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Validation Methodology in Computational Fluid Dynamics

William L. Oberkampf* and Timothy G. Trucano**
Sandia National Laboratories
Albuquerque, New Mexico 87185-0828

Abstract

Verification and validation are the primary means to
assess accuracy and reliability in computational
simulations. This paper presents an extensive review of
the literature in computational validation and develops a
number of extensions to existing ideas. We discuss the
early work in validation by the operations research,
statistics, and CFD communities. The emphasis in our
review is to bring together the diverse contributors to
validation methodology and procedures. The
disadvantages of standard practice of qualitative graphical
validation are pointed out and the arguments for and the
literature on validation quantification are presented. We
discuss the attributes of a beneficial validation
experiment hierarchy and then we give an example for a
complex system; a hypersonic cruise missile. We present
six recommended characteristics of how a validation
experiment is designed, executed, and analyzed. Since one
of the key features of a validation experiment is a careful
experimental uncertainty estimation analysis, we discuss
a statistical procedure that has been developgd for
improving the estimation of experimental uncertainty.
One facet of code verification, the estimation of
computational error and uncertainty, is discussed in some
detail, but we do not address many other important issues
in code verification. We argue for the separation of the
concepts of error and uncertainty in computational
simulations. Error estimation, primarily that due to
numerical solution error, is discussed with regard to its
importance in validation. In the same vein, we explain
the need to move toward nondeterministic simulations in
CFD wvalidation, that is, the propagation of input
quantity uncertainty in CFD simulations which yield
probabilistic output quantities. We discuss the relatively
new concept of validation quantification, also referred to
as validation metrics. The inadequacy, in our view, of
hypothesis testing in computational validation is
discussed. We close the paper by presenting our ideas on
validation metrics and we apply them to two conceptual
examples.
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1. Introduction

During the last three or four decades, computer
simulations of physical processes have been used in
scientific research and in the analysis and design of
engineered systems. The systems of interest have been
existing or proposed systems that operate at design
conditions, off-design conditions, failure-mode
conditions, or accident scenarios. The systems of interest
have also been natural systems, for example, surface-
water quality analyses and risk assessment of
underground storage of toxic and nuclear wastes. These
kinds of predictions are beneficial in the development of
public policy, in the preparation of safety procedures, and
in the determination of legal liability. Because of the
impact that modeling and simulation predictions can
have, the credibility of the computational results is of
great concern to engineering designers, public officials,
and those who are affected by the decisions that are based
on these predictions.

For engineered systems, terminology such as
“virtual prototyping” and “virtual testing” is now being
used in engineering development to describe numerical
simulation for the design, evaluation, and “testing” of
new hardware and even entire systems. This new trend of
modeling-and-simulation-based design is primarily driven
by increased competition in many markets such as
aircraft, automobiles, propulsion systems, and consumer
products. The need to decrease the time and cost of
bringing products to market is intense. This new trend is
also driven by the high cost and time that are required to
test laboratory or field components and complete
systems. In addition, the safety aspects of the product or
system also represent an important, sometimes dominant
element of testing or validating numerical simulations.
The potential legal and liability costs of hardware failures
can be staggering to a company, the environment, or the
public. The reliability, robustness, or safety of some of
these computationally-based designs are high-
consequence systems that cannot ever be tested.
Examples are the catastrophic failure of a full-scale
containment building for a nuclear power plant, fire
spread or explosive damage to a high-rise office building,
and a nuclear weapon exposed to a transportation crash
and fire environment.

The critical issue is: How should confidence in
modeling and simulation be critically assessed?
Verification and validation of computational simulations
are the primary methods for building and quantifying this
confidence. Briefly, verification is the assessment of the
accuracy of the solution to a computational model.
Validation is the assessment of the accuracy of a




computational simulation by comparison with
experimental data. In verification, the relationship of the
simulation to the real world is not an issue. In
validation, the relationship between computation and the
real world, i.e., experimental data, is the issue. Stated
differently, verification is a mathematics issue; validation
is primarily a physics issue.

At the national level, the Defense Modeling and
Simulation Office (DMSO) of the Department of
Defense has been the leader in the development of the
fundamental concepts and terminology for verification
and validation (V&V).l’2 Recently, the Accelerated
Strategic Computing Initiative (ASCI) of the
Department of Energy (DOE) has also taken a strong
interest in V&V. The ASCI program is focused on
computational physics and computational mechanics,
whereas the DMSO has traditionally emphasized high
level systems engineering, such as ballistic missile
defense systems. Of the work conducted by DMSQO, it
has recently becen observed: “Given the critical
importance of model validation..., it is surprising that
the constituent parts are not provided in the (DoD)
directive concerning...validation. A statistical perspective
is almost entirely missing in these directives.”3 We
believe this comment properly reflects the state of the art
in V&V. That is, the state of the art has not developed to
the point where one can clearly point out ali of the actual
methods, procedures, and process steps that must be
undertaken for V&V. It is our view that the present
method of qualitative “graphical validation,” i.e.,
comparison of computation and experiment on a graph,
is inadequate. This inadequacy especially affects complex
engineered systems that heavily rely on computational
simulation for understanding their predicted performance,
reliability, and safety. We recognize, however, that the
complexities of the quantification of V&V are
substantial, from both a research perspective and a
practical perspective. To indicate the degree of
complexity, we suggest referring to quantitative V&V as
“validation science.”

It is fair to say that researchers in the field of
computational fluid dynamics (CFD) have been pioneers
in the development of methodology and procedures in
computational validation. However, it is also fair to say
that the development of CFD has proceeded along a path
that is largely independent of experimental validation.
There are diverse reasons why CFD has not perceived a
strong need for code verification and validation,
especially validation. A competitive and frequently
adversarial relationship (at least in the U. S.) has often
existed between computational modelers and
experimentalists, which has led to a lack of cooperation
between the two groups. We see computational
simulation and experimental investigations as
complementary and synergistic. Some will say, “Isn’t
that obvious?” We would answer, “It should be, but they
have not always been viewed as complementary.” The
“line in the sand” was formally drawn in 1975 with the
publication of the article “Computers versus Wind
Tunnels.”* We call attention to this article only to
demonstrate, for those who claim it never existed, that a

competitive and adversarial relationship has indeed
existed in the past. This ambivalent relationship was of
course not caused by the quoted article; the article simply
brought to the foreground the competition and conflict.
In retrospect, this situation is probably understandable
because it is the classic case of a new technology rapidly
growing and attracting a great deal of visibility and
funding support that had been the domain of the older
technology.

During the last few years the relationship between
computation and experiment has improved significantly.
There has been a growing awareness that competition
does not best serve the interests of either computational
modelers or experimentalistsS' . Even with this
awareness, there are significant challenges in
implementing a more cooperative working relationship
between the two groups, and also in making progress
toward a validation science. From the viewpoint of some
experimentalists, one of the challenges is overcoming
the perceived threat that CFD poses. Validation science
requires a close and synergistic working relationship
between computationalists and experimentalists, rather
than competition. Another significant challenge is the
required changes in most experimentalist’s perspective
toward validation experiments. We argue that validation
experiments are indeed different from traditional
experiments, i.e., they are designed and conducted for the
purpose of code validation. For example, rigorous
experimental uncertainty estimation is critically needed
in validation experiments; it is not an optional element
in experiments. Similarly, quantitative numerical error
estimation by CFD analysts is a must. For complex
engineering problems, this requires a posteriori error
estimation; not just formal error analyses or a priori
error estimation. An finally, we believe validation
science will require the incorporation of nondeterministic
simulations, i.e., multiple deterministic simulations that
reflect uncertainty in model parameters, initial
conditions, and boundary conditions that exist in the
experiments that are used to validate the computational
models. .

This paper presents an extensive review of the
literature in computational validation, as well as
extensions to existing work. We trace the beginning of
validation terminology and methodology development to
the operations research community. We discuss the early
work in validation by the CFD community and also the
ambiguous meaning of the terms verification and
validation from the perspective of other engineering
disciplines and computer science. We briefly summarize
portions of the first engineering standards document, the
AIAA Guide, published on verification and validation. 19
The disadvantages of qualitative “graphical” validation are
pointed out, and the literature on validation quantification
is presented. In Section 3, we discuss the attributes of a
beneficial validation hierarchy, and then we give an

_example for a complex system, namely, a hypersonic

cruise missile. We present the six recommended
characteristics of how a validation experiment is designed
and executed. Since one of the key features of a
validation experiment is a careful experimental
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uncertainty estimation analysis, we discuss a statistical
procedure that has been developed for improving the
estimation of experimental uncertainty. In Section 4, we
discuss one facet of code verification, which is the
estimation of computational error and uncertainty, but
we do not address many other important issues in code
verification. We argue for the separation of the concepts
of error and uncertainty in computational simulations.
Error estimation, primarily that due to numerical
solution error, is discussed with regard to its importance
in validation. In the same vein, we explain the need to
move toward nondeterministic simulations in CFD
validation, i.e., the propagation of input quantity
uncertainty in CFD simulations which yield
probabilistic system responses. In Section 5, we deal
with the issue of the quantitative comparison of
computation and experiment in validation. We present
our views explaining why the traditional statistical
technique of hypothesis testing is inadequate in
computational validation. We then discuss the topic of
validation metrics introduced by Coleman and Stern.17
We close this topic by using two simple examples to
present our ideas on validation metrics. We conclude the
paper with recommendations for future work.

2. Review of the Literature

2.1 Methodology
Developments

The issue of validation of mathematical and
computational models of nature touch on the very
foundations of science. The reason for these deeply rooted
issues in science is the question of how can formal
constructs (models) be tested by physical observation.
The renowned 20th century philosophers of science
Popperlgalg and Camap20 laid the foundation for the
present day concepts of validation. The first technical
discipline that began to struggle with the methodology
and terminology of verification and validation was the
operations research (OR) communi‘cy.zl'5 In the OR
activities, the complexity of the systems analyzed could
be extraordinary, for example, industrial production
models, industrial planning, marketing models, national
and world economic models, and war fighting models.
These complex models commonly involve a strong
coupling of complex physical processes, human
behavior, and computer controlled systems. For these
complex systems and processes, fundamental conceptual
issues immediately arise with regard to assessing

and Terminology

credibility of the model and the resulting simulations.

Indeed, the credibility of most of these models cannot be
validated in any meaningful way.

The issue of credibility of the models is necessarily
related to the meaning of the terms verification and
validation. Verification and validation (V&YV) are
fundamentally tools for the assessment of the accuracy
and the demonstration of correctness of a model. For
much of the OR work, the assessment is so difficult, if
not impossible, that V&V become more associated with
the issue of credibility, i.e., the quality, capability, or
power to elicit belief. In science and engineering,

however, quantitative assessment of accuracy, at least for
some physical cases, is mandatory. For certain
situations, assessment may only be possible using
physical models that are subscale, or the assessment may
not have all of the physical processes active at one time.
Regardless of the difficulties and constraints, methods
must be devised for measuring the accuracy of the model
for as many conditions as are appropriate for the uses of
the model.

The meaning and the clarity of the terms verification
and validation took a major step forward in 1994 with
the definitions developed by the Defense Modeling and
Simulation Office (DMSO) of the Department of
Defense.! The DMSO definitions were formulated based
on the foundational work of the OR community
referenced above. In 1998, the AIAA Computational
Fluid Dynamics Committee on Standards adopted the
definitions of DMSO.16 The definition of verification
given by the AIAA Guide for the Verification and
Validation of Computational Fluid Dynamics
Simulations is:

Verificafion: The process of determining that a
model implementation accurately represents the
developer's conceptual description of the model and
the solution to the model.

This definition slightly modifies the DMSO definition in
order to make it clear that the solution to the model is
included in verification. In computational physics and
engineering, the numerical solution of the continuum
partial differential equations is a dominant issue, whereas
in the OR community it is a minor issue. The informal
meaning of verification asks the question: “Did you
solve the mathematical model correctly?” This statement
has numerical algorithm implications, as well as
software quality assurance implications.

The AIAA Guide definition of validation was taken
verbatim from the DMSO definition: 12,16

Validation: The process of determining the degree
to which a model is an accurate representation of the
real world from the perspective of the intended uses
of the model.

The informal meaning of validation asks the question:
“Did you solve the correct mathematical model?”
Although this informal meaning is more intuitive than
the formal definition, it also is somewhat misleading in
the following sense. It implies that mathematical models
are correct or incorrect; valid or invalid. For complex
engineering systems this is an untenable view. This
point was succinctly stated a number of years ago by
George Box: 7 «All models are wrong, but some are
useful.” )

In science and engineering, CFD was one of the
first fields to seriously begin developing concepts for
validation methodology and validation experiments>~/»
9-11,13,58-96 Much of this early work dealt with issues
such as fundamental methodology, terminology,
development of the concepts and procedures for validation



experiments, confidence in predictions based on validated
simulations, and methods of incorporating validation
into the engineering design process. Essentially all of
this early work dealt with CFD for aircraft and reentry
vehicle aerodynamics, gas turbine engines, and
turbopumps. In parallel with the aerospace activities and
the OR work mentioned above, there were significant
efforts in validation methodology in the field of surface
and subsurface water quality modeling and safety
assessment of underground radioactive waste
repositories.97'103 This water quality work is
significant for two reasons. First, it addresses validation
for complex processes in the physical sciences where
validation of models is extremely difficult, if not
impossible. The reason for the difficulty is that one of
the key elements in the modeling is extremely limited
knowledge of underground transport and material
properties. For situations such as this, one must deal
with calibration or parameter estimation in models,
prior to considering validation. Second, because of this
difficulty these fields have adopted statistical methods of
validation assessment. As will be discussed shortly, we
believe CFD must also begin adopting statistical
methods of validation. Examining the literature from
these diverse disciplines in operations research, earth
sciences, and CFD clearly shows that each discipline
developed concepts and procedures essentially
independently.

A final comment should be made concerning the
nonuniformity of the usage and meaning for the terms
verification and validation. It is still common in CFD
for people to misuse terms, for example, one refers to
verification when one means validation. There is,
however, a fundamentally different meaning of the terms
verification and validation in other fields that must be
noted. In 1984, the Institute of Electrical and Electronics
Engineers (IEEE) defined verification as follows: 104,
105 «The process of evaluating the products of a software
development phase to provide assurance that they meet
the requirements defined for them bly the previous phase.”
IEEE defined validation as:104,105; «The process of
testing a computer program and evaluating the results to
ensure compliance with specific requirements.”
Comparing these definitions with the DMSO/AIAA
definitions given previously, it is immediately clear they
mean something completely different. IEEE definitions
are entirely referential, i.e., the value of the definition is
related to the specification of “requirements defined for
them by the previous phase” and “compliance with
specific requirements.” The substance of the meaning
must be provided in the specification of additional
information. Because those requirements are not stated in
the definition, the definition does not contribute much to
the intuitive understanding of verification and validation.
These same IEEE definitions for verification and
validation have been adopted by the software auali%
assurance and computer science communities 106,10
the nuclear reactor safety community, 108,109 and the
Ixnltfmational Organization for Standardization (1s0)!10,

.The IEEE definitions for V&V are pointed out for

two reasons. First, these definitions provide a
distinctively different perspective toward the entire issue
of verification and validation. This perspective asserts
that because of the extreme variety of requirements for
modeling and simulation, the requirements should be
defined in a separate document for each application, not
in the definition of validation. Second, the IEEE
definitions are the more prevalent definitions used in
engineering, and one must be aware of the potential
confusion when the DMSO/AIAA definitions are used in
mixed disciplines. The IEEE definitions are dominant
because of the worldwide influence of this organization.
As a result, we expect long-term ambiguity and
confusion.

