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Abstract

A kinetic, three dimensional, Monte Carlo model for simulating grain growth in the
presence of mobile pores is presented. The model was used to study grain growth and
pore migration by surface diffusion in an idealized geometry that ensures constant driving
force for grain growth. The driving forces, pore size and pore mobilities were varied to
study their effects on grain boundary mobility and grain growth. The simulations
captured a variety of complex behaviors including reduced grain boundary velocity due
to pore drag that has been predicted by analytical theories. The model is capable of
treating far more complex geometries including polycrystals. We present the capabilities
of this model and also discuss its limitations.

Introduction

During the later stages of sintering of ceramic powders, pores become isolated and
pressurized. Densification is accompanied by curvature driven grain boundary migration,
which causes grain growth. Under certain circumstances, the pores become mobile and
attach themselves to the moving grain boundaries. These pores at the grain boundaries
exert a pinning force on the grain boundaries, modifiying their velocity. In extreme
cases, the pores can completely stagnate grain growth (Zener pinning). The extent of this
pinning behavior is influenced by the 1pore size, shape and mobility as well as by the
grain size and grain boundary mobility 234 Predicting the microstructural evolution of
such systems is very complex and has enjoyed limited®.

Grain growth in the presence of a mobile second phase has been studied in two-
dimensions by Tikare and Holm’. They found grain growth to be Zener pinned. When
two pores come into contact with each other by random walk, they immediately
coalesced to form a single pore. This allowed the local grains that were previously
pinned by the pores to grow until the new distribution of pores around them pinned them
again. Thus grain growth was rate limited by the pore migration and so both pore growth
and grain growth had a growth exponent of n = 5, which is consistent with the random
walk and coalescence mechanism.
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It is known, however, that 2-D and 3-D Zener pinning are completely different
phenomena. A 3-D boundary interacting with an array of pores can be treated as a single
thermodynamic entity. The velocity of such a boundary can therefore be calculated by
summing the pinning forces and driving forces acting on it. Boundary detachment from
pores depends only on the net force acting on the boundary. However when a 2-D
boundary meets a pore, it effectively splits into two independent boundary segments,
each of which can satisfy the equilibrium surface tension required at the pore interface.
The point at which each segment attaches to the pore effectively becomes a node.
Detachment from the pore can only occur if the two boundary segments rotate by an
angle of 180 degrees. This was first pointed out by Hillert®, who showed that this results
in the stabilization of grains with less than 6 neighbors, leading to a radically different
pinning behavior. This is the crucial difference between 2-D and 3-D pinning. In 3-D,
the pinning force is a frictional force due to the local increase in boundary area during
pore detachment. In 2-D, pinning arises from the topological consideration that the pores
act as static nodes. The upshot of this is that one cannot use 2-D models to investigate
the pinning behavior of 3-D polycrystals.

In a recent paper Miodownik et al.” showed that a 3-D Monte Carlo Potts model can be
used to accurately simulate Zener pinning. In this paper, we use a similar model to
investigate the effect of mobile pores on a single mobile grain boundary. The advantage
of the model over analytical approaches is that it can incorporate geometric complexity of
real microstructures and the accompanying thermodynamic and kinetic factors. While
the model is presented here as grain growth in the presence of isolated, mobile pores, it is
readily applicable to grain growth in the presence of a mobile second phase that is either
isolated or interconnected.

Development of the Simulation Method
Description of the Model

The Potts Model®, a kinetic Monte Carlo model, was used to simulate grain growth and
pore migration. In the Potts model, a canonical ensemble of grain sites and pore sites is
allowed to populate a cubic lattice. These grain and pore sites may be conceptualized as
discrete, arbitrary quanta of matter, on the scale of billions of atoms, belonging to a grain
or to a pore. Thus all information about atomic interactions is lost. The grain sites can
assume one of @ distinct, degenerate states, where ¢ = [1, 2, ... Q). The pore sites can
assume only one state, ¢ = -1. Contiguous grain sites of the same state ¢ form a grain and
contiguous pore sites form a pore. Grain boundaries exist between neighboring grain
sites of different states, ¢, and pore-grain interfaces exist between neighboring pore and
grain sites. Grain boundaries and pore-grain interfaces have an excess energy associated
with them. The total system energy is the sum of this excess interfacial energy, given by
the Hamiltonian:

