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ABSTRACT

One way to reduce uncertainty in scientific measurement is to devise a protocol in which more
quantities are measured than are absolutely required, so that the result is “over constrained.” This
report develops a method for so combining data from two different tests for air leakage in
residential duct systems. An algorithm, which depends on the uncertainty estimates for the
measured quantities, optimizes the use of the “excess” data. In many cases it can significantly
reduce the error bar on at least one of the two measured duct leakage rates (supply or return), and
it provides a rational method of reconciling any conflicting results from the two leakage tests.
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INTRODUCTION- -

At 1a +n Aavian o neatanal so el more

One way to reduce uncert La.uu._y in scientific measurement is to devise a prowGCos il wWiiCil imoie
quantities are measured than are absolutely required to calculate the desired answer. For
example, if one wanted to know the volume of a vessel, one could measure its physical
dimensions and calculate it that way, and then fill the vessel with water and measure the water’s
volume by pouring it out into a graduated cylinder. The dimensional measurements and the direct

volumetric measurement would then cross-check each other, and one would expect to have

greater confidence in an answer that was some kind of average of the two values for the volume
than in a resuit that depended on only one or the other.

One problem that has to be addressed with such a strategy derives from the near certainty that the
two calculated values for the desired quantity will not be exactly the same. One then has to
decide how much weight to give each of them. Sometimes, instead of two completely separate
Va.lueb IUT IHC ueSif eﬂ qu.IlllLy, one ﬂdb two test pI'OIOCOlb WIlUbt: leLU.l.b wuc:n Ld..l(tﬂl l;ogcmer
add up to more data than is strictly required, but need some disentangling to give two completely
independent answers. This is the case we are going to meet in considering the data cross-check

strategy in duct leakage testing.

Two duct leakage tests currently are specified as options in the draft Standard 152P, Method of
Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution
Systems, which is being developed by the American Society of Heating, Refrigerating, and Air-
Conditioning Engineers (ASHRAE). One of these tests, called the fan pressurization test
involves two steps. First, estimates for the “operating pressures” in the supply and the return duct
systems are measured. The term “operating pressure” is piaced in quotation marks because there
is no single pressure in a working duct system. Rather, the static pressure is at a maximum (in
absolute value) near the plenum and declines to near zero at the registers. The assumption of a
single pressure thus is an attempt to select a likely average value representative of the system as a
whole Such an approxtmatlon will work well if the leaks are scattered throughout the duct

Lot s (Rl Tanlen mea s anmbendad Attlane ad slaa mlae

systern, out may gwe rise mgmuua.m errors if the leaks are concentrated either at the plenum or

the register boots.

The second step in the fan pressurization test is to pressurize (or depressurize) the house with a
blower door (an adjustable fan calibrated to measure air flow rate as a function of throat static

pressure) to some standard pressure, such as 25 Pa. At the same time, a smaller calibrated fan

(duct blower) is used to bring the pressure difference between the house and the supply or return
portion of the duct system to zero. The air flow rate through the duct blower is then equal to the
duct leakage rate to/from outside at the given pressure.

The final step is to pro-rate the leakage at the standard pressu're to the “operating pressure”
through the use of the relation Q= AP ", where Q is the leakage flow rate, AP is the pressure

Pt



difference between the inside and the outside of the duct, and n is an exponent that in ASHRAE
Standard 152P has a default value of 0.6. The impact of uncertainty in this exponent may be
minimized by using the measured “operating pressure” as the target pressure in the duct blower
test, so that little or no adjustment is necessary and uncertainty in the exponent is not an issue.

An alternative duct leakage test called the house pressure test is also available within Standard
152P. In this test, the leakage flow coefficient of the house envelope is measured with a blower
door, and this is then used as a standard against which the leakiness of the ducts is compared.
The connection is made by means of the response of the pressure within the house (relative to the
attic) when the system fan is turned on and off. If operating the system fan causes the house
pressure to rise, this means that the return leakage from outside exceeds the supply leakage to
outside, since a net amount of air is being taken into the duct system from outside and blown into
the house. If the house pressure falls when the system fan is turned on, then the supply leakage is
greater than the return leakage.

