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We report on self-consistent Polymer Reference Interaction Site Model (PRISM) calcula-
tions as well as molecular dynamics (MD) simulations for several types of polyolefins. For
all polymer types one single set of potential parameters was used. In general we find good
semi-quantitative agreement between PRISM and MD results. Further we compare both MD
and PRISM results to experimental X-Ray scattering data and show that the potentials used
give a good to excellent description of these data. From the quality of the PRISM calculations
it is clear that PRISM can be used as an efficient tool in model development.

1 Introduction

Polyolefin polymers represent the largest and most important class of polymers in terms of
volume of production. Even though these polymers consist of only single-bonded carbon
and hydrogen atoms, they have a wide range of properties that depend sensitively on the
molecular architecture. Recent advances in polymer synthesis using metallocene catalysts
now give the polymer chemist excellent control over the molecular weight, chain architecture,
and stereochemistry of polyolefin macromolecules. In order to guide the synthesis of new
polymers with optimized properties, it would be highly desirable if one could compute the
effect of polymer architecture on macroscopic properties. In the present investigations we
studied the feasability of using theory and simulation for this purpose.

The most accurate approach to modeling polymer melts and blends is through Monte
Carlo (MC) or Molecular Dynamics (MD) computer simulations. These simulation methods
give formally exact results, but are very computationally demanding, since one needs to treat
a relatively large size system consisting of many chains of high molecular weight, at liquid-like
densities. An alternative approach is to employ theoretical methods based on integral equation
theories of liquids. The theoretical approach is far less demanding from a computational
standpoint but, unlike simulations, does not give exact results due to necessary approximations
made in order to make the theory computationally tractable. We have previously employed
a hybrid of theory and simulation to model polymer melts and blends that is based on the
"Polymer Reference Interaction Site Model" or PRISM theory of Curro and Schweizer [1, 2].
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In this approach one can map the difficult many chain simulation onto a computationally
less demanding single chain simulation. The goal of the present investigation is to test the
accuracy of such methods applied to polyolefin models by a direct comparison with full MD
simulations.

In previous studies, comparisons were made between PRISM theory and x-ray scattering
for polyethylene (PE) [3, 4], isotactic (iPP) and syndiotactic (sPP) polypropylene [5, 6], and
polyisobutylene (PIB) [6]. While good agreement was found between theory and experiment-
for the structure factor, ambiguities exist because of uncertainties in the model parameters
and potentials. A more direct test of the theory is to compare with full computer simulation on
a multiple chain system at realistic, liquid-like densities. Such a comparison is unambiguous
since the same model and potentials are used in both the theory and the simulation. Very
good agreement between PRISM theory and simulations was found for coarse grained models
consisting of short chain, tangent site polymer melts [7, 8, 9] and blends [10, 11, 12, 13]. Coarse
grained representations of polymers are usually adequate for making scaling predictions for
long wave length properties on a scale of the radius of gyration. For the purposes of modeling
thermodynamic properties that are sensitive to the local packing, however, it is necessary to
include the details of the monomeric geometry in a more realistic way. These more realistic
models build the monomer structure through multiple, overlapping sites with constrained bond
angles and torsional potentials. .

Recently, comparisons [14] were made between self-consistent PRISM theory and MD
simulations for realistic polyethylene chain melts. Good qualitative agreement between theory
and simulation was found, but the theoretical intermolecular pair correlation functions were
too soft relative to the simulations for PE. As a consequence, the compressibility predicted
by PRISM theory was significantly larger than the simulation values. The inaccuracies in the
radial distribution function were likely due to the inability of the theory to handle overlapping
sites and local angular correlations between chains. The theoretical predictions for the pair
correlation functions were significantly improved by adding a power law tail to the direct
correlation function, and choosing the exponent to give the correct compressibility. The
purpose of the present investigation is to investigate the accuracy of self-consistent PRISM
theory for realistic models of more complex polyolefin melts by directly comparing with full MD
simulations. In this work we studied three types of polypropylene: iPP, sPP and head-to-head,
syndiotactic propylene denoted as hhPP. In addition we also studied PIB and poly(ethylene)
propylene (PEP). The architecture of each is shown in Fig. 1.

We begin with a discussion of the details of the chain models used in both the simulation
and theoretical calculations. We then give a brief discussion of PRISM theory where we
highlight the method employed in implementing the self-consistent calculation of both the
intra and intermolecular structure of the polymer liquids. This is then followed by a discussion
of the methods used in the MD simulations. Selected theory and simulation results are then
shown and compared for the radial distribution functions, structure factors, dihedral angle
distributions and radius of gyrations of the various systems.

2 Models

For the present study we employed a united atom model recently proposed by Martin and
Siepmann [15]. This model has been optimized to give correct results for the phase coexistance
curve near the liquid-gas critical point for small molecules consisting of up to 12 carbon atoms.
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isotactic polypropylene (iPP)

syndiotactic polypropylene (sPP)

head-to-head syndiotactic
polypropylene (RhPP)

alternating syndiotactic (pgp)
poly-ehtylene-propylene

poly-isobuthylene (PIB)

Figure 1: The five polyolefins studied in this work in a graphical representation which corre-
sponds closely to the model we employed: hydrogens together with carbons they are bonded
to are modelled by a single spherical site which is indicated by the dotted circles for all sites
belonging to a single monomer. We refer to specific sites by the bold italic letters printed in
each circle. Only stereo-regular types are studied in this work.

Bach carbon with its associated hydrogen atoms is represented by a spherical site. Pairs, inter-
and intra-molecular, of sites interact with a Lennard-Jones potential,

vor=ae((9)"- (2))

where the parameters for the various sites are given in table 1. In the MD simulations we used
the full potential cut off at a distance of 12A (including most of the attractive tail) whereas
for the PRISM calculations the potential was cut off at its minumum, r, = 2'/65, and then
shifted by €, such that the potential was purely repulsive. The LJ parameters for sites of




different type the standard Berthelot scaling rules were applied,

oww = 35(0q+0m)
€b = +/€a - €

For intra-molecular pairs the LJ potential is only applied, if they are further than three covalent
bonds apart.