E =—;—i§(1—5(qi,qj)) Equation 1
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where N is the total number of sites, dis the Kronecker delta with &g; = q;) = I and Xg;
#g;) = 0, g; is the state of the grain or pore at site { and ¢; is the state of one of the 26
first, second and third nearest neighbors at site j. Thus, the only energy considered in the
simulation is the interfacial energy and all unlike neighbors contribute one arbitrary unit
of energy to the system. As pore sites can assume only one state, g = -1, there are no
pore boundaries and all pores sites will coalesce. In contrast, grain sites can assume
many different states making grain boundaries possible. This yields a two-component,
two-phase system with uniform, isotropic interfacial energies between grains and
between grains and pores.

Grain growth is simulated using the method developed in previous works”'®!!. First a
grain site is chosen at random from the simulation space. Then a new state q is chosen at
random from the @ possible states in the system. The change in energy, AE, is calculated
using eq. 1, and the probability P(AE) that the site will change orientation is then
determined from the transition probability function:

x| 2
ex kT for AE>0
P = Equation 2
1 for AE<0
L

Where kgT is the simulation temperature and defines the thermal fluctuation of the
simulation. The standard Metropolis algorithm is used to accept changes. A random
number, R, between 0 and 1 is generated. If the R < P, then the grain growth step is
accepted, if not, the original state is restored. The simulation temperature used for grain
growth varied from kpT = 0 to 2.0.

Pore migration is simulated using conserved dynamics, so that the total number of pore
sites and grain sites remains constant throughout the simulation. First a pore site is
chosen at random and next a neighboring grain site is chosen at random. The two sites
are temporarily exchanged with the grain site assuming a new state 4. The new state q is
chosen, so that it results in the lowest energy. The change in energy for this exchange is
calculated using eq. 1 and again the standard Metropolis algorithm is used to perform the
pore migration step using eq. 2 to determine the transition probability. This algorithm
has been shown to simulate pore migration by surface diffusion’.

Time in the Potts model is measured in units of Monte Carlo step; IMCS corresponds to
N attempted changes where N is the total number of sites in the system. The mobility
ratio of pore boundaries to grain boundaries is varied by varying the attempted grain
growth step to pore migration steps. Thus, at pore site mobility M=1, the grain sites and
pores sites have attempted equal number of changes and at M=10, the pore sites have
attempted 10 pore migration steps for each grain growth attempt.




top grain

Figure 1. The geometry used to study grain growth with constant
driving force consisted of four columnar grains, numbered 1 to 4,
with hexagonal cross-section with a flat grain placed over them
(the top grain has been partially cut-away to show the four
columnar grains).

3-D Hexagonal Geometry

To understand and characterize the motion of both grain boundaries and pores, we
studied a simple geometry constructed to ensure that a particular grain boundary would
move with constant velocity in a given direction. This geometry was developed by
Miodownik et al’ to study Zener pinning. This geometry, shown in figure 1, consists of
four columnar grains with hexagonal cross-sections with one flat grain placed above
them. Periodic boundary conditions are used in the X- and Y-directions so that the four
columnar grains are identical in shape and size. Only the boundary between the planar
grain and the hexagonal grains is in a non-equilibrium state, which results in a driving
force for motion in the Z-direction. The driving force, Fy, is given by the rate of change
of grain boundary energy, Ay, with respect to grain volume, V, as the grain grows in the
Z-direction. Assuming ¥ is constant, the driving force is:

dA 16D
Y, VG,
F.= dV 8D /
dz 3

where D is the grain size shown in Figure 1 and yis the surface energy. Since the grain
size D remains constant, the driving force Fy also remains constant during grain growth
in this geometry. Assuming the velocity of the grain boundary v is proportional to the
driving force, we can write:

Equation 3

v=uF, = 2}/’“ Equation 4




where 4 is the grain boundary mobility Thus, the geometry shown in figure 1 allows us
to vary the driving force for grain growth and grain boundary velocity simply by
changing the grain size D. Miodownik’ et al. have verified that the model behaves

according to equation 4.

Figure 2a. Spherical pores are placed at the
quadra-junctions. The top grain is not
shown and cutout shows that the cross-
sections are circular.