2.2 AIAA Guide

In 1992, the ATAA Computational Fluid Dynamic
Committee on Standards began a project to formulate the
basic terminology and methodology in the verification
and validation of CFD simulations. After 6 years of
discussion and debate, the project culminated in the
publication of Guide for the Verification and Vgli%gtigg
of Computational Fluid Dynamics Simulations.!® The
Guide defines a number of key terms, discusses
fundamental concepts, and specifies general procedures
for conducting verification and validation in CFD. AIAA
Standards documents are segregated into three levels of
the state of the art: guides, recommended practices, and
standards. The V&V Guide is at the first level, reflecting
the early stage of development of concepts and procedures
in V&V. It is also the first standards document to be
published by any engineering organization on the topic
of V&V. The American Society of Mechanical Engineers
is in the early stages of forming a new standards
committee and develoging a similar document in the field
of solid mechanics.! !

This section briefly reviews portions of the AIAA
Guide that deal with fundamental V&V methodology. A
few comments will be made concerning verification
methodology in order to more clearly separate the topic
from validation. Then validation terminology and
methodology will be reviewed in more detail.

Verification is the process of determining that a
model implementation accurately represents the
developer's conceptual description of the model and the
solution to the model.. The fundamental strategy of
verification is the identification and quantification of
error in the computational model and its solution. In
verification activities, accuracy is generally measured in
relation to highly accurate solutions of simplified model
problems. Highly accurate solutions refer to either
analytical solutions or highly accurate numerical
solutions. Verification, thus, provides evidence
(substantiation) that the conceptual (continuum
mathematics) model is solved correctly by the discrete
mathematics embodied in the computer code. The
conceptual model does not require any relationship to the
real world. As a result, verification is only a
mathematics and computer science issue; not a physics
issue. Figure 1 depicts the verification process of
comparing the numerical solution with various types of




highly accurate solutions.
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Figure 1: Verification Process16

Validation is the process of determining the degree
to which a model is an adequate representation of the real
world based on the intended uses of the model. The
fundamental strategy of validation is to identify and
quantify the error and uncertainty in the conceptual and
computational models, quantify the numerical error in
the computational solution, and also estimate the
experimental uncertainty, and then make the comparison
between computation and experiment. That is, accuracy
is measured in relation to experimental data, our best
measure of reality. This strategy does not assume that
the experimental measurements are more accurate than
the computational result. The strategy only asserts that
experimental measurements are the only true reflettions
of reality. Validation requires that the estimation process
for error and uncertainty must occur on both sides of the
coin: mathematical physics and experiment. Figure 2
depicts the validation process of comparing the
computational results of the modeling and simulation
process with various types of experimental data.

CONCEPTUAL CORRECT ANSWER
MODEL PROVIDED BY
EXPERIMENTAL DATA
* Unit
Problems

COMPUTATIONAL
MODEL

* Benchmark
Cases

VALIDATION * Subsystem

TEST Cases
COMPUTATIONAL
SOLUTION . « Complete
Comparison and System

Test of Agreement

Figure 2: Validation Process!6

Becaﬁse of the infeasibility and impracticality of

conducting true validation experiments on complex
systems, the recommended method is to use a building-
block approach.13,16,67,81,85,113 s approach divides
the complex engineering system of interest into three
progressively simpler tiers: subsystem cases, benchmark
cases, and unit problems. (Note that in AIAA Guide the
building-block tiers are referred to as phases.) The
strategy in the tiered approach is to assess how accurately
the computational results compare with experimental
data (with quantified uncertainty estimates) at multiple
degrees of physics coupling and geometrical complexity
(see Fig. 3). The approach is clearly constructive in that
it (1) recognizes that there is a hierarchy of complexity
in systems and simulations and (2) recognizes that the
quantity and accuracy of information that is obtained
from experiments varies radically over the range of tiers.
It should also be noted that additional building-block
tiers beyond the four that are discussed here could be
defined, but additional tiers would not significantly alter
the recommended methodology.

Complete System

Subsystem Cases

Benchmark Cases

‘Ld:l: y

Unit Problems

Figure 3: Validation Tiers16

The complete system consists of the actual
engineering hardware for which a reliable computational
tool is needed. Thus, by definition, all the geometric and
physics effects occur simultaneously. For typical
complex engineering systems, e.g., a gas turbine engine,
multidisciplinary, coupled, physical phenomena occur
together. Data are measured on the engineering hardware
under realistic operating conditions. The quantity and
quality of these measurements, however, are essentially
always very limited. It is difficult, and sometimes
impossible, to quantify most of the test conditions
needed for computational modeling, e.g., various fluid
flow rates, thermophysical properties of the multiple
fluids, and coupled, time dependent, boundary conditions.
Not only are many needed modeling parameters
unmeasured, there is generally no experimental
uncertainty analysis conducted.

Subsystem cases represent the first decomposition of
the actual hardware into simplified systems or
components. Each of the subsystems or components is
composed of actual hardware from the complete system.
Subsystem cases usuaily exhibit three or more types of
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physics that are coupled. Examples of types of physics
are fluid dynamics, structural dynamics, solid dynamics,
chemical reactions, and acoustics. The physical processes
of the complete system are partially represented by the
subsystem cases, but the degree of coupling between
various physical phenomena in the subsystem cases is
typically reduced. For example, there is normally reduced
coupling between subsystems as compared to the
complete system. The geometric features are restricted to
the subsystem and its attachment, or simplified
connection, to the complete system. Although the
quality and quantity of the test data are usually
significantly better for subsystem cases than for the
complete system, there are still limited test data for
subsystem cases. Some of the needed modeling data,
initial conditions, and boundary conditions are measured,
particularly the most important data.

Experimental data from complete systems and data
from subsystem tests are always specific to existing
hardware and are available mainly through large-scale test
programs. Existing data from these tests have
traditionally focused on issues such as the functionality,
performance, safety, or reliability of systems or
subsystems. For large-scale tests, there is often
competition between alternative system, subsystem, or
component designs. If the competition is due to outside
organizations or suppliers of hardware, then the ability to
obtain complete and unbiased validation information
becomes even more difficult. Such tests generally
provide only data that are related to engineering
parameters of design interest and high-level system
performance measures. The data that are obtained
typically have large uncertainty bands, or no attempt has
been made to estimate uncertainty. The test programs
typically require expensive ground-test facilities, or the
programs are conducted in uncontrolled, hostile, or
unmeasured environments. Commonly, the test
programs are conducted on a tight schedule and with a
limited budget. Consequently, it is not possible to
obtain the complete set of physical modeling parameters
(e.g., thermochemical fluid and material properties),
initial conditions, and boundary conditions that are
required for quantitative validation assessment. Also,
there are certain situations where it is not possible to
conduct a complete system validation experiment. Such
situations could involve public or environmental safety
hazards, unattainable experimental-testing requirements,
or international treaty restrictions.

Benchmark cases represent the next level of
decomposition of the complete system. For these cases,
special hardware is fabricated to represent the main
features of each subsystem. By special hardware, we

- mean hardware that is specially fabricated with simplified

properties, materials, or both. For example, benchmark
hardware is normally not functional hardware nor is it
fabricated with the same materials as actual subsystems
or components. For benchmark cases, typically only two
or three types of coupled flow physics are considered. For
example, in fluid dynamics one could have turbulence,
combustion, and two-phase flow, but one would
eliminate any structural dynamics coupling that might

exist at the subsystem level. The benchmark cases are
geometrically simpler than those cases at the subsystem
level. The only geometric features that are retained from
the subsystem level are those that are critical to the types
of physics that are considered at the benchmark level.
Most of the experimental data that are obtained in
benchmark cases have associated estimates of
measurement uncertainties. Most of the needed modeling
data, initial conditions, and boundary conditions are
measured, but some of the less important experimental
data have not been measured. The experimental data, both
code input data and system response data, are usually
documented with moderate detail. Examples of important
experimental data that are documented include detailed
inspection of all hardware, specific characterization of
materials and fluids used in the experiment, and detailed
measurement of environmental conditions that were
produced by the experimental apparatus or testing
equipment. :

Unit problems represent the total decomposition of
the complete system. At this level, high-precision,
special-purpose hardware is fabricated and inspected, but
this hardware ‘does not resemble the hardware of the
subsystem from which it originated. One element of
complex physics is allowed to occur in each of the unit
problems that are examined. The purpose of these
problems is to isolate elements of complex physics so
that critical evaluations of mathematical models or
submodels can be evaluated. For example, unit problems
could individually involve turbulence, laminar flow
combustion, and laminar gas/liquid droplet flows. Unit
problems are characterized by very simple geometries.
The geometry features are commonly two-dimensional,
but they can be very simple three-dimensional
geometries with important geometric symmetry features.
Highly instrumented, highly accurate experimental data
are obtained from unit problems, and an extensive
uncertainty analysis of the experimental data is prepared.
If possible, experiments on unit problems are conducted
at separate facilities to ensure that bias (systematic)
errors in the experimental data are identified. For unit
problems, all of the important code input data, and initial
and boundary conditions are accurately measured. These
types of experiments are commonly conducted in
universities or in research laboratories.

Experimental data from benchmark cases and unit
problems should be of the quantity and quality that are
required in true validation experiments. If, however,
significant parameters that are needed for the CFD
simulation of benchmark cases and unit problem
experiments were not measured, then the analyst must
assume these quantities. For example, suppose for
benchmark cases and unit problems that careful
dimensional measurements and specific material
properties of the hardware were not made. In this case,
the computational analyst typically assumes reasonable
or plausible values for the missing data, possibly from
an engineering handbook. An alternative technique,
although never done in CFD, is for the analyst to
assume probability distributions with specified means
and variances of the unmeasured parameters. Multiple



computations are then performed using these
assumptions, and likelihoods are computed for output
quantities used to compare with experimental data. In
existing or older published experimental data for
benchmark cases and unit problems, it is common that a
significant number of parameters are missing from the
description of the experiment. Experiments in the past
were typically conducted for the purpose of improving
the physical understanding of specific phenomena or for
determining parameters in models, rather than for the
validation of CFD models. That is, these experiments
were used inductively to construct mathematical models
of physical phenomena, rather than deductively to
evaluate the validity of models.

2.3 Validation Quantification

The standard validation procedure in CFD is to
graphically compare computations with experimental
data. If the computations “generally agree” with the
experiment, the computations are declared “validated.”
Sometimes a favorable comparison motivates the code
developer to declare the entire computer code “validated.”
There are two weakness and a fallacy with this procedure.
The first weakness is that a comparison of computation
and experiment on a graph is only somewhat better than
a qualitative comparison. With a graphical comparison,
one does not commonly see quantification of the
numerical error or quantification of uncertainties due to
little information of needed modeling parameters. Also,
an estimate of experimental uncertainty is also not
typically quoted, and in most cases it is not even
available. A graphical comparison also giyes" little
quantitative indication of how the agreement varies over
the range of the independent variable, e.g., space or time,
or the parameter of interest, e.g., Reynolds number or
geometric parameter. The second weakness is that a
graphical comparison does not quantify what is a
“satisfactory” or “good” agreement of computation and
experiment, i.e., graphical comparison is only
qualitative. In Section 5.2, we discuss the distinction
between a measure of agreement between computation
and experiment, and whether the given measure is
adequate for a particular application. Finally, the fallacy
should be obvious in declaring an entire computer code
“validated” with one, or even several, favorable
comparisons. If this is not obvious, see the AIAA Guide
for a discussion of this 'copic.16 Unjustified validation
declarations such as this are commonly driven by
marketing and competitive pressures. Broad claims of
validation based on little evidence should always be
challenged. It is well known that the code developer and
the code salesman require little convincing of the code’s
validity, whereas the code user, the code purchaser, and
the decision maker relying on the code should require a
great deal of quantifiable and reproducible evidence.

The critical issue then is how might comparisons of
computation and experiment be better quantified. We
suggest that validation quantification should be
considered as the evaluation of a metric, or various
metrics, for measuring the consistency of a given
computational model with respect to experimental

measurements. This metric quantifies errors and
uncertainties in both the computational and experimental
activities. Several researchers have pursued this topic
since the late 1980s, however, only one of these
researchers! 7 is in the field of aerospace systems. We
will now review in some detail those authors who have
addressed validation quantification.

Beck,97 in a long review article, dealt with four
closely related topics: uncertainty about model structure,
uncertainty in the estimated model parameter values, the
propagation of prediction errors, and the design of
experiments in order to reduce the critical uncertainties
associated with a model. The first two topics are actually
issues in validation quantification. His insight 13 years
ago that validation can be thought of as test of both
model structure (model form) and model parameters has
escaped most researchers in the field. The application area
he discusses is surface and ground water flow modeling.
Because of the complex physical and chemical processes
occurring, the large number of unknown parameters in
the partial differential equations (PDEs), and the
unknown state of most of the initial and boundary
conditions, he approaches validation as a statistical
estimation problem. His philosophical approach to
validation, and toward modeling and simulation in
general, is condensed in his comment: “If there were a
longer term view to be taken, current research activities
might be interpreted as a swing for the pendulum away
from determinism toward indeterminism.”

LeGore!90 dealt with validation quantification for
problems in ground water transport of radionuclides and
toxic materials. He discusses how Monte Carlo sampling
methods can be used to compute the system response
measures that are measured experimentally. For ground
water flow problems there are stochastic parameters in
PDEs which describe the hydraulic conductivity of a
porous medium. A “realization” from the computational
model for the purpose of comparing with the physical
experiment is created by randomly selecting a value for
the stochastic parameter using the predetermined, or
assumed, probability distribution for the parameter. He
also points out how three different stochastic system
response measures from the model and the experiment
could be compared.

Gass*© discusses a method of model accreditation
that would apply to any type of computer modeling. He
defines accreditation as “an official determination that a
model is acceptable for a specific purpose.” Accreditation
is a much more formal statement of model credibility
than model validation. He recommends the Analytical
Hierarchy Process (AHP) of Saaty1 14 for accreditation.
A numerical score is computed for a code that would be a
weighted sum of scores in areas such as logical
verification, documentation, code verification, face
validation, independent review, data validation,
comparison with laboratory data, and comparisons with
system level data. If the code’s total score were greater
than some specified value, then the code would be
accredited. Although this type of credibility measure is
quite different than other authors discussed here, it does
reflect a much broader view that would be appropriate to
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use when high consequence systems are modeled, e.g.,
nuclear reactor safety assessment.

Lee and Poollal 15,116 present a general theoretical
approach for statistical model validation that they
carefully define as: “Given expérimental time-domain
input-output data, certain a priori information about the
true plant, and a hypothesized uncertainty model,
determine the validation probability that the uncertainty
model is consistent with both the prior information and
the data record.” They point out that by using a
probabilistic point of view they are focusing on the
likelihood that a given model is valid. They use a
Bayesian method for updating prior probabilities when
more data, typically more experimental data, become
available. The also use certain statistical ideas from
hypothesis testing, but they do no take the hypothesis
testing approach. (More discussion of hypothesis testing
is given in Section 5).

Draper1 17 and Laske:y1 18 poth discuss validation
quantification, but in the context of the broader subject
of model prediction uncertainty, i.e., given comparisons
of the model with experimental data, what is the
uncertajnty of foretelling future events using the
model.16 Following Beck,?7 they develop statistical
methods for segregating model structural (model form)
validation and parametric validation (estimation).
Draper’s article is particularly valuable because it is both
a review article and, in an addendum, it contains
comments and criticisms from 27 other researchers in the
field, plus Draper’s response to each. Draper and Laskey
take a statistical approach to validation quantification,
and they both use a Bayesian approach to updating the
model and parametric uncertainties when new
experimental data become available. Commenting on the
situation of incomplete experimental data to conclude
whether a model is valid, Laskey comments “it may be
necessary to acknowledge that in the presence of
irreducible [epistemic] model uncertainty there may be no
single ‘right answer’ and reasonable people may
disagree.”

