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Abstract

Sampling-based methods for uncertainty and sensitivity analysis are reviewed. Topics considered include (i) separa-
tion of stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, (ii) construction of distributions to char-
acterize subjective uncertainty, (iii) sampling procedures (i.e., random sampling, importance sampling, Latin hyper-
cube sampling), (iv) propagation of uncertainty through models, (v) display of uncertainty in model predictions, and
(vi) sensitivity analysis procedures (i.e., examination of scatterplots, regression analysis, stepwise regression analy-
sis, correlation and partial correlation, rank transformations, identification of nonmonotonic and nonrandom pat-
terns). Procedures are illustrated with (i) a model for two-phase fluid flow, (ii) a sequence of simple test functions,
and (iii) a performance assessment for a radioactive waste disposal facility.
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1.0 Introduction

Sampling-based methods for uncertainty and sensi-
tivity analysis involve the generation and exploration of
a mapping from uncertain analysis inputs to analysis
results (Iman et al. 198 la, b, Iman 1992, Helton 1993 b).
Conceptually, the analysis or model under consideration
can be represented by a vector function

Y=[Yl>Y2,..., Ynyl$ (1.1)

and the associated input can be represented by a vector

X=[xl, xz,..., xfi], (1.2)

where nX and nY are the dimensions of x and y, respec-
tively, and each value of X produces a corresponding
value y(x). Most real analyses are quite complex, with
the result that the dimensions of X and y can be large.

If the value for x was unambiguously known, then
y(x) could be determined and presented as the unique
outcome of the analysis. However, there is uncertainty
with respect to the appropriate value to use for X in
most analyses, with the result that there is also uncer-
tainty with respect to the value of Y(x). The uncertainty
in x and its associated effect on Y(X) lead to two closely
related questions: (i) “What is the uncertainty in Y(X)

given the uncertainty in x?”, and (ii) “How important
are the individual elements of x with respect to the un-
certainty in y(x)?” Attempts to answer these two ques-
tions are typically referred to as uncertainty analysis and
sensitivity analysis, respectively.

An assessment of the uncertainty in Y derives from

a corresponding assessment of the uncertainty in X. In
particular, y is assumed to have been developed so that
appropriate analysis results are obtained if the appro-
priate value for x is used in the evaluation of Y. Unfor-
tunately, it is impossible to unambiguously specify the
appropriate value of x in most analyses; rather, there are
many possible values for x of varying levels of plausi-
bility. Such uncertainty is often given the designation
subjective or episternic and is characterized by assign-
ing a distribution

D1, D2, . . . . Dnx (1.3)

to each element Xj of x. Correlations and other restric-
tions involving the xj are also possible. These distribu-
tions and any associated conditions characterize a de-
gree of belief as to where the appropriate value of each

variable Xj is located for use in evaluation of Y and in
turn lead to distributions for the individual elements of
y. Given that the distributions in Eq. (1.3) characterize
a degree of belief with respect to where the appropriate
input to use in the analysis is located, the resultant dis-

tributions for the elements of Y characterize a corre-
sponding degree of belief with respect to where the ap-
propriate values of the outcomes of the analysis are
located.

Sampling-based methods for uncertainty and sensi-
tivity analysis are based on a sample

Xk =[xkl, xk2,..., xk,nx], k= 1,2, . . ..nS. (1.4)

of size nS from the possible values for x as character-
ized by the distributions in Eq. (1.3) and on the corre-
sponding evaluations

y(x~) = [y~(x~), yz(x~),..., yny(x~)],

k=l,2, . . ..nS. (1.5)

of y. The pairs

[Xk, y(Xk)], k= 1,2, ..., nS, (1.6)

form a mapping from the uncertain analysis inputs (i.e.,
the xk’s) to the corresponding uncertain analysis reSUkS

(i.e., the Y(xk)’s). When an appropriate probabilistic
procedure has been used to generate the sample in Eq.
(1.4) from the distributions in Eq. (1.3), the resultant
distributions for the elements of Y characterize the un-
certainty in the results of the analysis (i.e., constitute the
outcomes of an uncertainty analysis). Further, examin-
ation of scatterplots, regression analysis, partial corre-
lation analysis and other procedures for investigating
the mapping in Eq. (1.6) provide a way to determine the
effects of the elements of x on the elements of y (i.e.,
constitute procedures for sensitivity analysis).

When viewed at a high level, performance of a
sampling-based uncertainty and sensitivity analysis in-
volves five components: (i) definition of the distribu-
tions in Eq. (1.3) that characterize uncertainty, (ii) gen-
eration of the sample in Eq. (1.4) from the distributions
in Eq. (1.3), (iii) evaluation of Y for the individual ele-
ments of the sample in Eq. (1.4) to produce the model
evaluations in Eq. (1.5), (iv) generation of displays of
the uncertainty in y from the analysis outcomes in Eq.
(1.5), and (v) exploration of the mapping in Eq. (1.6) to

1



determine the effects of the elements of x on the ele-
ments of y. The preceding components of a sampling-
based uncertainty and sensitivity analysis are discussed
(Sects. 4- 8). Further, the classification of uncertainty
and the potential effects that this classification has on
sampling-based analyses are discussed (Sect. 2), and an
example problem is introduced for use in illustrating the

2

ideas and techniques under considerate
addition, the ideas and techniques d
presentation are illustrated with a sequ~
simple test problems (Sect. 9) and also
involving both stochastic (i.e., aleatoq
(i.e., epistemic) uncertainty (Sect. 1(
presentation ends with a summary disc~



2.0 Classification of Uncertainty

The need for an appropriate treatment of uncer-
tainty in complex analyses is recognized by most, if not
all, analysts (e.g., Cullen and Frey 1999, Risk Assess-
ment Forum 1997, Thompson and Graham 1996, Hel-
ton and Burmaster 1996, Pat6-Cornell 1996, Hoffman
and Hammonds 1994, Apostolakis 1990). Yet, the
treatment of uncertainty in large analyses often causes
confusion because uncertainty and its probabilistic
characterization can arise from two distinct sources.

First, there is the uncertainty that arises because the
system under study can behave in many different ways.
For example, the number of possible sequences of
weather conditions that could occur at a fixed location
over some specified time interval in the future is quite
large; similarly, the number of potential sequences of
operating conditions that could occur at an industrial
facility over the course of one year is also quite large.
This type of uncertainty is often referred to as stochastic
or aleatory uncertainty and is a property of the system
under consideration (Helton 1994, 1997).

Second, there is the uncertainty that arises from an
inability to specify the exact value of a quantity that is
assumed to have a constant value within a particular
analysis. For example, a system component might be
assumed to have a uniquely determined failure strength,
with the exact value of this failure strength being im-
precisely known. As another example, some process
might be assumed to occur at a particular rate, with the
exact value of this rate being imprecisely known. This
type of uncertainty is often referred to as subjective or
epistemic uncertainty and is a property of the analysts
carrying out the study (Helton 1994, 1997).

Probability is typically used to characterize both
stochastic and subjective uncertainty. This dual usage
of probability has the potential to result in considerable
confusion when care is not taken to specify which inter-
pretation of uncertainty is intended. In this presenta-
tion, the assumption is made that the goal of uncertainty
and sensitivity analysis is to investigate the effects of
subjective uncertainty. Thus, the distributions in Eq.
(1.3) are characterizing subjective uncertainty.

As described in the next section, an example that
derives from a performance assessment (PA) for the
Waste Isolation Pilot Plant (WIPP) will be used to illus-
trate sampling-based methods for uncertainty and sensi-
tivity analysis (U.S. DOE 1996, Helton et al. 1998a).
This example uses a model for two-phase (i.e., gas and
brine) fluid flow and involves only subjective uncer-
tainty. Then, in Sect. 10, a second example will be in-
troduced that considers a complementary cumulative
distribution function (CCDF) specified in the U.S. Envi-
ronmental Protection Agency’s (EPA’s) standard for the
geologic disposal of radioactive waste (U.S. EPA 1985,
1993, 1996) and involves both stochastic and subjective
uncertainty.

As ah-eady indicated, it is important to maintain a
clear distinction between the use of probability to char-
acterize stochastic uncertainty and the use of probability
to characterize subjective uncertainty. The concept of a
probability space provides a convenient way to maintain

this distinction. A probability space ($ ~, p) is the

formal structure on which the mathematical develop-
ment of probability is based and consists of three com-

ponents: (i) a set S that contains everything that could

occur in the particular universe under consideration, (ii)

a suitably restricted collection X$ of subsets of S for

which probabilities are defined, and (iii) a function p

that defines the probabilities of the elements of ~ (p.

116, Feller 197 1). Thus, an analysis that involves both
stochastic and subjective uncertainty has two probabil-
ity spaces associated with i~ a probability space ($’*,

&, pgt) for stochastic uncertainty and probability space

($U, ~~u, p,.) for subjective uncertainty, where the

subscripts st and su designate stochastic and subjective,
respectively. The distributions in Eq. (1.3) and any
associated restrictions are defining a probability space

( ~su, ~su, P.u) for subjective uncertainty.

Accessible discussions on the origins of the use of
probability to characterize subjective and stochastic
uncertainty are given by Hacking 1975 and Bernstein
1996.
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3.0 Example Analysis Problem

Analysis procedures are easier to understand and
assess when they are illustrated by real examples. For
this reason, a nontrivial example from a PA carried out
in support of the 1996 Compliance Certification Appli-
cation (CCA) for the WIPP will be used to illustrate the
procedures under consideration (U.S. DOE 1996, HeI-
ton et al. 1998a). The WIPP is under development near
Carlsbad, NM, by the U.S. Department of Energy
(DOE) for the geologic (i.e., deep underground) dis-
posal of transuranic (TRU) waste (Rechard 1999, NRC
1996). Waste disposal will take place in excavated
chambers located in a bedded salt formation (Fig. 1,
Helton et al. 1998b).

A number of mathematical models are involved in
assessing the potential behavior of the WIPP, its sur-
rounding environment, and the radionuclides emplaced
there (see Sect. 10.1 for a summary of these models).
Most of these models involve the numerical solution of
systems of partial differential equations used to repre-
sent material deformation, fluid flow and radionuclide
transport. The model used to represent two-phase (i.e.,
gas and brine) fluid flow in the vicinity of the repository
will be used for illustration, with this model imple-
mented by the BRAGFLO program.

The model for two-phase fluid flow is based on the
following system of nonlinear partial differential equa-
tions:

Gas Conservation

[ 1~PgKgk~~ v +pggVh) +Wwg ‘Uqrg
v.

( Pg
Kg

a (oPgsg)
=cx

at

Brine Conservation

‘?9

[

aPbKbkrb v 1~b ( Pb +Pb&7v~) +W?wb +WrfJ

a (@pbsb )
=C?

at

Saturation Constraint

sg+s~=l
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(3.1)

(3.2)

(3.3)

(3.4)

Capillary Pressure Constraint

pc = Pg - pb = .f(sb)

Gas Density

pg determined by Redlich-Kwong-Soave equation of
state (see Eqs. (4.2.27), (4.2.28), Helton et al. 1998a)

Brine Density

pb = pO exp[~b(~b - pbO)]

Formation Porosity

$=$0 exp[~f(pb - pbO)]

acceleration of gravity (mfs2)
vertical distance from a reference
(m)
permeability tensor (m2) for fluid 1
gas, 1= b - brine)

(3.5)

(3.6)

location

(l=g -

relative permeability (dimensionless) to fluid
1
capillary pressure (Pa)
pressure of fluid 1(Pa)
rate of production (or consumption, if nega-
tive) of fluid 1 due to chemical reaction
(kg/m3/s)
rate of injection (or removal, if negative) of
fluid 1 (kg/m3/s)
saturation of fluid 1(dimensionless)
time (s)

geometry factor (m in 1996 WIPP PA)

density of fluid 1(kg/m3)

viscosity of fluid i (Pas)

porosity (dimensionless)

reference (i.e., initial) porosity (dimension-
less)
reference (i.e., initial) brine pressure (Pa),
constant in Eq. (3.5) and spatially variable in
Eq. (3.6)

reference (i.e., initial) brine density (kg/m3)

pore compressibility (Pa-l)

brine compressibility (Pa-l)

and f is defined by the model for capillary pressure in
use (see the right hand sides of Eqs. (4.2.9), (4.2.15)



and (4.2. 18) in Helton et al. 1998a). The conservation

equations are valid in one (i.e., V = [dax]), two (i.e., V

= [~/Ox i%3y]) and three (i.e., V = [d/dx iYdy ~/dz])
dimensions. In the present example, the preceding sys-
tem of equations is used to model two-phase fluid flow
in a two-dimensional region (Fig. 3.1).

In general, the individual terms in Eqs. (3.1) - (3.6)
are functions of location and time (e.g., pg(x, y, t), pg(x,

y! 0> &g(-L y> 0, . ..) and often other variables as well
(i.e., elements of the vector x in Eq. (1.2)). A full de-
scription of how the individual terms in these equations
are defined is beyond the scope of this presentation and
is available elsewhere (Bean et al. 1996; Sect. 4.2,
Helton et al. 1998a). The system of partial differential
equations in Eqs. (3.1) - (3.6) is too complex to permit a
closed form solution. In the present analysis, these
equations were solved with finite difference procedures
implemented by the BRACWLO program on the compu-
tational grid in Fig. 3.1 (WIPP PA 1996, Bean et al.
1996).

Two analysis problems involving the solution of
Eqs. (3.1) - (3.6) will be considered. The first problem
involves undisturbed conditions (i.e., EO conditions in
the terminology of the 1996 WIPP PA). In this prob-
lem, the behavior of the repository is modeled under the
assumption that it experiences no human disruptions
after its final decommissioning and closure. The second
problem involves a drilling intrusion that occurs 1000
yr after the closure of the repository, passes through a
waste panel, and does not penetrate an area of pressur-
ized brine (i.e., a brine pocket) in the Castile Formation
(Fro) beneath the repository (i.e., an E2 intrusion in the
terminology of the 1996 WIPP PA). The differences
between the two problems are implemented through the
specification of the properties of the regions labeled 1A,
lB and lC in Fig. 3.1. Due to regulatory requirements
(U.S. EPA 1985, 1993, 1996), the modeled period ex-
tends from slightly before closure of the repository

(t= -5 yr), through closure of the repository (t = O yr),
and out to t= 10,000 yr. The 1996 WIPP PA also con-
sidered drilling intrusions that passed through the re-
pository and penetrated pressurized brine in the Castile
Fm (i.e., El intrusions) but these calculations are not
used for illustration in this presentation.

A number of factors contribute to the presence of
subjective uncertainty in the formulation and solution of
the model embodied in Eqs. (3.1) - (3.6): (i) a geologic
system that can never be filly observed and character-
ized is under consideration, (ii) the waste to be em-
placed at the WIPP is not fully characterized, (iii) the
mechanical and chemical evolution of the waste panels

cannot be predicted with certainty, (iv) many of the
inputs to the analysis are spatially and possibly tempo-
rally averaged values for quantities (e.g., permeabilities)
that vary in space and possibly in time, and (v) a very
long time period (i.e., 10,000 yr) is under consideration.
For these and other reasons, considerable uncertainty
exists with respect to the appropriate values to use for
many of the quantities that enter into the formulation of
the model in Eqs. (3.1) - (3.6).

To assess the effects of such uncertainty, the 1996
WIPP PA identified 31 uncertain inputs to the
BRAGFLO program required in the formulation of the
model in Eqs. (3.1) - (3.6) (Table 3.1). The exact man-
ner in which these inputs were used in the definition of
the coefficients in Eqs. (3.1) - (3.6) is described in Ta-
ble 5.2.1 of Helton et al, 1998a.

The analyses under consideration were structured
to require a single value for each of the variables in
Table 3.1. However, the exact values to use for these
variables were felt to be poorly known. Therefore,
ranges of possible values for these variables were de-
veloped, and distributions were assigned to these ranges
to characterize a degree of belief with respect to the
location of the appropriate values to use in the 1996
WIPP PA. Thus, the distributions indicated in Table
3.1 are characterizing subjective uncertainty.

Put another way, the distributions and associated
correlations in Table 3.1 are defining a probability

space ( $“U, z&, pJ for subjective uncertainty. In this

space, the elements X~u of &U are vectors of the form

x~U= [ANHBCEXP, ANHBCVGP, . . . . WRGSSATj (3.7)

and correspond to the vector x in Eq. (1.2). Similarly, y

in Eq. (1.1) corresponds to the totrdity of the results
generated in the solution of Eqs. (3.1) - (3.6). Actually,

there are two y values in this example: one for solution
of the equations for undisturbed (i.e., EO) conditions
and one for solution of the equations for disturbed
conditions (i.e., an E2 intrusion at 1000 yr).

All 31 variables in Table 3.1 are used in the formu-
lation of Eqs. (3. 1) - (3.6) for the E2 intrusion. How-
ever, BHPRM relates only to the El and E2 intrusions
and so was not used in the formulation of Eqs. (3.1) -
(3.6) for EO conditions. Further, the variables affecting
the brine pocket (i.e., BPCOMP, BPINTPRS, BPPRM,
BPVOL) are effectively removed from the calculation of
any results associated with the repository for EO and E2
conditions due to the absence of a connection between
the brine pocket and the repository (Fig. 3.1).
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Computational grid used in BRAGFLO to represent two-phase flow in 1996 WIPP PA subsequent to a
drilling intrusion. Same formulation is used in the absence of a drilling intrusion except that regions 1A,
lB and lC have the same properties as the regions to either side.



Table 3.1. Uncertain Variables Used as Input to BRAGFLO in the 1996 WIPP PA (see Table 5.2.1,
Helton et al. 1998a and App. PAR, U.S. DOE 1996, for additional information)

ANHBCEXP—Brooks-Corey pore distribution parameter for anhydrite (dimensionless). Distribution: Stu-
dent’s with 5 degrees of freedom. Range: 0.491 to 0.842. Mean, Median: 0.644.

ANHBCVGP-Pointer variable for selection of relative permeability model for use in anhydrite. Distribution:
Discrete with 60% O, 40% 1. Value of O implies Brooks-Corey model; value of 1 implies van Genuchten-

Parker model.

ANHCOMP—Bulk compressibility of anhydrite (Pa-1). Distribution: Student’s with 3 degrees of freedom.

Range: 1.09 x 10-11 to 2.75 x 1o-1o Pa-1. Mean, Median: 8.26 x 10-1 I Pa-1. Correlation: –0.99 rank corre-
lation (Iman and Conover 1982) with ANHPRM.

ANHPRM-Logarithm of anhydrite permeability (mZ). Distribution: Student’s with 5 degrees of freedom.

Range: –21.0 to –17. 1 (i.e., permeability range is 1 x 10-21 to 1 x 10-17.1 mz). Mean, Median: –1 8.9. Corre-
lation : –0.99 rank correlation with ANHCOMP.

ANRBRSAT—Residual brine saturation in anhydrite (dimensionless). Distribution: Student’s with 5 degrees
of freedom. Range: 7.85 x 10-3 to 1.74 x 10-1. Mean, Median: 8.36 x 10-2.

ANRGSSAT—Residual gas saturation in anhydrite (dimensionless). Distribution: Student’s with 5 degrees of

freedom. Range: 1.39 x 10-2 to 1.79 x 10-1. Mean, median: 7.71 x 10-2.

BHPRM-Logarithm of borehole permeability (mZ). Distribution: Uniform. Range: –14 to –1 1 (i.e., perme-

ability range is 1 x 10-14 to 1 x 10-11 mz). Mean, median: –12.5.

BPCOMP—Logarithm of bulk compressibility of brine pocket (Pa-1). Distribution: Triangular. Range:

–1 1.3 to –8.00 (i.e., bulk compressibility range is 1 x l&l 1.3 to 1 x 10-s Pa-1). Mean, mode: –9.80, –10.0.
Correlation: -0.75 rank correlation with BPPRM.

BPZNTPR9 Initial pressure in brine pocket (Pa). Distribution: Triangular. Range: 1.11 x 107 to 1.70 x 107

Pa. Mean, mode: 1.36 x 107 Pa, 1.27 x 107 Pa.

BPPRM— Logarithm of intrinsic brine pocket permeability (mZ). Distribution: Triangular. Range: –14.7 to

-9.80 (i.e., permeability range is 1 x 10-14.7 to 1 x 10-9$30 mz). Mean, mode: -12.1, -11.8. Correlation:
-0.75 with BPCOMP.

BPVOL- Pointer variable for selection of brine pocket volume. Distribution: Discrete, with integer values 1,
2 , ....32 equally likely.

HALCOMP—Bulk compressibility of halite (Pa-l). Distribution: Uniform. Range: 2.94 x 10-12 to 1.92 x
10-10 PA-1. Me~, rne&an: 9.75 x 10-11 Pa-1, 9.75 x 10-11 Pa-1. co~elation: –0.99 rank correlation with

HALPRM.

HALPOR—Halite porosity (dimensionless). Distribution: Piecewise uniform. Range: 1.0 x 10-3 to 3 x 10-2.

Mean, median: 1.28 x 10-2, 1.00x 10-2.

HALPRM-Logarithm of halite permeability (mZ). Distribution: Uniform. Range: –24 to –21 (i.e., perme-

ability range is 1 x 10-24 to 1 x 1O-ZI mz). Mean, median: –22.5, –22.5. Correlation: –0.99 rank correlation
with HALCOMP.



Table 3.1. Uncertain Variables Used as Input to BRAGFLO in the 1996 W IPP PA (see Table 5.2.1,
Helton et al. 1998a and App. PAR, U.S. DOE 1996, for additional information)
(continued)

SALPRE%Initial brine pressure, without the repository being present, at a reference point located in the cen-
ter of the combined shafts at the elevation of the midpoint of Marker Bed (MB) 139 (Pa). Distribution: Uni-

form. Range: 1.104 x 107 to 1.389 x 107 Pa. Mean, median: 1.247 x 107 Pa, 1.247 x 107 Pa.

SHBCEXP—Brooks-Corey pore distribution parameter for shaft (dimensionless). Distribution: Piecewise
uniform. Range: 0.11 to 8.10. Mean, median: 2.52, 0.94.

SHPRMASP—Logarithm of permeability (mz) of asphalt component of shaft seal (mZ). Distribution: Triangu-

lar. Range: –21 to –18 (i.e., permeability range is 1 x 10-21 to 1 x IO-18 mz). Mean, mode: –19.7,
–20.0.

Sf-iJPRMCLY-Logarithm of permeability (mz) for clay components of shaft. Distribution: Triangular. Range:

–21 to –17.3 (i.e., permeability range is 1 x 10-21 to 1 x 10-17’3 mz). Mean, mode: –18.9, –18.3.

SHPRMCON-Same as SHPRMASP but for concrete component of shaft seal for O to 400 yr. Distribution:

Triangular. Range: –17.0 to –14.0 (i.e., permeability range is 1 x 10-17 to 1 x 10-14 mz). Mean, mode:

-15.3,-15.0.