Figure 2¢. Slice through the microstructure
showing the triangular cross-section of the
pores.

Figure 2b. The minimum energy shape of
the grain boundary.

Figure 2d. Slice through the top grain
showing the circular cross-section of pores.

Grain growth in the presence of mobile pores was simulated by placing spherical pores at
all the quadra-junctions as shown in figure 2a. Pores were placed at the quadra-junctions
rather than at grain centers because pores placed at the grain centers migrated to the grain
junctions as these are their minimum energy locations. Furthermore, more than one pore
would often migrate to the same quadra-junction, leaving other junctions without pores.




Thus, to maintain a constant driving force, pores of the same size were placed at the
quadra-junctions. Once the simulation is started, the pores and grain- boundary shapes
change to their minimum energy shapes. The shape of the grain boundary is a dome of
constant curvature as shown in figure 2b. The equilibrium shape of the pores is very
similar to an ice-cream cone with the cone having a triangular cross-section between its
three adjacent, columnar grains. Figure 2c¢ shows the triangular cross-section of the pore
between three grains and figure 2d shows the circular cross-section (like the ice cream on
top of the cone) protruding into the top grain. The triangular and circular cross-sections,
shown in figures 2c and d, are not smooth and regular as is characteristic of Monte Carlo
simulation at temperatures kgT > 0 due to thermal roughening of the surfaces. Before the
grain boundary and pores reach their minimum energy shape, the velocity of the grain
boundary fluctuates as shown in figure 3, a plot of grain boundary velocity as a function
of position. Once their minimum energy shape is formed, the velocity becomes constant.
The grain boundary and pores retain their minimum energy shape in the constant velocity
portion of the simulation. When the grain boundary and pores intersect the edge of the
simulation, the velocity becomes erratic. It is the constant velocity portion of the
simulation that is useful, as the driving force remains constant during this portion of the
simulation. Finite simulation temperatures must be used for both grain growth and pore
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Figure 3. Plot of gréin boundary velocity as a function of position for the case of
grain size D = 58, pore size d = 6, pore to grain boundary mobility ratio M =5,
grain growth temperature kT, = 1.0 and pore migration temperature kg7, = 2.0

migration to correctly simulate grain growth in the presence of a mobile phase. A
complete discussion of the need for finite simulation temperature follows in the
Appendix. In this work, we used pore migration temperature kg7, = 1.0 and grain
growth temperature kT, = 1.0 to study grain growth in the presence of mobile pores.




Results

Grain growth in the presence of pores of different sizes and mobilities was investigated.
The pore size was varied from d = 4.5 to 6 (corresponding to pore volume of 50 to 125
sites) and the pore to grain boundary mobility ratio was varied from M = 1 to 20. The
grain boundary velocity for different pore mobilities and constant pore size, d = 6, is
plotted as a function of driving force in figure 4a. The solid line is grain boundary
velocity for normal grain growth with no pores. The data represented by symbols is the
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Figure 4a. Grain boundary velocity as a function of driving force for

pores of constant size d=6 and varying mobilities.
grain boundary velocity with mobile pores at all the quadra-junctions. At the low pore
site mobility, M = 1 to 5, the grain boundary broke away from the pores for all driving
forces considered. When M=10, the pores moved with the grain boundary at low driving
forces but broke away at high driving forces. The same general behavior was anticipated
for M = 20 but break-away was never observed. The reason for this is that high driving
force requires small values for D. When D starts to approach the size of the cells in the
simulations then anomalous results are observed due to lattice effects: the curvature
cannot be properly resolved at these sizes and is distorted to the point where the grains
have flat surfaces as shown in figure 4b. This leads to full pinning of the grains by the
pores and is an artifact of the simulation technique.

Grain growth was studied as a function of driving force for constant pore site mobility M
= 10 and two different pore sizes, d = 4.5 and 6. The results are shown in figure 5. At
the small pore size d = 4.5, the grain boundary velocity was reduced by the presence of
the pore, but break-away did not occur. At the larger pore size of d = 6, the grain
boundary velocity was reduced further and break-away occurred at high driving force
where the pores impeded grain boundary mobility too much.