Kleijncn53 uses a case study approach toward
validation of an acoustical model for the detection of
mines on the sea floor. He points out the rapidly
increasing interest in model validation, but he
appropriately summarizes the state of the art as:
“Unfortunately, this interest has not resulted in a standard
theory on validation. Neither has it produced a standard
‘box of tools’ from which tools are taken in a natural
order.” In his case study he takes a statistical approach to
validation quantification, but he takes a frequentist
approach as opposed to a Bayesian approach. He
recommends that before comparisons of theory and
experiment are made, statistical analysts should work
with the code user/analysts to design experiments that
vigorously test the code. He believes that finding ways
of “breaking the model” are best achieved by sensitivity
analysis of computational model. Sensitivity analysis
finds the local rate of change of any output quantity with
respect to any input quantity. As a result, sensitivity
analysis could then be used to find what input quantities
cause the most uncertainty in important system response

measures. T

McKayl 19 discusses model prediction uncertainty
and sensitivity analyses, but these techniques are useful
in parametric validation. He considers the case where
certain input parameters are unknown, but they are
represented by probability distributions. These
parameters can be, for example, coefficients in the
differential equations, initial conditions, or boundary
conditions. He determines which of these parameters are
the most important by comparison of the prediction
distribution with conditional prediction probability
distributions. He uses replicated Latin hypercube
sampling, also referred to as stratified Monte Carlo
sampling, for the propagation of the uncertainty through
the model. His method does not depend on model
linearity or monotonicity, which usually accompanies
regression-based methods.

Coleman and Stern!” are the first to deal with
validation quantification in the field of
aerodynamics/hydrodynamics CFD. They take a
statistical approach that combines the random error from
the experimental data and the simulation uncertainty.
They define the simulation uncertainty as sum of the
numerical solution error, simulation modeling
uncertainty arising from using previous experimental
data, and the modeling uncertainty due to modeling
assumptions. As many authors in CFD, they refer to all
numerical errors (e.g., spatial and time-step
discretization, artificial dissipation, intra-step and global
iterative non-convergence, computer round-off, etc.) as
numerical uncertainty. They define a validation
uncertainty metric as the sum of the uncertainty in the
experimental data, the numerical solution error, and the
simulation modeling uncertainty arising from using
previous experimental data. They contend that this
validation uncertainty metric sets the level at which
validation can be achieved. Their criterion for validation
is that the magnitude of the comparison error between
experiment and computation must be less than their
validation uncertainty metric. Using their approach, they
give an example of modeling uncertainty due to mulitiple
turbulence models in a Reynolds averaged Navier-Stokes
code.

Hanson!20 uses a probabilistic framework for
assessing uncertainties in simulation predictions that
arise from model parameters derived from uncertain
measurements. The focus is on the parametric
uncertainties in physics models, how they propagate
through the model, and what is the probabilistic result
on various system response measures. These
probabilistic modeling results are then compared to
experimental data that are given by multiple replications
of experiments. He stresses the importance of having a
hierarchy of experiments, as discussed above, for aiding
in identifying weaknesses in physics submodels and
coupied physics that occurs in experiments of higher
complexity. He uses Bayesian estimation for updating
prior probability distributions as ‘one moves from one
experiment to the next. He also uses the Markov chain
Monte Carlo technique for generating a sequence of
random parameter vectors drawn from an arbitrary target
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probability density function (PDF). His continuous
updating with hierarchical experiments allows one to
determine weak spots in the submodels and then design
and conduct new experiments for correcting the
weaknesses. .

Hills121 develops two statistical approaches for
validation and applies them to computations from CTH,
a solid dynamics code emphasizing shock waves in
diverse materials, and experimental data. Code predictions
and measurements are compared for one system response
measure: the shock wave speed through an aluminium
bar after impact by an identical aluminium bar. The first
approach takes the more traditional statistical approach
by comparing many experimental measurements for
different shock wave speeds and comparing them with a
deterministic code prediction for similar conditions. The
second approach propagates parametric input uncertainty
through the code to develop a statistical model of the
code output. This approach is more appropriate when it
is easier, or cheaper, to statistically characterize the
uncertainty in the model input parameters and propagate
them through the code, than it is to conduct a large
number of validation experiments.

In our review of the literature we have stressed two
elements. First, the fundamental validation methodology
that has been adopted by the AIAA Guide. Second, we
have stressed the research that has begun to develop
metrics for validation quantification. As can be seen,
both validation methodology and quantification are in
their early stages of development. In the remainder of
this paper we will present our extensions to both
validation methodology and quantification. *

3. Validation Experiment
Methodology

3.1 Construction of a Validation Hierarchy

As discussed in Section 2, the validation hierarchy is
constructed starting from the complete system of
interest. Stated differently, the validation hierarchy must
be application driven, not code driven. As one constructs
each lower tier the emphasis on the code increases, but
the focus on the actual operating conditions of the
complete system should not be lost. The construction of
these hierarchical tiers and the identification of the types
of experiments that should be conducted at each tier is a
formidable task. There are many ways of constructing the
tiers; no single construction that is best for all cases. We
would draw the analogy of constructing validation
hierarchies to the construction of control volumes in
fluid dynamic analyses. Many varieties of control
volumes can be drawn; some lead nowhere, and some are
very useful for the task at hand. The construction should
emphasize the modeling and simulation capability that is
desired to be validated, whether it be CFD or other
computational disciplines. Analogous tier structures can
be developed for structural dynamics and electrodynamics,
for example, when the engineering system of interest
involves these disciplines.

A good hierarchical tier construction is one that
accomplishes two tasks. First, it carefully disassembles

the complete system into tiers in which each lower level
tier has one less level of physical complexity. For
complex engineered systems, this may require more than
the three building-block tiers shown in Fig. 3. The types
of physical complexity that could be uncoupled from one
tier to the next are spatial dimensionality, temporal
nature, geometrical complexity, and physical process
coupling. The most important of these to decouple or
segregate into separate effects experiments, from one tier
to the next, is physical process coupling. This element
commonly contains the highest nonlinearity of the
various contributors. It is important to recognize the
nonlinear nature of all of the contributors in the
construction of the tiers because the philosophy of the
tier construction rests heavily on linear system thinking.
That is, confidence in the computational capability for
the complete system can be built from assessment of
computational capability of each of its parts. The
complete systems of interest clearly do not have to be
linear, but the philosophy of the hierarchical validation
approach loses some of its utility for strong nonlinear
coupling from one tier to the next.

Second, the individual experiments in a tier should
be chosen so that they are practically attainable and able
to produce validation quality data. In other words, the
individual experiments should be physically achievable
given the experimental test facilities, budget, and
schedule, and they can produce quantitative experimental
measurements of multiple system response measures that
can test the code. As discussed in Section 2, the ability
to conduct a true validation experiment at the complete
system tier is extremely difficult, if not impossible, on
complex systems. At the subsystem tier it is usually
feasible to conduct validation experiments, but it is still
quite difficult and expensive. At this tier, one usually
chooses a single hardware subsystem or group of
subsystems that are closely related in terms of physical
processes or functionality. For complex subsystems, one
might want to add a new tier below subsystems called
components. As with subsystems, this would be actual
operational hardware components. When one defines the
individual experiments at the benchmark tier level, then
special hardware, i.e., non-operational, non-functional
hardware must be fabricated. This tier is probably the
most difficult to construct because it represents the
transition from a hardware focus in the two top tiers, to a
physics-based focus inthe bottom tiers of the hierarchy.
At the bottom tier, unit problems, one should identify
simple geometry experiments that have one element of
physical process complexity. As with the subsystem
tier, an additional tier may need to be added in order to
attain only one element of physics at the bottom tier.
Also, the experiment must be highly characterized so as
to provide the needed data to the computational code, and
it must be conducted so that experimental uncertainty can
be estimated precisely. ‘As discussed in Section 2, high
quality validation experiments are practically attainable at
the benchmark and unit problem tiers.

We will now discuss an example of how to
construct a hierarchical tier structure for a complex
system. In the only published example of validation
hierarchy construction®” the application was for
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impeller/diffuser interaction on rotating machinery. For
the present example we consider a complex,
multidisciplinary system: an air-launched, airbreathing,
hypersonic cruise missile. Assume the missile has an
autonomous guidance, navigation, and control (GNC)
system and an onboard optical target seeker. Figure 4
shows the complete hierarchical validation structure that
we will discuss. We refer to the missile as the complete
system and the following as systems: propulsion,
airframe, GNC, and the warhead. These systems would
normally be expected in engineering design of such a
vehicle; however, additional elements could be added or
the named elements could be subdivided to emphasize
systems of importance to the computational analyst. The
launch aircraft is not included at the system level because
its location in the hierarchy would be at the next higher
level, i.e., above the cruise missile.
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Figure 4: Validation Hierarchy for a
Hypersonic Cruise Missile

At the subsystem tier we have identified the
following elements: aero/thermal protection, structural,
and electrodynamics. Electrodynamics deals with the
computational simulation of radio frequency detectability
of the cruise missile, e.g., radar cross-section at different
viewing angles of the missile. Only these elements are
identified at this tier because they are the primary
engineering design features that deal with the airframe.
Arrows drawn from the system tier elements to the
subsystem tier elements indicate the primary elements
that influence the lower tier. Recall at this tier that each
element should be identified with functional hardware of
the cruise missile. Notice, however, how one would
begin to conduct validation experiments at this tier
depending on the computational discipline of interest.
For example, the aero/thermal subsystem would contain
the actual thermal protective coating over the metal skin
of the missile, the actual metallic skin of the vehicle,
much of the substructure under the skin of the vehicle,

all of the functional lifting and control surfaces, and the
internal flow path for the propulsion system. However,
the aero/thermal subsystem probably would not contain
any other hardware inside the vehicle, unless some
particular heat conduction path was critical. If one were
interested in validation experiments for a structural
dynamics code, then the structural system ‘identified
would be quite different from the aero/thermal
subsystem. For example, it would contain essentially
every piece of hardware from the missile because every
part of the structure is mechanically coupled by every
other part of the structure. Structural modes are
influenced by all mechanically connected hardware, some
to a lesser extent than others. Certain simplifications of
the hardware, however, would be appropriate. For
example, one could substitute mass-mockups for certain
systems, such as the warhead and the completely
functional propulsion system, with little loss in fidelity.
The structural excitation modes of the propulsion system
must still be considered in the structural subsystem.

At the benchmark tier the following elements are
identified: laminar hypersonic flow with ablation,
turbulent hypérsonic flow with ablation, boundary layer
transition with ablation, ablation of thermal protection
coating, and heat transfer to the metal substructure. At
this tier one fabricates specialized, non-functional
hardware. For example, the laminar, turbulent, and
boundary layer transition elements may not contain the
actual ablative coating of the missile, but a simpler
material could be used. One that would produce wall
blowing and possibly gases or particles that may react
within the boundary layer, but yet simpler than the
typically complex gas and particle chemistry that results
from actual ablative materials. The arrow from the
structural subsystem to the boundary layer transition
element is drawn to show that structural vibration modes
of the surface can influence transition. The element for
ablation of the thermal protection coating may use the
actual material on the missile, but the validation
experiment may be conducted, for example, at conditions
that are attainable in arc-jet tunnels. An additional arrow
is drawn from each of the elements for hypersonic flow
with ablation that are marked “GNC”. These arrows
indicate a significant coupling of the flow field to the
optical seeker in the GNC hierarchy (not shown here).
The element for the heat transfer to the metal
substructure shows an arrow that would point to
elements in the structural subsystem hierarchical tree.
This arrow indicates the coupling to the thermal induced
stresses and the temperature dependent material properties
into the structural simulation. -

At the unit problem tier the following elements are
identified: laminar hypersonic flow over simple bodies,
laminar hypersonic flow with wall blowing, turbulent
hypersonic flow over simple bodies, turbulent
hypersonic flow with wall blowing, shock
wave/turbulent boundary layer interaction, boundary layer
transition over simple bodies, low temperature
sublimation, and non-isotropic heat conduction. Many
other elements could be identified at this tier, but these
are representative of the types of validation experiments
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that would be conducted at the unit problem tier. The
identification of elements at this tier are easier than the
benchmark tier because these elements are more closely
related to traditional experiments in fluid dynamics and
heat transfer.

A clarification comment should be made concerning
experiments at the lower levels of the hierarchy,
particularly at the unit problem level. Some have referred
to experiments, such as laminar hypersonic flow in a
wind tunnel, as a “simulation” of the complete flight
vehicle in the atmosphere. From a project engineer’s
point of view, this is appropriate. From a validation
experiment point of view, this confuses the issue. That
is, an experiment conducted at the benchmark or unit
problem level is a physical realization of a process
whose results are compared to a computation simulation
of the actual physical experiment conducted. The
relationship of the physical experiment to some higher
level complex system is immaterial with regard to
comparison of computation and experiment.

Even after a validation hierarchical structure such as
illustrated in Fig. 4 has been constructed, another issue
remains: identifying which validation experiments are the
most important and, as a result, should be conducted
first. To aid in prioritizing the validation experiments,
we recommend a procedure that has been developed for
nuciear power reactor safety assessment. In reactor safety,
a procedure referred to as the Phenomena Identification
Ranking Table (PIRT) has been developed for
prioritizing which physical phenomena are the most
important to analyze and understand.122 This procedure
focuses attention on the application of the code o the
operating conditions of interest for the complete system.
Although this procedure has not been used in the
aerospace industry, we believe the PIRT procedure can be
used in conjunction with the present hierarchical
structure to aid in prioritizing validation experiments.

To better explain how the validation hierarchy of the
airframe system is related to the validation hierarchy of
the propulsion, GNC, and the warhead systems, consider
Fig. 5. The validation hierarchy of each of the four
systems could be viewed as the primary facets of a four-
sided pyramid. The airframe facet divides into three
additional facets, each representing the three subsystems:
aero/thermal protection, structural, and electrodynamics.
The propulsion system could be divided into four
additional facets that could represent the subsystems:
compressor, combustor, turbine, and thermal signature.
On the surface of this multifaceted pyramid one could
more clearly and easily indicate the coupling from one
facet to another. For example, the coupling of laminar
and hypersonic flow with ablation to the optical seeker
on the GNC facet of the pyramid would be shown by an
arrow connecting these elements on different facets of the
pyramid.

The wvalidation pyramid stresses the system
viewpoint, as opposed to a specific discipline viewpoint,
in modeling-and-simulation-based design. Each facet of
the pyramid can then be devoted to identifying validation
experiments for each computational code responsible for
part of the design of the system. As one traverses around

WARHEAD
SYSTEM

GUIDANCE, NAVIGATION
& CONTROL SYSTEM

HYPERSONIC
CRUISE MISSILE

Thermal Signature
Subsystem

Figure 5: Validation Pyramid for a
Hypersonic Cruise Missile

the top of the pyramid, the number of facets is equal to
the number of systems that are identified. As one
traverses around the bottom of the pyramid, the number
of facets is equal to the total number of major computer
codes used in the analysis of the system, i.e., the number
of codes that require validation activities. For the
hypersonic cruise missile example, if the code that
simulates surface ablation is a separate code from the
aerodynamics code, then an additional facet on the
pyramid is added on the aero/thermal subsystem facet.
We strongly believe this type of system-level thinking is
necessary to increase the confidence in complex systems
that are designed, manufactured, and deployed with
reduced levels of testing,

Two final comments are in order concerning the
construction of a validation hierarchy. First, the location
of a particular validation experiment within the hierarchy
must be determined relative to the complete system of
interest, i.e., it must be appropriately related to all of the
experiments above it, below it, and in the same tier.
Stated differently, the same validation experiment can be
at different tiers for validation hierarchies that are
constructed for different complex systems of interest. For
example, the same turbulent separated flow experiment
could be at the unit problem tier in a complex system
and at the benchmark tier in a simpler engineering
system. Second, a validation hierarchy is constructed for
a particular engineered system operating under a
particular class of operating conditions, for example,
normal operating conditions. A new hierarchical pyramid
would be constructed if one were interested in
computationally analyzing other classes of system
operating conditions. For example, if one where
interested in failure or crash scenarios of the system, then
one would construct a different pyramid because different
modeling and simulation codes would come into play.
Another example is if the system would have to function
under hostile conditions, e.g., under physical or
electromagnetic attack, then a different pyramid would
also be constructed.




