this leakage is corrected to the assumed operating pressure p using a standard value 
for n, such as 0.6. This has been criticized on the basis of the likelihood that if A and p are 
different, significant error can arise from choosing the wrong value of n. As discussed above, 
however, if the pressure p is determined before the duct blower test is done, then it should be 
possible to pressurize the duct to this level (unless the operating pressure exceeds what the duct 
blower can attain). If the operating pressure can be attained by the duct blower, then the effect of 
an error in n will be essentially zero, because little or no pro-rating will be necessary. 

What would the errors look like in this case? Again using the basic equation Q = C p”, we 
measure QA at some pressure A that is close enough to p that uncertainty in n can be ignored. We 
can then rewrite the basic equation as Q = QA p” /A” , where Q stands for either QSlcak or Qrieakr 
depending on which side of the duct system is being tested. The total differential of Q is then: 

dQ = 3 dQA i- 2 dp 

dQ* 

n-1 

= p” dQA + n a, i!- (4) 
A" A" 

This leads to: 

dQ d% dp 
--_-++n- 

Q QA P 

and using the same conventions as before, we may write: 

(5) 

where errQA / QA is the fractional error in the measured leakage rate at pressure A and err p / p is 
the fractional error in the operating pressure. 



What are TvrGcal Values for the Uncertainties in Osleak and Orleak? 

A strong argument can be made that in most cases the second term under the square root iin 
Equation 6 will greatly exceed the first term. Table 1 gives values of the duct leakage rate for 
various assumptions about the distribution of leaks, as percentages of the leakage rate if all the 
leaks are at the plenum, with n=0.6 and boot static pressure 15% of that at the plenum. 

The range of uncertainty implied by this table may be underestimated. Some researchers h.ave 
reported that static pressures at supply boots may under some circumstances actually be negative 
(due to Bernoulli effect), in which case supply leakage could in principle beinto the duct! 

For these reasons, we suggest that a reasonable benchmark for a one-standard-deviation error on 
the duct operating pressure would include categories 3 through 6 in Table 1, for a *25% error 
bar, while a 95% confidence interval would include all the values listed above, which would imply 
-50% error bar surrounding a central value represented by taking the operating pressure to be 
half that at the plenum. 

Table 1. Values of duct air leakage rate for various leakage distributions in a duct, as percentages 
of the leakage when all the leakage is at the plenum. (Boot pressure = 0.15 plenum pressure.) 

Leakage Distribution Duct Leakage Rate (% of Benchmark) 

1. All leaks at plenum (benchmark case) 100 

2. 90% of leaks at plenum, 10% at boots 93 

3. 75% of leaks at plenum 25% at boots 83 

4. 50% of leaks at plenum, 50% at boots 66 

5. All leaks at a point where pressure is one- 66 
half plenum pressure 

6. 25% of leaks at plenum, 75% at boots 49 

7. 10% of leaks at plenum, 90% at boots 39 

8. All leaks at boots 32 

An estimated range for a 95% confidence interval on the duct leakage measurement (errQJQ,J is 
suggested as 0.10 to 0.25 depending on the type of duct (simple, tight ducts would have 
uncertainty in the low end of the range, while complex, leaky ducts could be at the high errd or 
higher). A fractional uncertainty of 0.15 is suggested as a benchmark. 

. 

These values are provisional but are believed by the author to be reasonable estimates for a typical 
case. The use of data cross-checking methods by researchers in the future can help to elucidate 
the general question of error magnitudes. 
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Using these estimates provides the following overall error estimate on QSleak or Qrlcak: 

.1_S2 + (0.6)2 (0.5)’ 

= Jo.022 f 0.090 
. 

= 0.33 

If the first term is ignored, the resuh would be 0.30, not a large difference. Hence the judgment 
that the second term usually dominates. 