This part of the test, which is often called the dominant duct leakage test, provides a value for
the signed difference between the supply and return leakage rates (i.e., an algebraic sum with
supply leakage positive and return leakage negative) but it doesn’t give the two values separately.
To get a second equation, the house pressure test perturbs the system by partially blocking the
return register(s) enough to cause a significant shift in the pressures within the return duct. With
the return(s) blocked, the house pressure with the system fan on is again measured, and the extent
to which this value is different from what it was with registers unblocked provides (in effect) a
measure of the total supply and return leakage. Knowing the sum and the difference of the
supply and return leakage rates, one can calculate them separately. The algorithm that
accomplishes this task also requires values for the operating pressures in the supply and return
ducts with the return register(s) unblocked and blocked.

DATA CROSS-CHECK STRATEGY IN DUCT LEAKAGE TESTING

One could imagine several alternative approaches to the data cross-check idea in duct leakage
testing, but one that appears to be specially promising is the following:

1) Perform the fan pressurization test for duct leakage, giving separate values for supply leakage
(Qqea) and return leakage (Q,..)-

2) Perform the dominant duct leakage portion of the house pressure test, that is, the
measurements of the house pressure with unblocked registers and system fan on and off. This
provides a value for the signed difference between the supply and return leakage rates (Qg..rica)
without requiring any pressure measurements within the ducts themselves. The second part of
this suggested protocol will add very little to the total time and effort required to do the test, but
provides a significant cross-check on the result, since in principle Qg . qeu Should equal Q. -
Q..r However, because the actual measured values are almost certain to be inconsistent, to a
greater or lesser degree, it is necessary to develop a rational method for assigning relative weights



to the three measured quantities. Presumably this method will need to take account of the
experimental uncertainties (error bars) for each of them.

Our objective is to obtain “best” values for the supply and return leakage that will use the
information contained in the measured value of Q... t0 improve on the values of Q. and
Q. that were measured in the fan pressurization test. As a starting point, we note that if we
define the quantities Q ., and Q, y to be those values for supply and return leakage that make
optimal use of the available information, any candidate value for Q,,., can be expressed in the
form a, Qg + 2, Queax T 33 Quearaeax » With the a’s as coefficients to be determined. Two
separate approaches to this determination have led to the same equations, which are given here.
The reader who is interested in the derivation of these equations is referred to the Appendix.

As shown in the Appendix, the three coefficients can be written in terms of a single one that
appears as a weighting factor, which is written as a in the equation for Q, ., and as b in the
equation for Q, .y

Qupeee = % Qe * (179 (Q * Qi)

Qe =0 Lo * (10 Qo = Quicatoricat) (1)

The values of a and b depend on the uncertainties in the measured leakage rates, and so we need
to analyze these. In dealing with experimental errors, we are considering random uncertainties
only. Systematic errors are beyond the scope of the discussion, although errors due to equipment
calibration are treated as random under the assumption that any given measuring device is chosen
at random from an ensemble of devices with calibration errors equally likely to be positive or
negative.

Let us define the experimental uncertainties as follows:

ITQ; pest = Random uncertainty in Q; .,
eITQ, pest = Random uncertainty in Q, pe
errQ, = Random uncertainty in Qg
errQ, = Random uncertainty in Q..
errQ, = Random uncertainty in Que.re

The analysis in the Appendix then yields the following equations for a and b:



(erQ)? + (erQ, )
(erQ)? + (errQ,)* + (errQ,)?

a =

2, 2
- (errQ,)” + (errQ,) @)

(errQ,)* + (erQ,)? + (errQ, )"

Further analysis yields remarkably simple formulas for the uncertainties in Q, ., and Q,

sz.be:t = ‘/Z sz

err rbest ‘/E eerr (3)

We first note that from Equations 2 it is obvious that a and b are between 0 and 1, and hence the
uncertainties in Q, .., and Q, ., will always be less than the corresponding uncertainties in Q.
and Q.. This is to be expected, given the additional information provided by Q.. sicar-

BENCHMARK CASES

To show what the data cross-check strategy can do to reduce uncertainties and reconcile data, let
us consider four benchmark cases, two with balanced duct leakage and two with unbalanced
leakage. We will assume in each case that the uncertainties in Qg and Q,.,, are each 30% of
their measured values, and that the uncertainty in Qg g 1S £30 cfm. (These values are within
the range of estimates developed below.) For each of these categories, we’ll examine what the
procedure does when the values are quite compatible with one another, and what happens when
they are significantly at variance. It is assumed that all the uncertainties are given at the same
level of confidence (e.g., 95%).