3.2 Characteristics of
Experiments v

Many researchers, analysts, and designers ask the
question: “What is a validation experiment?” or “How is
a validation experiment different from other
experiments?” These are appropriate questions. We
suggest that traditional experiments could generally be
grouped into three categories. The first category
comprises experiments that are conducted primarily for
the purpose of improving the fundamental understanding
of some physical process. Sometimes these are referred
to as physical discovery experiments. Examples of these
are experiments that measure fundamental turbulence
characteristics, detailed reaction chemistry in combustion
experiments, and experiments for flows in
thermochemical nonequilibrium. The second category of
experiments are those conducted primarily for
constructing or improving mathematical models of fairly
well understood flows. Examples are experiments to
measure model parameters in finite rate reacting flows,
shock wave-boundary layer interaction, and
measurements to determine thermal emissivity of
particles or surfaces. The third type of traditional
experiment includes those that determine or improve the
reliability and performance of components, subsystems,
or complete systems. These are commonly called tests of
engineered components or systems. Examples of these
are tests of new combustor designs, compressors,
turbopumps, gas turbine engines, and rocket engines. We
would also include in this category traditional wind
tunnel tests conducted for the purpose of measpring
vehicle and control-surface forces and moments.

We argue that validation experiments are a new type
of experiment. They are conducted for the primary
purpose of determining the validity, or predictive
accuracy, of a computational modeling and simulation
capability. That is, an experiment that is designed,
executed, and analyzed for the purpose of quantitatively
determining the ability of a mathematical model and its
embodiment in a computer code to simulate a well
characterized physical process. In other words, in a
validation experiment “the code is the customer.” Only
during the last 10 to 20 years has computational
simulation matured to the point where it could even be
considered as a customer. As modern technology
increasingly moves toward engineering systems that are
designed, and possibly even fielded, based on modeling
and simulation, then modeling and simulation itself will
increasingly become the customer of experiments.

As reviewed in Section 2, a number of researchers,
particularly experimentalists, have been slowly
developing the concepts of a validation experiment. A
group of researchers at Sandia National Laboratories has
been developing philosophical guidelines and procedures
for designing and conducting a validation experiment.
Although the following six guidelines and procedures
were developed in a joint computational and experimental
program conducted in a wind tunnel, the agqlz over the
entire range of fluid dynamics:”» 15,65,80, 3,124,

uideli . A_validati i
jointly designed by experimentalists and code developers

Validation

t t t t
program, from inception to documentation, with
lete_candor t the strengths and weakn o)

each approach, No withholding of limitations or
deficiencies is permitted, and failure or success of any
part of the effort must be shared by all. Without this
level of cooperation, openness, and commitment in a
team environment, the process is likely to fail or fall
short of its potential.

Although this may sound easy to do, it is
extraordinarily difficult to accomplish in practice. Some
reasons for the difficulty have been discussed in Section
1. We give just two examples of why this is difficult to
accomplish in reality between organizations and within
an organization. First, suppose that the CFD team is in
one organization and the wind tunnel facility is in a
completely separate organization, e.g., the wind tunnel
facility is contracted by the organization of the CFD
team to conduct the experiments. The wind tunnel
facility will be extremely reluctant to expose its
weaknesses, limitations, or deficiencies, especially if the
facility was, or will be, in competition with other
facilities to win contracts. In our experience, we have
learned that validation experiments require much greater
depth of probing of the limitations of facility and the
limitations of a CFD capability than any other
experiment.

Second, suppose that the CFD team and the wind
tunnel team are sister organizations in the same
corporation. Here also, both teams will be very cautious
to discuss weaknesses in their CFD or experimental
facility capability. Because of the background and
technical training of theoretical and experimental
personnel, significant cultural hurdles must be overcome
in dealing with one another. One of the most common
detriments to achieving close teamwork and openness
between computationalists and experimentalists is
competition between the CFD organization and
experimental organization for funding or recognition. If
it is advantageous for one of the organizations to
diminish the image or reputation of the other
organization in the “computers versus wind tunnel”
mentality, there can be little chance for a validation
experiment. Management must make it clear, in word
and deed, to both the CFD team and the experimental
team that there is no success or failure of either side;
there is only success or failure of the joint endeavor.

Guideline 2: lidati iment should ¢

i t ] ti ics_of int

including all relevant physical modeling data and initial

o p By
essential physics of interest we mean spatial
dimensionality, temporal nature, geometrical
complexity, and physical flow processes. For example,
is one interested in conducting a 2-D experiment and
computation, or is a full 3-D experiment and
computation required? In this context, we note that no
physical experiment can be truly planar 2-D;
axisymmetric or spherical 2-D experiments are closely
attainable. Experimentalists must understand the code
assumptions so that the experiment can match, if
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possible, the code assumptions and requirements. If the
parameters that are initially requested for the calculation
cannot be satisfied in the proposed experimental facility,
it may be feasible to alter the code inputs and still satisfy
the primary validation requirements. Or, it may be
necessary to look elsewhere for a facility. For example,
can the CFD-requested boundary-layer state on a model
be ensured? Is the type and quantity of instrumentation
appropriate to provide the required data in sufficient
quantity and at the required accuracy and spatial
resolution? Conversely, CFD analysts must understand
the limitations of the physical experiment, ensure that
all the relevant physics are included, and define
physically realizable boundary conditions. As noted
above, the level of detailed understanding that is required
can be achieved only if the validation experiment is
planned and conducted as part of a team effort.

The most common reason that published
experimental data can be of only limited use in the
validation of CFD codes is that insufficient detail is
given in the documentation of the experiment concerning
physical modeling parameters, initial condition, and
boundary conditions. By physical modeling parameters
we mean quantities such as thermophysical quantities of
fluids and solids, flow rates, surface roughness, and
particle size distribution in two-phase flow. Published
data in corporate reports or university reports
occasionally contain sufficient characterization of the
experiment, but rarely is sufficient detail contained in
Jjournal articles and conference papers. The following are
a few examples of the level of detail that is needed for
boundary conditions on a vehicle in a wind tunnel.
Differences will exist between the nominal and the actual
model dimensions (e.g., straightness and out-of-round),
surface condition, location of instrumentation, and
angular orientation in the wind tunnel. An important
detail for aircraft configurations, wings, and deformabie
bodies is the measurement of the actual deformed
geometry under the load, or an accurate calculation of the
deformed structure. In long-duration hypersonic wind
tunnels the deformation of the vehicle due to
aerodynamic heating should also be estimated or
measured, and then reported. Also for hypersonic tunnels,
surface temperature can vary significantly with time and
space over the surface of the body.

In wind tunnels, the highest priority for boundary
conditions is probably calibration of the free-stream
flow. This typically means spatially averaged quantities
over the test section volume of the tunnel, such as free-
stream Mach number, total pressure and static pressure,
and total temperature and static temperature. For
turbulent flow and transition simulations, the calibration
should also include free-stream turbulence intensity,
scale, and frequencies. Some facility managers may be
reluctant to share such detailed flow-quality data with
users (and competitors). However, for CFD validation
experiments, these data are critical.

For supersonic wind tunnels, the spatial
nonuniformity of the flow in the test section could be
used to set the flow properties as location-dependent
boundary conditions just upstream of the bow shock

wave of the vehicle. Such a procedure, although
conceptually feasible, has not yet been demonstrated, to
the authors’ knowledge. This approach might appear
excessive at this stage of CFD code development for
validation experiments in wind tunnels of high-flow
quality. However, we believe this approach is necessary
for validation experiments in high-enthalpy-flow
facilities in which rapid expansions combine with finite-
rate chemistry. In such facilities, the flow is typically
highly nonuniform and poorly characterized, which
makes it extremely difficult, if not impossible to
accurately compare experimental data to code predictions.

For subsonic wind tunnels the question of boundary
conditions becomes much more complex. For low-speed
wind tunnels, even with low levels of blockage, one of
the first issues that must be addressed by the CFD
analyst is “Should I model the flow in the entire test
section of the tunnel, or assume an infinite size tunnel?”
This question could be restated as “For the quantity that
will be measured in the tunnel and compared with the
CFD computation, what is the change in this quantity if
I make a finite versus infinite size tunnel assumption?”
Although the authors have not seen any detailed analyses
addressing this question, from our limited experience we
believe that the sensitivity to tunnel blockage will be
significant even at low blockage. For transonic flow
tunnels, the large sensitivity of test section
measurements to solid walls versus perforated walls is
well known. For perforated-wall tunnels, the tunnel wall
boundary conditions are very poorly characterized. We
believe that a significant computational and experimental
research program is needed to improve the mathematical
modeling of perforated-wall tunnels. Unless this is done,
the ability to conduct high quality validation experiments
in perforated-wall tunnels will greatly suffer. Solid wall
tunnels provide a well characterized boundary condition
for the CFD analyst, even if wall interference and wave
reflections occur in the tunnel. This point emphasizes
one of the key differences mentioned above concerning
the difference between a test and a validation experiment:
the code is the customer, not the project group which is
only interested in zero-wall interference.

Guideline 3: A validation experiment should strive
to emphasize the inheremt gynergism between
computational and experimental approaches. By a
“synergism,” we mean an activity that is conducted by
one approach, whether CFD or experiment, but which
generates improvements in the capability, understanding,
or accuracy of the other approach. And in this exchange,
both computational and experimental approaches benefit.
Some who are discovering the benefits of validation
experiments claim that this is the primary value of
validation experiments. Discovering the strong positive
reinforcement of computation and experiment working
closely together can be surprising, but validation
experiments contribute much more than this. We give
two examples of how this synergism can be exemplified.

First, the strength of one approach can be used to
offset a weakness of the other approach. Consider the
example of perfect-gas, laminar flow in a supersenic
wind tunnel. Assume that a wind-tunnel model is
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designed so that it can be easily re-configured from
simple to complex geometries. For the simple geometry
at a low angle of attack one should be able to compute
solutions with very high confidence, exclusive of the
separated flow in the base region. This may require
independent CFD codes and analysts, but it is certainly
possible with present CFD technology. With very high

accuracy solutions one can then compare them with wind
tunnel measurements to detect a wide variety of
shortcomings and weaknesses in the facility, as well as

errors in the instrumentation and data recording system.
In our experience we have demonstrated that this can
occur. The high accuracy solution can also be used for
in situ calibration of the free-stream flow in the test

section. When the complex vehicle geometry is tested

one may have strongly 3-D flows, separated flows, and
shock wave-boundary layer separation. The experimental
measurements would then be more accurate than the
CFD simulation. The complex geometry case would
then be viewed as a validation experiment to test the
code.

Second, one can use CFD simulations in the
planning stages of a validation experiment to
dramatically improve the design, instrumentation, and
execution of the experiment. For example, one can
compute shock wave locations and their impingement on
a surface, separated flow and reattachment locations, high
heat flux regions, and vortical flows near a surface. This
allows the experimentalist to improve the design of the
experiment and especially the type and location of
instrumentation. One can take this strategy a step further
by optimizing the design of the experiment so* as to
most directly stress the code, i.e., design the experiment
to “break the code.” This can be done by optimizing the
physical modeling parameters, such as Reynolds number
and Mach number, modifying the boundary conditions,
such as geometry and wall surface conditions, and also
changing the initial conditions on an initial-value
problem. Sometimes the code developers cannot get too
excited about this strategy.

ideline 4: Alt rimental i
hout vel rativel let
independence must be maintained in obtaining both the
computational and experimental results, The reason for
this recommendation, of course, is that it is so common
that CFD codes are calibrated to the experimental
measurements that many people do not recognize when
they are calibrating versus validating.'® As example of
this, CFD analysts have been known to say: “Why
should I do anymore grid refinement when the code
agrees with the experimental data?” The ability of the
CFD analysts to calibrate results is infinitely greater

than the experimentalist.

It is difficult to accomplish the close cooperation of
the CFD analysts and the experimentalists and yet keep
the independence of each result. However, it can be done
by careful attention to procedural details. We give the
following example. We have stressed in preceding
examples the close working relationship needed in the
design and execution of the validation experiment.
However, when the experimental measurements are
reduced and analyzed, the CFD team should not be given

h th

the results initially. They should be given the complete
details of the physical modeling parameters and the
initial and boundary conditions of the experiment,
exactly as it was conducted. That is, everything that is
needed for the CFD analysts to compute solutions must
be provided; but no more. The CFD analysts must
quantify the errors and uncertainties in the CFD solution
and then present the results for comparison with
experiment. (Computational error and uncertainty
quantification will be discussed in the Section 4.) When
that is completed, the validation test between
computation and experiment is made.

After analyzing and discussing the comparison, there
can be various outcomes. If the error and uncertainty
bounds on the computational side are very narrow, there
is a large amount of data to estimate the mean values of
the measurements, and the agreement is uniformly good,
then one can crisply conclude whether the computation is
validated or invalidated. (Technically one can not validate
the code in a general sense: one only can claim “not
invalidated.”) In our experience, this rarely happens. The
more typical outcome is that there will be agreement on
some measured quantities and there will be disagreement
on other quantities. Or, one side or the other will say: “I
need to go back and check a few things.” After further
checks, sometimes the agreement will improve;
sometimes it won’t. This discussion and iterative process
is very beneficial to both sides of the team. We have
found that the discussions will always lead to a deeper
understanding of both the computations and the
experiment.

As a final procedural comment, we recommend that
management not be involved in the initial comparisons
and discussions. The discussions should just involve
CFD analysts and experimental staff. Nothing will
poison the teamwork more quickly than one side of the
team telling management: “Look how far off they were.”

ideli ; hierar f_experi t
measurements of increasing computational difficulty and
specificity should be made, for example. from globally
integrated_quantities to local measurements. As one

moves from global to locally measured quantities, the
challenge to the CFD analysts and the experimentalists
increases significantly. In wind-tunnel experimentation
for a flight vehicle, the following hierarchy is suggested:

* Total body forces and moments

» Control surface forces and moments

« Surface pressure distributions

= Surface heat flux, shear stress, or both

+ Flow field distributions of pressure, temperature,
and velocity components

+ Flow field distributions of Reynolds stresses

The ordering of difficulty in the above hierarchy
indicates that each lower level, i.e., higher level of
complexity, is either the spatial or temporal derivative of
the level above it, or it is a subset of the level above it.
In other words, the integration or selection of a larger set
is a powerful mathematical smoothing process. Thus,
there is a relationship between this hierarchy and the
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levels of credibility in validation activities. That is, in
the “process of determining the degree to which a model
is-an accurate representation of the real-world,” one must
specify what physical quantities, or system response
measures, have been validated. For example, validation
of total body normal force does not imply that surface
heat flux to the model has been validated to the same
degree of accuracy. There are two separate reasons for
this. First, the physical modeling fidelity that is required
to predict these two quantities is remarkably different.
For example, total body normal force on many
geometries can be computed fairly accurately with
inviscid flow, whereas the difficulty of predicting surface
heat flux in a turbulent boundary layer is well known.
Second, the computational grid size that is required to
predict these two quantities is strikingly different. For
example, consider a steady, compressible, laminar,
attached flow over a delta wing at a low angle of attack.
To achieve the same level of computational accuracy for
total body normal force as compared to surface heat flux,
one would need approximately a factor of 100 to 1,000
times the number of grid points for the heat flux
computation as compared to the normal force
computation.