In summary, the presence of mobile pores modified grain growth behavior tremendously
and a variety of phenomena was observed. The shape of the grain boundary is modified
by the presence of pores. In general, as the effective pore mobility is decreased or the
pore size increased, the grain boundary velocity decreases. However, break-away can
occur if the boundary is impeded too much. Complete pinning of the grain boundary by
the pores was observed but this is a lattice effect.

Figure 4b. The microstructure for grain size D = 14 and pore size d
= 6. The large pores in small grains distort the grain boundary
curvature.
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Figure 5. Grain boundary velocity as a function of driving force for
pores of constant mobility and different pore sizes.




Discussion

Gottstein and Shvindlerman'? developed an analytical model of grain boundary motion in
the presence of mobile particles. The theory is very similar to the classic work of Cahn®
and Lucke and Stuwe'* for grain boundary motion with impurity drag. They proposed the
velocity of a pore-laden grain boundary is
v=u(F,—F)) Equation 5

where F; is the drag force due to particles and is a function of interaction energy between
the particles and the grain boundary, the concentration of particles, their mobility and the
grain boundary velocity. There are two limiting cases; high particle mobility when the
boundary velocity is determined by the mobility of the boundary, and low particle
mobility when the velocity is determined by the mobility of the particles. The velocities
in between these two extremes are difficult to predict because velocity is specific to the
details of each case. However, the driving force for transition from one branch to the
other was estimated to occur at the Zener pinning condition of the particles.

We consider pores to behave identically to particles and thus the velocity of the pore and
therefore the boundary is given by

v,=u,F, Equation 6
where 4, is the effective mobility of the pore. At steady state the velocity of the grain
boundary and pore are the same, therefore by substituting equation 6 into equation 5 and
setting v = vp, we get

HE,

p=—"— Equation 7
1+-2
Ky
The effective pore mobility depends strongly on pore size. In the case of spherical pores,
it has been shown® to be proportional to D,d'4 , where D; is the interfacial diffusion
coefficient and d is the pore size. In this simulation, pore site mobility M is proportional

to D;and so we get

Equation 8
1+

where [ is a proportionality constant.

The velocities of pore-laden grain boundaries, given by equation 8, are plotted in figures
6a and b. The proportionality constant ! used in all plots is I = 7 and was determined by
best fit. The grain boundary velocity predicted by equation 8 agrees with the trend that
grain boundary velocity increases with increasing driving force, increasing pore mobility
and decreasing pore size. However, exact agreement was not obtained. We attribute the
difference to two factors. First, the velocity predicted by equation 8 assumes pores are
spherical. However, pores are not spherical as shown in figures 2¢ and d. Second, the
curvature of the grain boundary is assumed to be the same as the curvature of the grain
boundary with no pores. However, the presence of pores at the quadra-junctions does




change the curvature of the grain boundary. The grain boundary curvature decreases as
the relative size of the pore with respect to the grain size increases. This decrease in
grain boundary curvature is expected to result in lower grain boundary velocity as
observed in the simulations. Furthermore Rédel and Glaeser* found evidence for these
effects in polycrystalline alumina. They joined single crystal alumina to polycrystalline
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Figure 6a. The simulation results are compared to analysis. The solid
lines are pore laden grain boundary velocities for pores of sized = 6
with different mobilities. The dotted line represents driving forces at
which grain boundary break-away is predicted by equation 10.
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Figure 6b. The simulation results are compared analysis. The solid
lines are pore laden grain boundary velocities for pores of sized = 6
with different mobilities. The dotted line represents driving forces at
which grain boundary break-away is predicted by equation 10.




alumina and induced array of pores at the interface. The first stage of microstructural
evolution was characterized by the pores at the interface changing their shape to a
minimum energy configuration. Pores at quadra-junctions assumed the ice-cream cone
shape similar to those observed in our simulations. They reported pore-laden grain
boundary velocity increased with increasing surface diffusivity. This is the same as the
results observed in this work, where the velocity increased with increasing pore site
mobility M. They also reported that the grain boundary separated from the pores when
the polycrystalline grain size was small as observed in our simulations. This behavior is
predicted by Gottstein and Shvindlerman'?. The maximum drag force that a pore can
apply can be estimated to be its Zener force Fz, the force exerted by a stationary pore on
the grain boundary

F,=gd Equation 9

and g is a proportionality constant for the geometry considered in this study. From
equations 6, 7 and 9, the grain boundary will break away from a pore when
giM

3

F,=gd+ Equation 10
Equation 10 predicts that the break-away force increases with increasing pore site
mobility as observed in our simulations. The relationship between pore diameter and
break-away force is more complicated and depends critically on the value of IM/u. If
IM/u >d, then larger particles lead to smaller break-away forces as observed in these
simulations.