SHPRMDRZ-Logarithm of permeability (mz) of DRZ surrounding shaft. Distribution: Triangular. Range:

–17.0 to –14.0 (i.e., permeability range is 1 x 10-17 to 1 x 10-14 mz). Mean, mode: –15.3, –15.0.

SHPRMHAL--Pointer variable (dimensionless) used to select permeability in crushed salt component of shaft
seal at different times. Distribution: Uniform. Range: O to 1. Mean, mode: 0.5, 0.5. A distribution of per-
meability (mz) in the crushed salt component of the shaft seal is defined for each of the following time inter-
vals: [0, 10 yr], [10, 25 yr], [25, 50 yr], [50, 100 yr], [100, 200 yr], [200, 10000 yr]. SHPRMHAL is used to
select a permeability value from the cumulative distribution function for permeability for each of the preceding
time intervals with result that a rank correlation of 1 exists between the permeabilities used for the individual

time intervals.

SHRBRSAT—Residual brine saturation in shaft (dimensionless). Distribution: Uniform. Range: O to 0.4.
Mean, median: 0.2,0.2.

SHRGSSAT—Residual gas saturation in shaft (dimensionless). Distribution: Uniform. Range: O to 0.4.
Mean, median: 0.2,0.2.

WASTWZCK-Increase in brine saturation of waste due to capillary forces (dimensionless). Distribution: Uni-
form. Range: O to 1. Mean, median: 0.5,0.5.

WFBETCEL-Scale factor used in definition of stoichiometric coefficient for microbial gas generation
(dimensionless). Distribution: Uniform. Range: O to 1. Mean, median: 0.5,0.5.

WGRCOR---Corrosion rate for steel under inundated conditions in the absence of C02 (m/s). Distribution:

Uniform. Range: O to 1.58 x 10-14 rids. Mean, median: 7.94x 10-15 reds, 7.94x 10_15 mls.

WGRMICH—Microbial degradation rate for cellulose under humid conditions (mol/kgos). Distribution: Uni-

form. Range: O to 1.27 x 10-9 molkgos. Mean, median: 6.34 x 10-10 mol/kg@s, 6.34 x 1o-1o mol/kg@s.
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Table 3.1. Uncertain Variables Used as Input to BRAGFLO in the 1996 WIPP PA (see Table 5.2.1,
Helton et al. 1998a and App. PAR, U.S. DOE 1996, for additional information)
(continued)

WGRMZCZ—Microbial degradation rate for cellulose under inundated conditions (moUkges). Distribution:

Uniform. Range: 3.17 x I&lo to 9.51 x 10-s mol/kges. Mean, median: 4.92 x l~s mofigw, 4.92 x 1O-$

mol/kgos.

WMICDFL&Pointer variable for microbial degradation of cellulose. Distribution: Discrete, with 50% O,

25% 1, 25% 2. WMICDFLG = O, 1, 2 implies no microbial degradation of cellulose, microbial degradation of

only cellulose, microbial degradation of cellulose, plastic, and rubber.

WRBRNSAT--Residual brine saturation in waste (dimensionless). Distribution: Uniform. Range: O to 0.552.
Mean, median: 0.276,0.276.

WRGSSAT—Residual gas saturation in waste (dimensionless). Distribution: Uniform. Range: O to 0.15.
Mean, median: 0.075,0.075.
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4.0 Definition of Distributions for Subjective Uncertainty

The definition of the distributions in Eq. (1.3) used
to characterize subjective uncertainty is, in many ways,
the most important single part of a sampling-based un-
certainty and sensitivity analysis because these distribu-

tions determine both the uncertainty in Y and the rela-
tive importance of the individual elements of x that give
rise to this uncertainty. However, the determination of
such distributions is not the primary focus of this pres-
entation and thus will be treated rather briefly.

It is important for everyone involved in the defini-

tion of these distributions to understand the type of in-
formation that is being quantified. In particular, the
purpose of these distributions is to characterize a degree
of belief with respect to where the appropriate value of
each element of X$Uis located for use in the analysis. In
concept, the analysis structure has been developed to
the point that a single value for each element of X$Uis
required, but the precise values for these elements, and
hence for x~u, are not known.

A common error is to define the Dj so that they
characterize spatial, temporal or experimental variabil-
ity. If the analysis uses a quantity that is held constant
over an extended period of time or over an extended
area, then the corresponding distribution Dj should not
be defined to characterize temporal or spatial variabil-
ity. Rather, given that the model uses a spatially or
temporally averaged input, the distribution Dj should
characterize the uncertainty in this averaged quantity
rather than the variability that is averaged over. Simi-
larly, experimental variability is not the same as the
uncertainty in an analysis input derived from, variable
experimental outcomes.

Due to its importance and pervasiveness, the char-
acterization of subjective uncertainty has been widely
studied (e. g., Berger 1985; Cook and Unwin 1986;
Mosleh et al. 1988; Hera and Iman 1989; Keeney and
von Winterfeldt 1991; Bonano et al. 1990; Bonano and
Apostolakis 1991; Cooke 1991; Meyer and Booker
1991; Ortiz et al. 1991; NRC 1992; Thorne 1993).,
Perhaps the largest example of an analysis to use a for-
mal expert review process to assess the uncertainty in its
inputs is the U.S. Nuclear Regulatory Commission’s
reassessment of the risks from commercial nuclear
power stations (U.S. NRC 1990-1991; Harper et al.
1990, 1991, 1992; Breeding et al. 1992). Another large
example is an assessment of seismic risks in the eastern
United States (EPRI 1989).

Although formal statistical procedures might be
useful in the construction of the distributions D} j = 1,

2> . . . . nX, in Eq. (1.3) in some situations, in most cases
such distributions are probably best developed by speci-
fying selected quantile values without making an at-
tempt to specify a particular distribution type and its
associated parameters (e.g., normal, log normal, beta,

. ..) (Sect. 3.1, Helton 1993b). For example, the con-
struction procedure might start by specifying minimum,
median and maximum values for the variable under
consideration (i.e., the points (-xO,OO,0.00), (XOS, 05)

and (xl ,00, 1.00) on the cumulative distribution function
(CDF) in Fig. 4,1). Then, resolution could be added by
specifying additional quantile values (e.g., the points

(-xO,lO,0.10), (X0,25,0.25), (X0,75,0.75) and (x. 90, 0.90)
in Fig. 4.1). The process can be continued untii it is felt
that the distribution is providing an adequate characteri-
zation of the uncertainty in the variable under consid-
eration. Hopefully, the expert, or experts, whose
knowledge is being quantified by this distribution
should be able to provide a documentable rationale for
the selection of specific quantile values. The expert is
more likely to be able to justify the selection of specific
quantile values than the choice of specific parameters to
define a beta distribution or some other formal distribu-
tion.
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1

SpecifiedPoints:
(Xo,m,0.00)

(Xo,,o,0.10)

(X0,25,0.25)

(X0,50,0.50)
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---
0.0

Fig. 4.1.
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TRI-6342-6040-0

Construction of CDF from specified quantile
values.
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When several experts are used to develop a distri-
bution for a variable, one possibility is fwst to have each

expert independently develop a distribution as indicated
in Fig. 4.1. Then, these distributions can be vertically
averaged to produce a new distribution based on the
distributions supplied by the individual experts (Fig.
4.2). This is easiest to do if each expert’s distribution is
assigned equal weight (i.e., the divisor in the averaging
process is nE, where nE is the number of experts). In
practice, the assigning of different weights to different
experts is very difficult.

As previously indicated, this presentation uses an
example from the 1996 WIPP PA. The variables that
comprise the elements of Xsu in this example are listed
in Table 3.1. The distributions assigned to these vari-
ables were defined by appropriate members of the ex-
perimental programs that were being carried out at
Sandia National Laboratories to support the develop-
ment of the WIPP, with these distributions intended to
characterize a degree of belief with respect to where the
appropriate values of these variables are located for use
in the 1996 WIPP PA. The distributions assigned to
WMICDFLG and WSOLAM3C are illustrated in Fig.
4.3, with WMICDFLG having a discrete distribution
and WSOLAM3C having a piecewise uniform distribu-
tion (i.e., the type of distribution that results when
quantiles are defined as indicated in Fig. 4.1 and then
connected by straight lines).

The care and effort used in the definition of the
distributions in Eq. (1.3) are dependent on both the pur-
pose of an analysis and the amount of time and re-
sources available for its implementation. If the analysis
is primarily exploratory in nature or if limited time and
resources are available, then rather crude specifications
for these distributions might be used (e.g., uniform and
loguniform for variables with uncertainty ranges less
than and greater than one order of magnitude, respec-
tively). As long as the ranges are not unreasonably

small or large, such an approach can lead to consider-
able insights into the behavior of a system and the vari-

ables that influence this behavior. However, more ro-
bust insights would require greater effort in the defini-
tion of the distributions. An efficient approach is to
carry out an initial screening analysis with uniform and
Ioguniform distributions to identi~ the most important
variables and then to characterize more carefidly the
uncertainty in these variables for use in a second analy-
sis. This iterative approach allows resources to be con-
centrated on characterizing the uncertainty in the most
important variables. If a variable has little effect on the
outcome of an analysis, then the accuracy with which its
uncertainty is characterized is not very important to the
outcome of the analysis.

1.0

0.9 -

0.8 -
Average

,/ 1 -i

0.6 -

0.5 - I

0.4 - 1’

0.3 -
MEANCDF —

EXPERT 2 ------

0.0 5.0 10.0 15.0 20.0 25.0

Rangeof PossibleValuesforx

TRI-6342-E039-O

Fig. 4.2. Construction of mean CDF by averaging of
CDFS defined by individual experts, with
equal weight (i.e., l/nE = 1/3, where nE = 3 is

the number of experts) given to each expert.
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5.0 Sampling Procedures

Sampling-based methods for uncertainty and sensi-
tivity analysis obviously require sampling procedures.
Three sampling procedures are discussed in this section:
Random sampling (Sect. 5.1), importance sampling
(Sect. 5.2), and Latin hypercube sampling (Sect. 5.3).
Random and Latin hypercube sampling are compared
with a simple function (Sect. 5.4). A correlation control
procedure for use in conjunction with random and Latin
hypercube sampling is then discussed (Sect. 5.5). Fi-
nally, the use of Latin hypercube sampling to generate a

sample from the probability space ( 5SU, ~~u, p$u) for

subjective uncertainty introduced in Sect. 3 is described
in Sect. 5.6.

5.1 Random Sampling

For notational convenience, assume that the vari-
ables under consideration are represented by

x = [xl, X2, .... Xnx] (5.1)

and that the corresponding probability space is ($ ~,

p). In random sampling, sometimes also called simple
random sampling, the observations

xk = [~kl, xkz, .... xk,nx], k = 1, 2, . ... nR, (5.2)

where nR is the sample size, are selected according to
the joint probability distribution for the elements of x as

defined by (S, d’, p). In practice, (~, ~, p) is defined

by specifying a distribution Dj for each element Xj of x
as indicated in Eq. (1.3). Points from different regions

of the sample space S occur in direct relationship to the

probability of occurrence of these regions. Further,
each sample element is selected independently of all
other sample elements. As illustrated in Fig. 5.1 for xl
= U, X2 = V, nX = 2 and nR = 5, the numbers RU(l),
RU(2), .... RU(5) are sampled from a uniform distribu-
tion on [0, 1] and in turn lead to a sample U(l), U(2),
.... U(5) from U based on the CDF for U. Similarly, the
numbers RV(l), RV(2), .... RV(5) lead to a sample V(l),
v(2), .... V(5) from V. The pairs

)(k = [U(k), V(k)], k= 1,2, .... nR = 5, (5.3)

then constitute a random sample from x = [U, Vl, where

U has a normal distribution on [–1, 1] and V has a tri-
angular distribution on [0,4] in this example.

Random samples are generated in an analogous
manner when x has a dimensionality greater than 2

(e.g., nX = 100). Specifically, if the elements of x are
represented by U, V, .... W and a random sample of size
nR is to be generated, then random numbers RU(I ),
RU(2), .... RU(nR) are sampled uniformly from [0,1]
and used to obtain corresponding values U(l), U(2), .. ..
U(nR) for U; random numbers RV(l), RV(2), .... RV(nR)
are sampled uniformly from [0, 1] and used to obtain
corresponding values V(l), V(2), .... V(nR) for V, and so
on, with the process continuing through all elements of
x and ending with the selection of random numbers
RW(l), RW(2), .... RW(nR) from [0,1] and the genera-
tion of the corresponding values W(l), W(2), .... W(nR)
for W. The vectors

xk = [U(k), V(k), .... W(k)], k = 1, 2, .... nR, (5.4)

then constitute a random sample from x = [U,V, ....klq.

The preceding sampling procedure depends on the
generation of random samples from a uniform distribu-
tion on [0, 1] (i.e., uniform random variates). The gen-
eration of such samples is widely discussed (e.g., Press
et al. 1992, Barry 1996, Fishman 1996, L’Ecuyer
1998), and the capability to do so is taken for granted in
this presentation.

5.2 Importance Sampling

In random sampling, there is no assurance that
points will be sampled from any given sub-region of the
sample space S. Also, it is possible for an inefficient

sampling of cS’to occur due to several sampled values

falling very close together. The preceding problems can
be partially ameliorated by using importance sampling.

With this technique, S is exhaustively divided into a

number of nonoverlapping subregions (i.e., strata) Si, i

= 1, 2, .... nS. Then, nSi values for x are randomly

sampled from $i, with the random sampling carried out

in consistency with the definition of ($ A’, p) and the

restriction of X to ~i. The resultant vectors

nS

)(k = [Xkl,x/&l, .. .. Xknx], k= 1, 2, .. ..
z

nSi , (5.5)

i=l

then constitute an importance-based sample from ~ (i.e.,

a sample obtained by importance sampling). Typically,

only one value is sampled from each ~i, with the result

that the sample has the form
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X~ = [Xj& Xkz, .. .. Xknx], k= 1, 2, .... rzs. (5.6)

The name importance sampling derives from the fact
that the A are in part defined on the basis of how impor-

tant the x’s contained in each set are to the final out-
come of the analysis. Often, importance sampling is
used to ensure the inclusion in an analysis of x’s that
have high consequences but low probabilities (i.e., the

probabilities p($) are small for the $ that contain such

x’s). When importance sampling is used, the probabili-
ties p( $ and number of observations nSi taken from

each ~i must be folded back into the analysis before

results can be meaningfully presented.

Several examples of importance sampling for x =
[U, Vl are given in Fig. 5.2. The two top frames are for

strata of equal probability (i.e., all p( ~i) are equal). For

two uniform distributions, this results in all strata hav-
ing the same area (upper left frame). For two nonuni-
form distributions, different strata can have different
areas even though they have the same probability (upper
right frame). The two lower frames are for strata of
unequal probability. In this case, the variable distribu-
tions and the strata probabilities interact to determine
the area of the strata. However, it is important to rec-
ognize that specifying variable distributions, number of
strata and strata probabilities does not uniquely define
an importance sampling procedure; rather, there are
many ways in which the strata ~i can be defined that are

consistent for the preceding constraints. In particulrw,
appropriate definition of strata will depend on specific
properties of individual analyses. Similar ideas also
hold for more than two variables, in which case the
strata become volumes in a space with the same dimen-
sion as x.

5.3 Latin Hypercube Sampling

Importance sampling operates to ensure the full
coverage of specified regions in the sample space. This
idea is carried farther in Latin hypercube sampling
(McKay et al. 1979) to ensure the full coverage of the
range of each variable. Specifically, the range of each
variable (i.e., the Xj) is divided into nLHS intervals of
equal probability and one value is selected at random
from each interval. The nLHS values thus obtained for
xl are paired at random and without replacement with
the nLHS values obtained for X2. These nLHS pairs are
combined in a random manner without replacement
with the nLHS values of X3 to form nLHS triples. This
process is continued until a set of nLHS nx-tuples is
formed. These nX-tuples are of the form

Xk = [~kl,Xkz, . .. . x~nx], k= 1, .... nLHS, (5.7)

and constitute the Latin hypercube sample (LHS). The
individual Xj must be independent for the preceding
construction procedure to work, a method for generat-
ing Latin hypercube and random samples from corre-
lated variables has been developed by Iman and
Conover (1982) and is discussed in Sect. 5.5. Latin
hypercube sampling is an extension of quota sampling
(Steinberg 1963) and can be viewed as an n-
dimensional randomized generalization of Latin square
sampling (pp. 206-209, Raj 1968).

The generation of an LHS of size nLHS = 5 from
x = [U, Vj is illustrated in Fig. 5.3. Initially, the ranges
of U and V are subdivided into five intervals of equal
probability, with this subdivision represented by the
lines that originate at 0.2, 0.4, 0.6 and 0.8 on the ordi-
nates of the two upper frames in Fig. 5.3, extend hori-
zontally to the CDFS, and then drop vertically to the
abscissas to produce the 5 indicated intervals. Random
values U(l), U(2), .... U(5) and V(l), V(2), .... V(5) are
then sampled from these intervals. The sampling of
these random values is implemented by (i) sampling
RU(l) and RV(l) from a uniform distribution on [0,
0.2], RU(2) and RV(2) from a uniform distribution on
[0.2, 0.4], and so on, and (ii) then using the CDFS to
identify (i.e., sample) the corresponding U and V val-
ues, with this identification represented by the dashed
lines that originate on the ordinates of the two upper
frames in Fig. 5.3, extend horizontally to the CDFS, and
then drop vertically to the abscissas to produce U(l),
u(2), .... U(5) and V(l), V(2), .... V(5). The generation
of the LHS is then completed by randomly pairing
(without replacement) the resulting values for U and V.
As this pairing is not unique, many possible LHSS can
result. Two such LHSS are shown in the lower two
frames in Fig. 5.3, with one LHS resulting from the
pairings [U(l), V(5)], [U(2), V(l)], [U(3), V(2)], [U(4),
V(3)], [U(5), V(4)] (lower left frame) and the other LHS
resulting from the pairings [U(l), V(3)], [U(2), V(2)],

[U(3), V(4)], [U(4), V(5)], [U(5), V(l)] (lower right
frame).

The generation of an LHS for nX >2 proceeds in a
manner similar to that shown in Fig. 5.3 for nX = 2.
The sampling of the individual variables for nX >2
takes place in the same manner as shown in Fig. 5.3.
However, the nX variables define an nX-dimensional
solid rather than a 2-dimensional rectangle in the plane.
Thus, the two lower frames in Fig. 5.3 would involve a
partitioning of an nX-dimensional solid rather than a
rectangle.
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4] (mode= 1) (right frames).

Fig. 5.2.

16



Sample from Cumulative Distributionfor U

RU(5~=0.87——— ——— — ——— ——— .

RU(4)=0.69

/’/
——— ——— ——— ———

.—— ——— ——— ——
RU(3)=0.57

RU(2)=0.32——— ——— —

.—— ———
RU(I )=0.19

–1.0-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

U: Normal

4.0

3.6

3.2

2.8

1.2

0.8

0.4

0.0

Latin HypercubeSampling: FirstPairing U,V

I“’’’’I’’ r’’l’’l’’’’”l
xl ] [-0.37 3.39]

[0.49,2.43]

w
x5

I I I I I I
@ [0!22,1 .63]

x4

t /
x3Id [0.08, 1:071 1

1 I I

t

I

Q @.20,0.74]
4

X2

1 t i II I 1, I I I II I I J
–1.0 –0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

U: Normal

Sample from Cumulative Distributionfor V
1.0 ——— ——_ ————— ___ ___

0.9 -

——— ——— ——— —_—
RV(4)=0.79

u /~ R“l*\-11=-
———

g 0.5
~1
!1t

$ :1
~

g 0.4
>1

1!1

0
~
>1

I
a c

“ (.2,-”. .).7

7/

J__3“.”

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.6 3,2 3.6 4.0
V: Triangular

Latin Hypercube Sampling: Second Pairing U,V
4.0 - I I I 1 I I t i I

x4
3.6 -

@) [0.22,3.39]

3.2 -

2.8 -

[0.08,2.43]
2.4 ~ u

5 x3
~ 2.0
cus
~ 1,6 xl ~ ~ [-0.37,1.63]

>

1.2 -
x% [-0.20?1.On

0.6 - @ [0.49,0.74]

0.4 -
x5

no 1 1 1 t I 1 1 f 1..-
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

U: Normal

TRI-6342-5183-0
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5.4 Comparison of Random and
Latin Hypercube Sampling

Random sampling is the preferred technique when
sufficiently large samples are possible because it is easy
to implement, easy to explain, and provides unbiased
estimates for means, variances and distribution func-
tions. The possible problems with random sampling
derive tlom the rather vague phrase “sufficiently large”
in the preceding sentence. When the underlying models
are expensive to evaluate (e.g., many hours of CPU time
per evaluation) or estimates of extreme quantiles are
needed (e.g., the 0.999999 quantile), the required sam-
ple size to achieve a specific purpose may be too large
to be computationally practicable. In the 1996 WIPP
PA, random sampling was used for the estimation of
complementary cumulative distribution functions
(CCDFS) for radionuclide releases to the accessible

environment (i.e., for integration over ( ~st, ~sf, pst); see

Sect. 10) because it was possible to develop a computa-
tional strategy that allowed the use of a sample of size
nS = 10,000 to estimate an exceedance probability of
0.001.

When random sampling is not compultationally
feasible for the estimation of extreme quantiles, impor-
tance sampling is often employed. However, the use of
importance sampling on nontrivial problems is not easy
due to the difficulty of defining the necessary strata and
also of calculating the probabilities of these strata. For
example, the fault and event tree techniques used in
probabilistic risk assessments for nuclear power stations
and other complex engineered facilities can be viewed
as algorithms for defining importance sampling proce-
dures. The bottom line is that the definition and imple-
mentation of an importance sampling procedure is not
easy. Further, without extensive a priori knowledge,
the strata may end up being defined more finely than is
necessary, with the result that the importance sampling
procedure ends up requiring more calculations than the
use of random sampling to calculate the same outcomes.
For example, the number of strata in the importance
sampling procedure used to estimate CCDFS in the
1991 and 1992 WIPP PAs (Helton and Iuzzolino 1993)
greatly exceeds the size of the random samples used in
the 1996 WIPP PA to estimate CCDFS. The unequal
strata probabilities also make the outcomes of analyses
based on importance sampling inconvenient for use in
sensitivity analyses (e.g., how does one interpret a
scatterplot or a regression analysis derived from results
obtained from an importance sampling procedure?).

