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The second-order, self-adjoint angular flux (SAAF) equation,! modified to include continuous slowing
down (CSD), was recently used for coupled electron-photon transport.2 Results using the standard discrete
ordinates approach with linear continuous (LC) spatial finite elements, diamond difference (DD} in energy
" and DSA source iteration acceleration, generally compared very favorably against the first-order form of the
transport equation.? However, DD in energy discretization of the CSD operator did not always yield stable,
positive solutions for energy spectra and charge deposition, particularly for monoenergetic incident electrons.
Here we investigate the numerical solution of the SAAF equation using a higher order, linear discontinuous
(LD) discretization in energy with particular emphasis on jointly accelerating the source iteration and within
group upscatter introduced by the LD discretization. The angular flux in energy group g is expressed as

Un(z, E) = T4 (2)+ A—E—(E —Eg)¥E (z), where T4 (z) is the average and ¥E (z) the slope angular flux.

Applying the Galerkin procedure in energy, the SAAF equation reduces to the following coupled equations
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where Qi, ¢ 18 the scattering source and S, is the group stopping power. The coupling is akin to within
group upscatter and introduces an additional level of iteration. For a pure CSD problem, spatially analytic

Fourier analysis shows the spectral radius of this iteration to be unity with the offending error mode at zero
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wavenumber, consistent with earlier observations based on the first order form of the transport equation.?
An acceleration scheme which effectively damps out thé flat mode is obtained by neglecting all spatial
derivatives in the slope flux error. Thus, with the average and slope flux errors defined by fA BUTL2)

gAE - Bl +1/2) where j is the upscatter iteration index, the lower order error correction equations read
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where §; = K}_«%’ The updated fluxes are then given by ‘I’A B - \Ilﬁ,’gE G+1/2) f,‘?,’gE(j“/ %), This error
correction is equivalent to a DD approximation of the CSD term, and the accelerated system has a theoretical
spectral radius of 0.20.

A multigroup 1-D S,, code, DOET; p, has been developed with LC in space and LD in energy finite
element discretization in conjunction with DSA and within group upscatter acceleration. The LC spatial
representation yields a coupled set of symmetric, positive-definite algebraic systems for the cell-edge unknown
average and slope fluxes, which are solved for each group and along each direction. The nested acceleration
algorithm consists of two acceleration schemes which were initially tested individually and the spectral radii
numerically estimated, with representative results obtained for 1.0 MeV electrons incident on an Al slab
with By and Sz quadrature. The top graph in Figure 1 shows the estimated DSA spectral radius as a
function of iteration number, incorporating DSA and unaccelerated upscatter iteration for several energy
groups. Each iteration in this plot consists of as many source iterations as necessary to converge on QS for
a given ‘Ili o followed by one upscatter iteration. DSA clearly remains effective in the presence of the outer or
upscatter iterations, with spectral radius values considerably less than the theoretical value 0.225. Likewise,
the bottom graph in Figure 1 depicts the accelerated upscatter iteration spectral radius with unaccelerated

source iteration where the iteration on the x-axis consists of as many upscatter iterations as necessary to




reach convergence on III;?’ g for a given Q;f,g. The upscatter iterations are effectively accelerated and the
spectral radius is bounded from above by the theoretical value of 0.2.

With nested acceleration active, extensive numerical testing shows that the computationally most efficient
algoritﬁm is achieved by performing at most two iterations at each level. That is, it is less efficient to fully
converge the inner source iterations for each outer upscatter iteration. For the specific example above, the
latter approach takes 14.5 seconds on a 550 MHz PC compared to 5.7 seconds for the optimum case. Finally,
Figure 2 presents the charge deposition for 100 keV photons on a Gold\Silicon Slab with P; scattering and
Ss quadrature. The profile depicted in Figure 2 indicates excellent agreement with ONEBFP and validates

our approach.
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Figure 1: Estimated DSA and Upscatter Spectral Radius




100 keV Photons on Au\Si Slab
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Figure 2: Charge Deposition Profile for 100 keV Photons on Au\Si