The predictive difficulty for a code that is illustrated
by the above hierarchy is also very similar to the
difficulty in experimentally measuring each of these
quantities. The experimental uncertainty increases as one
proceeds down this list, probably at a factor of two for
each level of the hierarchy. With the recent development
of experimental techniques such as particle-imaging-
velocimetry (PIV) and planar-laser induced-florescence
(PLIF), we believe there is a significant increase in
quantity of flow field velocity measurements attainable.
The quantity of data, for example, over a large volume
surrounding a body, permits much more stringent tests
for CFD code validation than simply measurements at
individual locations.

The last recommendation concerning the hierarchy of
measurements is that in a validation experiment one
should, if possible, make measurements at multiple
levels of the hierarchy. That is, do not design the
experiment with the philosophy that only one detailed
level of measurements will be made. The more
complicated the flow field or the physical processes
taking place in the flow field, the more important this
recommendation is. For example, on a complex
turbulent, reacting flow, do not just measure surface heat
flux over a portion of the bady. Also measure flow field
temperatures and surface pressures over a different portion
of the body. Flow field visualization and surface flow
visualization can also provide valuable additional pieces
of information. With sophisticated post-processing
capability, the CFD solution can be used to simulate the
experimental flow field visualization and surface flow
visualization. For example, the computed flow field
solution can be used to compute a Schlieren photograph
that can then be compared with the experimental
photograph.
constructed to analyze and estimate the components of

ti iment

gerrors. The standard technique for estimating
experimental uncertainty in wind-tunnel data has been
developed over a number of years by members of the
AGARD Fluid Dynamics Panel. 7 The standard
procedure is well documented in a recent AIAA standards
document!25 and also in the text of Coleman and
Stern. We believe it is the minimum level of effort
required for uncertainty estimation in validation
experiments. The standard technique propagates
components of random and bias uncertainty through the
entire data flow process. The technique estimates these
components and their interactions at each level of the
data flow process, from the sensor level to the
experimental result level. As with all experimental
uncertainty estimation techniques, the ability of
estimating random uncertainty is much better than
estimating bias uncertainty.

During the last 15 years, we have developed an
experimental uncertainty estimation procedure that takes
a very different approach from the standard wind-tunnel
procedure. Instead of propagating individual uncertainty
components through the data flow process we have taken
an approach referred to in the ATAA Standard as an “end-
to-end” approach. Our approach compares multiple
experimental measurements for the same experimental
quantity and then statistically computes the uncertainty.
The traditional approach could be viewed as an a priori
approach, whereas ours is an a posteriori approach. Just
as in comparing a priori and a posteriori error
estimation in CFD, we believe our procedure provides
not only a better estimate of random and bias errors, but
it is also able to quantify important contributions due to
components that cannot be estimated in the traditional
approach. We will discuss this new procedure in detail in
the next subsection.

As a final comment on experimental uncertainty
estimation, we recommend that the same validation
experiment be conducted, if possible, in different
facilities. For example, in a wind tunnel experiment the
same physical model should be used and the experiment
conducted at the same freestream conditions. Satisfactory
agreement of results from different facilities lends
significant confidence that there are no inadequately
understood facility-related bias errors in the data, e.g.,
condensation effects, wave focusing, and excessive flow
angularity. This procedure, especially for simple model
geometries, would also serve to uncover inaccuracies and
inconsistencies in the flow calibration data for each
facility that is used. The same personnel should oversee
the execution of the experiment at each site, and these
personnel should also have access to all operational and
performance data in the facility. When the same model is
used in different facilities surprising results are always
discovered, usually to the dismay of the facility owner.

3.3 Experimental Uncertainty Estimation

A nontraditional approach has been developed by the
first author and his colleagues for estimating random and
bias experimental errors.”»14,15,58,123 Although the
approach is new to wind tunnel testing, it is based upon
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accepted statistical wuncertainty estimation
techniques. 7 Our approach uses statistical
methods to compute both the random and correlated bias
uncertainties in the final experimental result. Qur method
uses symmetry arguments for the flow in the test section
and symmetry of the model, and then conducts carefully
selected comparison runs. The method uses the fact that a
freestream flowfield that is uniform has an infinite
number of planes of symmetry. Also, the method uses
the fact that a perfectly constructed wind tunnel model
commonly has one plane of symmetry and some have a
larger number of planes of symmetry. For example, a
typical aircraft has one plane of symmetry, and a four-
finned missile has four planes of symmetry. Using these
symmetry arguments and then comparing certain
experimental measurements in the real wind tunnel and
on the real model, one can statistically compute these
correlated bias error contributions to the total
uncertainty.

Even though our procedure improves the estimate of
the total random uncertainty compared to the traditional
approach, we believe the most important contribution is
that it improves the estimate of correlated bias errors.
The damaging effect of bias errors was sharply
emphasized in the classic paper by Youden.129 He
pointed out that systematic errors commonly exceed the
estimate of random errors, yet the magnitude of
systematic errors is normally unknown. As an example,
he lists 15 experimental measurements of the
Astronomical Unit over the period from 1895-1961.
Each experimentalist estimates total uncertainty in his or
her measurement. In every case, the next measurement
made of the AU was outside the experimental
uncertainty of the predecessor. Youden states “If we have
accurate knowledge of the magnitude of the systematic
errors in the components of the equipment much of the
discrepancy among results from different investigators
would be accounted for.” Youden believes that the most
effective method for estimating systematic errors is to
conduct experiments by multiple investigators, with
different equipment, and with different techniques. This
method, of course, is quite expensive and time
consuming.

We have demonstrated our approach on four different
sets of experimental data: three of the data sets were for
surface pressure measurements and one was for body
forces and moments. The method has been applied to
three hypersonic wind tunnels: Tunnels A and B of the
von Karman Gas Dynamics Facility at the U. S. Air
Force Arnold Engineering Development Center,
Tullahoma, Tennessee, and the Hypersonic Wind Tunnel
Facility at Sandia National Laboratories, Albuquerque,
New Mexico. The method showed that, even in these
high quality flowfield facilities, the largest contributor to
experimental uncertainty was due to flowfield
nonuniformity, It was shown that the flowfield
nonuniformity can be up to three standard deviations
higher than the random (total instrumentation)
uncertainty. In terms of the percent of total (random and
bias) estimated uncertainty, the flowfield nonuniformity
can be up to 90% of the total, whereas the random

- uncertainty is 10%.

The method relies on careful construction and

execution of the wind tunnel run matrix so that
combinations of runs yield information on both random
and bias errors. For body force and moment
measurements, we refer to the random uncertainty as the
uncertainty caused by all of the following components
and their interactions: strain gage hysteresis,
nonlinearity, thermal sensitivity shift, and thermal zero
shift; the analog data reduction system,; the data recording
system; model pitch, roll, and yaw alignment; model
geometry imperfections; run-to-run variations in setting
freestream conditions in the test section; and base
pressure transducers and instrumentation for eliminating
base drag. That is, the random uncertainty combines all
uncertainty components in the entire experiment except
those due to test section flow field nonuniformity. In
Ref. 125 this is referred to as an end-to-end estimate of
random uncertainty in the experimental result. To
calculate the random uncertainty, one compares all
possible combinations of body force and moment
measurements that are made for the same physical
location in the test section. We refer to this type run-to-
Tun comparison as a repeat run comparison. Immediately
repeating a particular case yields statistical information
on short-term facility repeatability. Repeating runs in
varying order, on different days, after the model has been
disassembled and reassembled, and in separate facility
entries can uncover subtle errors that are related to
facility operations, specific personnel, time of day, etc.
Repeat runs require careful introspection in their
selection and sequence and are critical to an assessment of
statistical precision of the data. Repeat runs are not
afterthoughts in this approach; they are essential
elements in the method and must be incorporated into the
experimental plan.

For an experiment measuring surface pressures on a
body we refer to the random uncertainty as that caused by
all of the following random errors and their interactions
with each other: pressure sensor hysteresis, nonlinearity,
sensitivity drift, and zero shift; reference pressure
variation; analog amplifier system variation; data
digitizing and recording system variation; model pitch,
roll and yaw alignment variation; variations in freestream
Mach number and Reynolds number within a run;
variations in freestream Mach number and Reynolds
number from run to run. The random uncertainty
combines all experimental uncertainty in the entire
experiment, except that due to test section flow field
nonuniformity and model geometry imperfection
uncertainty. To calculate the random uncertainty, one
compares pressure measurements for the same pressure
port from different runs with the model at the same
physical location and orientation in the test section. For
the same angle of attack, roll angle, flap deflection angle,
and axial location, each pair of port measurements
compared will have the same location in the vehicle-
induced flow field. When differences in pressure port
measurements are made in this way the uncertainty due
to flow field nonuniformity and model geometry
imperfection cancels out.
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Test section flow fieid non-uniformity uncertainty is
uncertainty in surface pressure measurements caused by
the following: nonuniformity of freestream flow in the
test section; bias errors in the alignment of the model in
pitch, roll, and yaw. The uncertainty in an experimental
measurement due to a combination of test section flow
field nonuniformity uncertainty and random uncertainty
is computed by comparing measurements made at
different locations in the test section. For example, on a
surface pressure measurement experiment, the combined
flow field nonuniformity and random uncertainty is
calculated by comparing surface pressures for the same
port on the body at the same relative location in the
vehicle flow field, but at different locations in the test
section. This procedure will not include any uncertainty
due to model imperfections because by using the same
ports for both comparisons, this uncertainty component
cancels in taking the difference between the two
measurements.

Imperfect model geometry uncertainty can only be
determined by measuring local surface quantities on a
body of revolution, i.e., a body that has an infinite
number of symmetry planes. For example, imperfect
model geometry uncertainty in a surface pressure
experiment are those caused by the following: model
geometry deviations (measurable deviations of the
physical model from the conceptual, or mathematical,
description of the model); and model/sensor installation
imperfections (poorly fabricated or burred pressure
orifice, and a pressure leak between the orifice and the
transducer). Imperfect model geometry uncertainty, along
with random uncertainty, is computed by comparing
surface measurements for different transducers, with both
transducers sensing at the same physical location in the
test section and at the same relative location in the
vehicle flow field. This requirement can only be met on
bodies of revolution. This procedure will yield the
combined model geometry and random uncertainty, but
will not include any uncertainty due to flow field
nonuniformity.

The dominant contribution of nonuniform flow to
experimental uncertainty has been suspected by wind
tunnel experimentalists, but not until use of our
procedure has it been quantified. We strongly suspect that
the largest contribution to measurement uncertainty in
most, if not all, near-perfect gas hypersonic wind tunnels
is due to flow field nonuniformity. Although this
technique has not been applied to any other wind tunnel
to our knowledge, we believe the dominance of flow field
nonuniformity error will also occur in other facilities.
We believe the nonuniform flow contribution will be
even a higher percentage of the total experimental
uncertainty in transonic flow wind tunnels and shock
tunnels. We encourage others to use the present
statistical method to determine if this is the case. The
critical assessment of one’s own facility, however, will
be viewed as a risk by many facility managers and
owners. Some will choose to avoid the risk. We strongly
believe that critical assessment of experimental
uncertainty is just as important as critical assessment of
computational error and uncertainty. Assessment of

computational error and uncertainty will be discussed in
the next section. In Section 5, it will be shown that the
accuracy of the experimental uncertainty estimate is
critical because it sets the limit on quantitative
assessment of validation.

4. Computational Error and
Uncertainty Quantification

In this section we will discuss the role of
computational error and uncertainty in validation. There
are two reasons for being concerned about the numerical
accuracy of the computational solution of the model that
is being subjected to validation. The first reason is
obvious: non-zero computational error contributes to the
discrepancy between a calculation and experimental data
used in validation. The second reason is related to the
first, but has more subtle implications. That is,
numerical error needs to be distinguished from errors that
arise from inaccurate conceptual models. In other words,
ideally we should demonstrate that numerical error is
small before we even begin to attempt to assess the
adequacy of the conceptual model for the intended
application. For example, in the absence of some kind of
compelling evidence that the computational errors are
small, a rational possibility is that a large computational
error might cancel with a conceptual model error to give
us evidence for the accuracy of the conceptual model in a
validation study. Or, a significant discrepancy between
experiment and computation for a particular validation
study might be concluded to reside in the conceptual
model, when in fact it lies in numerical error.

It is difficult, if not impossible, to rigorously
demonstrate that numerical error is small for complex
models. There are many reasons for this, which we will
discuss briefly below. However, the implication of the
absence of some kind of convincing proof that the
conceptual model is being solved accurately by the code
is that we are driven to an analysis that is quite similar
philosophically to validation. That is, we aim to
understand what the computational error is for given
calculations or types of calculations for given codes. In
many cases, this error will be understood to be small
enough to make the pursuit of validation analyses
sensible. Also, we expect that over time we will
accumulate increasing amounts of evidence, through the
testing and application process of the code, that the
numerical error is small for important classes of
computations. '

In this section we briefly discuss some of the error
and uncertainty estimation issues affecting our ability to
perform validation. First, we will discuss what we
specifically mean by error and uncertainty in
calculations, including appropriate definitions, what we
mean by estimating these quantities, and their role in
validating calculations. Then, we turn our attention to a
summary of approaches to estimating computational
error. This discussion also makes it imperative to address
some remarks to the problem of working with coarse
grids. By coarse grids we means grids which are either
known to be inadequate, or believed to be inadequate, to
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capture the continuum mathematics of the PDEs. We
will end our discussion with a brief summary of methods
that can be used to quantify uncertainty in the output
quantities of computational models.

Finally, we want to emphasize one aspect of
computational error that we will not discuss in this
section. Given appropriate discretizations of the PDEs
and algorithms for solving those discretizations, one
must still implement those algorithms in a computer
program (code). The computer implementation itself is a
rich source of computational errors, especially as the
computer program becomes more complex. Roache has
pointed out that code generation and software testing are
important considerations .in verification.130 Software
errors -contribute to computational error and must be
eliminated to have high confidence in computational
error estimates. As the software becomes more complex
and general purpose, to find and eliminate this kind of
error through software testing is increasingly a domain of
software engineering.

4.1 Uncertainty and Error in Computation

As discussed in several contexts above, uncertainty
in computations influences our ability to perform
validation. However, the origins of uncertainty go well
beyond the discretization, algorithm, and coding issues
that see themselves properly at the center of the
computational error problem. As defined in Ref. 131 and
the AIAA Guide, uncertainty is “a potential deficiency
in any phase or activity of the modeling process that is
due to lack of knowledge.” A complete discussion of
uncertainty, also referred to as epistemic or reducible
uncertainty, is well beyond the scope of this article.
Rather, we will focus on issues of uncertainty that most
directly influence validation assessment.