Latin hypercube sampling is used when large sam-
ples are not computationally practicable and the estima-

tion of very high quantiles is not required. The preced-
ing is typically the case in uncertainty and sensitivity
studies to assess the effects of subjective uncertainty.
First, the models under consideration are often compu-
tationally demanding, with the result that the number of
calculations that can be performed to support the
analysis is necessarily limited. For example, the totality
of the model calculations (i.e., BRAGFLO, NUTS,
PANEL, GRASP.INV, SECOFL2D, SECOTP2D,
CUTTINGS_S, BRAGFLO.DBR; see Sect. 10) in the
1996 WIPP PA was too extensive to permit the genera-
tion of thousands of CCDFS in an uncertainty/sensitivity
study to assess the effects of subjective uncertainty on
compliance with environmental regulations (i.e., 40
CFR 191.13; see Sect. 10). Second, the estimation of
very high quantiles is generally not required in an
analysis to assess the effects of subjective uncertainty.
Typically, a 0.90 or 0.95 quantile is adequate to estab-
lish where the available information indicates a particu-
lar analysis outcome is likely to be located; in particu-
lar, a 0.99, 0.999 or 0.9999 quantile is usually not
needed in assessing the effects of subjective uncertainty.

Desirable features of Latin hypercube sampling in-
clude unbiased estimates for means and distribution
functions and dense stratification across the range of
each sampled variable (McKay et al. 1979). In particu-
lar, uncertainty and sensitivity analysis results obtained
with Latin hypercube sampling have been observed to
be quite robust even when relatively small samples (i.e.,
nLHS = 50 to 200) are used (Iman and Helton 1988,
1991; Helton et al. 1995a).

For perspective, Latin hypercube and random
sampling are illustrated in Fig. 5.4 for two different
distribution pairs. To facilitate comparisons, the grid
that underlies the LHSS is also shown for the random
samples, although it plays no role in the actual genera-
tion of these samples. The desirability of Latin hyper-
cube sampling derives from the full coverage of the
range of the sampled variables; specifically, each equal
probability interval for U and also each equal probabil-
ity interval for V has exactly one value sampled from it.
In contrast, random sampling makes less efilcient use of
the sampled points, with the possibility existing that
significant parts of a variable’s range will be omitted
(e.g., only one value below the 0.5 quantile for U in the
lower left frame and no values for U below the 0.19
quantile nor above the 0.85 quantile in the lower right
frame) and that other parts will be overemphasized
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Fig. 5.4. Examples of Latin hypercube and random sampling to generate a sample of size 10 from variables U and V

with (1) U and V uniform on [0, 1] (left frames), and (2) U normal on [–1, 1] (mean = O, 0.01 quantile =

–1, 0.99 quantile = 1) and V trianguhr on [0,4] (mode= 1) (right frames).
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(e.g., 5 out of 10 values for U fall between the 0.5 and
0.7 quantiles for U in the lower left frame, and two pairs
of sampled points fall close together in the lower right
frame). The enforced stratification in Latin hypercube
sampling prevents such inefficient samplings while still
providing unbiased estimates for means and distribution
functions.

The outcome of the enforced stratification associ-
ated with Latin hypercube sampling is that estimates of
means and distribution functions tend to be more stable
when generated by Latin hypercube sampling than by
random sampling. Here, stability refers to the amount
of variation between results obtained with different
samples generated by the particular sampling technique
under consideration. This stability can be illustrated by
comparison of estimates of the CDF for the simple
function

j(u, v)=u+v+uv (5.8)

obtained with Latin hypercube and random sampling
under the assumption that U and V are uniformly dis-
tributed on [0, 2]. In particular, each sampling tech-
nique is used to generate 100 samples of size 10 and
also 100 samples of size 100 from U and V. Each

10 Random Samples of Size 10
1.0

0.9

o.a

0.2

0.1

0.0
0.0

Fig. 5.5.

1,0 2.0 3.0 4.0 5.0 6.0 7.0 6,0

(U,v)=u+v+uv

sample gives rise to an estimated CDF for ~ (Fig. 5.5).
The goal is to compare the variability between the esti-
mates obtained with Latin hypercube and random
sampling.

Presenting plots similar to those in Fig. 5.5 for 100
CDFS at a time is not very informative because the
CDFS tend to turn into a solid black mass. A more in-
formative presentation is to summarize the distributions
of CDFS with mean and percentile curves. The location
of the percentile curves then provides an indication of
how stable the estimates of the CDFS are. In particular,
limited separation between low and high percentiles
(e.g., the 10th and 90th) indicates that the sampling pro-
cedure is providing stable estimates of the CDF (i.e.,
there is little variability in the estimated CDF from one
sample to the next); in contrast, a large spread between
low and high percentiles indicates that the sampling
procedure is not providing stable estimates of the CDF
(i.e., there is substantial variability in the estimated
CDF from one sample to the next). The previously in-
dicated 100 samples of size 10 and 100 are summarized
in this manner in Fig. 5.6. Further, the analysis was
replicated three times to give three estimates of the 10th
percentile, three estimates of the 50th percentile, and so
on.
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Example CDFS forflU, V)= U + V+ UV estimated with random samples of size 10 and 100 under the
assumption that U and V are uniformly distributed on [0, 2].
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Summary of distribution of CDFS forfll.,1, V) = U + V + UV estimated with 3 replications of 100 Latin hy-
percube samples and 100 random samples of size 10 and 100 under the assumption that U and V are uni-
formly distributed on [0, 2].
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As examination of Fig. 5.6 shows, Latin hypercube
sampling is producing CDF estimates that are more
stable than those produced by random sampling (i.e.,
the spread between the 10th and 90th percentile curves
is tighter for Latin hypercube sampling than for random
sampling). The stability of the mean and percentile
estimates across the three replicates indicates that the
observed stability is rerd rather than a chance occur-
rence associated with a particular set of 100 Latin hy-
percube or random samples.

From the perspective of uncertainty and sensitivity
analysis, the full stratification over the range of each
sampled variable is a particularly desirable property of
Latin hypercube sampling. In a large study, there are
potentially hundreds of predicted variables that will be
examined at some point in associated uncertainty and
sensitivity analyses. Further, it is likely that almost
every sampled variable will be important with respect to
at least one of these predicted variables. With Latin
hypercube sampling, every variable gets equal treatment
(i.e., fi.dl stratification) within the sample; should a vari-
able be important with respect to a particular output
variable, it has been sampled in a way that will permit
this importance to be identified. In contrast, it is very
difficult to design an importance sampling procedure
that provides acceptable results for a large number of
sampled and predicted variables. In some sense, Latin
hypercube sampling can be viewed as a compromise
importance sampling procedure when a priori knowl-
edge of the relationships between the sampled and pre-
dicted variables is not available. When random sam-
pling is used with a small sample size in an analysis that
involves a large number of sampled and predicted vari-
ables, the possibility exists that the chance structure of
the sample will result in a poor representation of the
relationships between some of the sampled and pre-
dicted variables. Such poor relationships can also occur
for Latin hypercube sampling when several sampled
variables affect a given predicted variable, but are less
likely to occur than is the case with random sampling.

Formal results involving Latin hypercube sampling
and other sampling procedures are available in a num-
ber of publications (e.g., Owen 1992, Stein
and Conover 1982, McKay et al. 1979).

1987, Iman

5.5 Correlation Control

Control of correlation within a sample can be very im-
portant. If two or more variables are correlated, then it
is necessary that the appropriate correlation structure be
incorporated into the sample if meaningful results are to
be obtained in subsequent uncertaintylsensitivity stud-
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ies. On the other hand, it is equally important that vari-
ables do not appear to be correlated when they are
really independent.

It is often difficult to induce a desired correlation
structure on a sample. Indeed, multivariate distributions
can be incompatible with correlation patterns that are
proposed for them. Thus, it is possible to encounter
analysis situations where the proposed variable distri-
butions and the suggested correlations between the vari-
ables are inconsisten~ that is, it is not possible to have
both the desired variable distributions and the requested
correlations between the variables.

‘In response to this situation, Iman and Conover
(1982) proposed a method for controlling the correla-
tion structure in random and Latin hypercube samples
that is based on rank correlation (i.e., on rank-
transformed variables) rather than sample correlation
(i.e., on the original untransformed data). With their
technique, it is possible to induce any desired rank-
correlation structure onto the sample. This technique
has a number of desirable properties: (i) It is distribu-
tion free. That is, it may be used with equal facility on
all types of distribution functions. (ii) It is simple. No
unusual mathematical techniques are required to im-
plement the method. (iii) It can be applied to any
sampling scheme for which correlated input variables
can logically be considered, while preserving the intent
of the sampling scheme. That is, the same numbers
originally selected as input values are retained; only
their pairing is affected to achieve the desired rank cor-
relations. This means that in Latin hypercube sampling
the integrity of the intervals is maintained. If some
other structure is used for selection of values, that same
structure is retained. (iv) The marginal distributions
remain intact.

For many, if not most, uncertainty/sensitivity
analysis problems, rank-correlation is probably a more
natural measure of congruent variable behavior than is
the more traditional sample correlation. What is known
in most situations is some idea of the extent to which
variables tend to move up or down together; more de-
tailed assessments of variable linkage are usually not
available. It is precisely this level of knowledge that
rank correlation captures.

The following discussion provides an overview of
the Iman/Conover procedure for inducing a desired rank
correlation structure on either a random or a Latin hy-
percube sample and is adapted from Sect. 3.2 of Helton
1993b. The procedure begins with a sample of size m
from the n input variables under consideration. This

sample can be represented by the m x n matrix



x=

xl 1 X12 ‘.O Xln

X21 X22 . . . ~2n

(5.9)

rXml Xmz . . . Xm

where xii is the value for variable j in sample element i,
Thus, th~ rows of X correspond to sample elements, and

the columns of X contain the sampled values for indi-
vidual variables.

The procedure is based on rearranging the values in

the individual columns of X so that a desired rank corre-
lation structure results between the individual variables,
For convenience, Iet the desired correlation structure be

represented by the n x n matrix

[ c11 C12
. . . ~ln

1

c= c?C:2““”c.? (5.10)

1Cnl Cnz . . . Cnn J

where ckl is the desired rank correlation between vari-
ables xk and xp

Although the procedure is based on rearranging the
values in the individual columns of X to obtain a new
matrix X* that has a rank correlation structure close to

that described by C, it is not possible to work directly
with X. Rather, it is necessary to define a new matrix

[
S11 S12 . . . S,n

hs= ‘:1 ‘2: “-.‘y

‘ml ‘m2 . . . ‘mm

(5.11)

that has the same dimensions as X, but is otherwise in-
dependent of X. Each column of S contains a random
permutation of the m van der Waerden scores (Conover

1980) @-l(i/m + 1), i = 1, 2, . . . . m, where @-l is the
inverse of the standard normal distribution. The matrix
S is then rearranged to obtain the correlation structure
defined by C. This rearrangement is based on the Cho-
lesky factorization (Golub and van Loan 1983) of C.
That is, a lower triangular matrix P is constructed such
that

c = PP~. (5.12)

This construction is possible because C is a symmetric,
positive-definite matrix (Golub and van Loan 1983, p.
88).

If the correlation matrix associated with S is the n

x n identity matrix (i.e., if the correlations between the

values in different columns of S are zero), then the cor-
relation matrix for

S*= spT (5.13)

is C (Anderson 1984, p. 25). At this point, the success
of the procedure depends on the following two condi-
tions: (1) that the correlation matrix associated with S

be close to the n x n identity matrix; and (2) that the
correlation matrix for S* be approximately equal to the
rank correlation matrix for S*. If these two conditions
hold, then the desired matrix X* can be obtained by
simply rearranging the values in the individual columns
of X in the same rank order as the values in the individ-
ual columns of S*. This is the first time that the vari-
able values contained in X enter into the correlation
process. When X* is constructed in this manner, it will
have the same rank correlation matrix as S*. Thus, the
rank correlation matrix for X* will approximate C to the
same extent that the rank correlation matrix for S*
does.

The condition that the correlation matrix associated
with S be close to the identity matrix is now considered.
For convenience, the correlation matrix for S will be
represented by E. Unfortunately, E will not always be
the identity matrix. However, it is possible to make a
correction for this. The starting point for this correction
is the Cholesky factorization for E:

E = QQT. (5.14)

This factorization exists because E is a symmetric,
positive-definite matrix. The matrix S* defined by

S*= S(Q-l)~P~ (5.15)

has C as its correlation matrix. In essence, multiplica-

tion of S by (Q–l)~ transforms S into a matrix whose

associated correlation matrix is the n x n identity ma-
trix; then, multiplication by PT produces a matrix whose
associated correlation matrix is C. As it is not possible
to be sure that E will be an identity matrix, the matrix
S* used in the procedure to produce correlated input
should be defined in the corrected form shown in Eq.
(5.15) rather than in the uncorrected form shown in Eq,
(5.13).
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The condition that the correlation matrix for S* be
approximately equal to the rank correlation matrix for

S* depends on the choice of the scores used in the

definition of S. On the basis of empirical investiga-
tions, Iman and Conover (1982) found that van der
Waerden scores provided an effective means of defining
S, and these scores are incorporated into the rank corre-
lation procedure in the widely used LHS program (Iman
and Shortencarier 1984). Other possibilities for defin-
ing these scores exist, but have not been extensively
investigated. The user should examine the rank corre-
lation matrix associated with S* to ensure that it is close
to the target correlation matrix C. If this is not the case,
the construction procedure used to obtain S* can be
repeated until a suitable approximation to C is obtained.
Results given in Iman and Conover 1982 indicate that
the use of van der Waerden scores leads to rank corre-
lation matrices for S* that are close to the target matrix
c.

Additional information on the Iman/Conover (i.e.,
restricted pairing) technique to induce a desired rank-
correlation structure is given in the original article.
Further, the technique is implemented in the widely
used LHS program (Iman and Shortencarier 1!284). The
results of various rank-correlation assumptions are illus-
trated in Iman and Davenport (1980, 1982).

to produce three independently gc
rzLHS = 100 each from the 31 vari
a total of 300 sample elements. 1
cate is an LHS of the form

x~u,k = [Xkl,Xkz, . . . . Xk,nx], k = 1, ~

with nX = 31. The three replicat
erated to provide a way to obser
suits obtained with Latin hypercul
tational convenience, the replicat
R1, R2 and R3 for replicates 1,2 t

The restricted pairing technic
5.5 was used to induce requested
to ensure that uncorrelated varia
close to zero. The variable
ANHPRM), (HALCOMP, HALPi

BPPRM) were assigned rank c{

–0.99 and –0.75, respectively (T2
other variable pairs were assignef
zero. The restricted pairing tech
cessful in producing these corr
Specifically, the correlated varial
that are close to their specified va

variables have correlations that ar(

5.6 Latin EIypercube Sampling in
the 1996 WIPP PA

As discussed in Sect. 3, this presentation uses an
example from the 1996 WIPP PA. In this analysis, the
LHS program (Iman and Shortencarier 1984) was used

Table 5.1. Example Rank Correlations in Replicate 1

WGRCOR

WMICDFLG

HALCOMP

HALPRM

ANHCOMP

ANHPRM

BPCOMP

BPPRM

1.0000

0.0198

0.0011

-0.0068

0.0080

0.0049

0.0242

–0.0514

WGRCOR

1.0000

0.0235 1.0000

-0.0212 -0.9879 1.0000

0.0336 –0.0 123 –0.0025 1.0000

-0.0183 0.0037 0.0113 -0.9827 1.0000

0.1071 –0.0121 0.0057 -0.0184 0.0078

–0.0342 0.0035 0.0097 0.0283 -0.0202

WMICDFLG HAL.COMP HALPRM ANHCOMP ANHPRM
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6.0 Evaluation of Model

Once the sample in Eq. (1.4) has been generated,
the corresponding model evaluations in Eq. (1.5) must
be carried out. The nature of these evaluations is “model
specific and outside the scope of this presentation.
However, this brief section is included to emphasize
that these evaluations are something that must be done
as part of a sampling-based uncertainty and sensitivity
analysis. If the model under consideration is expensive
to evaluate, then this will probably be the most compu-
tationally demanding part of the analysis and may sig-
nificantly influence the sample size selected for use and

possibly other aspects of the analysis. For example, the
model introduced in Sect. 3 for use as an example re-
quires approximately 4 to 5 hours of CPU time on a
VAX Alpha per evaluation (i.e., for each sample ele-
ment) and produces a large quantity of temporally and
spatially variable results. Thus, for this example, carry-
ing out and then saving the necessary model evaluations
involved a significant expenditure of human and compu-
tational resources. In contrast, this part of the analysis
can be relatively undemanding for models that are less
complex and computationally intensive.
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7.0 Uncertainty Analysis

After the sample in Eq. (1.4) has been generated
and the corresponding model evaluations in Eq. (1.5)
have been carried out, the primary computational por-
tions of the uncertainty analysis component of a sam-
pling-based analysis have been completed. What re-
mains to be done is to display the uncertainty informa-
tion contained in the mapping between analysis inputs
and analysis results in Eq. (1.6). Two cases are consid-
ered: results represented by single numbers (Sect. 7.1),
and results represented by functions (Sect. 7.2). Finally,
example analysis outcomes illustrating the stability of
uncertainty analysis results obtained with Latin hyper-
cube sampling are presented (Sect. 7.3).

7.1 Scalar Results

When a single real-valued result is under consid-
eration, the vector-valued function Y(xk) in Eqs. (1.5)
and (1.6) becomes the scalar-valued function

Yk ‘Y(xk), k= 1,2, . . ..nS. (7.1)

One possibility is to summarize the uncertainty in y with
a mean and a variance. If random or Latin hypercube
sampling was used to generate the results in Eq. (7.1),

then estimates &y) and ~(y) for the expected value

and variance of y are given by

nS

i(y) =
z

y~ I nS

k=l

(7.2)

and

nS

i(y) =zb’k – J!%)12 /(nS -1) . (7.3)

k=l

If importance sampling was used in the generation of
the results in Eq. (7.1), then the probabilities of the in-
dividual strata in the importance sampling procedure

would have to be used in the determination of &y) and

i(y) .

Although the estimation of means and variances is
a possibility for summarizing the uncertainties in scalar-
valued results, these quantities do not provide very
good summaries of subjective uncertainty for at least

two reasons. First, information is always lost in the
calculation of means and variances. Specifically, there
is more information in the nS numbers in Eq. (7.1) and
their associated weights (i.e., the reciprocal of the sam-
ple size for random and Latin hypercube sampling and
the strata probabilities for importance sampling) than
there is in the two numbers in Eqs. (7.2) and (7.3).
Second, means and variances are not very natural
quantities for summarizing subjective uncertainty.
Specifically, the quantiles associated with a distribution
summarizing subjective uncertainty convey more
meaningful information about where the quantity under
consideration is believed to be located.

Distribution functions provide a more effective
summary of the information associated with the map-
ping in Eq. (7.1) than means and variances. In particu-
lar, this mapping can be summarized with either a CDF
or a CCDF, with the CCDF simply being one minus the
CDF (Fig. 7.1). The presence of the included and ex-
cluded points in Fig. 7.1 results from the use of a finite
number of y values and the inequalities in the defini-
tions of CDFS and CCDFS. Technically, the vertical
lines should not be present in the CDF and CCDF in
Fig. 7.1 but these lines are typically included to make
plots of CDFS and CCDFS easier to read. For the same
reason, the distinction between included and excluded
points is typically omitted. When random or Latin hy-
percube sampling is used, the step heights in the defini-
tions of CDFS and CCDFS are the reciprocal of the
sample size nS (i.e., l/nS and thus 1/10 in Fig. 7.1);
when importance sampling is used, the step heights cor-
respond to the strata probabilities. An example with
real data is given in Fig. 7.2.

The value of CDFS and CCDFS is that they provide
a display of all the information associated with the
mapping in Eq. (7.1). In particular, they allow an easy
extraction of the probabilities of having values in dif-
ferent subsets of the range of y. Although CDFS and
CCDFS are equivalent in their information content,
CCDFS are often used for display purposes when large
samples are in use and it is important to display the ef-
fects of low probability but high consequence analysis
outcomes (i.e., unlikely but large y values); fhrther,
CCDFS answer the question “How likely is it to be this
bad or worse?”, which is typically the question of inter-
est in risk assessments. Given that the distributions

assigned to the elements of x are characterizing subjec-
tive uncertainty, then the resultant probabilities
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Fig. 7.1. Example of construction of CDFS and CCDFS for a sample of size nS = 10 (i.e., yk = y(xk), k = 1, 2, . . . . nS

= 10 in Eq. (7.1)).
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Fig. 7.2. Example of estimated CDF and CCDF for
repository pressure at 10,000 yr under undis-

turbed conditions (i.e., y = EO:WAS_PRES)
obtained from the 300 LHS elements that re-
sult from pooling replicates RI, R2 and R3
(see Sect. 5.6).

extracted from CDFS and CCDFS are also characteriz-
ing subjective uncertainty and are thus providing quanti-
tative measures of where the value of y is believed to be
located.

Many individuals prefer density functions rather
than CDFS or CCDFS for the display of distributions.
Density functions have the advantage that they make it
easy to identify the mode of a distribution but do not
allow an easy extraction of the probabilities associated
with various subranges of the dependent variable. Fur-
ther, unless smoothing procedures are used, the best that
can be obtained from the results in Eq. (7.1) is a histo-
gram that approximates the shape of the density func-
tion, with the potential that the shape of this histogram
will be significantly influenced by the resolution at
which the yk’s are binned (Silverman 1986). As rec-
ommended by Ibrekk and Morgan (1987), an alternative
display is to plot the CDF, the mean, and the associated
density function on the same plot frame (Fig. 7.3).

One disadvantage associated with CDFS, CCDFS
and density functions is that displays using these distri-
butional summaries can become quite cluttered when
results for a number of different analysis outcomes are
presented in a single plot frame (e.g., a plot involving

CDFS, CCDFS or density functions for 10 different

27



1.0

0.9

0.1

0.0

cDF\

‘e”‘%

(Density Function) -

r7
—

1 1 I I

0.50

0.45
g

0.40 .g

0.35 g

0.30 g
‘6

0.25 C
.g

0.20 :
Ii

0.15 g

0.10 g

0.05 $

0.00

2.0

Fig. 7.3.

5,1 8.1 11.2 14.2 17.3

y = EO: WAS_PRES, Pa (106)

TRI-62.42-8042-3

Uncertainty display including estimated dis-
tribution function, density function, and mean
for repository pressure at 10,000 yr under
undisturbed conditions (i.e., y =
EO: WAS.PRES).

analysis outcomes can be hard to read due to the ten-
dency of the individual curves to repeatedly cross each
other). Box plots provide an alternative, less congested
display of multiple distributions (Fig. 7.4). In such
plots, the endpoints of the boxes are formed by the
lower and upper quartiles of the data, that is X025 and
X075. The vertical line within the box represents the
median, X050. The mean is identified by the large dot.
The bar on the right of the box extends to the minimum

of xo 75 + 1S(X0,75 –X0.25) and the maximum value. In
a sin&r manner, the bar on the left of the box extends

to the maximum of X0,25 – 1.5(xo75 – X0.25) and the
minimum value. The observations falling outside of
these bars are shown with crosses. In symmetric distri-
butions, these values would be considered outliers. Box
plots contain the same information as a distribution
function, but in a somewhat reduced form. Further,
their flattened shape makes it convenient to place many
distributions on a single plot and also to compare dif-
ferent distributions.