Uncertaintv in Osleak+rleak 

The expression for the error in Qslcaktiti is somewhat more complicated. It is a fimction of four 
measured variables, AP,,, AP,, and C, and n,, defined as follows: 

APcnl Pressure difference between house and attic with the system fan on 

AP, Pressure difference between house and attic with the system fan off 

Ccnv Envelope flow coefficient as determined by a blower door test with sealed registers 

ncnv Envelope flow exponent 

The expression for Qs,cak+rlwk in ASHRAE Standard 152P is: 

Q SkakAak - siga(Afy IqJnmvl (7) 

In what follows we will assume that the blower door test was a multi point test, so that the 
exponent n, is well defined and most of the measurement error on envelope leakage is embodied 
in uncertainty in C, In this case, the total differential of Qslcak+reak can be written as follows: 

The partial derivatives of Qs,c*+dd with respect to the three independent variables are: 

. 

c 

9 



Because these expressions are somewhat unwieldy, it may prove use&l to give functional names 
to the expressions in AP, and AP,, : 

f = 12APg-AP on Inm-l + IAP on I”m-1 

The function f is the same as that defined in a previous error analysis of the house pressure 
test.[Andrews 19971, and g is related to the fimctions g, and g, defined in the same report, but 
lacks elements relating to supply and return duct pressures and blocked-return house pressures, 
none of which pertain to the unblocked-register portion of the house pressure test. 

The next step is to take the differentials in Equation 8 as uncorrelated deviations from true values, 
and introduce the following nomenclature similar in character to that previously defined: 

errAP, = random uncertainty in the fan-on house pressure 
errAP,, = random uncertainty in the fan-off house pressure 

err-% = random uncertainty in the envelope flow coefficient 

The uncertainties in the independent variables can then be added in quadrature to obtain: 

A final step in defining the error in Qslcaktiti requires us to go beyond Equation 7 to consider 
possible uncertainties caused by lack of knowledge of the distribution of leakage area. within the 
building envelope. This possibility is not embedded in Equation 7 because that equation is based 
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on a particular assumption concerning this distribution, namely that the leakage area is equally 
split between the floor and the ceiling, with none assigned to the walls. In another report by the 
author [Andrews 19981 these assumptions have been generalized to allow an arbitrary distribution 
of the leakage area, and the degree to which this introduces uncertainty in Qsleakcrlcak has been 
investigated. In general, it has been found that agreement between the generalized equation and 
Equation 7 is usually good to within S%; but that deviations of 50% or more can occasionally 
occur. Three “danger signals” were identified that should generate suspicion--but not necessarily 
confirm--the presence of a large uncertainty in QS,cak+rlcak caused by uncertainty in the envelope 
leakage distribution. These danger signals are: 

. ]AP,,,r ] “large” 

. ]AP,, 1 “small” 

. AP, = 0.5 AP,, 

These criteria may seem annoyingly vague, and it is hoped that they can soon be made more 
precise. Tentatively, it is ventured that “large” in the first danger sign means, roughly, > 1 Pa; 
“small” in the second danger sign means, roughly, < 0.5 Pa; and “approximately equal to half’ in 
the third danger sign means, roughly, between one-fourth and three-fourths. The first danger sign 
stems from the fact that when AP, = 0, it doesn’t matter what the distribution of envelope 
leakage is; it’s only when this quantity is significant that the response of the envelope can depend 
on where the leakage is. The second and third danger signs appear to emanate from a particular 
sensitivity of the equations to changes in the variables whenever the pressure difference across the 
ceiling or the floor is near zero when the system fan is on. 

At this point, we will introduce a term errQlkdist to denote the uncertainty in Qs,c*+rtct caused by 
uncertainty in the distribution of leakage area over the building envelope. As this error is unlikely 
to be correlated with any of the terms within Equation 11, it will be added on in quadrature: 

err-Qsr = [( cen;enJ)2 (errAl’J2 + ( C,,n,~)2(e~AF’~)2 + 

+ ( $-)2(,.)2 + (ma,,,)‘~ (12) 
e?zv 

How Lawe Is the Uncertaintv in Osleak+rleak. and Can We Do Anvthiw About It? 