Case 1. Balanced Leakage, Compatible Values. Here we’ll assume:

. Queue = 100 £ 30 cfin
. Qe = 100 + 30 cfm

Equation 2 yields a=0.67 and b=0.67 and these values in Equation 1 yield Q, ., = 100 cfm and
Q,.bee = 100 cfm. The best values of supply and return leakage are no different from the original



ones because the three inputs are compatible. The error bars, however, have shrunk a bit by
virtue of Equation 4, by the factor of v0.67, so that:

Q, pe = 100 & 25 cfin Qe = 100 £ 25 cfim.

The main benefit here is not a great reduction in the error bars (though there is some reduction)
but a confirmation that the leakage values as measured by fan pressurization are probably quite
good.

Case 2. Balanced Leakage, Incompatible Values. Here we’ll assume:

. Qe = 100 £ 30 cfin
. Qg = 100 £ 30 cfin

These are incompatible because the measured values of supply and return leakage are the same,
yet the dominant duct leakage test gives a value significantly different from zero. Since the error
bars are the same as before, Equation 3 again yields a=0.67 and b=0.67. Equation 1, however, is
different, yielding Q, p. = 133 cfin and Q, ., = 67 cfm. The error bars are the same as in the
previous case (since a, b, and the original error bars are the same), so that now

Qpese = 133 £ 25 cfim Q,pese = 67 £ 25 cfim.

This seems like a fairly good compromise among the original data, with Q peq, Q; pesr, and

Q, pest = Q:pese DEING about one error bar away from the original Qqey, Qs AN Qupeatersteato
respectively. These values probably represent a closer approximation to the truth of what is
going on than the original Q.. and Q.

Case 3. Unbalanced I.eakage, Compatible Values. Here we’ll assume:

. Qe = 100 £ 30 cfin
. Qo = 200 £ 60 cfin
. Queaerrea = ~100 £ 30 cfim

Equation 3 yields a=0.83 and b = 0.33. Equation 1 then gives Q, ., = 100 cfm and Q, ey, =

200 cfm. The equality of the “best” values with the original values of supply and return leakage is
not surprising since Qgeagigea 1S COnsistent with them. The fact that Qg g has been measured
reduces the error on the return side by the factor v0.33, from 60 cfm to 34 cfm. The supply
leakage error is affected very little since a is so close to unity. So our “best” values with errors

are:
Q. pe = 100 = 27 cfinm Q.o = 200 + 34 cfim.



The benefit here is confirmation of the leakage values as measured by fan pressurization, coupled
with a reduced error bar on the return leakage.

Case 4. Unbalanced Leakage, Incompatible Values. It is not uncommon for the dominant duct

leakage test and the fan pressurization test to disagree on whether supply or return leakage is
greater. Here is an example:

. Qqey = 100 + 30 cfin
. Qe = 200 £ 60 cfmn
¢ Qslczkﬂ'icak =50+ 3 0 Cﬁn

Fan pressurization indicates greater return leakage than supply leakage, while the dominant duct
leakage test says the opposite. How is this resolved? Equation 2 yields a =0.83 and b =0.33.
Equation 1 then gives Q, ., = 126 cfm and Q, ., = 100 cfm. The procedure weighs the
uncertainties in the measured quantities to see which it “believes” more than the others. In this
case, the larger uncertainty in the measured return leakage weighs against it, and the compromise
result has the system supply-dominant. Our “best” values with errors are:

Q. pes = 126 £27 cfim Q, pee™ 100 £ 34 cfim,

Note that Q, e = Q;pest = 26 + 43 cfm (combining the two error bars by quadrature addition) so
the system could be balanced or even slightly return-dominant consistent with the “best” results
obtained here. The benefit here is a best compromise between divergent results from the two test
methods that does the least violence to any of the data.