7.2 Functions

In many analyses, outcomes of interest are func-
tions of one or more variables. In the example used in
this presentation, many results are functions of time
(Fig. 7.5). Thus, time is the independent variable (i.e.,
function argument). However, there is also subjective
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Examples of box plots for cumulative brine
flow over 10,000 yr into various regions in
disturbed rock zone surrounding repository
(EO:BRM38NIC, EO:BRM38SIC, EO:BRA-
ABNIC, EO:BRAABSIC, EO:BRM39NIC,
EO:BRM39SIC and EO:BRAALIQ and into
repository (EO:BRNREPTC) under undis-
turbed conditions in the 1996 WIPP PA (Fig.
7.2.2, Helton et al. 1998a).

uncertainty in the variables required in the estimation of
these functions, with this uncertainty leading to multiple
possible functions as illustrated in Fig. 7.5. The esti-
mated distribution presented in Ftg. 7.5 was obtained
from the LHS in Eq. (5. 16) associated with replicate R1
(i.e., each curve in Fig. 7.5 was calculated conditional
on the occurrence of one of the sample elements )($u,kin
Eq. (5.16) for replicate RI).

The family of curves in Fig. 7.5 is an approxima-
tion obtained with an LHS of size 100 to the actual dis-

tribution associated with the probability space ( ~’u,

.d’,u, p~u) for subjective uncertainty. Although such

families provide an impression of the shape of the as-
sociated distributions, they do not directly provide
probabilistic information. In concept, these distribu-
tions can be summarized by presenting density func-
tions for the values on the ordinate for a sequence of
values on the abscissa (Fig. 7.6). In practice, only a
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BRAGFLO (EO, Rl)
Vol-Averaged Pressure Lower Panel (WAS_PRES)

z’”a~

r I I 1 1 1
).0 2.0 4.0 6.0 8.0 10.0

Time (103 yr)

TRl-6342-5721-Oa

Fig. 7.5. Repository pressure under undisturbed condi-
tions (i.e., y = E(): WAS_PRES) for 100 LHS
elements in replicate RI.

finite number of curves will be available as shown in
Fig. 7.5, with the result that the density functions indi-
cated in Fig. 7.6 will have to be approximated from
these curves (Fig. 7.7).

Although the representations in Figs. 7.6 and 7.7
are intuitively appealing (especially for individuals who
like to use density functions to represent distributions),
these representations do not seem to work very well in
practice. In particular, they are difficult to construct
(e.g., construction problems arise if specific conse-
quence values have nonzero probabilities) and also dif-
ficult to extract information from (e.g., to determine
specific quantile values). Some of these problems could
be alleviated by plotting CDFS in the third dimension,
but the resultant plots are still difficult to read.

An alternative and often effective representation is
to determine mean values and quantiles conditional on
individual values on the abscissa and then to plot these
means and quantiles above the values for which they
were determined (Fig. 7.8). Conceptually, a vertical
line is drawn through the curves above a given value on
the abscissa (Fig. 7.8a). The locations where this line
passes through the individual curves identifies the cor-
responding consequence values, with the number of
consequence values equal to the sample size in use.
These values can be used to produce a mean value and
also selected quantile values (Fig. 7.8a). If desired, the
definition of the mean and quantile values can be

Fig. 7.6.

t: Time

TRI-6342-730-25

Density functions characterizing subjective
uncertainty in consequence values for indi-
vidual times.

Fig. 7.7.

t: Time

TRI-6342-730-26

Histograms constructed from a sample X~U,k,k

= 1, 2, . . . . nLHS, from $,U that characterize

subjective uncertainty in consequence values
for individual times.

represented formally by integrals over $Tu (Helton

1996), with the sampling procedure being used to pro-
vide approximations to these integrals. Once the mean
and quantile values have been determined, they can be
plotted above the corresponding values on the abscissa
and then connected to form continuous curves (Fig.
7.8 b). With this summary procedure, the quantile val-
ues are defined conditional on individual times on the
abscissa; as a result, the quantile curves (Fig. 7.8b)
should not be viewed as being quantiles for the distri-
bution of curves (i.e., it is inappropriate to assume that
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there is a probability of 0.9 that a randomly selected

element of &’~Uwill produce a curve that falls below the

0.9 quantile curve indicated in Fig. 7.8b).

Repository pressure has been used as an example of
an uncertain function (Figs. 7.5). Estimates of the cor-
responding mean and quantile curves are given in Fig.
7.9, with these estimates obtained as indicated in con-
junction with Fig. 7.8 from the 300 curves that result
from pooling the outcomes associated with all three
replicates (see Eq. (5.16)). Results such as those given
in Fig. 7.9 provide a more quantitative summary of the
distribution of curves in Fig. 7.5 than the intuitive im-
pression that is obtained by visually examining the dis-
~ributions themselves.

Vertical Slice Through Curves
Used to Summarize Distribution Frame 7.8a

of Consequence Values at Time t

qj

! 1 1 1 I 1 I 1

t: Time

7.3 Stability of Results

As indicated in Fig. 5.6, Latin hypercube sampling
tends to produce more stable results than random sam-
pling. The reason the LHS in Eq. (5.16) was replicated
3 times (i.e., nR = 3) was to provide a measure of the
stability of the results obtained in the 1996 WIPP PA.
For the pressure results in Fig. 7.5, the results were
quite stable from sample to sample (Fig. 7.10). Indeed,
the results obtained with the individual replicates were
quite stable across the large number of predicted out-
comes examined in the analysis, with no instance oc-
curring where different replicates would have lead to
differ&t conclusions with ~espect to system behavior,

Frame 7.i3b

I,Ael
I 1 1 1 1 I 1

2: Time

TRl-6342-730-27a,b

Fig. 7.8. Mean and quantile curves constructed from a sample x~@ k = 1,2, . . . . nLHS, from &u that chmacterize

uncertainty in consequence values for individual times.
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BRAGFLO (EO,RI , R2, R3)
,,5 Vol-AveragedPreeeureLowerPanel (WAS_PRES)
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Time (103yr)

TRI-6342-5763-I

Fig. 7.9. Mean and quantile curves for pressure in
lower waste panel under undisturbed condi-
tions (i.e., y = EO:WAS_PRES) obtained from
the 300 observations that result from pooling
replicates RI, R2 and R3.

.
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0.0
0.0

BRAGFLO(EO,RI , R2, R3)
Vol-AveragedPressureLowerPanel (WAS_PRES)

1.5 - I I 1 1

II

--- 90th Percentile

2.0 4.0 6.0 8.0
J
10.0

Time (103yr)

TRI-6342-4914-1

Fig. 7.10. Mean and quantile curves for three replicated
LHSS for pressure in lower waste panel under

undisturbed conditions (i.e.,
y = EO:WAS_PRESJ
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This determination leads to the following matrix
equation that defines the coefficient vector b for which
the sum S(b) in Eq. (8.6) is a minimum:

Xqb = )(Ty. (8.7)

For the analysis to produce a unique value for b, the
matrix X~ must be invertible. Then, b is given by

b = (X%)-l )(Ty. (8.8)

The matrix X~ will always be invertible when the col-
umns of X are linearly independent. This is usually the
case in a sampling-based study in which the number of
sample elements (i.e., m) exceeds the number of inde-
pendent variables (i.e., n).

The following identity holds for the least squares
regression model and plays an important role in assess-
ing the adequacy of such models:

~(Yk-7)2= ~(jk-j)2+:(jk-Yk)2$ (8.9)

k=l k=l k=l

where ~k denotes the estimate of yk obtained from the

regression model and ~ is the mean of the yk (Sect. 3.4,

Myers 1990). For notational convenience, the preced-
ing equality is often written as

Sstot = Ssreg + Ss,e,, (8.10)

where

SS,O, ‘2(Y, -7)2,s$.,‘:($k-y)2,
k=l k=l

SS,e~“jjjj ‘)’k)2.
k=l

The three preceding summations are called the total sum
of squares, regression sum of squares, and residual sum
of squares, respectively.

Since SSre~ provides a measure of variability about
the regression model, the ratio

R2 = SSreg / SSIOt (8.11)

provides a measure of the extent to which the regression
model can match the observed data. Specifically, when
the variation about the regression model is small (i.e.,

when Ssi-e$ IS a small relative to SSreg), then tie ~ome-

——

spending R2 value is close to 1, whi
regression model is accounting for
tainty in the yk. Conversely, an R2

indicates that the regression model
ful in accounting for the uncertain!
name for R2 is the coefficient of mu

An important situation occurs I
matrix X (i.e., the variable values a
evaluated) are selected so that X%
In this case, the columns of X ares:
and the estimated regression coeffic

b = (XW)-l )(Ty

[

:: ...
00 dn

111 ...1

Xll X21 ... X*1
. .
::

. . .

‘ln ‘2n ‘mn

and so each element bj of b is given

m m
bj = ~ Xkjyk / dj =

0

Y
Xkjyk ~

k=l k=l k

Thus, the estimate of the regressic
the variable xj depends only on the
design matrix X (i.e., Xlj .... xmj).

less of the number of variables inc
sion. As long as the design is orth
or deletion of variables from the mt
the regression coefficients for the ]
Further, when the design matrix X i
value for the regression can be expr{

R2 =SSregl SSIOt = Rf+R:+...+,

where R; is the R2 value that resul

on only xj (p. 99, Draper and Smith

equal to the contribution of xj to

matrix X is orthogonal.

The regression model in Eq. (1
tally reformulated as

j=l

where

(8.15)
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k=l Lk=l J

The coefficients bj~j /; appearing in Eq. (8.15) are

called standardized regression coefficients (SRCS).
When the xj are independent, the absolute value of the
SRCS can be used to provide a measure of variable im-
portance. Specifically, the coefficients provide a meas-
ure of importance based on the effect of moving each
variable away from its expected value by a fixed frac-
tion of its standard deviation while retaining all other
variables at their expected values. Calculating SRCS is
equivalent to performing the regression analysis with
the input and output variables normalized to mean zero
and standard deviation one.

An example regression analysis is now given. The
output variable (i.e., y) is pressure (Pa) in the repository
at 10,000 yr under undisturbed (i.e., EO) conditions
(i.e., the pressure values above 10,000 yr in Fig. 7.5).
To keep the example at a convenient size, 3 independ-
ent variables (i.e., ~j) will be considered (Table 3.1):
pointer variable for microbial degradation of cellulose
(WMICDFLG), halite porosity (HALPOR), and corro-
sion rate for steel (WGRCOR). The following regres-
sion model is obtained using the preceding three vari-
ables and the pooled LHS indicated in conjunction with
Eq. (5.16) (i.e., n = 3 and m = 300):

y = 5.72X 106+ 2.46 X 106 S WMICDFLG

+ 1.55 x 108 ● HALPOR
+ 1.52 X 1020 ● WGRCOR. (8.16)

The coefficients in the preceding model show the effect
of a one unit change in an input variable (i.e., an xj) on
the output variable (i.e., y). The sign of a regression
coei%cient indicates whether y tends to increase (a
positive regression coefficient) or tends to decrease (a
negative regression coefilcient) as the corresponding
input variable increases. Thus, y tends to increase as
each of WMICDFLG, HALPOR and WGRCOR in-
creases.

It is hard to assess variable importance from the re-
gression coefficients in Eq. (8. 16) because of the effects
of units and distribution assumptions. In particular, the
regression coefficient for WGRCOR is much larger than
the regression coefficients for WMICDFLG and
HALPOR, which does not necessarily imply that

WGRCOR has greater influence on the uncertainty in y
than WMICDFLG or HALPOR. Variable importance is
more clearly shown by the following reformation of Eq.
(8.16) with SRCS:

y = 0.722 WMICDFLG -!=0.468 HALPOR

i- 0.246 WGRCOR, (8.17)

where y, WMICDFLG, HALPOR and WGRCOR have
been standardized to mean zero standard deviation one
as indicated in Eq. (8.15). The SRCS in Eq. [8.17)
provide a better characterization of variable importance
than the unstandardized coefficients in Eq. (8.16). For
perturbations equal to a fixed fraction of their standard
deviation, the impact of WMICDFLG is approximately

50% larger than the impact of HALPOR (i.e., (0.722 -

0.468)/0.468 = 0.54) and almost 200% larger than the

impact of WGRCOR (i.e., (0.722 – 0.246)/0.246 =
1.96). Both regression models have an R’ value of 0.79
and thus can account for approximately 7990 of the un-
certainty in y. Standardized regression coefficients are
a popular way of ranking variable importance in samp-
ling-based sensitivity analysis and many examples of
their use exist (e.g., Chan 1996, Helton et al. 1996,
Hamby 1995, Ma et al. 1993, Ma and Ackerman 1993,
Whiting et al. 1993).

8.3 Statistical Tests in Regression
Analysis

Determination of the regression coeftlcients bo, bl,

b2, . . . . bn that constitute the elements of the vector b in
Eq. (8.8) involves no statistics. Rather, as already indi-
cated, this determination is based entirely on procedures
involving minimization of functions and algebraic ma-
nipulations. If desired, formal statistical procedures can
be used to indicate if these coet%cients appear to be
different from zero. However, such procedures are
based on assumptions that are not satisfied in sampling-
based sensitivity studies of deterministic models (i.e.,
models for which a given input always produces the
same result), and thus the outcome of using formal sta-
tistical procedures to make assessments about the sig-
nificance of individual coeftlcients or other entities in
sampling-based sensitivity studies should be regarded
simply as one form of guidance as to whether or not a
model prediction appears to be affected by a particular
model input.

In the usual construction of tests for the signifi-
cance of regression coeftlcients, the relationship be-
tween the dependent and independent variables is as-
sumed to be of the form
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n
y=j30+ ~P jXj +&,

j=l

(8.18)

where E is normally distributed with mean O and stan-

dard deviation o and characterizes the variation in y that
is observed when y is repeatedly evaluated for x = [xl,

X2, . . . . Xn]. Further, o is assumed to be the same for all
values of x. It is the distributional assumptions involv-

ing s that allows the construction of statistical tests for

the coefficients PO, ~ 1, 92, . . . . ~n. These assumptions
are not satisfied in sampling-based sensitivity studies
with deterministic models because a given x always
produces the same value for y.

Given the preceding assumptions involving s, the
relationship in Eq. (8.9) can be used in the development

of tests to indicate if various of the ~j in Eq. (8.18) ap-
pear to be different from zero. For notational conven-
ience, let

m

ssreg(p~,pz,...,PnlBO)=~(~k-Y)2 (8.19)

k=l

when the vector b in Eq. (8.8), and hence the associated
regression model, contains estimates for Po, 131,132,. . . .

~n. The preceding quantity is called the regression sum
of squares and constitutes the part of the total sum of
squares (i.e., the left-hand side of Eq. (8.9)) that can be
explained by the regression model. More generally, if

h, 132, . . .,~n are partitioned into vectors PI and ~2

where ~ 1 contains pl of the coef%cients ~1, ~2, . . .,~n

and (32 contains the remaining p2 = n – p 1 coefficients,
then

ssreg(p~,pz,...,pnll+J=w.eg(Pl li32*130)

+ Ssreg (pz I p~ ), (8.20)

where SSreg(~ 11~2, 130)is the increase in the regression
sum of squares that results from extending a regression

model involving estimates for PO and the ~j’s in ~2 to a

regression model involving estimates for PO and the

coefficients in P 1 and ~2.

Given the assumptions involving & indicated in

conjunction with Eq. (8.18), SSreg(~11~2, Do) can be

used to test the hypothesis that (31= O. In particular, if
PI = O and the assumptions involving E are satisfied,
then

‘=[ssreg(P11P2,Po)/pl]/~2 (8.21)

can be regarded as a randomly sampled va

distribution with (pI, m – n – 1) = (pI, m
degrees of freedom, where

m
i2 =

z
(yk-j~)2 /(~-n-1)

k=]

is an approximation to G2 (see Sect. 3.4, M
any other standard text on regression an

probability probF(~ > Flql, q2 ) of exe{

statistic value of F calculated with (q ~, T-I
freedom can be estimated by

v= ’11’2/(q2+ql F),

where IV (a, b) designates the incomplete
(p. 222, Press et al. 1992). Thus, under ti

that (31= O, the probability that a larger v

(pllpz, 130)would result from chance alor
culated and used to make an assessment
or not it appears to be reasonable to rejec

tion that ~1 = O, with this probability ty

the p-value or cx-value for F and the t

vector ~1. Small p-values indicate that
value for F is unlikely to have occurred t

and thus suggest that (31# O.

The statistic Fin Eq. (8.21) can be u!
hypothesis that

13=[fh!P2!...!wll=o

In this case,

can be regarded as a randomly sampled T

F-distribution with (n, m – n – 1) degree

A small p-value for F suggests that ~ # O.

Another important special case occur

gle regression coefficient (i.e., ~j) is unc

tion, with the result that pl = 1 and p2 =
(8.21). Then,

F=[SSr.g(13j 1132,130)/11/~2

can be used to indicate if ~j appears to di

given that estimates for PO and the coeffic
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included in the regression model. Specifically, under

the assumption that ~j = O, F can be regarded as a ran-

domly sampled value from an F-distribution with (1, in–
n– 1) degrees of freedom. An equivalent test involving

~j can be based on the statistic

(8.27)

where bj is the estimated value for ~j, ; is defined in

Eq. (8.22), and cjj is the ~ti diagonal element of the ma-

trix (XM)-l in Eq. (8.8) (p. 98, Myers 1990). Under the

assumption that ~j = O, t can be regarded as a randomly

sampled value from a t-distribution with m – n – 1
degrees of freedom. The probability

p-obt (1i 1>1t I I m – n – 1) of obtaining a value ; from

the preceding distribution for which I~1 exceeds Id is

given by

probt(l fl>ltll m–n-l)= 1–IX[(m–n–1)/2, 1/2]

m–n–1
x=

m–n–l+t2
,

(8.28)

Where IX (a, b) designates the incomplete beta function
(p. 222, Press et al. 1992). Thus, t as defined in Eq.
(8.27) can also be used to test if an individual regres-
sion coefficient appears to be different from zero. The
equality F = t2 holds for F and t as defined in Eqs.
(8.26) and (8.27). Further, identical significance results
(i.e., p- or et-values) are produced by the use of F in
conjunction with the relationship in Eq. (8.23) and the
use of t in conjunction with the relationship in Eq.
(8.28)

As already indicated, the distributional assumptions
that lead to the p-values defined by Eqs. (8.23) and
(8.28) are not satisfied in sampling-based sensitivity
studies. However, these p-values still provide a useful
criterion for assessing variable importance because they
provide an indication of how viable the relationships
between input and output variables would appear to be
in a study in which the underlying distributional as-
sumptions were satisfied.

As an illustration, results of a formal statistical
analysis of the regression models in Eqs. (8.16) and
(8. 17) are presented in Table 8.1, with the coefficients
in these models appearing in the columns labeled
“Regression Coeftlcient” and “Standardized Regr
Coef,” respectively. The p-value for the regression
model containing all three variables (Footnote e, Table

8.1) is less than 10-4, as are the p-values for adding
individual variables to the regression model (Footnote

n, Table 8.1). Thus, in a study in which the necessary
distributional assumptions were satisfied (see Eq.
(8.18)), the implication would be that WA41CDFLG,
HALPOR and WGRCOR have significant influences
(i.e., nonzero regression coefficients) on y =
EO: WAS_PRES. The p-values for the individual vari-
ables (Footnote n, Table 8.1) are more useful from a
sensitivity analysis perspective than the p-value for all
three variables (Footnote e, Table 8.1) as they indicate
whether or not individual variables appear to affect y.
In contrast, the p-value for the variables collectively
only indicates that at least one of the variables appears
to affect y.

The regression analysis summarized in Eq. (8.16),
Eq. (8.17) and Table 8.1 only involves the variables
WMZCDFLG, HALPOR and WGRCOR, with these vari-
ables selected for illustrative purposes on the basis of a
priori knowledge that they had identifiable effects on y.
As a result, these variables result in regression models
with small p-values. In a sensitivity analysis with no a
priori knowledge, all of the variables in Table 3.1
would have to be investigated for their effects on y.
This implies the construction of a regression model with
all 31 variables from Table 3.1, with the outcome of this
construction summarized in Table 8.2. Actually, the
regression model in Table 8.2 only involves 24 vari-
ables because (i) the variables ANHCOMP and
HALCOMP were not used in the construction of the

model due to the rank correlations of –0.99 assumed to
exist within the variable pairs (ANHCOMP, ANHPRM)
and (HALCOMP, HALPRM) (see Sect. 8.7) and (ii) the
variables BHPRM, BPCOMP, BPINTPRS, BPPRM and
BPVOL were not used because they were not involved
in the calculation of the dependent variable under con-
sideration, Of the 24 variables, six have p-values less
than 0.02 and thus appear to affect y (i.e., WMZCDFLG,
HALPOR, WGRCOR, ANHPRM, SHRGSSAT,
SALPRES). The remaining variables have larger p-
values, and thus the regression analysis does not indi-
cate an effect for these variables. However, it is impor-
tant to realize that the failure of a regression analysis to
identify an effect for a variable does not necessarily
imply that no effect exists. In particular, the regression
model is based on identi~ing a linear relationship and
can completely miss other types of relationships (see
Sects. 8.8, 8.9).

The results presented in Table 8.2 are rather un-
wieldy, with much of the table involving variables that
appear to have no effect on y. Stepwise regression
analysis provides a more informative and less cumber-
some procedure for constructing and presenting regres-
sion models and will be described in Sect. 8.5.
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Table 8.1. Summary of Regression Analysis for y = EO:VVAS_P/?ES at 10,000 yr, x1 = WM/CD/ZG,
x2. HALPOR and X3 = WGRCOR

Source DofFa Ssb Msc Fd SIGNIF

Regression 3 1.9009E+15 6.3365E+14 3,7643E+02 0.0000

Residual 296 4.9827E+14 1.6833E+12
Total 299 2.3992E+15

R-Squaref = 0.79232 Intercept = 5.7274E+06

VanabIeh Regressioni Standardized Partialk T-Test] R-Squarem AIphan
Coefficient Regr Coeff SSQ Values Deletes Hats

WMICDFLG 2.4625E+06 7.2201E-01 1,2482E+15 2.7231E+01 2.7206E-01 0.0000E+OO
HALPOR 1.5529E+08 4.6809E-01 5.2479E+14 1.7657E+01 5.7359E–01 -4.4409E-16°
WGRCOR 1.521OE+2O 2.4649E-01 1.4559E+14 9.3000E+O0 7.3164E-01 -4.4409E-16

a

b

c

d
e

f

~
h

1

j
k

I

m

n

0

Degrees of freedom associated with regression (S.$,,g),residual (SS,J and total (SS,OJsums of squares; see E+. (8.9), (8.10).
Regression (SS,,J, residual (SS,,,,) and total (SSroJsums of squares.
Mean sums o?squares (.SS,,Jn,Ss,.,j(nz– n – 1), where estimates for ~~,@z,.. .. ~nare obtained from rn observations).
F-statistic ([SSr#Z]/[SSr,,J(rn - n - 1)]); see Eq. (8.25).