The driving force for break-away given by equation 10 is also shown in figures 6a & b.
The proportionality constant g used to calculate the break-away driving force is g =
0.0003 and was determined by best fit to the data. The break-away driving force
predicted by equation 10 increases with increasing pore mobility and decreasing pore size
and is in good agreement with simulation results.

Previous work' >'*'%in theory of grain boundary drag predicts a hysteresis in the velocity
- driving force relationships between the two branches of grain boundary velocity. It was
not possible in this study to characterize the hysteresis as it was not possible to change
the driving force (i.e. change grain size D) continuously in a single simulation. However,
unlike the analytical theories that assume no change in the shape and distribution of the
drag phase, the model used here is able to simulate the microstructural changes that occur
when a grain boundary encounters the pores or detaches from a pore. This ability of the
model to simulate the local changes in grain boundary and pore shape is shown in figures
2a-d and the effect it has on the grain boundary velocity is shown in the initial stage of
figure 3.

While the model is capable of incorporating all the physics necessary to properly
simulate grain growth in the presence of pores, several artifacts were observed. Finite
simulation temperatures for grain growth and pore migration must be used to ensure that
artificial pinning, premature break-away and incorrect grain boundary velocities from
non-equilibrium shaped microstructures do not result (see appendix). If the grain size is




too small to resolve curvature of the grain boundaries, artificial pinning may be obtained
as seen in figure 4b. Judicious application of the model will result in proper simulation
of grain growth in the presence of mobile pores by incorporating all the necessary
microstructural complexity.

The geometry used to simulate grain growth in the presence of mobile pores, was a
highly controlled one, unlike the geometries encountered in typical polycrystalline
materials. This geometry was designed to isolate variables contributing to the velocity of
pore-laden grain boundaries and to grain boundary breaking away from pores. This
controlled geometry was used to validate the model as well as to gain understanding of
grain growth in the presence of pores. In a typical polycrystalline material, each grain
boundary is expected to move at a different velocity related to its own curvature as well
as the size and number of pores on that grain boundary. Some grain boundaries may
break away from some pores and others may not. The model presented in this paper can
be applied to typical polycrystalline geometries to study grain growth in the presence of
mobile pores.

Conclusions

A kinetic, Monte Carlo model capable of simulating grain growth in the presence
of mobile pores in three dimensions has been presented. The model simulated curvature
driven grain growth by short range diffusion across grain boundaries and also pore
migration by surface diffusion along the pore surfaces. The presence of mobile pores at
the grain boundaries reduced grain boundary mobility by applying a drag force on the
grain boundaries. The drag force applied by the pores to the grain boundary increased
with increasing pore size and decreasing pore mobility. Thus, grain boundary velocity
decreased with increasing pore size and decreasing pore mobility. However, grain
boundaries did break away when the pore mobility becomes too small.

Appendix
Simulation Temperature

Potts model sunulatmns of some microstructural evolution processes such as normal
grain growth do not require finite temperature for proper simulation. However,
51mulat10n of most microstructural evolution process such as Zener pmmng Ostwald
npenlng , 2D grain growth in the presence of mobile pores and smtermg require finite
temperature for proper simulation. In this appendix, we show finite temperatures are
necessary for proper simulation of 3D grain growth in the presence of mobile pores by
evaluating the effect of temperature on the microstructural evolution. We do this by
comparing the effect of simulation temperature on normal grain growth to grain growth
in the presence of mobile pores. In both cases, the 3D hexagonal geometry is used.

The grain boundary velocities during normal grain growth with no pores are given in
figure Al, a plot of grain boundary velocity as a function of driving force at different
simulation temperatures kgT. Figure Al shows that grain boundary velocity is linearly
proportional to the driving force as given by equation 4 and is good agreement with
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Figure Al. Grain boundary velocity for normal grain growth as a function of

driving force at different grain growth temperatures. The symbols are data
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data.
Miodownik et al’s results’. Figure Al also shows that the grain boundary velocity
decreases slightly with increasing temperature as previously observed by Grest et al'” and
Holm and Miodownik'®, While there is a small dependence on simulation temperature,
grain growth behavior is the same qualitatively and kinetically from k3T = 0 to 2.