Covalent bonds between nearest neighbor carbons are modelled by a simple harmonic
potential around a finite average distance ly,

1
Vbond("’) = §kbond (7" - l0)2 .

The constant kyong is set to the experimental value 900 224 and the bond length Iy = 1.54A

mol
regardless of the number of hydrogens bound to a particular carbon.

To respect the angular geometry of nearest- and next-to-nearest neighbor carbons a har-
monic bending potential between three neighboring sites is introduced:

1
Vbend = Ekbend (6 - @0)2 .

The angle 6 is defined as the angle in radians between a, b, ¢

(b—a)-(c—2a)
b —al|lc —al|’

cos(®) :=

if a,b,c denote the position vectors for three neighboring sites. The elasticity parameters
kpeng and the equilibrium angles ©¢ for the various neighbor triplets are listed in table 2.

Furthermore to incorporate the effect of transitional potential barriers between trans- and
gauche-conformations and different population densities of these states a rotational potential
for the dihadral angle ® between nearest neighbor chain-like quadruplets a,b,¢,d is intro-
duced,

3
Vot = Zai cos’(®),
=0

where ® is defined as

. _((e=b)x(b—a) (d=~c)x(c—b)
cos(®) = (||(c—b) x (b—a)ll> ' <||<d—c> x (c—bﬂl)'

Table 3 contains the parameters a; for the various quadruplet combinations of sites. Note,
that with our definition of @ the angle ® = 0° corresponds to the ¢rans state whereas in [15]
(and many other works) trans corresponds to ® = 180°.

In PP and PEP the C'H3 side-groups are not constrained enough by the angle potentials
with the backbone chain to remain on one side of the backbone chain in the course of a
simulation. In nature such flips of tacticity cannot occur as the H-atom of the CH-group to
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which the C H3-group is attached prevents this. Since in the united atom models the H-atom
is not explicitly simulated, we need to introduce a symmetry-breaking potential to incorporate
conservation of tacticity into the model. For this purpose we use a so-called improper harmonic
torsional potential for the star-like CHy — CH,CH3; — C Hy quadruplets in PP and PEP,

1
%mpr = ikimpr (‘I} - \110)2a

where ¥ is defined as

cos(¥) = (c—b) x (d~b) [ (c—a)x(d—a)
W (H(c—b)X(d—b)H) <||(C—a)><(d—a)||>

and a, b, c,d are the position vectors of the CH and CHj and the two backbone C Hs groups
(in the same order). Since ref. [15] does not include these parameters we had to make some
reasonable ad hoc assumptions: k;n,r was chosen to be identical to Kpeng and ¥y = £30.25°
depending on the intended tacticity of the chain.

| site | [oe] | o [A]]

C | 0.00099 | 6.40
CH | 0.0198 | 4.68
CH, | 0.0912 | 3.95
CH; | 0.1944 | 3.73

Table 1: Lennard-Jones interaction parameters for all CH, groups.

I angle triplet | ® | Kvend [%] |
CH,—-C—-CH, |109.47 123.75
CH,-CH-CH, | 112.00 123.75

CH, —CHy;—-CH, | 114.00 123.75

Table 2: Bending potential parameters various neighbor triplets.

| dihedral quadruplet | ag | a1 | as | as |

CH,—C—-CH,—CH, | 00914913 | 2.74474 0 -3.65965
CH,—-CH—-CHy—CH, | 0.783911 | 1.77528 | 0.443682 | -3.50082
CH,—CHy,—- CHy,— CH, | 0.783911 | 1.77528 | 0.443682 | -3.50082

kcal

Table 3: Torsional potential parameters for various quadruplets. All units are ;2.

3 Methodology
3.1 MC/PRISM Calculations

3.1.1 Generalized Ornstein-Zernike-Equation

PRISM theory is an extension to polymers of the reference interaction site (RISM) theory for
molecular liquids developed by Chandler and Andersen [16, 17]. Basically it generalizes the
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| type | Nec |\ T[E] [ p [A%] [ pw (55 |

iPP || 36%, 72, 1447, 288 | 453 | 0.03282 | 0.763
sPP || 36%, 72, 144, 288 | 453 | 0.03282 | 0.763
WhPP | 367, 72, 144, 288 | 453 | 0.03360 | 0.781

PIB 48* 298 | 0.03920 | 0.911
48" 453 | 0.03568 | 0.829
[ PEP | 30" [ 298 ]0.03670 | 0.854 |

Table 4: Polymer types modelled in this work: iso-tactic poly-propylene (iPP), syndio-tactic

poly-propylene (sPP), head-to-head (syndio-tactic) poly-propylene (hhPP), poly-iso-butylene

(PIB) and the alternating (iso-tactic) poly-ethylene-propylene copolymer (PEP). Polymers

marked with a * have been simulated with MD and PRISM, for others only PRISM calculations

were performed. The left-hand side of the table represents simulated chain lenghs in carbons

(N¢) with respective temperature (T'), carbon number-densities (p) and mass densities (py).
_pw was taken from experiment for large chain lengths.

Ornstein-Zernike-equation for isotropic atomic liquids [18] to molecular liquids consisting of
spherical sites. The radial distribution function matrix, ga-(r), is defined by

! ot
o) = [ LI g
In RISM theory the total correlation function Ha(r) = goy(r) — 1 is expanded as as a sum
of all possible paths of direct correlations,
Hoy(r) = war(7) * B, Cup(r) * Wi (1)
+ Wap(r) x5, .(r) ¥ w.,.(r) ¥ B.Cr).ux wip(r)
+ higher terms.