P-Or ~-v~ue for P, see Eq. (8,23).
R2vafue for regression model with estimates for PO (31,~2, .. .. ~n; see Eq. (8.11).
Estimate for J3<).
Variables in regression model (Xl, X2, . . . . Xn).

Regression coefficients (bl, b2, .... bn); see Eq. (8.8).
Standardized regression coefficients; see Eq. (8.15).
partial sum of squares for variable (i.e., Xj)in row (SS,,J!3}132,13J); see %s. (8.20, (8.26).
t-statistic for variable in row; see Eq. (8.27).
For variable (xj) in row, R2 value for regression model constructed with xi, i = 1, 2, . . .. n and i #j.
For variable (xj) in row, p- or a-value for addition of Xjto regression model containing .q, i = 1, 2, .. .. n and i # j; use of F-statistic or t-
statistic produces same value; see Eqs. (8.23) and (8.26) for F-statistic and Eqs. (8.27) and (8.28) for ?-statistic.
Negative values result from numerical errors in the calculation of very smaflp-vrdues with the STEPWISE program (Iman et al. 1980).

8.4 Correlation and Partial
Correlation

The ideas of correlation and partial correlation are
useful concepts that often appear in sampling-based
uncertainty/sensitivity studies. For a sequence of ob-
servations (xk, y~), k = 1, .... m, the (sample or Pearson)
correlation rxY between x and y is defined by

~ (xk-z)(yk-~)

‘x’=[~’x~:7)2r[$’yk-’)2r‘8”29)

where T and ~ are defined in conjunction with Eq.

(8. 15). The correlation coefficient (CC) rv provides a
measure of the linear relationship between x and y. For
the regression model defined by Eq. (8.8), the R2 value
in Eq. (8.11) is equal to the square of the correlation

between y and j (i.e.,R2 = r2~ ) (p. 91, Draper and

Smith 1981).

The nature of rg is perhaps most readily under-
stood by considering the regression

j= bo+blx.

The definition of rxy
definition

(8.30)

in Eq. (8.29) is equivalent to the

rw = sign 1’2, (8.31)
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Table 8.2. Summary of Regression Analysis for y= EO:WAS_PRES at 10,000 yr and xl, X2, . . .. X24 Cor-
responding to ANHBCEXP, ANHBCVGP, ANRBRSAX ANHPRM, ANRGSSA~ HALPOR,
HALPRM, SALPRES, SHBCEXP, SHPRMASP, SHPRMCLY, SHPRMCON, SHPRMDRZ,
SHPRMHAL, SHRBRSAT, SHRGSSAT, WASTWICK WFBETCEL, WGRCOR, WGRMICH,
WGRM/C/, WM/CDFLG, WR/3RNSATand WRGSSAT (see Table 8.1 for description of table
structure)

Source DofF Ss MS F SIGNIF

Regression 24 1.9921E+15 8.3003E+13 5.6063E+01 0.0000
Residual 275 4.0714E+14 1.4805E+12
Total 299 2.3992E+15

R-Square = 0.83030 Intercept = 1.2896E+07

Variable Regression Standardized Partial T-Test R-Square Alpha
Coefficient Regr Coeff SSQ Values Deletes Hatsa

WMICDFLG

HALPOR

WGRCOR

ANHPRM

SHRGSSAT
SALPRES

WASTWICK

HALPRM

WGRMICH

SHPRMCLY
ANHBCEXP
ANHBCVGP

WGRMICI
ANRBRSAT

SHPRMCON

SHPRNHAL

SHPRMSAP

WRGSSAT

SHBCEXP
ANRGSSAT

WFBETCEL

WRBRNSAT

SHPRMDRZ
SHRBRSAT

2.4669E+06
1.5429E+08
1.5156E+20

5.5924E+05
1.7177E+06
2.1946E-01
4.9 174E+05
1.6369E+05

–3.3997E+14
–1 .5252E+05

1.6070E+06
6.0999E+04

2.8456E+13
–2.0139E+06
–5.2400E+04
-1 .2571E+05

5.25 19E+04
7.8406E+05
1.1063E+O4
7.431 1E+05

–8. 1238E+04
–1 .02 12E+05

1.6592E+03
–2.9090E+03

7.2329E-01

4.651 OE-I31
2.4561E-01
1.2774E–01

7.0177E–02
6.3855E–02
5.0273E-02
5.0099E–02

-4.3972E-02
-4.1991E-02

3.3745E–02
3.2355E-02

2.6713E–02
–1 ,9366E–02
-1 .3969E–02
–1.2830E-02

1.1577E-02

1.2014E-02
1.0169E-02
8.8597E-03

-8.2986E-03
-5.7539E-03

3.6624E-04
-1 .8048E-04

1.2002E+15

5.1332E+14
1.4349E+14
3.891OE+13
1.1729E+13
9.6907E+12

6.0154E+12
5.9533E+12
4.5935E+12
4.2037E+12
2.7011E+12
2.4143E+12
1.7003E+12
8.9467E+11
4.6597E+11
3,9130E+11
3,1972E+11
3.4357E+11
2.4150E+11
1,8755E+1 1
1.6325E+1 1
7.8584E+1O
3.2009E+08
7.6305E+07

2.8472E+01

1.8620E+01
9.8446E+O0
5. 1266E+O0
2.8 147E+O0
2.5584E+O0

2.0157E+O0
2.0053E+O0

–1.7614E+O0
–1.6850E+O0

1.3507E+O0
1.2770E+O0

1.0717E+O0
–7.7736E–01
-5.6101E-O1
–5.141OE–OI

4.6471E-01

4.8173E-01
4.0388E-01
3.5592E-01

-3.3206E-01
-2.3039E41

1.4704E–02
-7. 1791E–03

3.3007E-01

6.1635E-01
7.7050E–01
8.1408E–01
8.2541E–01
8.2626E-01
8.2779E-01
8.2782E-01
8.2839E–01
8.2855E-01
8.2918E-01
8.2930E-01

8.2959E-01
8.2993E–01
8.301 lE–01
8.3014E–01
8.3017E–01

8.3016E-01
8.3020E-01
8.3022E–01
8.3023E-01
8.3027E-01
8.3030E-01
8.3030E-01

2.7828E-08
2.7828E-08
2.7828E-08
5.8498E-07
5.2352E-03
1.1051E–O2
4.4804E-02
4.5914E-02
7.9278E-02
9.3118E-02
1.7790E-01
2.0269E–01
2.848 lE-01
4.3761E-01
5.7525E-01
6.0759E–01
6.425 lE-01
6.3038E–01
6.8662E-01
7.2217E-01
7.401 OE–O1
8.1796E-01
9.8828E-01
9.9428E-01

a Identicrdvaluesresult fromlack of resolutionin rdgorithmused in the calculationof very smallp-vatuesin the STEPWISEprogram(Imanet
al. 1980).
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where sign(bl) = 1 if bl 20, sign(bl) = –1 if hl e O, and
R2 is the coefficient of determination that results from
regressing y on x. With respect to interpretation, the CC
rv provides a measure of the linear relationship be-
tween x and y, and the regression coefficient bl charac-
terizes the effect that a unit change in x will have on y.

The definition of rw in Eq. (8.29) is also equivalent
to the definition

rV=bl~l /~, (8.32)

where fl and ; are defined in conjunction with Eq.

(8.15) with x assumed to correspond to .xI. Thus, rq is
also equal to the standardized regression coefficient that
results from regressing y on x. Hence, rw can be
viewed as characterizing the effect that changing .x by a
fixed fraction of its standard deviation will have on y,
with this effect being measured relative to the standard
deviation of y. The CC can also be viewed as a paramet-
er in a joint normal distribution involving x and y (Sect.
2.13, Myers 1990); however, this interpretation is not as
intuitively appealing as the two preceding interpreta-
tions involving the regression model in Eq. (8.30).
Further, x and y typically do not have normal distribu-
tions in sampling-based sensitivity analyses.

When more than one input variable is under con-
sideration, partial correlation coet%cients (PCCS) can be
used to provide a measure of the linear relationships
between the output variable y and the individual input
variables. The PCC between an individual variable xj
and y is obtained from the use of a sequence of regres-
sion models. First, the following two regression models
are constructed:

n n

;j= Co+
z 2

cPxPand~=bo+ bPxP. (8.33)

p=l p=l
p#j p#j

Then, the results of the two preceding regressions are

used to define the new variables ~j – ;j and y – ~.

The PCC pxjy between xj and y is the CC between xj –

~j and y – ~. Thus, the PCC provides a measure of

the linear relationship between xj and y with the linear
effects of the other variables removed. The preceding
provides a rather intuitive development of what a PCC
is. A formal development of PCCS is provided by Iman
et al. (1985).
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1/2n

(l-c;)/ l-~c;

i=l

12

(8.36)

(8.37)

The PCC characterizes the strength of the linear
relationship between two variables after a correction has
been made for the linear effects of the other variables in
the analysis, and the SRC characterizes the effect on the
output variable that results from perturbing an input
variable by a fixed fraction of its standard deviation.
Thus, PCCS and SRCS provide related, but not identical,
measures of variable importance. In particular, the PCC
provides a measure of variable importance that tends to
exclude the effects of other variables, the assumed dis-
tribution for the particular input variable under consid-
eration, and the magnitude of the impact of an input
variable on an output variable. In contrast, the vafue for
an SRC is more influenced by the distribution assigned
to an input variable and the impact that this variable has
on an output variable.

The following relationship exists between pxjy

and the SRC cj = bj~j / ~ in Eq. (8.15):

p~jy = Cj[(l - R~)/(1-R~)ll’2, (8.34)

where R; is the R2 value that results from regressing xj

onyandthexi, i= 1,2, . . ..n with i#j, and R; is the

R2 value that results from regressing y on the xi, i = 1,2,

. . . . n (Eq. (l), Iman et al. 1995). If the xi are orthogo-
nal, then

(8.35)

with the first equality following from Eq. (8.14), and the
second and third equalities following from Eqs. (8.31)
and (8.32). Thus,

PXjy = CJ

[[

n’

= ‘XjY (1 - r~jY)/ 1- ~r&

i=l

Because of the inequality

b(l– b2)l’2 > a(l– a2)1’2



for a2 + b2 <1 and O < a < b (see Fig. 7, Kleijnen and
Helton 1999a), an ordering of variable importance

based on Ipxjy 1, Icj I or Irxjy I produces the same re-

fer regression coefficients in Sect. 8.3, statistical tests
can be performed conditional on suitable assumptions.
For example,

suits when the xj are orthogonal; further, the values for
cj and rxj ~ will be the same and generally different

from pxjy.

Many output variables are functions of time or lo-
cation. A useful way to present sensitivity results for
such variables is with plots of PCCS or SRCS. An ex-

ample of such a presentation for the pressure curves in
Fig. 7.5 is given in Fig. 8.3, which displays two sets of
curves. The left set contains SRCS plotted as a finction
of time; the right set contains PCCS plotted in a similar
manner. For both sets of curves, the dependent vari-
ables are pressures at fixed times, and each curve dis-
plays the values of SRCS or PCCS relating these pres-
sures to a single input variable as a function of time.
Many additional examples of the use of PCCS in sam-
pling-based sensitivity analysis also exist (e.g., Helton

et al. 1996, Hamby 1995, Whiting et al. 1993, Bres-
hears et al. .1992).

Determination of CCS and PCCS involves no statis-
tical assumptions. However, as previously discussed

BRAGFLO (EO, RI , R2, R3)
Vol-Averaaed Pressure Lower Panel (WAS PRES}

t = rw(m–2)”2 /(1–r~)l’2 (8.38)

can be regarded as a random sample from a

t-distribution with m – 2 degrees of freedom when (i)
rg is calculated from the observations (xk, Yk), k = 1, 2,

. . . . m, and (ii) x and y are uncorrelated and have a
bivariate normal distribution (p. 631, Press et al. 1992).
Then, the probability of observing a stronger correlation
due to chance variation is given by the relationship in
Eq. (8.28). The preceding test is identical to the test
involving the t-statistic described in Sect, 8.3 for the
significance of bl in Eq. (8.30) (p. 70, Myers 1990).
Further.

is distributed approximately normally with mean O and
standard deviation 1 when x and y are uncorrelated, x
and y have enough convergent moments (i.e., the tails of
their distributions die off sufficiently rapidly), and m is
sufficiently large (p. 631, Press et al. 1992). Given
the preceding assumptions, the probability

BRAGFLO (EO, R1 , R2, R3)
Vol-Averaged Pressure”Lower Panel (WAS_PRES)
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Standardized regression coefficients (SRCS) and partial correlation coefficients (PCCS) for five variables
having the largest PCCS, in absolute value, with pressure (Pa) in lower waste panel under undisturbed
conditions (i.e., y = EO:WAS_PREfl.
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Probn (1Fwl >1rwl) of obtaining a value FW for which

IFVI exceeds lrvl is given by

probn(17wlA rvl) = erjc(lrwl&/fi), (8.40)

where e@c is the complementary error function (i.e.,

J“
er$c(x) =(2/A) exp(–t2 )dt) (p. 631, Press et al.

x

1992). Significance results obtained with the statistics
in Eqs. (8.38) and (8.39) converge as m increases. Re-
lated significance results can also be defined for PCCS
(Quade 1989).

As an example, CCS, SRCS and PCCS for y =
EO:WAS_PRES at 10,000 yr are shown in Table 8.3. Of
the 24 variables under consideration, 5 have CCS with
p-values less than 0.1. The CCS and SRCS have similar
values, with equality failing to exist because of small
correlations between the 24 variables in the sample (see
Table 5.1). The PCCS tend to be larger t~an the CCS
and SRCS. Because PCCS provide a measure of the
strength of linear relationships after corrections have
been made for the effects of other variables, large PCCS
have the potential to produce misleading impressions of
variable importance; therefore, care should be exercised
in the use and interpretation of PCCS. In particular, a
large PCC does not necessarily imply that the corre-
sponding input variable makes a large contribution to
the uncertainty in the output variable under considera-
tion. However, when the sampled variable values are
independent (i.e., orthogonal), use of CCS, SRCS and
PCCS will produce identical rankings of variable impor-

tance as previously noted. The effect of correla

within the sample can be seen in Table 8.3,
SALPRES ranked 5 with CCS and 6 with SRCS
Pees.

8.5 Stepwise Regression Analysi

When many input variables are involved, the t
construction of a regression model containing all
variables as shown in Eq. (8.3) and illustrated in ~
8.2 may not be the best approach for several rea
First, the large number of variables makes the re
sion model tedious to examine and unwieldy to dis
Second, only a relatively small number of input
ables typically has an impact on the output variable
a result, there is no reason to include the rema
variables in the regression model. Third, come
variables result in unstable regression coefficients
coefficients whose values are sensitive to the spt
variables included in the regression model; see
8.7). When this occurs, the regression coefficients
model containing all the input variables can give a
leading representation of variable importance.
side point, if several input variables are highly c
lated, consideration should be given to either remf
all but one of the correlated variables or transfer
the variables to correct for (i.e., remove) the coI

tions between them. Fourth, an overfitting of the
can result when variables are arbitrarily forced int
regression model. This phenomenon occurs whe
regression model attempts to match the prediction
sociated with individual sample elements rather
match the trends shown by the sample elements C(
tively.

Table 8.3. Correlation Coefficients (CCS), Standardized Regression Coefficients (SRCS) and Partial
relation Coefficients (PCCS) for y = EO:WAS_PRES at 10,000 yr

Variable Ccb SRCC Peed

Namea p-val Rank Value Rank Value Rank Va

WMICDFLG 0.0000 1.0 0.7124 1.0 0.7234 1.0 0.8

HALPOR 0.0000 2.0 0.4483 2.0 0.4651 2.0 0.7

WGRCOR 0.0000 3.0 0.2762 3.0 0.2460 3.0 0,5

4NHPRM 0.0241 4.0 0.1302 4.0 0.12’77 4.0 0.2

.SALPRES 0.0855 5.0 0.0993 6.0 0.0639 6.0 0.1

a Variablesfor whichCC withy has a p-vahreless than0.1; variablesorderedbyp-values forCCS.
b p-vatue for CC, variablerankbasedonp-valuefor CC, andvrdueof CC.
c Variablerank based on SRCandvahrefor SRCfor regressionmodelcontaining24 variablesused in Table 8.2.
d Variable rank based on PCC and value for PCC calculated for 24 variables used in Table 8.2.
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Stepwise regression analysis provides an alternative
to constructing a regression model containing all the
input variables. With this approach, a sequence of re-
gression models is constructed. The first regression

model contains the single input variable that has the
largest impact on the uncertainty in the output variable
(i.e., the input variable that has the largest correlation
with the output variable y). The second regression
model contains the two input variables that have the
largest impact on the output variable: the input variable
from the f~st step plus whichever of the remaining vari-
ables has the largest impact on the uncertainty not ac-
counted for by the first variable (i.e., the input variable
that has the largest correlation with the uncertainty in y
that cannot be accounted for by the first variable). The
third regression model contains the three input variables
that have the largest impact on the output variable: the
two input variables from the second step plus whichever
of the remaining variables has the largest impact on the
uncertainty not accounted for by the first two variables
(i.e., the input variable that has the largest correlation
with the uncertainty in y that cannot be accounted for by
the first two variables). Additional models in the se-
quence are defined in the same manner until a point is
reached at which further models are unable to meaning-
fully increase the amount of the uncertainty in the out-
put variable that can be accounted for. Further, at each
step of the process, the possibility exists for an already
selected variable to be dropped out if this variable no
longer has a significant impact on the amount of uncer-
tainty in the output variable that can be accounted for
by the regression model; this only occurs when correla-
tions exist between the input variables.

Several aspects of stepwise regression analysis
provide insights on the importance of the individual
variables. First, the order in which the variables are
selected in the stepwise procedure provides an indica-
tion of their importance, with the most important vari-
able being selected first, the next most important vari-
able being selected second, and so on. Second, the R2
values (see Eq. (8.11)) at successive steps of the analy-
sis also provide a measure of variable importance by
indicating how much of the uncertainty in the dependent
variable can be accounted for by all variables selected
through each step. When the input variables are uncor-
related, the differences in the R2 values for the regres-
sion models constructed at successive steps equals the
fractions of the total uncertainty in the output variable
that can be accounted for by the individual input vari-
ables being added at each step (see Eq. (8.14)). Third,
the absolute values of the SRCS (see Eq. (8.15)) in the
individual regression models provide an indication of
variable importance. Further, the sign of an SRC indi-
cates whether the input and output variable tend to in-

crease and decrease together (a positive coefficient) or
tend to move in opposite directions (a negative coeffi-

cient).

An important situation occurs when the input vari-
ables are uncorrelated. In this case, orderings of vari-
able importance based on order of entry into the re-
gression model, size of the R2 values attributable to the
individual variables, the absolute values of the SRCS,
the absolute values of correlation coefficients, and the
absolute values of the PCCS are the same. In situations
where the input variables are believed to be uncorre-
lated, one of the important applications of the previ-
ously discussed restricted pairing technique of Iman and
Conover (Sect. 5.5) is to ensure that the correlations
between variables within a Latin hypercube or random
sample are indeed close to zero. When variables are
correlated, care must be used in the interpretation of the
results of a regression analysis since the regression co-
efilcients can change in ways that are basically unre-
lated to the importance of the individual variables as
correlated variables are added to and deleted from the
regression model (see Sect. 8.7 for an example of the
effects of correlated variables on the outcomes of a re-
gression analysis).

When the stepwise technique is used to construct a
regression model, it is necessary to have some criterion
to stop the construction process. When there are many
independent variables, there is usually no reason to let
the construction process continue until all the variables
have been used. It is also necessary to have some crite-
rion to determine when a variable is no longer needed
and thus can be dropped from the regression model. As
indicated earlier, this latter situation only occurs when
the input variables are correlated. The usual criterion
for making the preceding decisions is based on whether
or not the regression coefficient associated with an input
variable appears to be significantly different from zero.
Specifically, an F-test or t-test is used to determine the
probability that a regression coefficient with absolute
value as large as or larger than the one constructed in
the analysis would be obtained if, in reality, there was
no relationship between the input and output variable,
and, as a result, the apparent relationship that led to the
constructed regression coefficient was due entirely to
chance (see Eqs. (8.26), (8.27) and associated text).

Sensitivity studies often use an et-value of 0.01 or 0.02
to add a variable to a regression model and a somewhat
larger value to drop a variable from the model.

As models involving more variables are developed
in a stepwise regression analysis, the possibility exists
of overfitting the data. Overfitting occurs when the
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regression model in essence “chases” the individual
observations rather than following an overall pattern in
the data. For example, it is possible to obtain a good fit
to a set of points by using a polynomial of high degree.
However, in doing so, it is possible to overt% the data
and produce a spurious model that makes poor predic-
tions.

To protect against overfit, the Predicted Error Sum
of Squares (PRESS) criterion can be used to determine
the adequacy of a regression model (Allen 1971). For a
regression model containing q variables and constructed
from m observations, PRESS is computed in the follow-
ing manner. For k = 1,2,...,m, the kth observation is
deleted from the original set of m observations and then
a regression model containing the original q variables is

constructed from the remaining m – 1 observations.
With this new regression model, the value ~q(k) is

estimated for the deleted observation yk Then, PRESS
is defined from the preceding predictions and the m
original observations by

PRESSq = ~ (y~ - jq(~))2. (8.41)

k=l

The regression model having the smallest PRESS value
is preferred when choosing between two competing
models, as this is an indication of how well the basic
pattern of the data has been matched versus an overfh
or an underfit. In particular, PRESS values will de-
crease in size as additional variables are added to the
regression model without an overfitting of the data (i.e.,
PRESSq > PRESSq+l), with an increase in the PRESS
values (i.e., PRESSq c PRESSq+l) indicating an overfit-
ting of the data. In addition to PRESS, there are also a
number of other diagnostic tools that can be used to
investigate the adequacy of regression models (Cook
and Weisberg 1982, Belsley et al. 1980).

It is important to use scatterplots, PRESS values
and other procedures to examine the reasonableness of
regression models. This is especially true when regres-
sion models are used for sensitivity analysis. Such
analyses often involve many input variables and large
uncertainties in these variables. The appearance of
spurious patterns is a possibility that must be checked
for.

An example stepwise regression analysis follows
for the variable y = EO:WAS_PRES previously analyzed
with the regression model presented in Table 8.2. The
first step selects the input variable xj that has the largest
impact on the output variable y. Specifically, this is

defined to be the variable that has the largest correla-
tion, in absolute value, with y (see Eqs. (8.29) and
(8.3 l)). Thus, it is necessary to calculate the correla-
tions between y and each of the 24 input variables under
consideration. For illustration, Table 8.4 shows the 7 x
7 correlation matrix for y and the six input variables
ultimately selected in the stepwise regression, although
the full correlation matrix would actually be (24 + 1) x
(24 + 1). Each element in the correlation matrix is the
correlation between the variables in the corresponding
row and column. As examination of the correlation
matrix in Table 8.4 shows, WMICDFLG has the highest
correlation with waste pressure, which is denoted by
WAS_PRES. Thus, the first step in the analysis selects
the variable WMICDFLG. Here and elsewhere in the
stepwise procedure, the selection of variables to enter
the regression model could equivalently be made on the
basis of F-test or t-test values as defined in Eqs. (8.26)
and (8.27). A regression model relating y to
WMZCDFLG is then developed as shown in Eq. (8.8)
with n = 1 and m = 300. The resultant regression model
is

j = 8.94 X 106+ 2.43 X 106 ● WMICDFLG, (8.42)

which has an R2 value of 0.508, an cx-value of 0.0000,

an SRC of 0.712 and a PRESS value of 1.20 x 1015.
This model is summarized as Step 1 in Table 8.5.