The first feature that is worth emphasizing in this
definition of uncertainty is the word "potential,” meaning
that the deficiency may or may not exist. In other words,
there may be no deficiency, say in the prediction of some
event, even though there is a lack of knowledge if we
happen to model the phenomena correctly. The second
key feature of uncertainty is that its fundamental cause is
incomplete information. Lack of knowledge commonly
exists in the poor understanding of complex physical
processes, imprecisely defined or vague knowledge of
sequential scenarios (e.g., failure scenarios), quantities or
parameters that are required for computational modeling
but are not measured, and finally, conflicting evidence for
quantities, parameters, and physical processes.
Probability theory is commonly used to mathematically
represent uncertainty, but more appropriate theories
include evidence theory, possibility theory, fuzzy set
theory, and imprecise probability theory.132‘ 13 3,

As in Ref, 131, we distinguish between uncertainty
and variability. Variability is the inherent variation
associated with the physical system being modeled. In
the literature, variability is also referred to as stochastic
or irreducible uncertainty. Sources of variability can be
singled out from other contributors to computational
nondeterminism by their representation as distributed
quantities that can take on values in an established or

known range, but for which the exact value is not
known. For example, variability could be present in a
calculation through the definition of a part with known
manufacturing tolerance variability. Variability is
mathematically quantified through the use of a
probability distribution, assuming that there is sufficient

-information to permit this.

The importance of a particular source of variability
is problem dependent. The role that variability plays in
assessing computational error depends on the sensitivity
of the model in general, and its results for particular
calculations, and on the source of variability. A
macroscopic calculation of two bodies in sliding contact
will not be dependent on a stochastic field representing
the variability of the contacting surfaces. However, a
microscopic model of friction certainly will be sensitive
to this representation. When the computational model is
sensitive to the variability then the role of variability
must be quantified and its contribution to validation
determined. This requires stochastic techniques, which we
will briefly discuss in Section 4.3.

Ref. 131 and the AIAA Guide define error to be: “A
recognizable deficiency in any phase or activity of
modeling and simulation that is not due to lack of
knowledge.” This definition stresses the feature that the
deficiency is identifiable or knowable upon examination;
i.e., the deficiency is not caused by lack of knowledge.
From these definitions one can see that variability and
uncertainty are somewhat related, but error clearly has
different characteristics. Variability and uncertainty are
normally thought to produce stochastic, or non-
deterministic effects, whereas errors commonly yield a
reproducible, or deterministic, bias in the simulation.
Error, of course, is the focus of classical numerical
analysis in regard to computational modeling. The
interested reader should consult Ref. 136 to see an
illustration of a general methodology that addresses
variability, uncertainty, and error in one framework.

The computational error we discuss in this paper,
acknowledged errors, is characterized by an approach or
ideal condition that is considered to be more accurate.
Examples of acknowledged errors are finite precision
arithmetic in a computer, approximations made to
simplify the modeling of a physical process, and
conversion of PDEs into discrete equations. Therefore,
this error can certainly be quantified or measured in
principle. This measurement could proceed by
comparison with a test problem or series of test
problems, for example, or by a careful convergence
assessment in a given application. This latter approach
will be discussed in greater detail in Section 4.2. It
might also be the case that quantification of the error can
not be achieved for reasons that have nothing to do with
our ability to recognize that the error is present. For
example, we know that errors are introduced by a
discretization. However, if we cannot perform a detailed
grid convergence study, we may have no quantitative
basis for measuring that error.

If divergence from the correct or more accurate
approach is observed by one means or another, the
divergence may be either corrected or allowed to remain
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in the model. It may be allowed to remain because of
practical constraints, such as the error is acceptable given
the requirements, or the cost to correct it is excessive.

Examples of unacknowledged errors are blunders or
mistakes. There are no straightforward methods for
estimating, bounding, or ordering the contribution of
unacknowledged errors. The most common techniques for
detecting unacknowledged errors are procedural methods.
For example, formal software inspections.are a procedure
for detecting unacknowledged errors in code creation. A
similar inspection of code input data performs the same
purpose for the user of the software.

4.2 Error Estimation Methods

We now briefly turn to the issue of estimating
computational error or, more precisely, the error that
results from the discretization of the undertying partial
differential equations. As stated above, a large part of
Ref. 130 addresses this issue as a significant component
in calculation verification. Although we wish to
emphasize a point of view that is strongly validation
centered, we will make essentially the same assumptions
that Roache does in his discussion:

1) That the software expressing the numerical
algorithms has been “verified,” or that we at least
have substantial evidence to suggest that the
software is performing properly.

2) That the discretization is formally consistent with
the partial differential equations. In other words, in
the asymptotic limit as temporal and spatial
discretization spacing tends to zero, the discrete
equations converge to the proper partial differential
equations.

Consistency by itself does not guarantee that the
solution of the discrete equations will converge to the
correct solution of the partial differential equations.
Additional information is required for consistency to
yield convergence. »138 We restrict our attention to
initial-value problems for linear partial differential
equations so that we can state the following famous
result:

Lax Equivalence Theorem: Given a properly posed
linear initial-value problem for an evolutionary
partial differential equation, and a finite-difference
approximation to it that satisfies consistency, then
the approximation converges to the correct solution
if and only if the approximation is stable.

The assumption of linearity is critical, because it
already hints at the weaknesses of a priori error
estimates for CFD calculations. Richtmeyer and
Morton!37 go on to show that consistent discretizations
have positive order of convergence. In other words, for an
appropriate norm, and under technical domain
assumptions on the initial data, in the limit of spatial
and temporal discretization increments tending to zero we
have fu, ., — ;. | bounded by a term on the order of a

positive power of the spacing. We write this as:

I Uerger — udiscl = O(AIP, Ahq) Eq. (1)
where p > 0 and q > 0. In Eq. (1) we have not specified
what the norm is. It could be an L° norm or a
supremum norm, for example. Formal analysis of
discretizations of partial differential operators typically
yields estimates of the type given in Eq. (1). In fact, one
seeks methods in which p and q are actually large, for
example equal to two or higher. Such estimates are a
priori estimates of computational error, assuming of
course that the convergence implied by the conditions of
the Lax Equivalence Theorem actually takes place. We
will refer to this specifically as solution convergence, as
opposed to grid convergence.

Recall that the scheme must be stable as well as
consistent for solution convergence. Even assuming that
an estimate such as Eq. (1) is true for a given numerical
approximation to the CFD equations of interest, it does
not provide enough information for us to sufficiently
characterize the computational error to facilitate
validation. We have also had to assume that the grid is
uniform for Eq. (1). This is virtually never true in real
calculations. For unsteady flow calculations, the
temporal spacing is not uniform either. Formal
truncation error estimates become very difficult to derive
on nonuniform meshes, and so practically they are
viewed as local error estimates in such cases. We want to
stress this point: validation requires solution
convergence, not simply an error analysis such as Eq.
(1.

Thus, an a priori estimate of the accuracy of a
particular calculation is problematic for playing a useful
role in providing sufficient error determination to support
validation. This does not mean that developing these
estimates, even in very seriously simplified problems, is
not important. Stability and consistency implying
solution convergence are crucial sanity checks for
discretizations of PDEs. There is no reason to believe
that any scheme that does not converge to the correct
solution for linearized, constant coefficient,
homogeneous mesh discretizations of the CFD equations
will ever work on the complete forms of the equations.
But the actual performance of discretizations in terms of
stability and effective convergence to the correct solution
is ultimately almost always decided from empirical a
posteriori analysis of calculations.

This latter point introduces one further problem in
attempting to actually infer what the error of a
calculation is. Knowing the calculation converges as the
spatial and temporal discretization resolution limit to
zero, even empirically, still does not necessarily inform
us as to the error of the calculation. Solution
convergence is fundamentally asymptotic. From this
perspective, the only real confidence we can have in a
calculation is if we actually achieve sufficient
discretization resolution, both temporal and spatial, to
directly confirm solution convergence. In other words,
from an asymptotic convergence point of view, the only
useful statement about computational error that we can
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make is that:

| w -y | <g Eq ()

where rl is one level of temporal and spatial refinement
of the discretization, while r2 is a more refined level, and
€ is the accuracy required of the calculation. It is
common to expect € to vary from one validation
problem to another. Eq. (2), of course, assumes that the
convergence implied by Eq. (1) when the discretization is
stable is eventually monotonic and that we have entered
the asymptotic regime. Being able to always converge a
given computation in the sense of Eq. (2) would solve
all of our practical problems. Unfortunately, the full
convergence of a numerical computation implied by Eq.
(2) can hardly ever be obtained for complex simulations,
simply because the computational resources required to
achieve convergence are still not available.

A posteriori error development — where error is
assessed “after the fact” — are discussed in some detail in
Refs. 130,138, especially in the context of grid
convergence extrapolation. A concise discussion of this
topic within a larger context of characterizing modeling
uncertainties can also be found in Ref, 139, We will
follow the line of argument presented in this report for
the most part. Consider for simplicity a steady state
computational problem in one spatial dimension with
uniform mesh spacing h. Under the assumptions of:

1) u is a smooth solution (existence of aH the
derivatives is necessary to justify the application of
a Taylor expansion in the mesh spacing).

2) The formal convergence order p of the discretization
method is known a priori.

3) The mesh spacing is small enough that the leading
order error term dominates the total discretization
error. This is also called the asymptotic range of
the discretization.

Then we expand the exact solution of the partial
differential equation as:

Upract = udisc(h) + ahp + O(hp+ 1) Eq (3)
It is implicit that Eq. (3) is a local expansion — we have
simply suppressed the explicit dependence on x to
simplify the appearance of the equation. ¢ is a constant
independent of h and is also independent of the spatial
coordinate under the assumption that the convergence
order is uniform over the spatial domain.

Applying Eq. (3) to two different grid resolutions
(assume that ho/h < 1) and one has:

uexacl = udisc(h 1) + ah;: + O(h[lﬁ- 1)
uexacl = udisc(h2) + (th + 0(h12’+ l)

Eq- (4)

We then find that

— hgudisc(h l) — hgudisc(h 2)

exact hlzn_hilJ

u + O(h**") Eq.(5)

The term in brackets in Eq. (5) represents an
extrapolation of the discrete solution toward the exact
solution. For example, in the special case of p=2 and
with the use of centered difference schemes, it turns out
the this extrapolation is fourth order. This is the original
h-extrapolation method of Richardson. ]

The a posteriori error estimate resulting from Eq.
(5)is

E( h) — udisc(hZ) - udisc(h 1) p

hzzz_hzl? Eq. (6)
In Eq. (6), EM)=uy(h)—u,,. This

approximation neglects the higher order terms, which is
allowed under our assumption of being in the asymptotic
range. The development of Eq. (6) can be extended to
multiple spatial dimensions and time-dependent
problems. )

Although a Richardson extrapolation error estimate
as above can also be applied to finite element
calculations, specific a posteriori error estimators are
also available in the finite element literature. Their
explicit discussion is beyond the scope of this paper. 4
posteriori error estimates are of significant importance
for finite element adaptivity, where both the spatial grid
density (h-adaptivity) and the order of the finite element
scheme (p-adaptivity) can be adapted. For validation,
however, the real issue is error estimation, not adaptivity
of finite elements.

The first assumption underlying Eq. (6) to discuss
(and stress) is that you must demonstrate that the grid is
fine enough to be in the asymptotic region of the
solution convergence. We believe that Roache does not
emphasize this practical matter sufficiently. Another of
our stated assumptions in Eq. (6) is that the grid is
uniform. For complex multi-dimensional problems this
assumption is simply never satisfied in practice. It was
also assumed that the formal order of accuracy of the
method was correctly known a priori. There are several
reasons that this need not be true. One of them is that
grid nonuniformity is known to influence the effective
order of a discretization. As emphasized in our discussion
about g priori error estimates, the true order of accuracy
of complicated numerical methods for complex problems
is often assessed via empirical means. One example is
assessing the performance of shock capturing methods.
Another example is assessing the performance of
multidimensional upwind schemes for advection.

A more serious issue is the assumption of
smoothness of the solution. Essentially for all
engineering fluid dynamics problems this assumption is
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not true in practice. This will reduce the formal a priori
order of the discretization error estimate even in regions
well removed from the singularity. The “pollution” of
particular regions of a calculation by the presence of
singularities such as shock waves or geometrical
singularities is a subject of grave concern, even for
application of an error estimate like Eq. (6) in a local
sense (in other words, for adaptivity). Often the only

" gauge of this pollution is through empirical assessment.
The reader should consult a series of papers by Babuska
and colleague:sl"'l'1 3 as well as the paper by Oden!44
for a discussion of this problem from a finite element
point of view. Recent work of Zhang and his
colleagues14 discusses the effect of the presence of a
shock wave structure on a posteriori error estimates for
the Euler equations.

Finally, we will stress that there may be practical
issues in performing calculations on suitably refined
grids for developing an estimate like Eq. (6). Consider a
large calculation, one that is at the limit of available
computational resources. It will be impossible to refine
the grid for such a problem. Roache has pointed out that
to use Eq. (6) one does not need to necessarily refine the
grid. Rather, if one is in the situation described, one
could coarsen the grid instead, thereby achieving the
needed two refinement levels. However, suppose that the
large calculation resulted from the requirement to resolve
an important flow structure (such as a reacting flow front
or a shock wave) with the minimal needed resolution.
This is the case in certain compressible flow problems,
where all of the overall grid resolution is driven by the
need to resolve a captured shock with four (say} grid
points. In this case, one can not coarsen the grid, because
one encounters a qualitative change in the computed flow
upon doing this. One is essentially constrained to work
with one grid. As a result, one is not able to make a
reasonable error estimate needed for validation.

There are other issues associated with computational
error that go beyond error estimates. We can ask
fundamental questions of how well the computational
world matches the true dynamics of the continuum
PDEs. For example, how well are the dynamical system
features of the underlying differential equations matched
by the computational dynamics. In the case of steady
flows, this question is concerned with the stability and
bifurcation behavior of the computed solutions.
Attempting to measure the computational error in this
case is much more difficult. For example, it is only in
relatively simple cases that the true stability and
bifurcation behavior may be well understood for the
conceptual model. An entire taxonomy of potential
threats to computational accuracy arises in this point of
view. The dangers are nicely summarized in Ref. 146 and
the work referenced there.

In conclusion, we emphasize that addressing the goal
of validation of computational fluid dynamics requires
significant evidence that the equations of the underlying
conceptual model are solved accurately. Otherwise,
attempts at validation via comparison with experiments,
no matter how refined, are dangerous. We have argued
that a priori error estimates are inadequate for this task

because of the typical assumptions that underlie them.
Instead, we recommend that serious effort be made to
understand computational error in an a posteriori sense,
especially through the use of grid refinement studies.

4.3 Uncertainty
Computations

We now turn our attention to a discussion of
treating stochastic parametric uncertainty within the
context of validation. We will simply refer to
“uncertainty” in this discussion, but we will always be
considering this restricted type of uncertainty. The main
purpose is clarify the need for nondeterministic methods
in CFD validation.

It is typical when simulating experiments that one
encounters physical parameters in the partial differential
equation or in the initial or boundary conditions that are
not known precisely for an experiment, or series of
experiments. Common examples of such parameters are
thermal conductivity, surface roughness, flow rates in
complex systems, inflow nonuniformities, and
thermochemical transport properties. Whatever the
parameter or set of parameters is, we make the
assumption that a value of the parameter is required to
perform the needed computational simulation.

One standard approach is to estimate, by one means
or another, a single value of such a parameter and
compute with that selected value. This might be a fully
adequate way of dealing with this uncertainty, especially
if experience suggests that the range of potential
parameter values is very small and if the calculation is
known to not be extremely sensitive to the parameter in
question. The resulting calculation intrinsically is
interpreted as “typical” or “representative” for that
parameter. The statistical issues underlying the
uncertainty of the parameter are never explicitly treated in
the CFD computations.