The * denotes the standard 3-dimensional convolution integral and the summing convention
over equal indices is assumed. This expansion is equivalent to recursing the formula

Hoy(r) = wan(r) * Cyp(r) * (w%(r) +PuHuy (), (1)

which reduces to the Ornstein-Zernike-equation if the liquid consists only of atoms described
by a single site (matrices reduce to scalars). wgy(r) is the intra-molecular radial distribution
function, which basically describes the average shape of a molecule. The function Cig,(r)
is called the dérect correlation function and can thought of as an effective medium-induced
interaction which acts on sites of type a and -y on two arbitrary molecules. p, is the average
partial number density for each site-type a. Eq. (1) can be viewed as a definition for Cg,(r).
Note, that this theory is only approximate since angular correlations between molecules (which
are absent in the case for atomic liquids) are not treated explicitly. The intra-molecular
distribution function enters this theory as an input field, thus it must be calculated by other
means.

Curro and Schweizer [1, 2] applied the RISM theory to polymers by making the additional
approximation that different sites along the chain (with equal symmetry and type) can be
treated by the same correlation functions. Such a simplification is necessary since the matrices




would otherwise become very large and eventually intractable for big molecules. For ring-
polymers the assumption would be correct because of their translational symmetry along the
polymer contour; for linear polymers the approximation becomes correct only in the infinite
chain limit, though chain-end corrections tend to zero rather quickly.

3.1.2 Closure Relations

Assuming we, () is known, the (P)RISM equation (1) contains two unknown functions, Ho. (r)
and Coy(r), which is useless without additional information. From simulations and experi-
ments on simple liquids one knows that C,,(r) is effectively a short-ranged function and
many approximations for Co(r) have been derived or postulated in the literature [18], most
prominently the Percus-Yevick (PY) closure relation,

Car(r) = (1= €?710)) (Har(r) + 1), (2)

Other closures include the hyper-netted chain (HNC) approximation [18] and the Martinov-
Sarkisov (MS) relation [19]. For molecular liquids Cyy(r) is not necessarily short-ranged,
however we will show later how the atomic closure relation (2) may be modified empirically
to improve results.

The PY relation is most successful in describing the packing structure in simple hard-core
liquids [18]. In general, there is no best generic solution, hence the choice of the approriate
" closure relation is problem dependent. It has been shown, that the adoption of simple atomic
closure relations poses problems for certain applications, e.g. in systems with strong attrac-
tions. In these cases more complicated closure relations have to be used. For homo-polymers
at melt densities the PY relation has proven to yield results in good agreement to simulations,
and we used this relation exclusively throughout this work. Since the PY closure does not
work well with attractive tails only the repulsive part of the LJ interactions is used in the
PRISM calculations. For dense melts the attractions have very little influence on the packing
and may therefore be safely neglected for the structure of the liquid [14]. Thermodynamic
quantities, like the compressibility, however are strongly affected by attractive interactions
and we will later show how to correct the PRISM results for pure repulsions in a perturbative
manner.

The coupled set of non-linear equations (1) and (2) can be solved by the Picard iteration
method for the function Iy (r) := Hay(r) — Cay(r). The reasons why one rather works with
I' instead of C or H directly is that I' is a continuous function even for hard spheres whereas
C and H are not. Also I' varies over a much broader range of r than each of C' (which
varies strongly inside the repulsive potential core) and H (which varies strongly outside the
core). Equation(1) is actually much easier to solve in Fourier-space because of the convolution
integrals whereas the closure relation (2) is easy in real-space since it is local in 7 . Hence one
employs the use of fast Fourier transforms to switch back and forth between r- and k-space
representations of the functions.

3.1.3 Self-Consistent Determination of w(r)

For the case that wa(r) is not known a priori, a hybrid MC/PRISM iterative scheme has been

devised to calculate way(r) in a self-consistent manner. One can generate an initial wc(g) (r)
by performing a single chain MC simulation. For chains in a melt one usually expects Flory’s




ideality hypthesis to be true and chains should have a random-walk-like self similar structure
(for length scales much larger than the peristance length of the chains). A single chain sim-
ulation with purely repulsive LJ interactions however will generate chain conformations with
the statistics of a self-avoiding random walk, thus w&o’e (r) will be of longer range than the
true way(r). Several approximations have been made in the literature to calculate the effect
of the surrounding chains in the medium on the interaction between sites. In general, this
is a very complicated task, since the induced interactions are many-body in nature, i.e. the
interactions energy induced by the medium should depend on all the positions of all atoms of
a single chain simultaneously. So far approximations have been derived only for a pair-wise
decomposition of this medium-potential. The simplest of these is called the HNC solvation
potential, because its derivation borrows from the approximations made in the derivation of
the HNC closure relation [20, 21},

BWary(r) = —Coaw(r) * By (wup(r) + Py Hup(r)) * Cpy(r) (3)

or in k-space:

BW oy (k) = ~Cou (k)5 50 (k) Coiry (K).

Other approximations similar in spirit to the PY and MS approximations have been proposed
in the literature [22].

From the & — 0 limit of Wy, (k) one can deduce that the average value of Wy (r) is
negative, which means W, (r) provides a net attractive force between sites on the same chain
and would therefore lead to smaller chain conformations. We can now solve the PRISM
equation for C’((ﬁ,) (r) and Héqy) (r) for the initial w((,on? (r) and then use Egs. (1-3) to calculate
a new Wo(zl,) (r). This new solvation potential can in turn be used to redo the MC calculation
of w((xly) (r) and so forth. There is no formal proof that this iterative procedure should actually
converge or, equally important, converge to the correct physical result, but it has been checked
in previous numerical calculations that the method converges and the results are in very good
agreement to simulation results.

It sometimes happens that the convergence is not strong enough and the sequence of
W@ (r) performs small oscillations around the final solution. Then the convergence can usually

be forced by mixing the old solution W with the current W to obtain the new guess for
W(H'l),

W) = o, W {W(i)} + (1 — )W,
where a,, is a real number between 0 and 1 (o, = 0.3 for all calculations in this work).