These examples (especially Case 3 and Case 4) show how the inclusion of the dominant duct
leakage test can reduce the uncertainty in the duct leakage values. Critical to the project is a
reasonably accurate assessment of the relative uncertainties in the individual measurements. In
Case 4, for example, one would suspect that the error estimate for either the return leakage
measurement by fan pressurization or the dominant duct leakage test might be too low. On the
other hand, errors are random and once in a while one expects to be outside even a 95%
confidence limit. The fact that the individual leakage measurements (via fan pressurization) often
give the opposite sign on the dominant duct leakage to that obtained using the fan-on and fan-off
house pressures should motivate the use of a test that includes all of this information.

ESTIMATING THE MEASUREMENT UNCERTAINTIES

The above analysis differs from previous duct leakage tests in that the result depends on estimates
of the measurement uncertainties for the three input quantities Qg,, Qs 30d Qgearsricar:  It'S
therefore important to consider how these uncertainties should be estimated in terms of the
measured quantities from which they are calculated.



Uncertainties in Qsleak and Orleak

The simplest analysis of errors in the fan pressurization test would be that for a one-point test, in
which a duct leakage flow coefficient (C in the expression C AP") is determined at some pressure
A, and then this leakage is corrected to the assumed operating pressure p using a standard value
for n, such as 0.6. This has been criticized on the basis of the likelihood that if A and p are
different, significant error can arise from choosing the wrong value of n. As discussed above,
however, if the pressure p is determined before the duct blower test is done, then it should be
possible to pressurize the duct to this level (unless the operating pressure exceeds what the duct
blower can attain). If the operating pressure can be attained by the duct blower, then the effect of
an error in n will be essentially zero, because little or no pro-rating will be necessary.

What would the errors look like in this case? Again using the basic equation Q = C p", we
measure Q, at some pressure A that is close enough to p that uncertainty in n can be ignored. We
can then rewrite the basic equation as Q = Q, p* /A", where Q stands for either Q ., or Q...
depending on which side of the duct system is being tested. The total differential of Q is then:

. Q. . <
iQ = iQ, » dp

3Q,
-2Lag, +n g B
A" A"
This leads to:
Q_2 5)
Q Q 14

and using the same conventions as before, we may write:

S L

where errQ, / Q, is the fractional error in the measured leakage rate at pressure A and errp/ p is
the fractional error in the operating pressure.



What are Typical Values for the Uncertainties in Qsleak and Qrleak?

A strong argument can be made that in most cases the second term under the square root in
Equation 6 will greatly exceed the first term. Table 1 gives values of the duct leakage rate for
various assumptions about the distribution of leaks, as percentages of the leakage rate if all the
leaks are at the plenum, with n=0.6 and boot static pressure 15% of that at the plenum.

The range of uncertainty implied by this table may be underestimated. Some researchers have
reported that static pressures at supply boots may under some circumstances actually be negative
(due to Bernoulli effect), in which case supply leakage could in principle be_into the duct!

For these reasons, we suggest that a reasonable benchmark for a one-standard-deviation error on
the duct operating pressure would include categories 3 through 6 in Table 1, for a +25% error
bar, while a 95% confidence interval would include all the values listed above, which would imply
~50% error bar surrounding a central value represented by taking the operating pressure to be
half that at the plenum.

Table 1. Values of duct air leakage rate for various leakage distributions in a duct, as percentages
of the leakage when all the leakage is at the plenum. (Boot pressure = 0.15 plenum pressure.)

Leakage Distribution Duct Leakage Rate (% of Benchmark)
| 1. All leaks at plenum (benchmark case) 100 '

2. 90% of leaks at plenum, 10% at boots 93

3. 75% of leaks at plenum, 25% at boots 83

4. 50% of leaks at plenum, 50% at boots 66

5. All leaks at a point where pressure is one- | 66
half plenum pressure

6. 25% of leaks at plenum, 75% at boots 49
7. 10% of leaks at plenum, 90% at boots 39
8. All leaks at boots 32

An estimated range for a 95% confidence interval on the duct leakage measurement (errQ,/Q,) is
suggested as 0.10 to 0.25 depending on the type of duct (simple, tight ducts would have
uncertainty in the low end of the range, while complex, leaky ducts could be at the high end or
higher). A fractional uncertainty of 0.15 is suggested as a benchmark.