The difficulty with this straightforward approach
begins to be noticeable when the range of variation of
the parameter is large or when the calculation is known
to be sensitive to the parameter values. If multiple
parameters having physical origins that are relevant in a
computation of a validation experiment are also
uncertain, we claim that it is entirely possible that their
interaction in the calculation may magnify the influence
of their uncertainty on the final results of the calculation.
This latter statement is fairly subtle, but the need to be
alert to this possibility is perhaps obvious upon
consideration. '

When parameter uncertainty is important we claim
that performing a single calculation with best estimates
of single value(s) of the parameter(s) is not an
appropriate method of dealing with this uncertainty. We
believe that this statement is especially important when
performing calculations that are intended for direct
quantitative comparison with validation experiments.
Instead, it is important to incorporate the uncertainty
directly into the computational analysis.

The simplest strategy for incorporating uncertainty
of this kind directly into computation is performed in
three steps. First, assume that the uncertainty in the
parameters of interest is characterized by probability

Quantification in
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distributions. Sometimes such distributions can be
directly estimated from experimental data related to the
parameters. Sometimes such distributions must be
simply assumed. At any rate, these probability
distributions must be specified.

In the second step, values from these input
probability distributions are selected using statistical
sampling procedures, such as Monte Carlo sampling
methods or more complex methods (see, for example,
Ref. 147 for details about Monte Carlo methods). These
sampled values are then used in a set of computations.
This is important, so we will state it again with
emphasis. The assumed prior probability distributions
for the uncertain parameters are used to generate a set of
calculations. This is also sometimes called an ensemble
of calculations, and so this approach is also called
ensemble computing.

The key issue is that a single calculation is no
longer sufficient; a set of calculations must be
performed. Obviously, this need is disturbing — where
- once one might have performed a single calculation, now
one must perform a potentially large number of
calculations. We have not raised nor answered the
question of whether sufficient computational resources
are available to execute more than the one calculation.
However, the constraints enforced by availability of
computing are formidable.

Upon completion of this set of calculations the third
step is to analyze this set of calculations, typically using
statistical inference, to estimate a probability distribution
for the output variable(s) of interest that results fram the
given input parameter distributions. In general, we can
not deduce the exact output distribution that results from
the assumed form of the parameter distributions that
generate the computational input associated with those
parameters. Instead, it is common practice to determine
estimates of important statistical parameters associated
with that output distribution through the use of
statistical procedures.

These statistical estimates have considerable interest
for analyzing computational predictions. For example,
the mean of the output calculations provides us with an
estimate of the expected value of the output quantity of
interest, given the uncertainty structure specified by the
input distributions. This estimate is certainly of interest
when comparing computations with experimental data
that are likely to have their own uncertainty. Another
statistic of interest is the estimated variance of the output
distribution, which can be interpreted as a measure of
computational output uncertainty, given the input
uncertainty.

For readers unfamiliar with this methodology, we
stress that it is not truc that the mean of the output
given the input uncertainty can be determined by
performing a calculation for a single set of inputs that is
chosen to be the mean of the input distributions. We
must perform the ensemble of calculations to develop a
statistically rational estimator for the mean. The same
statement is true for estimating other output statistics.

To summarize, step one is called characterizing the
source of uncertainty in the computational study. Step

two is sometimes called uncertainty propagation. Step
three is called uncertainty quantification of the output.
The general methodology we are thus advocating for
incorporating parameter uncertainty into CFD
computations is to execute all three steps in the manner
suggested above. This will clearly be nontrivial for hard
computational problems simply because of the
computational burden imposed. We have also failed to
state certain subtleties, such as whether complex
structure in the resulting output probability distribution
can actually be discovered using such a crude approach.
We will simply state that extracting intricate output
distribution structure will either require a large number of
sample input values, or considerably more sophisticated
approaches for performing the methodology.

Because we are unaware of any study in CFD that
pursues this methodology, we will reference the work of
Ref. 148 for an interesting summary of issues associated
with this methodology in computational solid
mechanics. The work discussed in Ref. 136 provides a
discussion of the intricacies of characterizing the sources
of uncertainty. The book by Kleijnen1 is an
interesting reference that provides a broad summary of
methodologies that go beyond Monte Carlo for assessing '
output distributions statistically. Finally, a recent
interesting reference that discusses the assessment of
modeling uncertainty in climate modeling is Ref. 150.

An issue is stressed in Ref. 148 that is worth
repeating here because it emphasizes a subtly in
performing uncertainty quantification. As Red-Horse and
his colleagues note, if we want to estimate, for example,
the mean of the output quantity of interest using the
methodology above, the estimated statistic that we
determine is actually a conditional mean. In other
words, the estimated mean of the output given the
uncertain input parameters that we calculate in this way
assumes that the computational model is “correct,” or
valid, in a fundamental way. This is in addition to the
operational assumption that the input uncertainty
distributions are “correct,” or accurate enough, for the
intended application of the computations. We thus have a
coupling of the validation problem to the quantification
of uncertainty in the computational model. To validate
our computational model, we must characterize
uncertainty quantitatively, using the methodology
proposed above or something similar. However, for this
characterization to be fully accurate requires a valid
computational model. One way of looking at this
coupling of the understanding of parameter sensitivity
and validation is through the use of Bayesian inference.
We briefly comment on this below.

It is also possible to remove the intrinsic foundation
of a validated model in the estimation of output statistics
by including fundamental model uncertainty, sometimes
called structural uncertainty, in the methodology.
But can structural uncertainty, which is far more general
than our simple parameter uncertainty described
previously, even be captured in a probabilistic
framework? Non-probabilistic approaches, referenced
above with regard to epistemic uncertainty, are currently
of interest for characterizing structural uncertainty.
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We now return to our mention of Bayesian
inference. Step 2, the problem of propagating input
uncertainty through a computational model to understand
the resultant output as described above, is sometimes
referred to as the forward uncertainty problem. ! There
is an associated inverse uncertainty problem, or
backward problem, which is conceptually much more
difficult but equally important when performing
validation. This problem asks whether, when given the
input parameter uncertainty, an estimate of output
uncertainty, and the additional knowledge one acquires by
performing validation comparisons with experiments, we
can improve our estimated output uncertainty? In
particular, might we be able to improve our original
prior distributions that characterize the parameter
uncertainty? This problem can be cast as a problem in
Bayesian statistical inference. 51 (See Ref. 152 for an
introduction to Bayesian inference.)

Finally, we comment that the subject of uncertainty
and its role in assessing the predictive content of intricate
computational models of complex physical phenomena
(turbulence, climate, economic systems, biological
systems, etc.) has become of increasing interest for
formal study in the past few years. This subject is not
the same as the study of so-called “complex systems,”
although complex systems could certainly be one of the
targets for wishing to be predictive with a computer
calculation. Rather, the focus here is to extend the
simple discussion we have provided above about error,
variability, and uncertainty estimation to harness real
mathematical and computational control of ghese
quantities on behalf of providing quantitative
assessments of the true predictive accuracy of
calculations. This is a dramatically difficult task. We
recommend to the reader the proceedings of a workshop
held at Los Alamos National Laboratory in May 1998
for recent papers on this topic.

Part of the difficulty is to provide better
understanding of computational accuracy when it is
known that we are in an under-resolved grid or time-step
situation. This is an outstanding problem for research.
Recent work attacks this problem and illustrates the
formidable difficulties in two distinctly different
applications areas: porous flow154 and dynamical
systems.!35-157 While the applications and specific
technical attacks of these two groups of researchers are
distinctly different, we find it fascinating that a common
deep thread in their work is the treatment of insufficient
information using probabilistic methods. We should
stress, however, these authors do not discuss one
problem of interest to us. That is, the problem of
validation of under-resolved computational models,
which remains of outstanding importance for pragmatic
validation approaches for realistic applications of large-
scale computational models.

The most important point we wish to emphasize in
concluding this section is the inadequacy of single
(point) solutions of computational fluid dynamics when
confronting variability or uncertainty in the intended
application. We must be willing and prepared to perform
sets of calculations to develop even primitive insight

into the influence of the uncertainty on the calculated
results.

5. Comparisons of Computation and
Experiment

5.1 Hypothesis Testing

As discussed in Section 2.3, validation
quantification requires the determination and evaluation
of a specified metric for measuring the consistency of a
given computational model with respect to experimental
measurements. One approach that has been traditionall&l
taken in statistical analyses is hypothesis tes.tir1g.36:3 >

Hypothesis testing is a well developed statistical
method of choosing between two competing models of
an experimental outcome by using probability theory to
minimize the risk of an incorrect decision. Hypothesis
testing formulates the validation quantification measure
as a. “decision problem” in which one wishes to decide
whether or not the hypothesized model is consistent with
the experimental data. This technique is regularly used in
the operations research community for testing mutually
exclusive models, i.e., the model is either true or false.
For example, suppose the hypothesis is made that a coin
is fair. That is, in the toss of the coin it is equally likely
that “heads” will appear as often as “tails.” The
competing hypothesis is that the coin is unfair.
Experimental data are then obtained by tossing the coin a
given number of times, say N, and recording what
percentage of outcomes are heads and what percentage are
tails. Hypothesis testing then allows one to
probabilistically determine the confidence of a fair coin.
The confidence in the determination will depend on N,
that is, as N increases, the confidence in the conclusion
increases. )

Hypotheses testing has not been used to any
significant degree in validation quantification of
computational physics. It seems there are two reasons for
lack of interest in this approach. First, validation of
computational models of physical processes do not fit
into the category of true or false hypotheses. For
example, we would not expect to see it proclaimed:
“Computer code xyz has been proven false!” Hypothesis
testing would be more appropriate, for example, for
testing whether Newtonian mechanics is true versus
relativistic mechanics. In other words, model validation
in the computational sciences is fundamentally an
estimation process, not a true or false issue. For
example, the appropriate questions in validation are: (1)
What is the measure of agreement between the
computational result and the experimental result? (2)
How much does the numerical error in the computational
solution affect the measure of agreement? and (3) How
much does the experimental uncertainty affect the
measure of agreement?

Second, if hypothesis testing is used to prove a
hypothesis true, given the available evidence, then the
hypothesis, i.e., the model, can be used to replace the
fiducial measure, i.e., the experiment. In the
computational sciences, validation is properly understood
to mean that the measure of agreement attained for one




comparison case is an inference of validity for future
cases, i.e., prediction. The accuracy of the prediction
depends on many additional factors, such as, the range of
applicability of all of the submodels that comprise the
complete computational model, the change in coupling
of the various physical processes from the validation case
to the prediction case, the skill of the analyst in
computing the prediction, and any additional
uncertainties that may enter into the prediction that were
not present in the validation.

Even though the hypothesis testing approach does
not appear to be a constructive route forward for
validation quantification, the approach has developed the
concept of error types for incorrect conclusions drawn
from hypothesis testing.36’3 158 A type 1 error, also
referred to as model builder’s risk, is the error in
rejecting the validity of a model when the model is
actually valid. This can be caused by errors on both the
computational side and the experimental side. On the
computational side, for example, if a grid is not
sufficiently converged and the computational result is in
error, then an adverse comparison with experimental data
is misleading. That is, a poor comparison leads one to
conclude that a submodel, such as a turbulence or
reacting flow model, needs to be improved or “re-
calibrated” when the source of the poor comparison is
simply an under-resolved grid. On the experimental side,
the model builder’s risk is most commonly caused by a
poor comparison of computation and experiment that is
due to an unknown bias error in the experimental data.
Examples of these in wind tunnel testing are the
following: a bias error exists in the calibrated freestream
Mach number in the test section, a pressure reference
value used in a differential pressure transducer drifts due
to temperature of the transducer, and bias error due to
flowfield nonuniformity and model geometry
imperfections (discussed above). We believe that
unknown bias errors in experimental results are the most
damaging in validation because if the experimental
measurement is accepted, then it is concluded that the
computational result is consistently in error; whereas in
reality, the experiment is consistently in error. If the
error is believed to be in the computation, then a great
deal of effort will be expended trying to find the source of
the error. Or worse, a computational submodel will be
re-calibrated using the biased experimental data. This
results in transferring the experimental bias into the
computational model and then biasing all future
computations with the code.

The type 2 error, also referred to as model user’s
risk, is the error in accepting the validity of a model
when the model is actually invalid. As with type 1 error,
this can be caused by errors on both the computational
side and the experimental side. On the computational
side, the logical reverse of the type 1 error described
above can occur. That is, if a grid is not sufficiently
converged and the computational result agrees well with
the experiment, then the favorable comparison is also
misleading. For example, if a finer grid is used one can
find that the favorable agreement can disappear. This
shows that the original favorable agreement has

compensating, or cancelling, errors in the model. We
believe that compensating errors in complex simulations
is a common phenomenon. Only the tenacious user of
the code, or an uncommonly self-critical code developer,
will dig deep enough to uncover the compensating errors.
In a competitive or commercial code development
environment, such users or code developers as these can
be very unpopular, and even muffled by co-workers and
management. On the experimental side, the logical
reverse of the type 1 error described above can occur.
That is, if an unknown bias error exists in the
experiment, and a favorable comparison between
computation and experiment is obtained, the implication
of code validity is incorrect. Similar to the type 2 error
on the computational side, only the self-critical
experimentalist will continue to examine the experiment
in an attempt to find any experimental bias errors.

Type 1 and type 2 errors are two edges of the same

sword. In the OR literature, however, it is well known
that model user’s risk is potentially the most disastrous.
The reason, of course, is that an apparently correct model
(one that has experimental evidence that it is valid) is
used for predictions and decision-making, when in fact it
is incorrect. Type 2 errors produce a false sense of
security. In addition to the potentially disastrous use of
the model, we contend that the model user’s risk is also
the more likely to occur in practice than the model
builder’s risk. The reason for this is that with
experimental evidence that the model is valid, there is
little or no interest by analysts, experimentalists,
managers, or decision makers to expend any more time
or resources pursuing possible problems in either the
computations or the experiments. Everyone is enthused
by the agreement of resuits and “Victory” is declared.
Anyone who questions the results can risk loss of
personal advancement and position within his or her
organization.

5.2 Validation Metrics

Most of the authors reviewed in Section 2.3
addressed validation quantification from a parametric
uncertainty estimation viewpoint, that is, a probability
distribution of a system response measure (due to input
parameter uncertainty) is compared with a probability
distribution due to experimental uncertainty. As
discussed in Section 4.4, the probabilistic response
measure is normally computed using Monte Carlo
sampling so that a comparison with the experimental
data can be made. Coleman and Stern!7 take a sharply
different approach. First, they include in their analysis an
estimate of numerical solution error and how it affects
the validation comparison. This, of course, is of major
concern in CFD solutions and in all of computational
physics. Second, they do not deal with the propagation
of input probability distributions, but instead address the
question of estimating the total uncertainty due to
computation and experiment. And third, they define a
metric for validation. If the difference between the
experimental measurement and the computational result
is less than the validation metric, then the result is
declared validated. They define their validation metric as
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the square root of the sum of the squares of the
experimental uncertainty, the numerical solution error,
and the modeling uncertainty arising from using previous
comparisons with experimental data. Written in their
nomenclature, one has

U= \/UIZJ + Uy + Uspp

where U, is the validation metric, Upis the

experimental uncertainty, Ugy is the numerical solution
error, and Ugpp, is the modeling uncertainty arising from
using previous comparisons with experimental data.

Coleman and Stern’s article added a new direction of
thinking in validation quantification and validation
metrics. However, we believe their approach is
conceptually flawed for three reasons. First, they deal
with numerical solution error as a statistical quantity,
when it has no practical connection to probability
theory. That is, they deal with numerical solution error
in exactly the manner as experimental precision error.
Numerical errors such as spatial and time-step
discretization, artificial dissipation, approximate
factorization, intra-step iterative convergence, and global
iterative convergence are not related to probability
theory. Recent work of Refs. 154-157 attempt to use
statistical methods to estimate the numerical error on
coarse grids, but this is very tenuous at this point.
Numerical solution errors are more closely related to bias
errors in experimental error estimation than precision
EITorS.