The second step selects the input variable xj that
has the largest impact on the uncertainty in the output
variable y that cannot be accounted by WA41CDFLG, the

variable selected in the first step. This selection is
made by defining a new variable

J=Y–j

= y – (8.94X 106+ 2.43 X 106 ● WMZCDFLG),(8.43)

where ~ is defined in Eq. (8.42), and then calculating

the correlations between ~ and the remaining variables.

The variable with the largest correlation, in absolute

value, with ~ is selected as the second variable for

inclusion in the model. In this example, the selected
variable is HALPOR. The regression model at this step
will thus involve the two variables WMICDFLG and
HALPOR and is constructed as shown in Eq. (8.8) with
n = 2 and m = 300. The resultant regression model is

j = 6.89 X 106+ 2.49 X 106 w WMZCDFLG

+ 1.57 x 108 ● HALPOR. (8.44)

This model is summarized as Step 2 in Table 8.5.
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Table 8.4. Correlation Matrix for Variables Selected in Stepwise Regression Analysis for Pressure in the
Repository at 10,000 yr Under Undisturbed Conditions (i.e., y= EO:WAS_PRES at 10,000 yr
in Fig. 7.5)

WMICDFLG 1.0000

HALPOR –0.0348 1.0000

WGRCOR 0.0272 0.0216 1.0000

ANHPRM 0.0008 -0.0039 0.0130 1.0000

SHRGSSAT -0.0026 0.0395 -0.0171 –0.0042 1.0000

SALPRES 0.0560 –0.0072 0.0010 –0.01 17 0.0061 1.0000

EO:WAS_PRES 0.7124 0.4483 0.2762 0.1303 0.0820 0.0993 1.0000

WA41CDFLG HALPOR WGRCOR ANHPRM SHRGSSAT SALPRES EO: WAS.PRES

Table 8.5. Results of Stepwise Regression Analysis for Pressure in the Repository at 10,000 yr
Under Undisturbed Conditions (i.e., y= EO:WAS_PRES at 10,000 yr in Fig. 7.5)

Steps Variablesb SRCC a-Valuesd R2 Valuese PREssf

1 WMICDFLG 0.712 0.0000 0.508 1.20 x 1015

2 WMICDFLG 0.729 0.0000 0.732 6.59 X 1014
HALPOR 0.474 0.0000

3 WMICDFLG 0.722 0.0000 0.792 5.14 x 1014
HALPOR 0.468 0.0000
WGRCOR 0.246 0.0000

4 WMICDFLG 0.722 0.0000 0.809 4.79 x 1014

HALPOR 0.469 0.0000
WGRCOR 0.245 0.0000

ANHPRM 0.128 0.0000

5 WMICDFLG 0.722 0.0000 0.814 4.70 x 1014
HALPOR 0.466 0.0000

WGRCOR 0.246 0.0000

ANHPRM 0.129 0.0000

SHRGSSAT 0.070 0.0056

6 WMICDFLG 0.718 0.0000 ‘ 0.818 4.63 X 1014
HALPOR 0.466 0.0000

WGRCOR 0.246 0.0000

ANHPRM 0.129 0.0000

SHRGSSAT 0.070 0.0055
SALPRES 0.063 0.0012

a

b

c

d

e

‘f

Steps in the anrdysis.
Variables selected at each step.
Standardized regression coefficients (SRCS) for variables in the regression model at each step; see Eq. (8.15)

p-or ct-valrresfor variables in the regression model at each stew see Eqs. (8.26), (8.27).
R2 value for the regression model at each step; see Eq. (8.11).
Predicted error sum of squares (PRESS) value for the regression model at each step; see Eq. (8.41).
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The third step selects the input variable +i that has
the largest impact on the uncertainty in the output vari-
able y that cannot be accounted for by WMICDFLG and
HALPOR, the two variables from the second step. This
selection is made by defining a new variable

tainty (i.e., R2 = 0.732). As a result, HALPOR by itself

accounts for approximately 73% – 51 YO= 22?i10of the
uncertainty in y. Similar results hold for the other vari-
ables selected in the analysis.

j=y–j

= Y – (6.89X 106+ 2.49X 106 ● WMICDFLG

+ 1.57 x 108 ● HALPOR), (8.45)

where $ is defined in Eq. (8.44). The variable with the

largest correlation, in absolute value, with ~ is selected

as the third variable for inclusion in the model. In this
example, the selected variable is WGRCOR. The re-
gression model for this step will thus involve the three
variables WMICDFLG, HALPOR and WGRCOR. The
resultant regression model is summarized as Step 3 in
Table 8.5.

As shown in Table 8.5, the stepwise procedure then
continues in the same manner through a total of six

steps, until no more variables can be found with an ct-
value less than 0.02. At this point, the stepwise proce-
dure stops.

At each step, the stepwise procedure also checks to

see if any variable selected at a prior step now has an ct-
value that exceeds a specified level, which is 0.05 in
this analysis. If such a situation occurs, the variable
will be dropped from the analysis, with the possibility
that it maybe reselected at a later step as other variables
are added and deleted from the model. This type of
behavior only occurs when there are correlations be-
tween the input variables. As shown in the correlation
matrix in Table 8.4, the restricted pairing technique has
been successful in keeping the correlations between the
input variables close to zero. Thus, no variables meet
the criterion to be dropped from the regression model
once they have been selected at a prior step.

Another result of this lack of correlation is that the
regression coefficients do not change significantly as
additional variables are added to the regression model.
As examination of Table 8.5 shows, the regression co-
efficients for a specific variable are essentially the same
in all regression models containing that variable. Fur-
ther, as indicated in Eq. (8.14), the R2 values obtained
for successive models can be subtracted to obtain the
contribution to the uncertainty in y due to the newly
added variable. Thus, for example, WMICDFLG ac-

counts for approximately 51 Yo of the uncertainty in y
(i.e., R2 = 0.508), while WMICDFLG and HALPOR

together account for approximately 73% of the uncer-
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Table 8.5 also reports the PRESS values for the re-
gression models obtained at the individual steps in the
analysis. A decreasing sequence of PRESS values indi-
cates that the regression models are not overfltting the
data on which they are based. An increase in the
PRESS values suggests that a model is overtlting the
data, and thus that the stepwise procedure should
probably be stopped at the preceding step. As shown
by the decreasing PRESS values in Table 8.5, the re-
gression models in this analysis are probably not over-
fitting the data from which they were constructed.

Typically, a certain amount of discretion is in-
volved in selecting the exact point at which to stop a

stepwise regression analysis. Certainly, cx-values and
the behavior of PRESS values provide two criteria to
consider in selecting a stopping point. Other criteria
include the changes in the R2 values that take place as
additional variables are added to the regression models
and whether or not spurious variables are starting to
enter the regression models. When only very small

changes in R2 values are taking place (e.g., < 0.01),
there is often little reason to continue the stepwise proc-

ess. When cx-values approach or exceed 0.01 and a
large number of input variables are being considered, it
is fairly common to start getting spurious variables in
the regression (see Fig. 1, Kleijnen and Helton 1999b).
Such variables appear to have a small effect on the out-
put variable which, in fact, is due to chance variation.
In such situations, a natural stopping point may be just
before spurious variables start being selected. Another
possibility is to delete spurious variables from the re-
gression model.

When the input variables are uncorrelated, a dis-
play of the results of a stepwise regression analysis as
shown in Table 8.5 contains a large amount of redun-
dant information. A more compact display can be ob-
tained by listing the variables in the order that they en-
tered in the regression model, the R2 values obtained
with the entry of successive variables into the regression
model, and the SRCS for the variables contained in the
final model. Table 8.6 shows what this summary looks
like for the stepwise regression analysis in Table 8.5.

Numerous examples of the use of stepwise regres-
sion analysis in sampling-based sensitivity analyses are
available in various articles by Helton et al. (1996,
1995b, 1989).



Table 8.6. Compact Summary of Stepwise Re-
gression Analysis for Pressure in the Repository at
10,000 yr Under Undisturbed Conditions (i.e., y=
EO: WAS_PRES at 10,000 yr in Fig. 7.5)

Stepa

1

2

3

4

5

6

‘Steps in S1

Variableb

WMICDFLG

HALPOR

WGRCOR

ANHPRM

SHRGSSAT

SALPRES

~wiseanafysis.

0.718

0.466

0.246

0.129

0.070

0.063

0.508

0.732

0.792

0.809

0.814

0.818

bv~abl~ listed in the order of selection in regression tlrl~vsis.

c Standardized regression coefficients (SRCS) ~orvariables in finrd
regression model.

dCumulative R2 v~ue with entry of each variable into re~sion

model.

8.6 The Rank Transformation

Regression and correlation analyses often perform
poorly when the relationships between the input and
output variables are nonlinear. This is not surprising
since such analyses are based on developing linear rela-
tionships between variables. The problems associated
with poor linear fits to nonlinear data can often be miti-
gated by use of the rank transformation (Iman and
Conover 1979, Conover and Iman 1981, Saltelli and
Sobol’ 1995). The rank transformation is a simple con-
cep~ data are replaced with their corresponding ranks
and then the usual regression and correlation procedures
are performed on these ranks. Specifically, the smallest
value of each variable is assigned the rank 1, the next
largest value is assigned the rank 2, and so on up to the
largest value, which is assigned the rank m, where m
denotes the number of observations. Further, averaged
ranks are assigned to equal values of a variable. The
analysis is then performed with these ranks being used
as the values for the input and output variables. In es-
sence, the use of rank-transformed data results in an
analysis based on the strength of monotonic relation-
ships rather than on the strength of linear relationships.

As an example, the strength of the monotonic rela-
tionship between x and y can be measured with Spear-
man’s rank CC (RCC) for x and y, RV, which is simply
Pearson’s CC in Eq. (8.29) calculated on ranks. The
test for zero rank correlation uses a table of quantiles
for IRVI (e.g., Table AlO, Conover 1980). For a samp-

le sizeofm230,

z = Rw~ (8.46)

approximately follows a standard normal distribution if
the rank correlation between x and y is zero (p. 456,
Conover 1980). Thus, similarly to Eq. (8.40) for rv,

probn(lfiglARwl) = e@c(l RVl~/fi), (8.47)

where probn (1fiv IA RV I is the probability that random

variation would produce a value fig larger in absolute

value than the observed value Rq . Further, standard-

ized rank regression coefficients (SRRCS) and partial
rank CCS (PRCCS) can be calculated analogously to the
corresponding coefficients for raw data.

For perspective, analyses for y = EO:BRAALIC at
10,000 yr (i.e., the value at 10,000 yr in Fig. 8.4) with
CCS, SRCS and PCCS calculated with both raw and
rank-transformed data are presented in Table 8.7. The
general patterns exhibited by the analyses with raw data
and by the analyses with rank-transformed data are
similar to those discussed in conjunction with Table 8.3.
However, the two analyses differ in the importance as-
signed to individual variables. In particular, the analy-
sis with rank-transformed data identifies WMICDFLG

as the most important variable with an RCC of –0.6521;
in contrast, the analysis with raw data identifies
WMZCDFLG as the second most important variable
with a CC of –0.32 10. The preceding is a nontrivial

BRAGFLO (EO,Rl)
CumulativeBrineFlow intoDRZ fromAll MBs (BRAALIC)

8“0 ~

I

---
0.0 -- “- -- -- “--

Fig. 8.4.

Z.u 4.U Ci.u t$.u IU.u

Time (103 yr)

TRI-6342-5374-0

Cumulative brine flow (m3) into disturbed
rock zone (DRZ) from all anhydrite marker
beds (MBs) under undisturbed (i.e., EO)
conditions (i.e., y = EO:BRAALfC).
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Table 8.7. Correlation Coefficients (CCS, IRCCS), Standardized Regression Coefficients (SRCS, SRRCS)
and Partial Correlation Coefficients (PCCS, PRCCS) with Raw and Rank-Transformed Data
for y= EO.-BRAAL/C at 10,000 yr in Fig. 8.4a

Raw Data

Variable cc SRC Pcc

Name p-Val Rank Value Rank Value Rank Value

ANHPRM

WMICDFLG

WASTWICK

WGRCOR

ANHBCEXP
WFBETCEL

WRBRNSAT

HALPOR

0.0000
0.0000
0.0045

0.0048

0.0095
0.0555

0.0615

0.0934

1.0
2.0

3.0

4.0

5.0

6.0
7.0

8.0

0.5655
-0.3210
-0.1639
-0.1628
-0.1497
-0.1105
-0.1080
--0.0969

I .0
2.0

4.0

3.0

5.0

8.0

9.0

6.0

0.5568
-0.2931
-0.1451
-0.1669
-0.1155
-0.0757
-0.0733
-0.0993

1.0
2.0

4.0

3.0

5.0
8.0

9.0

6.0

0.6317
-0.3878
-0.2075
-0.2370
-0.1663
-0.1098
-0.1065
–0.1435

Rank-Transformed Data

Variable RCC SRRC PRCC

Name p-val Rank Value Rank Value Rank Value

WA41CDFLG 0.0000 1.0 -0.6521 1.0 -0.6533 1.0 –0.8787
ANHPRM 0.0000 2.0 0.5804 2.0 0.5937 2.0 0.8619

HALPRM 0.0014 3.0 0.1850 5.0 0.1443 5.0 0.3817

WGRCOR 0.0057 4.0 --0.1598 4.0 -0.1509 4.0 -0.3963

HALPOR 0.0087 5.0 -0.1518 3.0 -0.1539 3.0 -0.4031

WASTWICK 0.0405 6.0 -0.1185 7.0 -0.0948 7.0 -0.2617

a Table structure analogous to Table 8.3

difference because an RCC of –0.6521 implies that
WMICDFLG can account for 42.5’?10of the uncertainty
in y in rank-transformed space (i.e., 0.65212 = 0.425)

while a CC of –0.3210 implies that WMZCDFLG can
account for only 10.3% of the uncertainty in y in the
original untransformed space (i.e., 0.32102 * O.103).
Numerous other differences also exist.

Additional perspective on the use of raw and rank-
transformed data in the analysis of y = EO:BRAALIC
can be obtained from examination of the results of
stepwise regression analyses (Table 8.8), In particular,
the use of rank-transformed data leads to a regression
model with 7 variables and an R2 value of 0.869. In
contrast, the use of raw data leads to a regression model
with 6 variables and an R* value of only 0.496. Thus,
the use of rank-transformed data is resulting in an
analysis that can account for more of the uncertainty in
y than can be accounted for in an analysis with raw data.
As a result, the coefficient in Table 8.7 obtained with
rank-transformed data (i.e., RCCS, SRRCS, PRCCS) are
more informative with respect to the sources of the un-
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certainty in y than are the coefficients obtained with raw
data.

When the relationship between the dependent and
independent variables is linear, use of raw and rank-
transformed data tends to produce similar results.
When rank-transformed data are used and there are no
ties in the data, the resulting values for regression coef-
ficients and SRCS are equal; thus, the rank transform
results in an automatic standardization of the data in this
case.

The analysis with rank-transformed data is more ef-
fective than the analysis with raw data because the rank
transformation tends to linearize the relationships be-
tween the independent variables (i.e., the Xj’s) and the

dependent v~iable (i.e., Y). In particular, both
WMICDFLG and ANHPRM show a stronger linear re-
lationship with y after the rank transformation (Fig.
8.5). The rank transformation improves the analysis
when nonlinear but monotonic relationships exist be-
tween the independent variables and the dependent



Table 8.8. Comparison of Stepwise Regression Analyses with Raw and Rank-Transformed Data for
Cumulative Brine Flow over 10,000 yr under Undisturbed Conditions from the Anhydrite
Marker Beds to the Disturbed Rock Zone that Surrounds the Repository (i.e., y =
HMY34AL/C at 10,000 yr in Fig. 8.4)

I Raw Data I Rank-Trartsforrned Data

Stepa Variableb SRCC R2d Variableb SRRC’ R2d

1 ANHPRM 0.562 0.320 WMICDFLG –0.656 0.425

2 WMICDFLG –0.309 0.423 ANHPRM 0.593 0.766

3 WGRCOR –0.164 0.449 HALPOR –0.155 0.802

4 WASTWICK –o. 145 0.471 WGRCOR –0.152 0.824

5 ANHBCEXP –0.120 0.486 HALPRM 0.143 0.845

6 HALPOR –0.101 0.496 SALPRES 0.120 0.860

7 WASTWICK -0.010 0.869
a Steps in stepwise regression anaIysis.
b Vmiables listed in order of selection in regression rmafysiswith ANHCOMP and HALCOMP excluded from entry into regression model.
c Standardized regression coefficient (SRCS) in tinaf regression model.
d Cumulative R* value with entry of each variable into regression model.
e Standardized rank regression coefficients (SRRCS) in finat regression model.

variable. When more complex relationships exist, the
rank transformation may do little to improve the quality
of an analysis. In such cases, more sophisticated proce-
dures are required. For example, various tests can be
used to check for deviations from randomness in scat-
terplots (Sects. 8.8, 8.9; also see Hamby 1994, Saltelli
and Marivoet 1990, Kleijnen and Helton 1999a).

As for stepwise regression analyses, analyses with
SRCS and PCCS of the type presented in Fig. 8.3 can
often be improved with the use of rank-transfonned
data. When the rank transform is used, the resultant
plots will contain SRRCS and PRCCS. As an example,
the results of analyzing the cumulative brine inflows in
Fig. 8.4 with both raw and rank-transformed data are
presented in Fig. 8.6, with each plot frame showing the
five variables with the largest, in absolute value, SRCS,
PCCS, SRRCS and PRCCS as appropriate. As in the
comparisons of stepwise regression analyses with raw
and rank-transformed data (Table 8.8), the analyses
with rank-transformed data in Fig. 8.6 produce out-
comes that indicate stronger effects for individual vari-
ables than is the case for the analyses with raw data.

The rank transformation has become quite popular
in sampling-based sensitivity analyses and many addi-
tional examples of its use exist (e.g., Sanchez and
Blower 1997; Gwo et al. 1996; Helton et al. 1996,
1989; Hamby 1995; Blower and Dowlatabadi 1994;
Whiting et al. 1993; MacDonald and Campbell 1986).

8.7 Effects of Correlations on
Sensitivity Analyses

The presence of correlations between uncertain
(i.e., sampled) variables can greatly complicate the in-
terpretation of sensitivity analysis results. Regression-
based sensitivity analyses for the variables in Fig. 7.4
will be used as an example (Table 8.9).

The regression analyses in Table 8.9 are all rela-
tively successful in the sense that they have R2 values
between 0.86 and 0.91. However, inspection of the
individual regression analyses indicates that there is an
undesirable complication that results from the rank cor-

relations of –0.99 that are assigned to the variable pairs
(ANHPRM, ANHCOMP) and (HALPRM, HALCOMP)
(Table 3.1). When no correlations exist between the
sampled variables in the regression model, the regres-
sion coefficients will decrease monotonically in abso-
lute value. In this case, an ordering of the variables by
the absolute value of their regression coefficients pro-
vides a way to rank variable importance. However,
when correlated variables are included in a regression
model, the sizes and even the signs of the associated
regression coefficients may not properly indicate the
effects of these variables. This behavior appears in
Table 8.9 for the pair (HALPRM, HALCOMP) in the
regressions for Anhydrites a and b North (Ef):BRA-
ABN.ZC,), Anhydrites a and b South (EO:BRAABSIQ,
MB 139 North (EO:BRM39NIC), MB 139 South
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conditions (i.e., y = EO:BRAALIC at 10,000 yr in Fig. 8.4) versus microbial gas generation flag
(WMZCDFLG) and marker bed permeability (AiVHPRM) with raw (i.e., untransformed) and rank-
transformed data.
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Standardized regression coefficients (SRCS, SRRCS) and partial correlation coefficients (PCCS, PRCCS)
calculated with raw and rank-transformed data for cumulative brine flow from anhydrite marker beds to
disturbed rock zone (DRZ) under undisturbed conditions (i.e., y = EO:BRAALIC in Fig. 8.4) with
ANHCOMP and HALCOMP excluded from calculation.
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EO:BRM39N/C, EO:BRM39S/C, EO:BRAAL/C) and into repository (EO:BRNREPTC) under
Undisturbed Conditions (see Fig. 7.4)

4nh a and b South: EO:BRAABSZ(

Variable SRRC ~2

WMICDFLG -0.66 0.43

AJVHPRM 0.59 0.77

HALPOR -0.16 0.80

WGRCOR -0.16 0.83

SALPRES 0.11 0.84

HALPRM 0.54 0.85

WASTWICK -0.09 0.86

HALCOMP 0.43 0.86

SHRGSSAT -0.05 0.87

MB 138NortIu EO:BRM38NIC MB 138Souti: EO:BRM38SIC mh a and b North EO:BRAM3NK

Stepa

1

2

3

4

5

6

7

8

9

Variableb i

ANHPRM

WMICDFLG ;

HALCOMP

HALPOR

WGRCOR

SALPRES

WASTWZCK

WGRMICI

SHRGSSAT

SRRC’

0.75

-0.52

0.21

–0.11

-0.12

0.11

-0.08

-0.06

-0.04

@d

0.54

0.80

0.84

0.86

0.87

0.88

0.89

0,89

0.90

Variable SRRC

ANHPRM 0.73

WMICDFLG –0,55

HALCOMP 0.18

WGRCOR -0.13

HALPOR -0.11

SALPRES 0.10

WASTWICK -0.08

WGRMICI -0.06

SHRGSSAT –0.05

—
R2

—

0,51

0.80

0.83

0.85

0.86

0.87

0.88

0.88

0.8~
—

R2

0.43

0.79

0.81

0.84

0.85

0.86

0.87

0.87

0.87

Variable SRRC

WMICDFLG

ANHPRM

HALPOR

WGRCOR

SALPRES

WASTWICK

HALPRM

HALCOMP

SHRGSSAT

-0.66

0.60

-0.15

–O.16

0.11

-0.09

0.49

0.40

–0.05

I MB 139Nortlu EO:BRM39NIC MB 139South EO:BRM39SIC MBs Total: EO:BR4ALIC RepositoryTotat:

EO:BRNREPTC

:

Variable SRRC

WMICDFLG -0.65

ANHPRM 0.57

HALPRA4 0.55

HALPOR –0.16

WGRCOR –o. 15

SALPRES 0.12

WASTWICK -0.10

HALCOMP 0.37

R2

0.43

0.75

0.79

0.81

0.84

0.85

.086

0.86

Variable

WMICDFLG

ANHPRM

HALPOR

WGRCOR

HALPRM

SALPRES

WASTWICK

HALCOMP

SRRC

-0.65

0.59

-0.16

-0.15

0.51

0.12

-0.10

0.37

R2

0.43

0.78

0.80

0.82

0.85

0.86

0.87

0.87

Variable

HALPOR

WMICDFLG

ANHPRM

HALCOMP

WRBRNSAT

WGRCOR

ANHCOMP

WASTWICK

SRRC

0.88

–0.26

0.60

-0.09

-0.09

–0.08

0.43

-0.06

.
R2

—

0.77

0.85

0.88

0.89

0.89

0.90

0.91

0.91
—

step Variable I SRRC

1

2

3

4

5

6

7

8

WMICDFLG

ANHPRM

HALPOR

HALPRM

WGRCOR

SALPRES

WASTWICK

HALCOMP

-0.65

0.59

-0.16

0.52

-0.15

0.12

–0.10

0.37

0.42

0.78

0,80

0.83

0.85

0.86

0.87

0.88

fsis.
1

= Steps in stepwise N .ession as
D Variables listed in order of selection in regression analysis.
c Standardized rank regression coefficients (SRRCS) in final regression model.
d Cumulative R2value with entry of eaeh variab[e into regression model.

all sampled variables are included as candidates, the(EO:BRM39SIC) and MBs Total (EO:BRAALIC), and
for the pair (ANHPRM, ANHCOMP) in the regression
for Repository Total (EO:BRNREPTC). In particular,
the existence of the strong correlations within the pairs
@iALPRM, HALCOMP) and (ANHPRM, ANHCOMP)
results in a nonmonotonic behavior of the associated
regression coefficients.