These values are provisional but are believed by the author to be reasonable estimates for a typical
case. The use of data cross-checking methods by researchers in the future can help to elucidate
the general question of error magnitudes.



Using these estimates provides the following overall error estimate on Q. or Q..

"’;’2 Q . J0.15% = (0.6) (0.5)

= /0.022 + 0.090
= 0.33

If the first term is ignored, the result would be 0.30, not a large difference. Hence the judgment
that the second term usually dominates.

ncertainty in Qsleak-+rleak

The expression for the error in Qg . 1S SOmewhat more complicated. It is a function of four
measured variables, AP,,, AP and C_,, and n,,,, defined as follows:

AP, Pressure difference between house and attic with the system fan on

AP, Pressure difference between house and attic with the system fan off

C...  Envelope flow coefficient as determined by a blower door test with sealed registers
n Envelope flow exponent '

omv

The expression for Q. .ne it ASHRAE Standard 152P is:

1 . n - n
Qreakorieak = 3 C. [Sign(2AP ~AP ) |AP, -2AP ' - sign(AP ) |AP, "] (7)

In what follows we will assume that the blower door test was a multi point test, so that the
exponent n_,, is well defined and most of the measurement error on envelope leakage is embodied
in uncertainty in C_,,. In this case, the total differential of Qexy.eq Can be written as follows:

3 J o
B Qsleak+rkak Flo . Qslzak+rleak AAP + M dA P (8)

d =
Qsleak +rleak aCmv eny 3A Pon on A Pqﬁ off

The partial derivatives of Qqc.x.uea With respect to the three independent variables are:



aQ - -
ket Loy (24P _-ap "=+ AP
aAPM 2 env’ env of on on
aQ . -
_Skaklak _ ¢y [|2AP -AP |
8AP env’ env af on
of
aQsleak +rieak - er (9 )
aCenv Cmv

Because these expressions are somewhat unwieldy, it may prove useful to give functional names
to the expressions in AP, and AP :

n_-1

f=128P-AP, ™" + AP, "

1

g = |24P _-AP |’ (10)

o

The function f'is the same as that defined in a previous error analysis of the house pressure
test.[Andrews 1997], and g is related to the functions g and gg defined in the same report, but
lacks elements relating to supply and return duct pressures and blocked-return house pressures,
none of which pertain to the unblocked-register portion of the house pressure test.

The next step is to take the differentials in Equation 8 as uncorrelated deviations from true values,
and introduce the following nomenclature similar in character to that previously defined:

errAP_, = random uncertainty in the fan-on house pressure
errAP o = random uncertainty in the fan-off house pressure
errC_,, = random uncertainty in the envelope flow coefficient

The uncertainties in the independent variables can then be added in quadrature to obtain:
172

C 2 Q \2
o, [ “Z L ) e e o(C o e g 2] e, 2] an

eny

A final step in defining the error in Q... requires us to go beyond Equation 7 to consider
possible uncertainties caused by lack of knowledge of the distribution of leakage area within the
building envelope. This possibility is not embedded in Equation 7 because that equation is based

10



on a particular assumption concerning this distribution, namely that the leakage area is equally
split between the floor and the ceiling, with none assigned to the walls. In another report by the
author [Andrews 1998] these assumptions have been generalized to allow an arbitrary distribution
of the leakage area, and the degree to which this introduces uncertainty in Q... has been
investigated. In general, it has been found that agreement between the generalized equation and
Equation 7 is usually good to within £5%, but that deviations of 50% or more can occasionally
occur. Three "danger signals" were identified that should generate suspicion--but not necessarily
confirm--the presence of a large uncertainty in Q. CaUsed by uncertainty in the envelope
leakage distribution. These danger signals are:

. |AP 4 | "large"
. |AP_, | "small"
. AP = 0.5 AP,

These criteria may seem annoyingly vague, and it is hoped that they can soon be made more
precise. Tentatively, it is ventured that "large" in the first danger sign means, roughly, > 1 Pa;
"small" in the second danger sign means, roughly, < 0.5 Pa; and "approximately equal to half" in
the third danger sign means, roughly, between one-fourth and three-fourths. The first danger sign
stems from the fact that when AP =0, it doesn't matter what the distribution of envelope
leakage is; it's only when this quantity is significant that the response of the envelope can depend
on where the leakage is. The second and third danger signs appear to emanate from a particular
sensitivity of the equations to changes in the variables whenever the pressure difference across the
ceiling or the floor is near zero when the system fan is on.