3.1.4 Simulation details

For the MC calculation we employed the standard pivot-algorithm [23] to generate a sequence
of chain conformations with the proper statistical distribution. We implemented two types
of pivot moves: bending and torsional moves. For the bending moves a random angle-triplet
was picked and one arm of the triplet was rotated by a random angle (usually between +30°)
around the axis perpendicular to the triplet-plane. The acceptance rate for these moves was
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usually between 15% and 30%. For the rotational moves a dihedral-quadruplet was chosen
at random and the shorter of the two arms was rotated around the center axis by a random
angle between +180°. The acceptance rate was usually between 7% (PIB) and 30% (PEP).
One Monte-Carlo step (MCS) always consisted of one attempted bending and one rotational
move.

The pivot algorithm [23] has been shown to efficiently relax all length scales of a (self-
avoiding) random-walk chain. The MC autocorrelation time for the end-to-end-distance and
radius of gyration of the chain scales proportionally to the length of the chain, unlike local MC
algorithms (like kink-jump) where it scales proportionally to the chain length squared. How-
ever the time to perform one pivot step is proportional to the chain length squared (because
of the non-bonded pair-interactions), so the total amount of computer time scales like the
chain length cubed, which is the same for local MC algorithms. For short-ranged potentials
and long chains the pivot algorithm can be modified to scale to the first power of the chain
length again by using the link-cell method which is commonly used in MD simulations [24].
For PRISM calculations this does not help very much because of the rather long-range nature
of the solvation potential. The cut-off for non-bonded interactions has to be chosen rather
large, thus the link-cell method speeds up the calculation to some extent but not as efficiently
as with pure LJ-interactions.

For all chains the number of MC steps between calculations of wq(r) was chosen to be
about 3 times (4 times for PIB) the number of sites on the chain, which was sufficient for
successive calculations of R and Rg to be almost completely decorrelated. w(r), H(r), C(r)
and their Fourier-transformed quantities where discretized on a grid of size G (typically 2048
or 4096) with a lattice spacing of 0.1 in real-space and 1—%1 A-1 in Fourier-space.

For the initial self-consistent iterations M = 500 independent conformations were gener-
ated and w was calculated as an average over these conformations. When the error

(S

Eself = N i 1)G ZZE ( a'y(‘f'n) - Wo(;y) ("'n))Q

=] y=1n=1

became less than 10~2 we generated M = 5000 independent conformations for each iteration
step thereafter to improve the statistical error. Since at this stage the solvation potential W,
did not change very much we could successfully employ Monte-Carlo reweighting [25] to re-use
the conformations generated with an older W,

M
<w> {Wnew} = ';— Z w(J) {Wold} . eﬂ[Wnew(j)—Wold(j)]
J=1
with

M
Z — Z eﬁ[Wnew(j)_Wold(j)].
j=1

Using the reweighting technique the number of conformation resamplings was typically less
than four. We used the automatic, empirical criterion

M
min{Z,1/Z} < v




to determine whether reweighting would still provide acceptable estimates for we, or if we had
to restart the chain generation with the Pivot-algorithm.
For the Picard iteration to solve the PRISM equation we used the criterion

2

9 N o G . 9 ~
Eprism = m@ Z Z Z (I‘a'y("'n) - F((y)y('rn)) < 10 7

a=lvy=1n=1

for convergence. To insure convergence the iteration was performed using 10% per cent of the
new result for I'y, mixed with 90% of the old result for the next iteration.

A full self-consistent MC/PRISM calculation took between 30 minutes (PEP, shortest
chains) and 50 hours (PIB, longest chains) of CPU time each on a single Pentium III/450
processor.

3.2 Molecular Dynamics Simulations

Molecular dynamics simulations were only performed for the shortest chain lengths (12 monomer
units) except for iPP where an additional simulation of chains with 48 monomers was per-
formed. We used a multiple time step second order symplectical integrator (RESPA) [26] to
solve the equations of motion. The temperature was kept constant by employing the stan-
dard Nose-Hoover extended ensemble method [27]. Since the bond, bending, torsional and
improper potentials have much higher eigen frequencies than the Einstein frequency of caging
induced by the non-bonded LJ interactions we could use a 1fs timestep for the bond forces, a
2 fs timestep for the angle, torsion and improper forces and a 4 fs timestep for the LJ forces.
The Nose-Hoover coupling frequency was chosen to be 0.02fs~!. At this coupling frequency
oscillations in the potential and kinetic energies of the particles were sufficiently suppressed.
For all simulations we used a slightly modified version of the LAMMPS code [28]. The simula-
tions were carried out at fixed density (see Tab. 4), corresponding to the experimental density
for large chain length to facilitate comparison with X-ray scattering in section 4.5.

The starting configurations were created by the same pivot algorithm that we used in the
MC/PRISM calculations. The final solvation potential that was obtained by a self-consistent
PRISM calculation was used to generate 100 (60 for iPP with 48 monomers) independent

~chain conformations which were very close to their equilibrium conformation. These chains
were placed randomly inside a cubic box with proper dimension L for a given density, taking no
measures to disallow chain overlap. Finally the coordinates were periodically folded into the
box. Since the chains were overlapping initially, we used a piecewise linear/cosine-potential

B(l—w—’) for 0<r<i

Upush(r) = e

B (1 + cos (71‘%)) for T <r<re

with 7, = 4.0A for all LJ interactions independent of the site type. The amplitude, B, was
increased linearly from an initial value of 10’;;—3; to 70%% within a total simulation time of 1
ps. Thus overlapping chains were pushed apart from each other rapidly, but smoothly. After
1 ps the full LJ-potential could be switched on without problems. This method disturbs the
chain conformations only locally, but not on large length scales. The perturbations on small
length scales were annealed after a short relaxation period. Note, that the soft Upysp, potential
differs inside the core 0 < r < r./2 from the potential that was used in previous studies [29] of
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polymer melts. The reason to change to a harder core was that with the pure cosine-potential
two sites could on rare occasions get stuck on top of each other with no route of escape since
they were caged by surrounding sites. This can happen since the repulsive force is increasing
from zero to its maximum for 0 < r < r./2.

