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ABSTRACT a~~

Unattended monitoring systems can reduce the need for on-site human presence while stilI z
assuring the proper safeguards of nuclear material. However, such systems generate large
quantities of raw sensor data that then have to be related to known or declared activities and
material accountancy records. We previously described a concept and technical approach to
anal yzing this data, based on the use of finite-state machine process models. [1] We have now
applied this technique to the analysis of sensor data from unattended monitoring systems at two
facilities: an integration laboratory used to simulate material handling facilities in the DOE
complex and a bunker used to simulate semi-static storage of high-value assets. The analysis of
the integration laboratory data focused on verifying the occu’mence of declared activities, even in
the presence of “noise” due to people walking around the facility. The analysis of the bunker
data considered questions of data integrity and system integrity including how to modify process
analysis results based on the quality of the data. The paper will describe the models used to
perform the analyses and the results obtained. We will also discuss how additional data could
strengthen the conclusions and discuss the implications for monitoring system design.

INTRODUCTION
The Knowledge Generation software analyzes data from unattended monitoring systems in order
to compare observed activities to declared activities. Differences, including missing activities
and undeclared activities, are summarized and reported to the user. The user may “drill-down”
through successively more detailed levels of information in order to examine the conclusions
reached by the software.

The data analysis process used by Knowledge Generation consists of three major phases:
1. Interpretation of the Raw Sensor Data. In this phase, the sensor data is analyzed and

indications of key events are marked. Since the interpretation of sensor data is installation
specific, we developed a general-purpose tool called the Event Generator to perform this
analysis. The Event Generator is an expert system that is configured with a set of sensor
interpretation rules by a site expert. The Event Generator can function as a stand-alone tool.

2. Construction of Observed Activities. In this phase, the events found in the first phase are used
to construct a list of observed activities. Facility-specific process models are used to both
construct the list of activities and identify errors in the observed processes.

3. Comparison of Obsemed Activities to Declared Activities. In this phase, the activities found
in the second phase are compared to the list of expected, declared activities. Both extra
undeclared processes and missing expected processes are identified.

The data analysis is controlled completely by sensor and process models that are inputs to the
software. The analysis models can be configured to track concepts (e.g., continuity of
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knowledge) as well as processes. Thus, the software is very flexible and can be configured for
use in a wide variety of facilities.

Analysis time depends on the number of events and the complexity of the analysis models, but
typical performance is one to two thousand events per minute. The analysis models themselves
can be built in a fairly short time frame (4-6 weeks, including site/sensor familiarization).
Additional software tools could speed up the model-building process significantly. Once built,
these models can be applied to all subsequent data coming from the site, as long as the
monitoring system configuration remains the same.

PROCESS ANALYSIS (INTEGRATION LABORATORY)
The Integration, Test, and Evaluation Laboratory (ITEL) at Sandia is a facility in which robotic
nuclear material handling systems, inventory and control systems, and unattended monitoring
systems are brought together in order to identify integration issues in establishing an integrated
nuclear material management approach. There is an Automated Guided Vehicle (AGV) that can
store and retrieve pallets of containers in storage racks. There is also an overhead gantry that
runs two-thirds the length of the room for moving individual containers. As shown in Figure 1,
the facility has been instrumented with an unattended monitoring system consisting of two
balanced magnetic switches, three breakbeams, four infra-red motion detectors, and two DCM-
14 Neumann cameras. The balanced magnetic switches monitor two of the doors to the facility.
The third door and nearby area is monitored by one of the motion detectors. One breakbeam is
placed near one of the doors and is used to trigger a camera when people enter or leave the
facility. The other two breakbeams are placed in the interior of the room to monitor people and
the AGV as they move through the facility. Motion detectors are placed near the breakbeams to
confirm movements. The fourth motion detector detects motion in the pallet storage racks.
Finally, some of the dummy pallets in the facility are monitored with T- 1 tags. The T- 1 provides
authenticated temperature, motion, and fiber optic seal data to monitor the status of a container
or set of containers.