As a more detailed example, explicit representa-
tions of the following three regression analyses for MBs
Total (EO.-BRAALIC) are shown in Table 8.10: (i) all 31
sampled variables allowed as candidates for inclusion in
the regression model, (ii) ANHCOMP and HALCOMP
excluded as candidates for inclusion in the regression
model, and (iii) ANHPRM “and HALPRM excluded as
candidates for inclusion in the regression model. When

regression coefficients decrease monotonically until
Step 8, when HALCOMP enters the regression model.
With entry of HALCOMP, the regression coefficient for
HALPRM jumps from a value of 0.14 at Step 7 to a
value of 0.51; further, HALCOMP has a regression co-
efficient of 0.37 even though it has essentially no effect
on the R2 value for the regression model (i.e., R2 =
0.86889 at Step 7 and R2 = 0.87203 at Step 8). When
ANHCOMP and HALCOMP are excluded as candidates
for entry into the regression model, a sequence of 7
regression models is produced that is identical to the
first 7 regression models that are produced when all
variables are allowed as candidates for inclusion. EIow-
ever, a different sequence of regression models is con-
structed when ANHPRM and HALPRM are excluded.
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Table 8.10. Detailed Stepwise Regression Analyses with Rank-Transformed Data for Cumulative Brine
Flow From all Marker Beds over 10,000 yr under Undisturbed Conditions (i.e., y =
EO.BRAAUC in Fig. 7.4 and also at 10,000 yr in Fig. 8.4)

,
AllVariablesIncluded ANHCOMP ANHPRM All Variables ANHCOMP ANHPRM

HALCOMP HALPRM HALCOMP HALPRM

Excluded Excluded Excluded Excluded

Vsriable’ SRRCb Variable SRRC Variable SRRC Variable SRRC Variable SRRC Variable SRRC

Step 1’ Step 6

WMICDFLG –0.65 WMICDFLG -0.65 WMICDFLG -0.65 WMICDFLG -0.66 WMICDFLG -0.66 WMICDFLG -0.66
~2d 0.43 R2 0.43 R2 0.43 ANHPRM 0.59 ANHPRM 0.59 ANHCOMP -0.59

HALPOR -0.16 HALPOR -0.16 HALPOR 4.16
Step 2

WGRCOR -0.15 WGRCOR -0.15 WGRCOR -0.15

WMICDFLG –0.66 WMICDFLG -0.66 WMICDFLG –0,67 HALPRM 0.14 HALPRM 0.14 HALCOMP –0.14

ANHPRM 0.59 ANHPRM 0.59 ANHCOMP –0,58 SALPRES 0.12 SALPRES 0.12 SALPRES 0.13

F 0.77 R2 0.77 R2 0,76 R2 0.86 R2 0.86 R2 0.85

step 3 Step 7

WMICDFLG -0.66 WMICDFLG –0.66 WMICDFLG -0.67 WMICDFLG -0.66 WMICDFLG -0.66 WMICDFLG –0.66

ANHPRM 0.59 ANHPRM 0.59 ANHCOMP -0.58 ANHPRM 0.59 ANHPRM 0.59 ANHCOMP -0.58

HALPOR -0.16 HALPOR -0.16 HALPOR -0.16 HALPOR –O.16 HALPOR -0.16 HALPOR -0.16
R2 0.80 R2 0.80 P 0.79 WGRCOR –o. 15 WGRCOR -0.15 WGRCOR -0.15

HALPRM 0.14 HALPRM 0.14 HALCOMP -0.14
Step 4

SALPRES 0.12 SALPRES 0,12 SALPRES 0.13

WMZCDFLG -0,66 WMICDFLG -0.66 WMICDFLG 4.66 WASTU7CK -0.10 WA.S7’UYCK –0. 10 WAS7TWCK -0.09

ANHPRM 0.60 ANHPRM 0.60 ANHCOMP -0.58 R2 0.87 R2 0.87 R2 0.85

HALPOR –0.16 HALPOR -0.16 HALPOR -0.16

WGRCOR -0.15 WGRCOR -0.15 WGRCOR -0,15
SteP 8

R’ 0.82 # 0,82 R’ 0,81 WMICDFLG -0.65 No additional No additional

ANHPRM 0.59 variable variable
step 5

HALPOR –0, 16 selected selected

WMICDFLG +.65 WMICDFLG –0.65 WMICDFLG -43.66 WGRCOR -0.15

ANHPRM 0.59 ANHPRM 0.59 ANHCOMP -0.58 HALPRM 0.51

HALPOR -0,16 HALPOR -0.16 HALPOR -0.16 SALPRES 0.12

WGRCOR -0.15 WGRCOR -0.15 WGRCOR 4.15 WASTWICK –0.10

HALPRM 0.15 HALPRM 0.15 HALCOMP -0.14 HALCOMP 0.37

R2 0.85 R2 0.85 R2 0.83 P 0.87

a V.n.hl. e A mo..c.kn rmi.1. -.-”,.,. u. .-~ ’.,...”.. s’.., ””..

b Standardized rank regression coefficients (SRRCS)for variablesin regressionmodel.
c Steps in stepwise regression analysis.
d l?2 vatue for regression model.

In this case, ANHPRM and HALPRM are replaced in
the regression models with ANHCOMP and HAL-
COMP, and the signs of the regression coefficients are
reversed. Thus, ANHCOMP and HALCOMP appear
with negative regression coefficients where ANHPRM
and HALPRM appear with positive regression coeffi-
cients. In contrast, HALPRM and HALCOMP both

have positive regression coefficients when they appear
together in the regression model constructed at Step 8
when all variables are included as candidates for entry
into the analysis. Thus, care must be used in interpret-
ing regression analyses that involve highly correlated
variables.
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8.8 Identification of Nonmonotonic
Patterns

Sometimes regression-based sensitivity analyses
perform very poorly. The rank transformation has been
introduced as a possible analysis procedure for such
situations (Sect. 8.5). However, when viewed broadly,
the rank transformation provides only a variant on linear
regression analysis, with a model that seeks to identify
linear relationships being replaced by a model that
seeks to identi@ monotonic relationships. A more gen-

eral approach is to attempt to determine if the
plots of a dependent (i.e., predicted) variabk
individual independent (i.e., sampled) variablef
to display nonmonotonic patterns.

As an example, time-dependent pressure ir
pository subsequent to an E2 intrusion and an
ated sensitivity analysis based on PRCCS are s
Fig. 8.7, with the PRCCS having small values I
occurrence of the drilling intrusion at 1000 yr.
as indicated by the regression analyses in Table
pressure at 10,000 yr, the use of neither raw n

BRAGFLO (E2 at 1000 yr, Rl)
VoI-Averaged Pressure Lower Waste Panel (WAS_PRES)

1 1 1 1

a Frame8.7a

L 0.0 r. I I t I 1
0.0 2.0 4.0 6.0 8.0 10.0

Time (103 yr)

BRAGFLO (E2 at 1000 yr, RI, R2, R3)
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Fig. 8.7.

TRI-634

Uncertainty and sensitivity analysis results for repository pressure for an E2 intrusion into lower w

panel at 1000 yr (i.e., y = E2:WAS_PRES).

Table 8.11. Stepwise Regression Analyses with Raw and Rank-Transformed Data with Pooled F
from Replicates RI, R2 and R3 (i.e., for a total of 300 observations) for y = E2:WAS
at 10,000 yr

Raw Data, E2: WAS_PRES Rank-Transformed Data, E2: WAS_PRES

Stepa Variableb SRCC R2d Variableb SRRCe R2d

1 HALPRM 0.37 0.14 HALPRM 0.36 0.13

2 ANHPRM 0.24 0.20 ANHPRM 0.24 0.19

3 HALPOR 0.14 0.22 HALPOR 0.14 0.20

a

b

c

d

e

Steps in stepwise regression analysis.
Variables listed in order of selection in regression arxdysis with ANHCOMP and HALCOMP excluded from entry into regression
cause of –0.99 rank correlation within the pairs (ANHPRM, ANHCOMP) and (HALPRM, HALCOMP).
Standardized regression coefficients (SRCS) in final regression model.
Cumulative R* vahre with entry of each variable into regression model.
Standardized rank regression coefficients (SRRCS) in final regression model.
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transformed data in a stepwise regression analysis pro-
duced a very successful regression model (i.e., R2 val-

ues of 0.22 and 0.20 result for raw and rank-
transformed data, respectively). Yet, unless there is
some type of error in the calculations, the uncertainty in
the sampled variables must be giving rise to the varia-
tions in the pressure curves in Fig. 8.7a.

As discussed in Sect. 8.1, the examination of scat-
terplots often provides an effective way to identify in-
fluential variables. In particular, the examination of
scatterplots shows that BHPRM is the dominant variable
with respect to the uncertainty in repository pressure
subsequent to an E2 intrusion (Fig. 8.2). This is rather
disconcerting as BHPRM was not identified in either the
PRCC analysis in Fig. 8.7b or the regression analyses in
Table 8.11. Thus, the clearly dominant variable has
been completely missed in the formal analyses in Fig.
8.7b and Table 8.1 I, and was only identified by an ex-
haustive examination of the scatterplots for the individ-
ual variables. Clearly, some type of formal procedure
for identifying patterns in scatterplots is desirable; oth-
erwise, the analyst is confronted with the requirement to
manually examine large numbers of scatterplots and
also to subjectively assess the relative strengths of the
individual patterns appearing in these plots.

In this section, three procedures for identifying
nonmonotonic patterns are introduced. Each of these
procedures is based on determining if some measure of
central tendency for the dependent variable is a function
of individual independent variables. In particular, the

F-test for equal means, the XZ-test for equal medians,
and the KruskaI-Wallis test are introduced as means of
determining if measures of central tendency for a de-
pendent variable change as a function of the values of
individual independent variables (Sect. 5, Kleijnen and
Helton 1999a). For convenience, the preceding tests
will be designated as tests for common means (CMNS),
common medians (CMDS) and common locations
(CLS).

The procedures discussed in this section involve an
assessment of the relationship between a dependent and
an independent variable. For notational convenience,
these variables will be represented by y and x, respec-
tively. This assessment is based on dividing the values

ofx (i.e., xk, k= 1, 2, . . . . m) into nX classes and then
testing to determine if y has a common measure of cen-
tral tendency across these classes. The required classes
are obtained by dividing the range of x into a sequence
of mutually exclusive and exhaustive subintervals con-
taining equal numbers of sampled values (Fig. 8.8).
When an x is discrete (e.g., see WMICDFLG in Fig.

8.5), individual classes are defined for each of the dis-
tinct values. For notational convenience, let q, q = 1, 2,

. . .. nX, designate the individual classes into which the
values of x have been divided; let J$ designate the set

such that k = ~ only if xk belongs to class q; and let

nXq equal the number of elements contained in ~ (i.e.,

the number of xk’s associated with class q).

The F-test can be used to test for the equality of the
mean values of y for the classes into which the values of
x have been divided (e.g., the intervals defined on the
abscissas of the scatterplots in Fig. 8.8). Specifically, if
the y values conditional on each class of x values are
normally distributed with equal expected values, then

~= EnxqT’-myzl’(
[Wnxq+(rn-nx

(8.48)

follows an F-distribution with (nX – 1, m – nx) degrees

of freedom, where ~q =
z k~~

Yk f ‘Xk and Y is

defined in conjunction with Eq. (8.15). Given that the
indicated assumptions hold, the probability of obtaining

an F-statistic of value ~ that exceeds the value of F in

Eq. (8.48) can be estimated by prob~ (~ > F I

nX – 1,m – nX ) as defined in Eq. (8.23). A low prob-

ability (i.e., p-value) of obtaining a larger value for F
suggests that the observed pattern involving x and y did
not arise by chance and hence that x has an effect on the
behavior of y.

The XZ-test for contingency tables can be used to
test for the equality of the median values of y for the
classes into which the values of x have been divided
(pp. 143-178, Conover 1980). First, the median, y0,5, is
estimated for all m observations. Specifically,

{

Y(O.5rn) if 0.5 m is an integer
YO.5=

[y([()..5rn1)+ Y([0.5m1+I)l 1 z otherwise>
(8.49)

Wherey(k), k= 1, 2, ..-, m, denotes the ordering of they-

values such that y(@ 5 y(k+l ) and [-] designates the
greatest integer flmction (p. 14, David 1981). The in-
dividual classes of x values are then further subdivided
on the basis of whether y values fall above or below yo,5
(Fig. 8.8). For class q, let nXlq equal the number of y
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values that exceed yo,5, and let nX2q equal the number

of y values that are less than or equal to yo5.

The result of this partitioning is a 2 x nX contin-
gency table with nXrq observations in each cell. The
following statistic can now be defined:

nx2
T=

xx
(nXrq – nErq )2 I nErq,

q=l r=l

(8.50)

where

nErq = i%lt!L%f nX

and corresponds to the expected number of observations
in cell (r,- q). If the individual classes of x values,

q=l,2, . . . . nX, have equal medians, then T approxi-

mately follows a X2 distribution with (nx – 1)(2 – 1) =

nX – 1 degrees of freedom (p. 156, Conover 1980).

The probability probX2 ($ > TlnX – 1) of obtaining a

value f that exceeds Tin the presence of equal medi-
ans is given by

probX2 (~ > TlnX - 1) = Q[(nX– 1)/ 2, T/ 2], (8.51)

where Q(a, b) designates the complement of the in-
complete gamma function (p. 215, Press et al. 1992). A

small value (i.e., p-value) for probX2 (~ > TlnX – 1)

indicates that the y’s conditional on individual classes
have different medians and hence that x has an influence

on y. To maintain the validity of the ~2-test in the
analysis of contingency tables, Conover suggests using

a partition in which nErq 21 (p. 156, Conover 1980).

The Kruskal-Wallis test statistic, T, is based on
rank-transformed data and uses the same classes of x
vaiues as the F-statistic in Eq. (8.48) (pp. 229-230,
Conover 1980). Specifically,

[

nX

T=
z 1/(R~/nXq)-m(mi-l) 2/4 S2, (8.52)

,=1

where

R, = ~ r(yk ),

k&Xq

[
S2= ~@t)2-m(m+l)2/4

k=l
/

(m-l),

and r(’yk) denotes the rank of yk If the y values condi-
tional on each class of x values have the same distribu-
tion, then the statistic T in Eq. (8.52) approximately

follows a %2 distribution with nX – 1 degrees of free-
dom (pp. 230 -231, Conover 1980). Given this ap-

proximation, the probability probX2 (~ > TlnX – 1) of

obtaining a value ~ that exceeds T in the presence of
identical y distributions for the individual classes is

given by Eq. (8.51). A small value for probX2

(~> T InX –1) (i.e., a p-value) indicates that the y’s

conditional on individual classes have different distri-
butions and thus, most likely, different means and medi-
ans. Hence, a small p-value indicates that x has an ef-
fect on y.

For y = E2: WAS_PRES, the three tests for non-
monotonic relationships introduced in this section (i.e.,
CMNS, CMDS, CLS) all identify BHPRM as the most
influential variable (Table 8.12). In contrast, the effect
of BHPRM was missed in analyses based on correlation
coefficients with raw and rank-transformed data (Table
8.12). Further, the three tests assign identical rankings
to all variables with p-values below 0.1. After BHPRM,
the next two most important variables as indicated by p-
values are HALPRM and ANHPRM. These variables
were also indicated as having effects with correlation
coefficients with raw and rank-transformed data; how-
ever, as indicated by the low R2 values in the associated
regression models (i.e., 0.20 and 0.19 in Table 8.11),
these variables by themselves are not very effective in
accounting for the uncertainty in y in a regression-based
analysis.

8.9 Identification of Random
Patterns

The three tests described in the preceding section
attempt to identify departures from monotonic trends.
An even less restrictive approach to identifying influen-
tial variables is to determine if the scatterplot for the

points (xk, yk), k = 1, 2, . . .. m, appears to be random
conditional on the marginal distributions for x and y.

Specifically, the X2-test can be used to indicate if the
pattern appearing in a scatterplot appears to be
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Table 8.12. Comparison of Variable Rankings with Different Analysis Procedures for y = E2WVAS_W?ES
at 10,000 yr and a Maximum of Five Classes of Values for Each Variable (i.e., nX= 5)

Variable Ccb RCCC CMN: 1 X 5d CMD: 2 X5e

Namea

CL: 1 X5f

Rank p-Val Rank p-val Rank p-val Rank p-val Rank p-val

HALPRM 1.0 0.0000 1.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000
ANHPRM 2.0 0.0000 2.0 0.0000 3.0 0.0002 3.0 0.0007 3.0 0.0000
HALPOR 3.0 0.0090 3.0 0.0184 5.0 0.0415 5.0 0.0700 5.0 0.0940
ANHBCEXP 7.0 0.1786 8.0 0.2373 4.0 0.0405 4.0 0.0595 4.0 0.0602
BHPRM 10.0 0.3651 6.0 0.1704 1.0 0.000o 1.0 0.0000 1.0 0.000o
ANRBRSAT 19.0 0.7133 14.0 0.4378 7.0 0.1513 6.0 0.0823 7.0 0.1304

8 Variables for which at least one of the tests (i.e., CC, RCC, CMN: 1x5, CMD.2X5, CL 1x5) has a p- or a-value less than O.1; variables or-
dered by p-vatues for CCS

b Ranks and p-vatues for CCS
c Ranks and p-values for RCCS
d Ranks and p-values for CMNS test with 1x5 grid
e Ranks and p-values for CMDS test with 2x5 grid
f Ranks and p-values for CIA (Kruskal-Wallis) test with 1x5 grid

nonrandom (Sect. 7, Kleijnen and Helton 1999a, Wag-

ner 1995). For convenience, the X2-test for nonrandom
patterns will be denoted as a test for statistical inde-
pendence (S1).

With the X2- test, the values for the sampled vari-
able (i.e., the x values on the abscissa) are divided into

classes (Fig. 8.9). As in Sect. 8.8, let q, q = 1, 2, . . ..
rzX,designate the individual classes into which the val-
ues of x have been divided; let ~ designate the set

such that k = ~ only if xk belongs to class q; and let

rzXqequal the number of elements contained in ~ (i.e.,

the number of Xk’s associated with class q). Similarly,
the values for the dependent variable (i.e., the y values
on the ordinate) are also divided into classes (Fig. 8.9).

For notational convenience, let p, p = 1, 2, . . . . nY, des-
ignate the individual classes into which the values of y

are divided; let Yp designate the set such that k ~ J?p

only if y~ belongs to class p; and let nYp equal the num-

ber of elements contained in YP (i.e., the number of y~’s

associated with class p). Typically, the classes ~ and

Yp are defined by ordering the x~s and y~s, respec-

tively, and then requiring the individual classes to have
similar numbers of elements (i.e., the nXq are approxi-
mately equal for q = 1, 2, . . . . nX, and the nYP are ap-

proximately equal for p = 1,2, . . . . ny).

The partitioning of x and y into nX and nY classes
in turn partitions (x, y) into nX nY classes (Fig. 8.9),
where (xk, y~) belongs to class (q, p) only if xk belongs

to class q of the x values (i.e., k = ~) and yk belongs

to class p of the y values (i.e., k = Yp). For notational

convenience, let Oqp denote the set such that k e Oqp

only if k c ~ (i.e., xk is in class q of x vahIes ) and

also k e YP (i.e., yk is in class p of y values), and let

nOqp equal the number of elements contained in Oqp.
Further, if x and y are independent, then

nEqp = (nYP /m)(nXq /m)m = nYP nXq /m (8.53)

is an estimate of the expected number of observations
(xk, yk) that should fall in class (q, p).

The following statistic can be defined:

rlx nY

T=~, ~<(noqp–nEqp )2lnEqp. (8.54)
q+ p=l

Asymptotically, T follows a X2-distribution with (nX-l)

(nY-l) degrees of freedom when x and y are independ-

ent. Thus, the probability probz2 [~ > T I

(nX – l)(nY – 1)] of obtaining a value of ~ that ex-

ceeds T when x and y are independent is given by Eq.
(8.51).

The preceding probability provides a way to iden-

tify scatterplots that appear to display a significant rela-
tionship (i.e., pattern) involving the x and y variables on

the abscissa and ordinate. In particulm, probx2

[~> T I (nX –l)(rzY – 1)] is the probability that a larger

value of the statistic would occur due to chance varia-
tion (i.e., a p-value). A small p-value indicates that,
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Fig. 8.9. Examples of the partitioning of the ranges of x = HALPRM and x = BHPRM into nX = 5 class

range of y = E2: WAS_PRES at 10,000 yr into nY = 5 classes.

under the assumptions of the test, an outcome equal to
or greater than the observed value of the statistic h un-
likely to occur due to chance. Thus, the implication is
that the pattern in the scatterplot arose from some un-
derlying relationship involving x and y rather than from
chance alone.