At this point, we will introduce a term errQ, to denote the uncertainty in Q... caused by
uncertainty in the distribution of leakage area over the building envelope. As this error is unlikely
to be correlated with any of the terms within Equation 11, it will be added on in quadrature:

)2+

Ccnvnr:nnf 2 N2
errQ = [( ————5-———) (errAPm)2 +(C_n_g) (errAqu

1/2

er 2 2 2
+ (-&;-) (errCm) + (eerIkdist) (12)

14

How Large Is the Uncertainty in Qsleak+rleak, and Can We Do Anything About 1t?

It would be useful to be able to assess typical relative magnitudes of the four terms within the
square root on the right-hand-side of Equation 12. It is also useful to know that the experimenter
has some control over the first two terms. By measuring AP, and AP 4 many times, it is in
principle possible to reduce these terms to arbitrarily small values. The number of measurements

11



required to reduce them below a certain point, however, is likely to become prohibitive in time,
effort, and value in reducing the overall uncertainty in Qgeu.sca-

In estimating these first two terms, a value for n.,, of 0.65 can be used, since this exponent is
usually found to lie within 15% of that value. The function f'is usually found [Andrews 1977] to
lie between 1 and 3 Pa®*. The g function is similar to f but has only one term instead of two
additive ones, and so can be expected, on average, to be about half as large as f. These functions
can be evaluated for any particular case, and a spreadsheet could calculate them effortlessly. For
discussion here, however, we will use f = 2 and g = 1 when discussing likely error magnitudes.

The uncertainties in AP, and AP ¢ are to some extent controlled by nature (with gusty winds in
particular tending to drive these up) but, as mentioned above, they are also partly under the
control of the tester, by virtue of the ability to make additional measurements. The uncertainty in
these values is roughly halved for every fourfold increase in the number of data points.

Considering the third term, manufacturers of blower doors generally quote a 5% margin of
calibration error. Given that any operator error would add to this, it would seem prudent to
assign a ~10% uncertainty to the measurement of C_,,.

As for the errQ, 4, term, on the basis of the above discussion it appears that when the "danger
signs" are not present, one can depend on Equation 7 to be accurate within 5%. When one or
more of those signs is present, an analysis can be done using the equations in Andrews 1998.
Failing that, and as a benchmark here, a default value of 0.3 Qyey.rcac Will be used.

This means that when the danger signs are absent, uncertainty in C_,, will overshadow that caused
by uncertainty in the leakage distribution, but when they are present, the leakage distribution
uncertainty will dominate. Taking the two terms together, then, one might assign a combined
fractional uncertainty of ~10% to the two causes together (10% and 5% added in quadrature, one
significant figure in the answer) when the danger signs are absent, and ~30% (10% and 30%
added in quadrature) when they are present. Finally, to aid our conceptual thinking about this
equation, we'll convert C__, to CFMSO0 using the relation CFM50 = 50% C,,, .

These considerations lead to the following "rule of thumb" equations:

errQ, = {(0.05 CFMS50)*[(errAP,)* + (errAP )] + (0.1Q,)*}?  (13a)

if the “danger signs” of uncertainty due to envelope leakage distribution are absent, and

errQ_ = {(0.05 CFM50)*[(errAP,))* + (errAP aﬁ,)z] +(0.3Q_ )% (13b)

if one or more of the “danger signs” is present.

12



In order to gain some insight into the expected size of errQ,, we'll look at the results for a number
of values of CFM50, Qqairiears €ITAP,,, and errAP

.. CFMS50 = 2000 and 4000 (representing reasonably tight and leaky housing, respectively)

. Q. =200, 100, 50, and O (representing a range of non-negative values; negative values of
Q. will behave similarly)

. errAP = ertAP  with values 0.5, 0.4, 0.3, 0.2, and 0.1 Pa.