Grain growth in the presence of mobile pores were carried out for grain growth
temperature ranging from kT, = O to 2 and pore migration temperatures ranging from
kpT, = 0 to 3. At grain growth temperature of kpT,; = 0 and pore migration temperature
of kgT, = 0, the grain boundary completely stagnated and was fully pinned by the pores
at the quadra-junctions. Similar stagnation at simulation temperature kgT = 0, was
observed both in the 2D simulation of grain growth with mobile pores® (when kgTy =0
and k3T, = 0) and in the 3D simulation of grain growth with stationary pinning particles’
(when kgT, = 0). The stagnation, in all cases at kgT = 0, occurs because the grain growth
can proceed only by continuously lowering its total energy given by equation I.
However, for grain growth in the presence of mobile pores, the system must be able to
locally increasing its energy in order to find the global lower energy states. If the
simulation cannot sample these higher energy states, then stagnation occurs.

Finite temperature kT > 0 was used for grain growth while holding the pore migration
temperature at kg7, = 0. In these simulations, the grain boundary was either completely
pinned by large pores or the grain boundary broke away from small pores and normal
grain growth occurred. The pores, however, did not move with the grain boundary at
pore migration temperature kg, = 0. Next, finite temperature was used for pore
migration while holding the grain growth temperature at kgT, = 0. At zero grain growth
temperature kgT, = 0, both grain growth and pore migration occur, however, the grain
boundary shape is not the minimum energy shape and the grain boundary cannot break




away from the pores. Miodownik et al’ found similar results for the more general case of
pinning phase at a grain boundary rather than at quadra-junctions. They reported at zero
grain growth temperature kT, = 0, the grain boundary did not have the minimum energy
shape.

The simulation temperatures for both, grain growth and pore migration, were varied from
kgT = 0.5 to 3 to study the effect of temperature. As mentioned previously, grain growth
was slightly slower at higher Monte Carlo simulation temperatures as illustrated by figure
Al. In contrast, when pore migration temperature was held constant at kg7, = 2.0 and
grain growth temperature was varied from kg, = 0.5 to 2, grain growth became faster
with increasing grain growth temperature as shown in figure A2a. This contrasting
behavior is due to the presence of pores. The data shown in figure A2a is for the case
when pores and grains are moving at a constant velocity while maintaining their
minimum energy shape. At higher grain growth temperature kgTy, there are more
fluctuations in the shape of the grain boundary. This noise in the grain boundary relaxes
the minimum energy shape of both the grain boundary and the pore. Since the grain
boundary and pore do not have to maintain their equilibrium shape so strictly, they can be
more responsive to the driving force and thus faster at the high grain growth
temperatures. At very high grain growth temperatures kgTy = 2.0, the grain boundary had
sufficient energy to break away from the pores.
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Figure A2b. Grain boundary velocity as a
function of pore migration temperature at
constant grain growth temperature, kgT, = 1

Figure A2a. Grain boundary velocity as a

function of grain growth temperature at constant
pore migration temperature, kzT, =2. The grain
boundary broke away from the pores at kgT, = 2

When the grain growth temperature was held constant at kgT, = 1 and pore migration
temperature was varied from kgT, = 1.0 to 3.0, grain growth became faster with
increasing pore migration temperature as shown in figure A2b. The higher grain
boundary velocity results from more mobile pores at the higher pore migration
temperatures. The increased pore mobility at the higher pore migration temperatures is
again attributed to the fact that the pore equilibrium shape is relaxed at the higher




temperatures. The grain boundary was less likely to break away from the pores at higher
pore migration temperatures since pores are mobile at the higher temperatures.

The results presented in this section suggest that finite simulation temperatures must be
used for both grain growth and pore migration to correctly simulate grain growth in the
presence of a mobile phase. However, any finite temperature below the disordering
temperature may be used. There is no threshold temperature above which proper
simulation is obtained as observed in some previous Potts model simulations'>°,
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