ITEL was used to simulate the movement of material from Pantex to Savannah River as part of
an integration demonstration in September 1999. In the demonstration, the AGV was sent to the
storage racks to retrieve a pallet of four containers similar to those rated for storage of nuclear
material. The containers, stored in four-pack pallets at Pantex, would need to be inspected and
repackaged into individual containers before shipment to Savannah River. Rather than simulate
the inspection and repackaging process, the T-1 was removed from the pallet as it would be in
the repackaging process and placed in a vehicle (as if it were on a single container) to simulate
the transportation phase. The T-1 was put into “transportation mode” in which the motion
detector is disabled and all other events are buffered until a buffer dump is requested by the
receiving monitoring system. This allowed any non-motion events en route to “Savannah River”
to be captured. While the T-1 was in transportation, the original pallet was replaced in the
storage racks. When the T-1 returned to the ITEL, it was placed on a single storage container,
which was then moved to its storage location with the overhead gantry. Approximately 15 people
attended the demonstration so there was quite a bit of additional human motion that also
triggered sensor events.
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Figure 1. The ITEL Facility showing approximate locations and sensing regions for the sensors.
Balanced magnetic switches are labeled BMS and infrared motion detectors are labeled PIR.

There are six high-level objects whose movement or state must be tracked in the facility in the
process of analyzing the sensor data. These are the AGV, the pallet, the T- 1‘s fiber optic seal, the
truck carrying the T. 1, the single container, and people. Each of these objects was modeled with
one or more state machines. In a state machine model, an object can be in one of several allowed
states (e.g., a door can be “open” or “closed”). Events cause the object to transition from one
state to the next. Details of the state machine approach are provided in Ref. 1. In some cases, it
was clear what sensor events were associated with what objects. For example, any events from
the two balanced magnetic switches on the doors, the associated breakbeam, or the motion
detector monitoring the third door were readily ascribed to human motion because the AGV is
not allowed in those areas. However, sensor events from the two breakbeams and motion sensors
monitoring the middle of the room could come from people, the AGV, or the gantry while it
stores the single container. We used lower level state-machine models that incorporated
knowledge of how fast the AGV moves to decide how to interpret the events.

The state machine models for the AGV and the single container primarily tracked location of
those items. The pallet was tracked with three state machine models, two that tracked its location
and one that tracked whether or not it was moving (based on the T-1 motion sensor).

Using these models, we were able to successfully identify all of the expected activities (retrieval
of the pallet, “transportation,” storage of the pallet, and storage of the single container). We also
identified the “seal broken” event as unexpected and of concern. We were able to extract these



activities from a noisy set of fairly random events due to the people attending the demonstration.
Results from the Knowledge Generation software are shown in Figure 2.
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Figure 2. Analysis screen summarizing results. The “summary” area (upper rectangle) indicates
how many processes, sensors, and sensor events were found. The processes identified by the
analysis are arranged hierarchically in the “results” area (largest rectangle). The date and time
fields to the right of the process names indicate the start time and stop time. The square to the
lefi of a process name indicates the completion status of that process: green indicates completion
status is OK while red indicates an error. The Details button to the right of each process allows
the user to see analysis detail. The Depth and Severity pull-down options on the choice bar (left
rectangle) allow the user to select the context for the details (process alone, process timeframe,
diagnostic) and the severity of the messages (normal, warning, alarm).

One important point that emerged as the analysis models were being built is that it is fairly
difficult to draw strong conclusions from the sensor data. In many cases, the data were consistent
with the expected process, but it was hard to argue that this was the only conclusion that could be
drawn. For example, distinguishing people motion from the AGV was very difficult because the
breakbeam and motion sensors do not give any additional information about what is actually
moving. We tried placing the breakbeam high enough that only the AGV would break it under
normal operations, but the higher location interfered with other equipment in the facility.
Therefore, we had to rely on additional information about the timing between events as the AGV
moved to help us in our discrimination. In another example, we used the inference that the AGV
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was in the storage racks plus the information that the T-1 motion sensor had gone off to infer that
the AGV had picked up the pallet; however, we had no direct evidence that the pallet was
actually on the AGV.

DATA INTEGRITY (BUNKER DATA)
The second set of data we analyzed came from an array of sensors in a simulated storage
magazine. These sensors were chosen and located so as to assess monitoring options for the
storage of high value assets. Our focus in this effort was to explore how to incorporate
information about the state of health of the monitoring system into the analysis of the monitored
processes.

The magazine had 20 dummy containers, each monitored by a T- 1 tag. A balanced magnetic
switch monitored the only door to the magazine and two infrared motion sensors monitored
movement within the interior. The primary process in the magazine is storage of the items. In an
actual operating facility, there should be little activity, except for routine inventory or
maintenance. In actuality, the monitoring system in the magazine is undergoing an extensive
system test and so there is frequent activity in the magazine. However, we chose to analyze it as
if there should be little activity.