It would be useful to be able to assess typical relative magnitudes of the four terms within the 
square root on the right-hand-side of Equation 12. It is also usefirl to know that the experimenter 
has some control over the first two terms. By measuring AP,, and AP, many times, it is in 
principle possible to reduce these terms to arbitrarily small values. The number of measurements 

. . 
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required to reduce them below a certain point, however, is likely to become prohibitive in time, 
effort, and value in reducing the overall uncertainty in Qslcak+rluk. 

In estimating these first two terms, a value for n_ of 0.65 can be used, since this exponent is 
usually found to lie within 15% of that value. The function f is usually found [Andrews 19771 to 
lie between 1 and 3 Pa4.35. The g function is similar to f but has only one term instead of two 
additive ones, and so can be expected, on average, to be about half as large as f These functions 
can be evaluated for any particular case, and a spreadsheet could calculate them effortlessly. For 
discussion here, however, we will use f = 2 and g = 1 when discussing likely error magnitudes. 

The uncertainties in AP, and AP,, are to some extent controlled by nature (with gusty winds in 
particular tending to drive these up) but, as mentioned above, they are also partly under the 
control of the tester, by virtue of the ability to make additional measurements. The uncertainty in 
these values is roughly halved for every fourfold increase in the number of data points. 

Considering the third term, manufacturers of blower doors generally quote a 5% margin of 
calibration error. Given that any operator error would add to this, it would seem prudent to 
assign a -10% uncertainty to the measurement of C, 

As for the errQ,,,dirc term, on the basis of the above discussion it appears that when the “danger 
signs” are not present, one can depend on Equation 7 to be accurate within 5%. When one or 
more of those signs is present, an analysis can be done using the equations in Andrews 1.998. 
Failing that, and as a benchmark here, a default value of 0.3 Qsld+rlcak will be used. 

This means that when the danger signs are absent, uncertainty in C, will overshadow that caused 
by uncertainty in the leakage distribution, but when they are present, the leakage distribution 
uncertainty will dominate. Taking the two terms together, then, one might assign a combined 
fractional uncertainty of - 10% to the two causes together (10% and 5% added in quadrature, one 
significant figure in the answer) when the danger signs are absent, and -30% (10% and 30% 
added in quadrature) when they are present. Finally, to aid our conceptual thinking about this 
equation, we’ll convert C, to CFMSO using the relation CFMSO = 50.65 C, 

These considerations lead to the following “rule of thumb” equations: 

errQsr = ((0.05 CFA450)2[(e~AP0J2 + @YAP&~] + (0.1 QSJ2}ln (134 

if the “danger signs” of uncertainty due to envelope leakage distribution are absent, and 

erQW = { (0.05 CFM50)2 [ (~TTAPJ~ + (~vAP~)~] + (0.3 Q,,)2}1’2 (13b) 

if one or more of the “danger signs” is present. 
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In order to gain some insight into the expected size of errQ,, we’ll look at the results for a number 
of values of CFMSO, Qs,cak+rlcak, errAPon, and errAP, : 

. CFMSO = 2000 and 4000 (representing reasonably tight and leaky housing, respectively) 

. Q,, = 200, 100, 50, and 0 (representing a range of non-negative values; negative values of 
Q,, will behave similarly) 

. errAP,, = errAPoff with values 0.5, 0.4, 0.3, 0.2, and 0.1 Pa. 

Table 2 shows values of err& for all combinations of the above values, for both levels of 
uncertainty due to envelope leakage distribution embodied in Equations 13a and 13b. The impact 
of this uncertainty is most significant when Qsle*+rieak has values far from zero and the uncertainties 
in AP, and AP, are lowest. When Qs,eak+rlcak is near zero or when the uncertainties in AP,, and 
AP,, are high, the uncertainty in QSlctiticak is quite insensitive to the envelope leakage distribution 
because that uncertainty is either low (in the case of small Q S,cak+rlcak) or it is overshadowed by 
other factors. 