Table 2 shows values, of errQ,, for all combinations of the above values, for both levels of
uncertainty due to envelope leakage distribution embodied in Equations 13a and 13b. The impact
of this uncertainty is most significant when Q... has values far from zero and the uncertainties
in AP, and AP are lowest. When Qqy.cx 1S D€Ar zero or when the uncertainties in AP, and
AP, are high, the uncertainty in Q... 1S quite insensitive to the envelope leakage distribution
because that uncertainty is either low (in the case of small Q... OF it is overshadowed by
other factors.

Figure 1 summarizes these results. Two families of curves are shown, one for CFM50=2000 and
the other for CFM50=4000. Within each family are three curves, an upper one and two close-
together lower ones. The upper curve represents a case of fairly high Q... cOupled with high
uncertainty in this parameter due to uncertainty in the distribution of leakage area in the building
envelope. The two lower curves show that if the uncertainty due to envelope leakage distribution
is low, then the uncertainty in Qg 1S DOt a strong function of Q. mex itself.

A question the reader might ask is, “How low can the uncertainty in the house pressures be?” In
principle, this can be brought to as low a level as one wants simply by taking enough values, but
beyond a certain point this becomes prohibitively time-consuming.

The number of data points needed to achieve a given level of uncertainty in AP, or AP will
depend on the level of confidence in the uncertainty interval and the variability of the data
(expressed as a standard deviation). In general, the half-width of an error bar at the level of
confidence 1- is given by t,, s /Vn , where n is the number of data points, s is the sample
standard deviation of the data, and t,, is the value of the t distribution with n-1 degrees of
freedom, leaving an area /2 to the right. Table 3 shows the number of data points required,
using this formula, for various standard deviations of data and required 95% confidence intervals
for AP, or AP .
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Table 2. Uncertainties in Q.. 4.k aS @ function of envelope leakage (CFMS50), the value of
Qsleak+rleak, and the uncertainties in the house pressures AP,; and AP

Queakericak » | €TAP,, and | errQ,, (low uncertainty from errQ,, (high uncertainty from
errAP envelope leakage distribution), cfm | envelope leakage distribution), cfm
cfm Pa CFM50=2000 | CFM50=4000 | CFM50=2000 | CFMS50=4000

200 0.5 73 143 93 154

200 04 60 115 82 128

200 03 47 87 73 104

200 02 35 60 66 82

200 0.1 24 35 62 66

100 0.5 71 142 77 145

100 04 57 114 64 117

100 0.3 44 85 52 90

100 02 30 57 41 64

100 0.1 17 30 33 41

0 0.5 71 141 71 141

0 04 57 113 57 113

0 03 42 85 42 85

0 0.2 28 57 28 57

0 0.1 14 28 14 28

Table 3. Number of data points required to achieve a given 95% confidence interval, for various
sample standard deviations of data and required error intervals for AP or AP . .

Sample Standard Deviation, Pa 0.3 0.5 0.7 1.0
Required 95% Confidence Interval, Pa
0.5 4 7 10 18
04 5 9 15 27
03 7 14 24 45
0.2 12 27 50 95
0.1 35 100 190 390
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Figure 1. Uncertainty in Supply Minus Return Leakage from Dominant Duct Leakage Test
(Quearrstear) s Function of Uncertainty in Measured House Pressures (AP, and AP,;)

Observed standard deviations for AP, and AP tend to fall in the 0.5 to 1.0 Pa range under
reasonably calm conditions and may be much higher when gusty winds are present. As currently
written, ASHRAE Standard 152P calls for 20 measurements of AP, and 30 measurements of
AP g, so one would normally expect 95% confidence intervals in the 0.2 - 0.5 Pa range. Under
the best of circumstances, a 0.5 Pa confidence interval would typically provide ~60 cfm
uncertainty in Qg .. While under less favorable conditions (high envelope CFM50 combined
with unbalanced duct leakage and high uncertainty due to envelope leakage distribution), the
uncertainty can easily exceed 150 cfim. That level of uncertainty usually will be of little value for
the data cross-check strategy, and additional data points will be needed. Clearly, the effort one is
willing to expend on this will depend on the use to which the result is going to be put.
Researchers and others doing generic studies will want to take more data than diagnosticians
desiring only a go/no-go decision on whether to do duct repairs in a specific house. Clearly,
though, an attempt to reduce the uncertainty in AP, and AP, as low as 0.1 Pa will usually
require a lot of data.
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