In order to address the question of how to incorporate state of health information, our approach
was to define the attributes of a good data set and then evaluate whether the data had these
attributes. In our definition, “good” data:

● Are complete: all sensor events have been collected and stored,.
. Are authentic: sensor events come from a known source and have not been modified
. Have fidelity: sensor events are an accurate reflection of observed activity

We identified the generic elements of a monitoring system as the sensing devices, the
communication network, the data acquisition component, the data storage component, and the
data analysis component. We then considered each of these elements and evaluated how each
failure mode would impact the “goodness” of the associated data. Sample indicators are given in
Table 1.

Table 1: Attributes of Good Data and Related Failure Indicators.

Attribute Failure Indicators

Completeness ● Missing State-of-Health (SOH)

. Incorrect patterns in sensor data
● Missing periodic reports

● Communication failures
● Tamper indicators, . . .

Authenticity . Re-authentication failure

Fidelity . Missing correlations with other sensors

. Out-of-date calibration
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In this analysis, we modeled the storage process as a simple state machine in which any of a
number of sensor events (e.g., a T-1 fiber optic seal open or T- 1 motion) caused the process to go
into an error state. We also modeled the attributes of good data (completeness, authenticity, and
fidelity) as state machine models. Failure indicators for any of the attributes caused the storage
process to go into an error state. The storage process could recover to a normal state if
subsequent data indicated that the problem had been corrected. Analysis results using state
machine models for the attributes are shown in Figure 3.
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Figure 3. Results of dataLsystem integrity analysis. The inset (Completeness) shows some of the
errors found by the Completeness state machine model. ~

The completeness state machine model tracked events from each of the devices in the monitoring
system. T-1s are polled for their state-of-health (SOH), so a missing reply is equivalent to a
missing SOH message. If a poll was missed for a given T-1, any subsequent communication
from that T-1 restored the health of that device. At the time the analysis was performed, the
bunker was in the initial stages of a system evaluation. There were some communication
problems that caused poll failures; however, they have since been corrected. The balanced
magnetic switch on the door and the breakbeams only report upon change of state. Therefore,
there should not be two “like” events (e.g., “door open:’ or “breakbeam broken”) in a row.
Another small state machine checked for these repeated events.
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We did not check for authenticity because the T- 1s use a private key authentication scheme that
does not permit the keys to reside on a networked machine. At the time of the analysis, we had
no access to any authentication results since the verification would have to be performed off-line
and the results fed into the analysis engine in some way. The fidelity state machine focused on
checking for correlations between complementary sensors.

We found we were able to model the concepts of completeness, authenticity, and fidelity
reasonably well and feed the results into the operational analysis. However, the analysis was
hindered by lack of data, especially from monitoring system components other than the sensors.
Without such information, it is difficult to locate the real source of many problems. For example,
the status of the sensor network and the data collection component were not part of the data set.
As a result, a sensor network failure that led to missing sensor SOH events would be
indistinguishable from a sensor failure that also caused missing SOH events.

CONCLUSION
We have successfully applied the Knowledge Generation software to the analysis of data from
two different monitorings ystems. The finite state machine models at the core of the KG analysis
engine are flexible enough to model abstract concepts, such as completeness and fidelity, as well
as actual physical objects and processes. This approach helps us draw conclusions in the problem
domain the user cares about, while still allowing the user to examine the logic trail that led to the
conclusions or even to drill down to the raw data if desired. Automating the analysis lets the user
quickly sort through large quantities of data and focus on the relatively few unusual occurrences.

Sensor systems can be designed to collect’data relevant to diverse goals; e.g., asset monitoring,
intrusion detection, process verification, etc. For this reason, it is important to understand what
conclusions need to be drawn and how strong they need to be when designing an unattended
monitoring system. Is “consistent with” good enough? If not, it is necessary to make sure that the
sensors used are able to provide the information (identity or signature level) necessary to allow
the analysis to distinguish among the possible trigger events. It is also important to collect status
information on all of the devices in the monitoring system, not just the sensors. This allows
better diagnosis of a problem and allows the analysis software to better assess the consequences
to the overall monitoring system performance of any given failure
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