After the chains no longer overlapped, we ran each system for a total of 8 ns (25 ns for
48 monomer iPP), of which the first 2 ns (5 ns for 48 monomer iPP) were always discarded
in the a posteriori analysis of the data. The coordinates of all particles were written every
200 ps. Typically each of the 8 ns simulations ran about 70 (PEP) to 130 (PIB) hours on 4
Pentium II1/450 processors. Comparing this to the PRISM runtimes for the shortest chains
this represents a factor of 200 in total CPU time.

4 Results & Discussion

4.1 Inter-molecular Radial Distribution Functions

The most important quantity which PRISM is able to calculate is the site-site radial inter-
molecular distribution function gq.(7) which describes the packing structure of the molecules.
The knowledge of the site-site interactions and intra- and inter-molecular distribution functions
allows one to calculate many important thermodynamic quantities of interest. The emphasis
of this work is to test the quality with which PRISM can predict the inter-molecular packing
structures for realistic polymer models compared to ezact results for such models obtained by
full scale MD simulations.

In Figs. 2 and 3 we compare PRISM and MD results for all different site combinations
for all five polymer models we have tested. It can be seen from these figures that there is
good qualitative agreement between PRISM theory and simulation for the polyolefins studied.
Examination of the radial distribution functions reveals that the strongest correlations near
contact ("4 A) are the goc(r) (gpp(r) for PEP) correlations between methyl groups. This
is not surprising since the side chain methyl groups are on the outside of the chains and can
approach each other readily in the melt. As can be seen in Fig. 2, PRISM theory does quite
well in predicting goc(r) for all PP and PIB, although the goc(r) are consistently softer than
from the simulations and the peak structure appears slightly out-of-phase towards smaller
distances compared to the MD results. This finding is consistent with what was found earlier
for correlations between methylene groups in polyethylene [14] melts. Similar results can be
seen from Fig. 3 for gpp(r). For the polyolefins studied here the methyl side groups tend to
shield the backbone sites from approaching each other in the melt. This is clearly seen in Fig.
2 where correlations such as gpp(r) involving backbone sites are almost zero in the 4A region.
It is also evident that PRISM predicts excessively soft correlations between sites (e.g. B sites)
that are highly shielded from each other. Fortunately, these buried sites (C or CH groups) do
not contribute significantly to the cohesive energy since the LJ attractions for our particular

~model are much weaker than those of the exposed CHs and CHjy groups (see Tab. 1) and
their short-range nature effectively cut off the longer range part of the correlation functions.

In our previous study on polyethylene [14], a considerable improvement in agreement of the
CHs — CH, intermolecular correlation function g(r) with the simulation result was obtained
by forcing the theoretical compressibility to be correct. This was achieved [14] for a hard core
site/site potential by adding a power law attractive tail to the direct correlation function C(r)
outside the hard core diameter. The range of C(r) is controlled by the power law exponent and
was adjusted to force agreement with the known compressibility. In the case of the multi-site
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Figure 2: Comparison of gay(r) for iPP (a), sPP (b), hhPP (c) and PIB (d) from MD and
MC/PRISM. All data was obtained from simulations at 453 K. The continuous line represents
the PRISM results and the dashed line the MD results.

polyolefins studied here, we have M (M +1)/2 independent direct correlation functions (where
M is the number of independent sites per monomer) and only one compressibility condition.

To investigate this approach in our case we, by analogy with the polyethylene case [14], take
the direct correlation functions to obey the closure condition

Gay(r) =0 for 1 <dg,
A
Coy(r) = Cgl,) (r) (d—"‘l) for 1> dyy

T
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Figure 3: Comparison of go(r) for PEP : a) diagonal elements and b) off-diagonal elements.
All data was obtained from simulations at 298 K. The continuous line represents the PRISM
results and the dashed line the MD results.

where ng) (r) is the direct correlation function satisfying the PY hard core closure inside
the hard core, and d,~ is the corresponding hard core diameter obtained by using the Barker-
Henderson or WCA mapping from a continuous Lennard-Jones potential [18]. For simplicity,
we take the range parameter A to be the same for all of the site-site direct correlation functions.
In this way we have only a single parameter, A, adjusted to 9.6, to adjust to force agreement
with the compressibility.

We have carried out this procedure for the case of iPP and the results are shown in Fig. 4.
It can be seen that there is some improvement in the agreement between theory and simulation,
especially for the peak positions of the correlation functions of the exposed C-sites which are
matched up with those of the MD simulation. Of course, the improvement is not as dramatic
as in the case of polyethylene where we had only one direct correlation function, since A is
undoubtedly different for each of the C,,(r) functions. But without additional information
from simulation (or experiment) a more general ansatz for the tail correction is unfeasable.
This is a consequence of the fact that the total structure factor Sy, (0) and we,(0) are singular
matrices.

An alternative way to correct the PRISM results would be to increase the effective LJ
diameters, o, by some amount, which would increase the effective density and thereby counter
PRISM’s tendency to predict too high compressibilities. Of course, this would also have
implications on the self-consistent calculation of w(r).
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Figure 4: Comparison of gay(r) for MD (dashed), self-consistent PRISM (continuous) and
tail-corrected PRISM (dotted) for iPP: a) diagonal and b) off-diagonal elements.

4.2 Cohesive Energy Densities

The cohesive energy density II and solubility parameter § are defined according to the relations

o0
Il =27 Z/ PapyUsqyrdr (4)
and
§ = V1L (5)

The cohesive energy densities were calculated from Eq. (5) and the radial distribution func-
tions shown in Figs. 2 and 3 and are given in Tab. 5 from both PRISM theory and from
the MD simulations. Not surprisingly, the PRISM values are consistently lower than the cor-
responding MD simulations due to the fact that PRISM theory overpredicts the amount of
overlapping of intermolecular sites. Nevertheless there is good agreement between theory and
simulation for the relative values of the solubility parameters among the various polyolefins. If
we use the compressibility-corrected gq-(r) the PRISM prediction for the cohesive energy den-
sities increases and is in fact higher than the simulation results, though the overall difference
to MD is diminished significantly.