Figure 1 summarizes these results. Two families of curves are shown, one for CFM50=2000 and 
the other for CFM50=4000. Within each family are three curves, an upper one and two close- 
together lower ones. The upper curve represents a case of fairly high QS,ca+ticak coupled with high 
uncertainty in this parameter due to uncertainty in the distribution of leakage area in the building 
envelope. The two lower curves show that if the uncertainty due to envelope leakage distribution 
is low, then the uncertainty in QSlcak+rlcak is not a strong function of QSlc*+,.icak itself 

A question the reader might ask is, “How low can the uncertainty in the house pressures be?” In 
principle, this can be brought to as low a level as one wants simply by taking enough values, but 
beyond a certain point this becomes prohibitively time-consuming. 

The number of data points needed to achieve a given led of uncertainty in AP,, or AP,, will 
depend on the level of confidence in the uncertainty interval and the variability of the data 
(expressed as a standard deviation). In general, the half-width of an error bar at the level of 
confidence l-a is given by tdZ s l&r, where n is the number of data points, s is the sample 
standard deviation of the data, and tti is the value of the t distribution with n-l degrees of 
freedom, leaving an area a/2 to the right. Table 3 shows the number of data points required, 
using this formula, for various standard deviations of data and required 95% confidence intervals 
for AP,, or AP, . 
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Table 2. Uncertainties in QsiuLnluk as a function of envelope leakage (CFMSO), the value of 
Qsleak+rleak, and the uncertainties in the house pressures AP,, and AP,, 

Q skak+ricak 7 errAP,, and errQ,, (low uncertainty from errQ, (high uncertainty from 

e~AP,, , envelope leakage distribution), ch envelope leakage 

CfiIl Pa CFM50=2000 CFM50=4000 CFM50=2000 CFM50=4000 

200 0.5 73 143 93 

200 

200 

200 

I= 200 

100 

0.4 60 115 82 128 

0.3 47 87 73 104 

0.2 35 60 66 82 

0.1 24 35 62 66 

0.5 71 142 77 145 

100 0.4 57 114 64 117 

100 0.3 44 85 52 90 

100 0.2 30 57 41 64 

100 0.1 17 30 33 41 

I 0 I 0.4 I 57 I 113 I 113 

I 0 I 0.3 I 42 I 85 I 42 I 85 I 

0 0.2 28 57 28 57 

0 0.1 14 28 14 28 

Table 3 Number of data points required to achieve a given 95% confidence interval 
sample standard deviations of data and required error intervals for AP, or AP,, . 

Sample Standard Deviation, Pa 0.3 0.5 0.7 

Required 95% Confidence Interval, Pa 

0.5 4 7 10 

0.4 I 5 I 9 I 15 27 

0.3 7 14 24 

0.2 12 27 50 

I 0.1 I 35 I 100 I 190 

for various 

- 

1.0 

18 

45 

95 

390 
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Qsleak+rleak=200 cfm 

----__ 

Low Uncertainty Due 

0.2 0.3 0.4 0.5 

Uncertainty in House Pressures (Fan On and Off), Pa 

Figure I. Uncertainty in Supply Minus Return Leakage fiorn Dominant Duct Leakage Test 
(QsluL+rkrk) as Function of Uncertainty in Measured House Pressures (AP, and AP,) 

Observed standard deviations for AP, and AP, tend to fall in the 0.5 to 1 .O Pa range under 
reasonably calm conditions and may be much higher when gusty winds are present. As currently 
written, ASHRAE Standard 152P calls for 20 measurements of AP, and 30 measurements of 
AP, so one would normally expect 95% confidence intervals in the 0.2 - 0.5 Pa range. Under 
the best of circumstances, a 0.5 Pa confidence interval would typically provide -60 cfin 
uncertainty in Q& while under less favorable conditions (high envelope CFMSO combined 
with unbalanced duct leakage and high uncertainty due to envelope leakage distribution), the 
uncertainty can easily exceed 150 cfin. That level of uncertainty usually will be of little value for 
the data cross-check strategy, and additional data points will be needed. Clearly, the effort one is 
willing to expend on this will depend on the use to which the result is going to be put. 
Researchers and others doing generic studies will want to take more data than diagnosticians 
desiring only a go/no-go decision on whether to do duct repairs in a specific house. Clearly, 
though, an attempt to reduce the uncertainty in AP, and AP, as low as 0.1 Pa will usually 
require a lot of data. 
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