Second, their validation metric U, specifically
excludes the uncertainty due to modeling assumptions,
Ugis- They state “..we define the validation
uncertainty U/, as the combination of all uncertainties
that we know how to estimate (i.e., all but Ug,,)". In
their nomenclature,

Uy=\/Up+ Ui Uly

where U is the uncertainty in the simulation. Ignoring
the uncertainty due to modeling assumptions defeats the
primary purpose of validation. Their argument for
ignoring Ug,, is analogous to ignoring an
experimental bias error because we do not know how to
estimate it. The modeling error must be evaluated
through a comparison of simulation with experiment.
Third, their validation metric increases as the
experimental uncertainty U, increases, and as the
numerical solution error Ugy increases, and as the
modeling uncertainty arising from using previous
comparisons with experimental data Ugpp, increases. In
other words, it becomes easier to achieve validation as
the experiment and the simulation become poorer.
Coleman and Stern recognize this paradox with the
explanation “...since the greater the uncertainties in the
data and the code predictions, the greater the ‘noise leyel’
U, .» Concerning their validation metric, Roache
comments “besides the evident potential for
misinterpretation in the use of U,, a more basic
problem exists with their proposal; it fails to account for

an acceptable error tolerance in the validation.” We agree
with Roache’s criticism and we add two additional
criticisms. On first glance it appears to make sense that
as the spread in the experimental data gets larger, then
the criterion for validation should also get larger. This
logic is actually erroneous because the spread in the data
is not the key issue. The important issue is the mean of
the data and the level of confidence in the mean. The
final criticism is analogous to the first; however, it deals
with the increase in the spread of the computational
simulation. That is, the computational simulation
becoming poorer (larger numerical error) is not the issue;
it is how an accurate numerical solution compares with
the experimental data.

We commend Coleman and Stern for initiating
thinking in validation quantification metrics. We argue
that the validation metric should have the following
features. First, we agree with Coleman and Stern that the
metric should incorporate an estimate of the numerical
error in the computational simulation. However, we do
not agree that it should be grouped with the experimental
uncertainty, and also, it should not be represented
probabilistically. Second, the metric should not exclude
any modeling assumptions or approximations used in the
computation of the simulation result. That is, the
computational result must reflect all uncertainties and
errors incurred in the modeling and simulation process.
Third, we agree with Coleman and Stern that the metric
should incorporate an estimate of the random errors in
the experimental data, e.g., an estimate of the variance of
an assumed Gaussian distribution. In addition, we believe
the metric should also include an estimate of the
correlated bias errors in the experimental data. Fourth,
the metric should depend on the number of experimental
replications of a given measurement quantity. That is,
the metric should reflect the level of confidence in the
experimental mean that has been estimated. And fifth,
the metric should be able to incorporate uncertainty in
the computation that is due to both random uncertainty
in experimental parameters and any uncertainty that is
due to lack of experimental measurement of needed
computational quantities. That is, the metric must use
nondeterministic methods to propagate uncertainty
through the computational model.

In the following we suggest various validation
metrics that address some of these recommended features,
but much work needs to be done.

5.3 Examples of Validation Metrics

To clarify our views on validation quantification and
how we believe validation metrics should be constructed,
we will discuss an example whose physics and
mathematics are much simpler than fluid dynamics. We
consider the example of a boundary value problem
described by a second order, nonlinear, ordinary
differential equation (ODE), Fig. 6. Let the general form
of the ODE be given by

L d
) F ) =0 Eq ()

d
‘—,d;[p(x,y)d—i
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where p(x,y), q(x,y), and 1(x,y) are arbitrary functions of
the independent variable, x, and the dependent variable, y.

Let By and By represent arbitrary boundary conditions at
x=0 and x=L, respectively. This ODE and and its
boundary conditions can represent many types of steady
state heat conduction in a one-dimensional solid.

Examples are heat conduction in heterogeneous and
anisotropic solids, temperature dependent thermal

conductivity, internal heat generation, and convection and
radiation heat loss along the solid. This ODE, of course,
is intended to be analogous to multidimensional

boundary value problems in fluid dynamics.

Bo BL
Boundary Boundary
Condition Condition

atx=0 atx=L

x=0 x
Figure 6: Domain of Boundary Value Problem

The physical modeling parameters for this problem
are incorporated into the functions p, q, and r, and also
incorporated into By and By . For example, in a heat
conduction problem, if the thermal conductivity is a
constant, then p is equal to the constant conductivity.
Also for a heat conduction problem, if the boundaries are
given as a specified temperature, then y(0) = constant and
y(L) = constant are the boundary data for B( and By ,
respectively. s

Let Y(x;) be the experimental measurements
corresponding to the dependent variable, y, at x =x; fori
=1, 2, 3, ... I. That is, a total of I locations are
experimentally measured along the solid. Given this
mathematical model and experimental data, we will
consider two examples that emphasize different issues in
validation quantification. For each example we suggest
different types of validation metrics that would be useful
for various situations. For both examples we assume the
following:

1) The numerical solution to the ODEs is without
error. For an actual numerical solution this
practically means that the numerical solution error
is carefully quantified, and it is shown that the
relative error of the output quantities of interest is
very small.

2) There is no parametric uncertainty in the model.
Stated differently, experimental measurements of p,
g, 1, By, and By have been made, they are assumed
to be without measurement error, and they are used
as input to the model.

3) The model and the experiment do not exhibit
bifurcation or any chaotic phenomena.

Given assumption (1), we are avoiding the issue of
how does one conduct validation when numerical
solution error is significant. As discussed in Section 4,

we do not believe true validation can be conducted when
no estimate is available for the numerical solution error
in the system responses that are compared with
experiment . With assumption (2) we are restricting our
examples to the issue of validation of physical modeling
fidelity and avoiding two issues: parametric fidelity in
the model and modeling when required code input
parameters were not measured in the experiment. With
techniques for propagation of uncertain parameters
through the CFD model, discussed in Section 4, we are
certain validation can still be conducted. However,
validation becomes more complex because one must then
deal with probability distributions for the computational
inputs and responses. In the second example we address
the issue of uncertainty in the experimental
measurements.

t t Error is Zer
Since the experimental measurement error is zero,
y(x;) and Y(x;) can be directly compared in different ways
to generate different validation metrics. One useful
validation metric based on comparison of each of the
individual measurements and the computations at the
measurement locations is

tanh yx) =Y (x)

Y(x,.) Eq. (8)

where ¥ is the validation metric. This type of metric
has the following advantages. First, it normalizes the
difference between the computation and the experimental
data. As a result, a relative error norm is computed.
Second, the absolute value of the relative error only
permits the difference between computation and
experiment to accumulate, i.e., positive and negative
differences cannot offset one another. And third, when the
difference between the computation and experiment is
zero at all measurement locations, then the validation
metric is unity, i.e., perfect agreement between
computation and experiment. When the summation of
the relative error becomes large, the validation metric
approaches zero.

Figure 7 shows how the validation metric given in
Eq. (8) varies as a function of constant values of the
relative error at all spatial locations. As can be seen from
Fig. 7, if the summation of the relative error is at a
value of 100% of the experimental measurement, then
the validation metric would yield a value of 0.239. If
functions different than tanh were used in Eq. (8), then
the value of the metric for a constant error of 100%
would, of course, be different. However, we do not
believe the quantitative value of any metric is important
in an absolute sense. We have chosen here to require that
the metric be unity when perfect agreement is attained
and zero for very poor agreement of computation and
experiment. That is, the metric should simply reflect a
measure of the agreement between computation and
experiment. Validation should not be viewed as binary
issue, e.g., is the hypothesis true or false, or, is the
computation within the scatter of the data, or not.
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Figure 7: Proposed Validation Metric as a
Function of Relative Error

To make it clearer why a hypothesis testing view
point is not as constructive, consider the following. Let
the validation metric be defined as

Yx) - Y(xp)
Y(x)

Eq.(9)

<eg foralli=1,2,3,...]1 = valid
>¢& foranyi=1,2,3, ... 1= invalid

where € is a specified accuracy criteria. If a metric such
as Eq. (9) is used, then the result is only “pass” or “fail.”
From an engineering point of view, validation is an
estimation problem. From a scientific point of view,
validation could be considered as truth issue (see Ref.
103 and Appendix C of Ref. 130). An additional
argument against the type of metric given in Eq. (9) is
that it merges the issue of validation accuracy and the
question “Is the simulation adequate for the intended uses
of the model?” These are clearly separate issues. A useful
validation metric should only measure the agreement
between computation and experiment. Whether the
measure of agreement is adequate for the intended uses
must be viewed as a separate question. And indeed, the
adequacy of the model for the intended uses, i.e.,
prediction, is the most important question.

If a sufficient number of measurements are made
along the solid, i.e., I is large in some sense, then one
could construct a continuous function to represent Y(x)
along the solid. For example, one could use a cubic
spline to interpolate [x;,Y(x;)] along the solid. Then one
could construct an improved global level metric
analogous to Eq. (8):

YX) -YE) | 4

Eq. (10
Y() q. (10)

L
=1-1
V=1 LJOtanh
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If a sufficient number of experimental measurements are
available to accurately construct the interpolation
function, then this metric is more advantageous than Eq.
(8) because it accounts for error in locations where
experimental data are not available.

Measurements

Let there be N experimental measurements made at
each of the x; locations along the solid. Assume that the
experimental random error is normally distributed, i.e.,
Gaussian, and assume that the measurement bias error is
zero. The mean value of the N measurements at the
position x; is given by

_ N
)= 2, 1) Ea.(11)

As N becomes large, the mean, ¥ (x;) , approaches the
true value, Y (x,) of the Gaussian distributed
measurements, that is,

~ . N N
P(x) = Jim_ 7{/— n; Y,(x) Eq. (12)

Consider first the case when a large amount of data
are available, N large. Then the estimated mean and the
true mean are effectively identical. Y(x;) is what should
be compared with the computation, not its estimated
uncertainty, regardless of the spread of the measurement
distribution. Therefore, essentially the same validation
metrics as given above in Example 1, where the data are
perfect, can be used for this case. For example, the
metric given in Eq. (10) would now be written as

~

V=1_;J tann |20 F® | 5
0

Eq. (13
T Y(X) q. (13)

Y(x) woyld be the interpolated function constructed
using [x;, Y (x;) 1.

Now consider the case when a limited quantity of
data are available. Assume that at each measurement
position along the solid there are the same number of
experimental measurements, N. The following suggested
metric incorporates both the estimated variance of the
data and the number of measurements at each station, N.
Using the triangle inequality and taking expectations,
one can extend the metric given in Eq. (13). One obtains

oL )
w0 -,
T fx (€3]

S(x) z
Y : )lf(z) dz|dx

Eq. (14)

where s(x) is the sample standard deviation as a function

V=1~ tanh

1
L
0




of position along the solid, and f{z) is the probability
density function for a student’s t-distribution with N-1
degrees of freedom. The integral inside the brackets is the
expected absolute relative error of the experiment. The
quantity s(x) is approximated through the interpolated
function constructed using s(x;), where

)=l 3 (-] Ea0s)
1. N_l fl=l n I3 n 1 *

It is obvious that no estimate of experimental
uncertainty can be made if only one data point at each
location, N=1, is available.

The probability density function for the student’s t-
distribution is given by

(v + 1)2) N s
V)= + = Eq. (16
f(Z ) NF(V/Z) v g. (16)

where v is the number of degrees of freedom, N-1, and
I'(o) is the gamma function, given by

Eq. (17)

I'(0r) = fo ettt

Figure 8 shows the validation metric from Eq. (14) as a
function of constant relative error, for a coefficient of
variation, s(x)/Y(x) = 0.1, and for various values of
N.

1.0 T
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R I N=5
0.8 4+—N ——N=100 H
\\
\\ -
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0.6 \
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> S I
0.4 NS
0.2 i >
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Abs{{y(x)- Y)Y (x)]

Figure 8: Validation Metric as 2 Function of
Relative Error and Data Quantity

The advantageous features of the validation metric
given by Eq. (14) are the following. First, when a large
amount of data are available, i.e., N is large, the second
integral in Eq. (14) approaches zero. As a result, Eq. (14)
approaches the metrics defined in Egs. (10) and (13).
Second, the student’s t-distribution replaces the Gaussian
distribution for Gaussian measurement errors when N is

small. When N becomes large, the student’s t-
distribution approaches the Gaussian distribution. This
makes the validation metric consistent with the assumed
probability distribution for the random measurement
error. Third, when N is small, the second integral in Eq.
(14) increases the magnitude of the integrand of the first
integral. This results in decreasing the magnitude of the
validation metric. That is, when small quantities of data
are available, the validation metric should reflect the fact
that confidence in the validation measure is decreased.
And fourth, as the coefficient of variation in the data
increases, for a given number of measurements N, the
magnitude of the validation metric decreases. That is, as
the spread of the data increases, the confidence in the
validation measure is decreased.

6. Conclusions- and
Recommendations

In this “paper we address the three facets of
validation: the design, execution, and analysis of
validation experiments; error and uncertainty estimation
in the computational simulation; and the quantitative
comparison of computation and experiment. We
accentuate the issues that must be addressed by the CFD
analyst and the experimentalist in validation assessment.
The concept of the construction of a validation hierarchy
for complex engineering systems is relatively new, but
we believe it is critical to the wvalidation of
multidisciplinary, interacting, computational simulation
capabilities. The understanding of the unique
characteristics of validation experiments, as opposed to
traditional types of experiments, is slowly developing.
We believe many of the requirements needed for
validation experiments will be difficult to accept by
some testing facilities. A few of the requirements put the
facility at risk with respect to their competitors, and
many of the requirements will necessitate a change in the
culture of experimental investigations. In addition, the
statistical uncertainty estimation procedure we
recommend will more critically quantify experimental
shortcomings, specifically correlated bias errors. In
previous work we have demonstrated that the dominant
contributor to hypersonic wind tunnel experimental
uncertainty is the nonuniformity of the flow in the test
section. We believe this will also be true for all other
speed ranges of wind tunnels, especially for transonic
flow and shock tunnels.

Error and uncertainty estimation for computational
simulations are a necessary requirement for validation.
Error estimation for the numerical solution of nonlinear
partial differential equations is in its early stages of
development. We draw a distinction between error
estimation and error analysis. Error analysis is based on
linear PDEs, commonly with constant coefficients,
simple initial and boundary conditions, and uniform
grids. None of these niceties are true in real engineering
analyses and, hence, error estimation on real problems is
difficult, expensive, and filled with risks. We also
believe that CFD must begin to adopt nondeterministic
simulation strategies. Validation experiments at the
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benchmark and subsystem level will necessarily involve
missing data or uncertain data that are needed for
computational simulations. This will necessitate
probabilistic treatment of parameters in the CFD
submodels or in the initial conditions or boundary
conditions for the PDEs. Propagation of uncertain
parameters or conditions through the CFD model will
likely rely on methods such as Monte Carlo or Latin
Hypercube sampling. On this topic, we believe that
CFD can learn much from probabilitistic analyses and
risk assessment methods in structural dynamics.

Implementation of most of the procedures
recommended here, for both experiment and computation,
will be neither inexpensive nor easy. Some may be
technically or economically impractical in particular
situations. With each included step, however, the quality
of the code validation process will be improved. We
firmly believe that validation is a process, not a product.
To achieve the level of maturity in CFD characterized by
“value exceeds expectation” and “most analysis done
without supporting experimental comparisons,” will
require a much deeper understanding of mathematics,
physics, computation, and experiment, and their
relationships.
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