For comparison we also show II from previous MD simulations on short chains for a different
polyolefin model [30] and the related internal pressure,

oUu
Im* = | 2=
(8V>T,N,

from experimental measurements for long chain lengths. It was shown in [30] that IT and
II* show very similar behavior, with II being consistently smaller than IT*. II* from MD
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simulations agreed well with experimental data once IT* was extrapolated for infinite chain
lengths. The model used in this work gives slightly smaller cohesive energies than that from
[30] except for PIB which is larger. The results for PEP are not really comparable since the
temperatures at which they were calculated differ significantly.

| type | T [K] | Uprism | Oyp [ Oyp—(423K) [II%, (440K) |

PE | 448 | 161 (199) | 187 232 312
iPP | 453 | 131 (166) | 155 174 252
sPP | 453 136 150 183
hhPP | 453 145 176 108 278
PIB | 453 171 199 183 302
PIB | 298 126 155
PEP | 298 210 929 207 280

Table 5: Cohesive energy density II for the shortest simulated chains (24 backbone carbons)
and Internal Pressure IT* for long chain experimental systems. IIysp_o was taken from [30]
and ITj,, from [31]. Numbers in parenthesis are calculated from compressibility-corrected
PRISM calculations. All units in M Pa. -

4.3 Single-Chain Statistics

From Fig. 5 and Tab. 6 it can be seen that there is good agreement between the average single
chain dimensions between PRISM theory and MD simulation for short chains, as measured
by the mean square end-to-end distance <R§), radius of gyration <R§>, and characteristic
ratio Cp, with the exceptions of PIB and PEP. This is not surprising since both the theory,
through the single chain Monte Carlo simulation, and the full MD simulations treat the single
chain problem with almost exactly the same potential parameters in the zero density limit.
The only difference is the fixed bond length used in the MC calculations and the harmonic
potential used for MD. At high density, it is likely that the solvation potential in Eq. (3)
does not appreciably affect the average single chain dimensions on short length scales due to
the inherent chain stiffness imparted by the bond angle and rotational constraints. This is
confirmed in Fig. 6 where it can be seen that there is essentially exact agreement between
theory and MD simulation for the single chain structure factor for higher & -vectors. A more
detailed comparison at short length scales will be given in the next section.

For the three polypropylenes under investigation, we also performed self-consistent PRISM
calculations as a function of chain length in the range of 12 - 96 monomeric units. For longer
chain lengths of the iPP and hhPP studied with PRISM theory, the characteristic ratios can
be seen from Tab. 6 to be significantly larger than the experimental values measured by SANS
experiments on the melts of long chain polymers, e.g. iPP: Co = 6.2 [32]. These differences
are mostly due to the small chain lengths studied in this work. Furthermore it can be noticed
in Fig. b that the scaling of (R?) and (Rg) with chain length is higher than o« N and the
ratio B2/ Rg is quite a bit larger than the value of 6 expected for a Gaussian coil out to chain
lengths of 96 monomers. The correct ideal scaling should be attained for longer chain melts;
for PE the Gaussian limit is reached only for chain lengths of about 400 carbons and higher
[33]. In order to introduce more molecular realism in the PRISM calculation, one could scale
the approximate solvation potential in Eq. (3) by a constant in order to force self-consistent
PRISM theory to produce the correct characteristic ratio if the experimental value is known.
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A more rigorous attempt to the correct the solvation potential would involve higher order
correlation functions and thus a multi-body solvation potential.

Ciwwe [TE [N | R B [ Ow [BYRE] R_| . ] Ow [FURL]
PP | 453 || 12 || 276(3) | 38.2(2) | 5.06 | 7.23 | 259(4) |36.7(2) | 4.75 | 7.06
24 || 697(9) | 97.7(8) | 6.25 | 7.13
43 || 1570(30) | 235(3) | 6.97 | 6.68 | 1230(50) | 196(5) | 5.46 | 6.3
96 || 3500(60) | 540(6) | 7.73 | 6.48 |

sPP | 453 || 12 || 399(4) | 49.2(3) | 7.31 | 8.11 | 384(d) | 47.8(2) | 7.04 | 8.03
24 || 1007(15) | 134(1) | 9.03 | 7.51
48 || 2386(45) | 344(4) | 106 | 6.94
96 || 5270(70) | 791(8) | 11.6 | 6.66

hhPP | 453 | 12 || 383(4) |48.3(3) | 7.02 [ 7.93 | 389(3) | 482(2) | 7.13| 8.07
24 || 996(10) | 134(1) | 8.94 | 7.43 .
48 | 2363(35) | 339(3) | 10.5 | 6.97
96 || 5200 (6) | 11.5 | 6.50

(

PIB | 298 | 12 | 266(5) (4) [ 483 6.49 | 309(d) | 43.1(2) | 5.66 | 7.17

453 || 12 || 279(4) | 42.0(3) | 511 | 6.64 | 259(2) | 41.1(1) | 474 | 6.30
(2) )

| PEP | 298 | 6 [ 315(2 577 | 745 | 350(3) |46.6(2) | 642 751 |

Table 6: Single chain statistics and solubility parameters for all systems simulated by PRISM
(left half of the table) and MD (right half). Units for lengths are A.
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0.01 0.1 0.01 0.1
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Figure 5: a) Squared end-to-end distance (R2) and b) radius of gyration squared <R§) divided
by the number of monomers Ny, vs. 1/Ny, for various types of poly-propylene: iPP (O), sPP
(O) and hhPP (A).
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Figure 6: Intra-molecular distribution function w(r) weighted by 2 for iPP (a) and PIB (b)
from MD (o) and PRISM (continuous line). The sharp, high peaks from the 1-2 and 1-3
nearest neighbors have been removed and, for clarity, only every other data point of the MD
analysis is shown.

4.4 Bending and Dihedral Angle Distributions

While the agreement of PRISM vs. MD is very good in the single chain statistics for all the PP
models, some notable disagreement can be found for PIB. Also the extrapolated stiffness for
infinitely long chains for all the chains is consistently overpredicted vs. experimental values.
The are two possible explanations reasons for the discrepancy: The model is not accurate
enough to reproduce the correct chain stiffness or the HNC approximation for the solvation
potential is too weakly attractive. To address this question we performed a MD simulation
for iPP with 48 monomer units to see whether the MD results predict a significantly lower
chain stiffness. From Tab. 6 it can be seen that the MD result for the 48 monomer chain gives
considerably smaller values for RZ,RZ and Cy. The chain is already much closer to being
Gaussian than predicted by PRISM theory as can be seen from the ratio RZ /Rg. Hence we
must conclude that the solvation potential is too weakly attractive to collapse the chain to a
Gaussian coil. From Tab. 6 we can also see that PRISM predicts an expansion of the radius
of gyration and end-to-end-distance of the chains for PIB with temperature whereas MD (and
experiment) predict a negative temperature expansion coefficient.

In order to better our understanding of the effects of the solvation potential or interchain
non-bonded interactions on the internal structure of the chains we looked more closely at
bending and dihedral angle distributions for iPP and PIB. These are displayed in Figs. 7
and 8. In addition to the usual fixed bond self-consistent PRISM calculation and the flexible
bond MD simulation we performed two additional calculations. In one of them we did a
self-consistent PRISM calculation with flexible bonds (as in the MD simulation) in order to
test the influence of bond flexibility. In the other calculation we also used the flexible bonds
and did a non-self-consistent PRISM calculation where solvation potential was set to zero.
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The latter provides us with information about the overall effect of the solvation potential.
For iPP (Fig. 7) the distributions for an isolated chain are hardly affected by either non-
bonded interactions or solvation potentials, whereas for PIB (Fig. 8) some influence on the
dihedral angle distribution exists. The latter is a consequence of the fact the the asymmetry
of the dihedral angle position is induced by the 1-5 interactions between CHj sites alone
(the sum of all contributing dihedral angle potentials for a backbone bond is symmetricwith
respect to gauche and trans positions), whereas in iPP its influence is considerably weaker
and, to a large degree, induced by the dihedral potentials. Therefore the solvation potential
does change the dihedral angle distributions for PIB as can be readily seen by comparing the
flexible bond self-consistent PRISM with the non-self-consistent one in Fig. 8. From the same
figure it seems the flexible bond PRISM calculation captures the influence of the melt on the
distribution better than the PRISM calculation with fixed bonds. This is a possible origin
for the misprediction of the thermal expansion for PIB in Tab. 6; indeed the flexible bond
PRISM calculation gives a R2(453K) = 366(7) and R2(298K) = 322(5) which predicts the
correct temperature expansion, but the overall chain expansion is too large. ‘The latter is a
consequence of the result that the flexible bond PRISM calculation also predicts the solvation
potential to be much weaker than in the case with fixed bonds.

a) 0.3 b) 0.03 T T T T Y T T
0.25 0.025
_ 02 = 0.02
T o
3 5
o 0.15 & 0.015
[} e
o, —
B~ 2
0.1 > 001 .
3)
0.05 . 0.005 .
0 L L 0
Q0 100 110 120 130 140 -150-100 -50 0 50 100 150
O [degrees] . @ [degrees]

Figure 7: Bending angle (a) and dihedral angle (b) distributions of iPP for MD (continuous
line), flexible bonds single-chain MC (dashed), flexible bonds self-consistent PRISM (dotted)
and fixed bond self-consistent PRISM (dash-dotted). a.1.: ABC-angle, a.2.: BAB-angle, a.3.:
ABA-angle, b.1.: BABA-dihedral, b.2.: CBAB-dihedral. '

4.5 Comparison with X-ray Scattering

We have also computed the partial structure factors from PRISM theory and MD simulation
from the definition [5, 18]

o~

§(k)afy = pai(k)ay + papyh(k)ay
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Figure 8: Bending angle (a) and dihedral angle (b) distributions of PIB for MD (continuous
line), flexible bonds single-chain MC (dashed), flexible bonds self-consistent PRISM (dotted)
and fixed bond self-consistent PRISM (dash-dotted). a.1l.: CBC-angle, a.2.: ABC-angle, a.3.:
ABA-angle, a.4.: BAB-angle, b.1.: BABA-dihedral, b.2.: CBAB-dihedral.

using the intramolecular structure factors and the Fourier transform of the individual in-
termolecular correlation functions. The partial structure factors can then be used to make
contact with experimental x-ray scattering intensity I(k) through the relation

I(K) =) ba(k)by (K)Sary ()
ay

where the b,(k) functions are the scattering form factors for the various site types. The
scattering data are typically expressed on a per site basis H(k) defined as [34]

Ns (I(k) — Ss(K))
(Za naba(k))2

where n, and N, are the number of sites of type o and total number of sites per monomer
respectively and Ss(k) = Y., b%(k) is the self scattering contribution (then H(k) — 0 for
k — 00).

The PRISM and MD results for the shortest chains along with the experimental scattering
functions are shown in Fig. 9. Inspection of Fig. 9 indicates good agreement between theory
and simulation for H(k). As expected, there is exact agreement between PRISM theory and
MD simulations in the high wave vector regime since scattering in this region essentially
probes the single chain structure of the macromolecules. The main peak at ~ 1A~ contains
information about both inter and intramolecular structure. It can be seen that PRISM theory
predicts the height of this main peak to be somewhat lower than from the MD calculations.
This is a consequence of the larger theoretical compressibility xr caused by the excessive site
overlap of sites predicted by the theory.

H(k) =




From Fig. 9 it can be seen that the zero wave vector structure factors from theory and sim-
ulation seem to be in close agreement. This would imply, therefore, that the compressibilities
would also be in agreement since S(0) = p?kpTx. It should be pointed out, however, that the
PRISM theory employed a purely repulsive shifted Lennard-Jones potential, whereas in the
in MD simulations the entire Lennard-Jones potential, including the attractive branch, was
used. Attractions are known not to be important in determining the short-range structure or
pair correlation functions of polymer melts which are dominated by the purely repulsive part
of the potential. Attractions, however, can have a very significant effect on thermodynamic
properties such as the compressibility. Hence one would expect differences between theory
and MD simulation for the zero wave vector structure factor. In fact inclusion of the effect of
attractions through perturbation theory would significantly increase the theoretical structure
factor in the vicinity of k¥ = 0 shown in Fig. 9.

The experimental structure factor obtained from wide angle x-ray scattering experiments
[6, 34, 35] are also shown in Fig. 9. Overall agreement is quite good considering the fact that
PRISM and MD simulation results are for short chains and experiments are for long chains.
Part of this due to the fact that the monomer density is the same for all three. The differences
in the structure factor at high wave vectors between the experiment and both theory and
simulation reflect the fact that the local bond lengths, bond angles, and rotational potentials
used in the computations do not completely model the reality of the actual polyolefin chains

-studied experimentally. It is interesting to note that the MD simulations are in reasonably
good agreement with experiment for the main peak in the structure factor for all the polyolefins
except hhPP. The lesser agreement of our results for hhPP could be consequence of the fact
that the experimental systems are atactic whereas we have chosen a syndiotactic order in
order to avoid the necessary quenched average over the different tacticities. Also little is
known about the ratio of iso- and syndiotactic states in hhPP.

To check the influence of chain length on the structure factor we simulated a 48 monomer
iPP chain and compared H(k) for both 12 and 48 monomers in Fig. 10a. For comparison
results from the PRISM calculation are shown in in Fig. 10b. While the high wave vector
regime is not influenced at all, the compressibility for the simulated system turns out to be
about 10% larger for the longer chains and the height of the first peak is also about 5% larger
and slightly shifted to smaller k-values. The higher compressibility can be understood as a
consequence of the effectively smaller density of the long chain system because there are less
chain ends per total number of monomers. Overall the differences are fairly small but they
should be taken into consideration as systematic correction for the comparison to experimental
data in Fig. 9.

Given that the PRISM and MD results for H(k) agree quite favorably and PRISM is a
computationally more efficient than MD, we believe that PRISM is an excellent method to
distinguish between different potentials. This is particularly important for PIB, where most
potential sets give fairly poor results for H(k). To demonstrate this point we did a self-
consistent PRISM calculation for the PIB model presented in [30]. From Fig. 11 we can see
that the present model agrees somewhat better to the experimental data in the low k region,
i.e. the packing is better described mainly as consequence of the different LJ interactions. On
the other hand the model from [30] is slightly better in the high k region. The latter is largely
due to a too small BAB-angle in the model used in this work. It can be seen from Fig. 8 a)
that the BAB-angle is stretched far above the average angle of 114° and closer to 122° from
the model in [30] as consequence of the strong repulsion of neighboring C H3 groups. The good
agreement to experimental H (k) data obtained in [5] was using essentially the same model as
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in [30] however the 1-5 interactions were tuned to optimize the agreement with experimental
H (k). In the present model no tuning was done. Clearly the 1-5 interaction between the C Hj
sites in PIB is a crucial parameter for obtaining good agreement with experimental data. For
the other polyolefins, the two potential sets give comparable results [35].
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Figure 9: Total structure function measured by X-ray scattering [6, 34](c) compared to the
MC/PRISM (dashed) and MD (continuous) result for the shortest chains. All PP and PIB
results are at 453K, PEP at 298K and PE at 448K (taken from [14]). PRISM results have
not been corrected for LJ attractions and bond lengths were kept constant.

5 Conclusion and Outlook

In this investigation we have shown that self-consistent PRISM theory gives good agreement
with exact simulations of polyolefin melts. The agreement, however, falls short of being
quantitative. As in our earlier study on polyethylene, the shortcomings of the theory are
probably due to the inability of RISM theory to treat sites that are significantly overlapped.
Another contributing factor could also be the presence of local nematic ordering between
chains. For polyethylene it was demonstrated that local nematic ordering increases as bond
angle constraints and torsional potentials are introduced into the model. PRISM theory is
incapable of accounting for these angular correlation effects.

Clearly the solvation potential used in this work is an insufficient approximation to obtain
the correct scaling for the radius of gyration of long chains. One may artificially fix this
behavior by introducing a variable prefactor in front of Eq. (3) in order to get the correct
scaling [5, 6] however this diminishes the predictive power of the theory. For future applications
better approximations would be desirable. Nontheless the overall quality of agreement in the
total structure factor with MD simulations makes self-consistent PRISM a valuable tool for
distinguishing potential differences quickly and may be used for tuning them.
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Figure 10: Comparison of total structure factor of iPP for 12 monomers (continuous) and 48
monomers (dashed) from MD calculations (a) and (fixed bond length) self-consistent PRISM
(b) compared to X-ray scattering (o).
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Figure 11: Total structure function for two different models of PIB calculated by (fixed bond
length) self-consistent PRISM - ref. [15] (continuous) and ref. [30] (dashed) - compared to
experimental data (o).

In self-consistent PRISM theory we treat the single chain part of the problem exactly
through a single chain Monte Carlo simulation. The many chain effects are approximately
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accounted for in the solvation potential. If one is interested in obtaining a more quantitative
theory, one could treat the problem exactly at the two-chain level as suggested in [36]. In this
approach one does a two-chain Monte Carlo simulation to obtain the various g, (r). The re-
maining chains in the melt or blend are mimicked using the same solvation potential employed
here between intra and intermolecular sites of the two chains during the two-chain simulation.
Such calculations are numerically feasible by taking advantage of reweighting techniques so
that the Monte Carlo simulation does not have to be performed for each iteration of the
self-consistent computation of ga-(r). This work will be the subject of a future investigation.
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