As an example, a ranking of variable importance

based on p-values for y = E2: WAS_PRES and a 5 x 5
grid (Fig. 8.9) is given in Table 8.13 under the heading

S1: 5 x 5. The most important variable is BHPRM,

which is consistent with the well-defined pattern in the
corresponding scatterplot in Fig. 8.9b. In contrast, this
pattern is completely missed by the regression analyses
in Table 8.11. The next most important variable is
HALPRM, with an effect that is discernible but rather
weak in the corresponding scatterplot (Fig. 8.9a). In
particular, the dependent variable tends to increase as
HALPRM increases but with much noise around this
trend. After BHPRM and HALPRM, small possible
effects are indicated for WGRCOR and ANHPRM, with
the corresponding scatterplots showing what are at best
rather weak patterns (Fig. 8.8). After BHPRM,
HALPRM, WGRCOR and ANHPRM, the p-values in-
crease rapidly (Table 8.13), and there is little reason to
believe that the ordering of the remaining variables on
the basis of their p-values is due to anything other than
chance. Similar variable rankings were also obtained in
the analyses with CMNS, CMDS and CLS (Table 8.12).

The X2-statistic for identifying nomm
is based on superimposing grids on the S(
der consideration (Fig. 8.9). As a result, d
such an analysis can depend on the grid se
In particular, different grids can lead to d
ings of variable importance, although the
of strong patterns is probably relatively
reasonable grid selections (i.e., grids that c
excessive number of cells relative to ti
points in the scatterplots under considert
example, a ranking of variable important

values for y = E2: WAS_PRES and a 10

given in Table 8.13 under the heading S1:

rankings with 5 x 5 and 10 x 10 grids p]
but not identical results, with both grids ri
identification of BHPRM as the most impf
and the identification of BHPRM, HALPA
and ANHPRM as the four most import
Both analyses suggest that none of the r<
ables have a discernible effect on E;

Similar robustness is also present in the
with CMNS, CMDS and CLS (Table 24,
Helton 1999a; see Tables 8, 14 and 19 oj
Helton 1999a for comparisons with ac
ables).

The p-values used to identify imports
Table 8.13 are calculated with statistic
that are not fully satisfied. In particuh
from the x’s consists of three pooled LHS



random sample (see Eq. (5.16)). A Monte Carlo simu-
lation can be used to assess if the use of formal statisti-
cal procedures to determine p-values is producing mis-
leading results. Specifically, a large number of samples
(10,000 in this example) of the form

(xk, yk), k= 1,2,...,300, (8.55)

can be generated by pairing the 300 values for x (i.e.,
the 300 values for the particular x under consideration
contained in the samples indicated in Eq. (5.16)) with
the 300 predicted values for y (i.e., the 300 values for y
that resulted from the use of the sample elements indi-
cated in Eq. (5.16)). The specific pairing algorithm
used was to randomly and without replacement assign
an x value to each y value, which is similar to boot-
strapping (Efron and Tibshirani 1993) except that the
sampling is being performed without replacement. This
random assignment was repeated 10,000 times to pro-
duce 10,000 samples of the form in Eq. (8.55). Each of
the 10,000 samples can be used to calculate the value of

the x2-statistic. The resulting empirical distribution of

the X2-statistic can then be used to estimate the p-value

for the X2-statistic actually observed in the analysis.
Comparison of the p-value obtained from Eq. (8.51)
with the p-value obtained from the empirical distribu-
tion provides an indication of the robustness of the vari-
able rankings with respect to possible deviations from
the assumptions underlying the formal statistical proce-
dure in Eq. (8.51).

As indicated by comparing the results in columns

S1: 5 x 5 and SIMC: 5 x 5 in Table 8.13, the analytical
determination of p-values in Eq. (8.5 1) and the just de-
scribed Monte Carlo determination of p-values are pro-
ducing similar results. Thus, at least in this example,
the variable rankings are not being adversely impacted
by the use of Eq. (8.51). Similar comparisons were also
obtained in the analyses for y with CMNS, CMDS and
CLS (Table 24, Kleijnen and Helton 1999a; see Tables
8, 14 and 19 of Kleijnen and Helton 1999a, for com-
parisons with additional variables).

Table 8.13. Comparison of Variable Rankings with the X2-statistic for y= E2: WAS_PRES at 10,000 yr

Obtained with a Maximum of Five Classes of x Values (i.e., nX = 5) and Analytic Determina-
tion of pValues with Variable Rankings Obtained with (i) a Maximum of Ten Classes of x val-
ues (i.e., nX = 10) and Analytic Determination of p-Values and (ii) a Maximum of Five Classes
of x Values (i.e., nX = 5) and Monte Carlo Determination of p-Values (Table 23, Kleijnen and
Helton 1999a; see Table 10.23, Kleijnen and Heiton 1999c, for omitted results)

Variable S1: 5 X 5b S1: 10x 10C SIMC: 5 x 5~

Namea Rank p-val Rank p-val Rank p-val

BHPRM
HALPRM
WGRCOR
ANHPRM
SHRGSSAT
SHBCEXP
WGRMICI
ANHBCVGP

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

SHPRMHAL 24.0

SHPRMCON 25.0

0.0000
0.0002,
0.0002
0.0049
0.0698
0.1010
0.1985
0.2427

0.9064
0.9898

1.0
4.0
2.0
3.0

22.0
15.0
11.0
14.0

. ..
24.0
20.0

0.0000
0.0082
0.0028
0.0032
0.8482
0.3495
0.1646
0.3398

0.8863
0.5316

1.5
1.5
3.0
4.0
5.0
6.0
7.0
8.0

24.0
25.0

0.0000
0.0000
0.0002
0.0033
0.0699
0.0989
0.2013
0.2380

0.9102
0.9933

a Twenty-six (25) variables from Table 3.1 included in anafysis, with (i) ANHCOMP and HALCOMP not included because of the -0.99 rank

b

c

d

corrdations withhr the pairs (ANHPRM, ANHCOMP) and “(HALPRM, HALCOMP) and (ii) BPCOMP, BPINTPRS, BPPRM and BPVOL not
included because brine pocket properties are not relevant to the E2 intrusion under consideration.
Variable rankings and p-values obtained with a maximum of five classes of x values (i.e., nX = 5), five classes of y vahres (i.e., nY = 5) and
arratytic determination of p-values (see Eqs. (8.54) and (8.5l)). Discrete variables (e.g., WMICDFLG, which has only three distinct vrdues)
are divided into less than nX classes when they have less than rrXdistinct vafues.
Variable rankings and p-values obtained with a maximum of ten classes of x values (i.e., nX = 10), ten classes of y values (i.e., rsY= 10) and
analytic determination of p-vatugs.
Variable rankings and p-values obtained with a maximum of five classes of x values (i.e., nX= 5), five classes of y values (i.e., rrY= 5) and
Monte Carlo de;ermdnation ofp-vafues.
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9.0 Test

Selected test problems from Campolongo et al.
2000 will now be used to illustrate sampling-based
methods for uncertainty and sensitivity analysis. No
attempt is made to present results for all test problems.
Rather, the problems to be discussed were selected be-
cause they either provided representative results or in-
teresting analysis challenges. To illustrate the effects of
sampling procedures, each problem was evaluated with
10 independent LHSS of size 100 each and also 10 in-
dependent random samples of size 100 each. Sensitiv-
ity analysis results will be presented for 1 LHS of size
100 (i.e., nLHS = 100); in some instances, sensitivity
analysis results will also be presented for the 1000
sample elements that result from pooling the 10 LHSS
(i.e., nLHS = 1000). The sensitivity analysis procedures
and/or measures considered will include correlation
coefficients (CCS), rank correlation coefficients
(RCCS), common means (CMNS), common locations
(CLS), common medians (CMDS), statistical independ-
ence (S1), standardized regression coeftlcients (SRCS),
partial correlation coefficients (PCCS), standardized
rank regression coefficients (SRRCS), partial rank corre-
lation coefficients (PRCCS), stepwise regression analy-
sis with raw and rank-transformed data, and examinat-
ion of scatterplots. It is hoped that the presentation of
these results will help the reader develop insights with
respect to the behavior and effectiveness of the tech-
niques under consideration.

Problems

9.1 Linear Test Problems

The fwst linear test problem (Model 1 in Carn-
polongo et al. 2000) is defined by

3

f(x) = Z+ X=[XIj X2,X31, (9.1)

i=l

with xi :U(Z~–0j,7~+Oi), Zj =3i-1, ~i =0.5Zi fori

= 1, 2, 3, and x U(a, b) used to indicate that x has a uni-
form distribution on [a, b].

The distributions assigned to the xi lead to a distri-

bution for flx), with Latin hypercube sampling tending
to produce more stable estimates of this distribution
than random sampling (Fig. 9.1).

For the nLHS = 100, CCS, RCCS, CMNS, CLS,
CMDS and S1 all identify X3 as the most important vari-
able; CCS and RCCS also indicate an effect for X2
(Table 9.1). Due to the large size of the p-values (i.e., >
0.05), CMNS, CLS, CMDS and S1 do not indicate an
effect for X2, and none of the tests indicate an effect for
xl.

0.0

Linear Test Problem: Model 1 (LH
1.0

0.9

0.8

0.1

0.0

Linear Test Problem: Model 1 (Random)

7.0 9.5 11.9 14.4 16.8 19.3 6.9 9.4 11.6 14.3 16.7 19.2

Predicted Value: f(x) Predicted Value: f(x)

TRI-6342-6046-O

Fig. 9.1. Stability of estimated CDF for linear test problem with Model 1 (see Eq. (9.1)).
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For nLHS = 1000, CCS, RCCS, CMNS, CLS, CMDS
and S1 identify X3 and X2 as the two most important
variables (Table 9.1 ). Further, CCS, RCCS, CMNS and
CLS also indicate an effect for xl. Thus, as might be
expected, the larger sample is leading to more resolu-
tion in the sensitivity analysis. However, CCS and
RCCS were able to identify the two most important
variables with a sample of size 100.

Examination of scatterplots clearly shows the
dominant effect of X3 (Fig. 9.2). The effect of X2 is
barely discernible in the scatterplot for nLHS = 100 but
is easily seen for nLHS = 1000. The scatterplots for xl
(not shown) indicate no visually discernible effect for
nLHS = 100 and a barely discernible effect for nLHS =
1000.

In addition to various tests of significance (Table
9.1) and the examination of scatterplots (Fig. 9.2), vari-
ous coet%cient values (e.g., CCS, SRCS, PCCS, RCCS,
SRRCS, PRCCS) can also be used to assess variable
importance (Table 9.2). In Table 9.2 and other similar
tables in this section, CCS and RCCS are calculated
between individual pairs of variables, and SRCS and
SRRCS are calculated with all sampled variables in-
cluded in the regression model (i.e., xl, X2, X3 in this
example; see Eq. (9. l)). In the complete absence of

correlations between the sampled variable value
spending CCS and SRCS would be the same
would corresponding RCCS and SRRCS. As i]
by the similarity of the values for CCS and S1
also for RCCS and SRRCS, there is little co]
between the sampled variables. Further, bec
exact linear model is under consideration, PC
PRCCS are equal to one. Thus, for a linear
PCCS and PRCCS provide no information on th~
tance of individual variables. Because of the 1
of the model, the sample of size nLHS = 10G
results almost identical to those in Table 9.2 for
100.

An alternative summary of the SRCS and S1
Table 9.2 is to present the sensitivity results in t
of a stepwise regression analysis (Table 9.3).
variable importance is indicated by the order i
the variables entered the regression model, thes.
signs of the SRCS or SRRCS, and the change
values as additional variables are added to the
sion model. Because a linear model is under co
tion, the stepwise process ultimately produces a

sion model with an R2 value of 1.00. However,
variable added to the regression model (i.e.,
little effect and only raises the R2 value from
1.00. The regression coefficients do not

Table 9.1. Sensitivity Results Based on CCS, RCCS, CMNS, CLS, CMDS and S1 for Linear Test F
with Model 1 (see Eq. (9.1))

Sample Size nLHS = 100

Variable Ccb RCCC CMNd CLe CMDf s

Namea Rank p-Vat Rank P-Val Rank p-Vat Rank p-Val Rank p-Val Rank

X3 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0

X2 2.0 0.0015 2.0 0.0027 2.0 0.0502 2.0 0.0779 2.0 0.5249 2.0

x, 3.0 0.5091 3.0 0.5694 3.0 0.7528 3.0 0.7089 3.0 0.7358 3.0

Sample Size nLHS = 1000

Variable cc RCC CMN CL CMD (.

Name Rank p-Val Rank p-Val Rank p-vd Rank p-Val Rank p-Val Rank

x3 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0

-% 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0

x, 3.0 0.0007 3.0 0.0017 3.0 0.0155 3.0 0.0313 3.0 0.4748 3.0
L

a Vtiables ordered by p-values for CCS.
b Ranks and p-values for CCS.
c Ranks and p-vatues for RCCS.
d Ranks and p-vahses for CMNS test with 1x5 grid.
e Ranks and p-vahres for CLs (Kruskal-Wallis) test with 1X5grid.
f Ranks and p-values for CMDStext with 2x5 grid.
g Ranks and p-values for S1test with 5x5 grid.
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LinearTest Problem:Model 1, nLHS = 100
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Fig. 9.2. ScatterPlots for linear test problem with Model 1 (see Eq. (9. l)).
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Table 9.2. Sensitivity Results Based on Coefficients (i.e., CCS, SRCS, PCCS, RCCS, SRRCS, PRCCS)
and Sample Size nLHS = 100 for Linear Test Problem with Model 1 (see Eq. (9.1))

Variable Ccb SRCb Pccb RCCb SRRcb PRCCb

Namea Rank Value Rank Vahre Rank Value Rank Value Rank Value Rank Value

X3 1 0.9439 1 0.9459 2 1.000 1 0.9466 1 0.9482 2 1.000

%2 2 0.3175 2 0.3156 2 1.000 2 0.3018 2 0.2987 2 1.000

xl 3 0.0660 3 0.1054 2 1.000 3 0.0572 3 0.0976 2 1.000

a Variables ordered by p-values for CCS.
b R* ad v~ues for C!CS, SRCS, PCCS, RCCS, SRRCS and PRCCS as inchcated.

Table 9.3. Sensitivity Results Based on Stepwise Regression Analysis with Raw (i.e., Untransformed)
Data and Sample Size nLHS = 100 for Linear Test Problem with Model 1 (see Eq. (9.1))

Variablea R2b RCC SRCd p-Valuee

X3 0.89098 1.0000E+OO 9.4588E-01 0.0000E+OO

X.2 0.98891 1.0000E+OO 3.1558E–01 0.0000E+OO

x, 1.00000 1.0000E+OO 1.0541E–01 0.0000E+OO
a
b

c

d

e

Variables in order of entry into regression modeI.
Cumulative R2 vahre with entry of each variable into regression model; see Eq. (8.11).
Regression coefficients (RCS); see Eq. (8.8).
Standardized regression coefficients (SRCS); see Eq. (8.15).
For variable in row (i.e., ~j), p- or et-value for addition of x~to regression model containing remaining variables; see Foomote n, Table 8.1.

information on variable importance (i.e., they are all
1.00); rather, it is the SRCS that provide an indication of
variable importance. The results in Table 9.3 are for
raw data; use of rank-transformed data produces similar
results.

When a linear relationship exists between a pre-
dicted variable and multiple input variables, stepwise
regression analysis provides more information on vari-
able importance than simply examining correlation co-
efficients. First, the changes in R2 values as additional
variables are added to the regression model provides an
indication of how much uncertainty can be accounted
for by each variable. For example, the R2 values pro-
duced with the addition of each variable to the regres-
sion model in Table 9.3 are 0.89, 0.99 and 1,00, re-
spectively. Thus, the last variable selected (i.e., xl)

only changes the R2 value from 0.99 to 1.00. Second,
the F-test for the sequential addition of variables to the
regression model is more sensitive than the test for the
significance of a single CC. For example, the p-value
obtained with nLHS = 100 for the CC associated with xl
is 0.5091 (Table 9.1); in contrast, the p-value for the
entry of xl into the regression model that already con-

tains X3 and X2 is less than 10-4.

The second linear test problem (Model 3 in Cam-
polongo et al. 2000) is defined by

f(x) = ~ c~(x~ -1/2), X = [Xl, X2, . . . . X22], (9.2)

i=l

withxi: U(O, l)andci=(i– 11)2 fori= 1, 2, . ...22,

Latin hypercube and random sampling produce es-
timates of similar stability for the CDF for fix) (Fig.
9.3). This is different from the first linear function,
where Latin hypercube sampling produced more stable
estimates (Fig. 9.1). This stability probability results
from the fact that the model can be written as

f(x) = C22(X2,2 -1/2)

‘~ ci [(xi ‘1/2) +(x22--i ‘1/2)], (9.3)
i=l

which tends to smooth the effects of the random samp-
ling.
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Linear Test Problem: Model 3 (LHS) Linear Test Problem: Model 3 (Random)
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Fig. 9.3. Stability of estimated CDF for linear test problem with Model 3 (see Eq. (9.2)).

For the LHS of size nLHS = 100, CCS and RCCS
identify the same variables as affecting f (i.e., X22, X21,

Xl, X20, X3, X2, Xlg, xl& X4 with p-values less than 0.05)

(Table 9.4). Similar identifications are also made for
CMNS and CLS; in contrast, CMDS and S1 fail to iden-
tify some of the variables identified by CCS and RCCS.
For the LHS of size nLHS = 1000, all tests identify
more variables as affecting f (Table 9.4). Further, there
is more agreement between the tests on the most impor-
tant variables (i.e., smallest p-values). However, a
number of variables are not identified as having an ef-
fect on f by any of the tests (e.g., x7, x15, x14, ~g, x9, x12,

X13, xl 1, XIO have p-values greater than 0.05 for most
tests).

Given that a linear model is under consideration,
stepwise regression provides a more informative sum-
mary of variable effects than the coefficients in Table
9.4 (Table 9.5). In particular, the stepwise regression
analysis with nLHS = 100 identifies the effects of all 21
variables that influence the evaluation off (i.e., all vari-
ables except xl 1, which has a coefficient of zero). The
results for nLHS = 1000 (not shown) are essentially
identical with those for nLHS = 100; thus, no improve-
ment in the results of the stepwise regression analysis is
obtained by increasing the sample size. Thus, the tests
of significance used with the stepwise regression analy-
sis are more effective in identifying the effects of indi-
vidual variables than the tests used in conjunction with

Table 9.4. In particular, the stepwise regression in Ta-
ble 9.5 correctly identifies the effects of all variables
influencing f with a sample of size nLHS = 100; the test
based on CCS in Table 9.4 does not identify the effects
of all variables with a sample of size nLHS = 1000 (i.e.,

same variables have p-values greater than O.1).

The cumulative R2 values with the entry of each
variable into the regression model are shown in Table
9.5. The increase in the R2 value with the entry of a
variable shows the fraction of the total uncertainty that
can be accounted for by that variable in a linear regres-

sion model (e.g., X21 accounts for a fraction 0.36279 –
0.20948 = 0.15331 of the total uncertainty). As indi-
cated by the incremental R2 values, no single variable
dominates the uncertainty in~

For perspective, scatterplots for the first two vari-
ables selected in the stepwise process (i.e., x22, X21) are
shown in Fig. 9.4. Although the patterns are discerni-
ble, they are not strong, which is consistent with the
incremental R2 values of 0.20948 and 0.15311 associ-
ated with X22and X21.

Both regression coefficients and SRCS are given in
Table 9.5. The SRCS are a better measure of variable
importance because they incorporate the effects of a
variable’s distribution and also remove the effects of
units. Except for the effects of correlations within a
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Table 9.4. Sensitivity Results Based on CCS, RCCS, CMNS, CLS, CMDS and S1 for Linear Test Problem
with Model 3 (see Eq. (9.2))a

Sample Size nLHS = 100

Variable cc RCC CMN CL CMD SI
Name Rank p-Val Rank p-Val Rank p-val Rank p-val Rank p-Val Rank p-val

1.0 0.0000
2.0 0.0001
3.0 0.0002
4.0 0.0003
5.0 0.0015

6.0 0.0028
7.0 0.0037
8.0 0.0238

9.0 0,0444

10.0 0,1095

11.0 0,1379

12.0 0,2668

13.0 0.4991

14.0 0.5118

15.0 0.5261

16.0 0.5368

17.0 0.5487

18.0 0.7118

19.0 0.8221

20.0 0.8317

21.0 0.8909

Xln 22.0 0.9217

1.0 0.0000
2.0 0.0002

3.0 0.0003
4.0 0.0005
5.0 0.0016

7.0 0.0037

6.0 0.0025

8.0 0.0197

9.0 0.0289

10.0 0.1135
11.0 0.1154
12.0 0.3349
13.0 0.4195
18.0 0.6595
16.0 0.5194
15.0 0.5006
14.0 0.4632
17.0 0.6491
21.0 0.9223
20.0 0.7924
19.0 0.7495

22.0 0.9840

1.0 0.0001
2.0 0.0004

5.0 0.0024

7.0 0.0070

6.0 0.0064

3.0 0.0006
10.0 0.0699
8.0 0.0318
9.0 0.0399

12.0 0.1476

20.0 0.7358

4.0 0.0012

18.0 0.6822

17.0 0.3711

19.0 0.7351
14.0 0.3476
16.0 0.3656
13.0 0.2392
21.0 0.9511
22.0 0.9922
11.0 0.0716
15.0 0.3507

1.0 0.0002
4.0 0.0018

5.0 0.0043

7.0 0.0131

6.0 0.0086

2.0 0.0012
10.0 0.0445

8.0 0.W294

9.0 0.0295
12.0 0.1515

18.0 0.6699

3.0 0.0016
19.0 0.6835
16.0 0.4258
20.0 0.7596
17.0 0.4307
14.0 0.3570

13.0 0.2676

21.0 0.9651

22.0 0.9929
11.0 0.1020
15.0 0.3963

1.5 0.0009
9.0 0.1074
7.0 0.0289

11.0 0.2311
4.0 0.0103
3.0 0.0051
5.0 0.0123
6.0 0.0146

10.0 0.1991
15.5 0.4060
13.5 0.3546

1.5 0.0009
18.0 0.5249
18.0 0.5249
15.5 0.4060
18.0 0.5249
20.0 0.7358
13.5 0.3546
22.0 0.9825
21.0 0.9384

8.0 0.0404
12.0 0.3084

2.0 0.0208
1.0 0.0086

8.5 0.1137
5.0 0.0615
3.0 0.0239
6.0 0.0791

10.5 0.1785
12.0 0.2202
8.5 0.1137

10.5 0.1785
4.0 0.0316

7.0 0.1010
14.0 0.4186
15.5 0.4884
18.0 0.5987
13.0 0.3239
18.0 0.5987
15.5 0.4884
18.0 0.5987
20.0 0.6359
21.0 0.7440
22.0 0.7776

Sam~le Size nLHS = 1000

X22 1.0 0.0000

X21 2.0 0.000o

% 3.0 0.0000

X2 4.0 0.0000

X20 5.0 0.0000

X3 6.0 0.0000

X19 7.0 0.0000

Xl 8 8.0 0.0000
x4 9.0 0.0000

x5 10.0 0.000o
X17 11.0 0.0000

’16 12.0 0.0011

‘6 13.0 0.0018

xl 14.0 0.0637

%5 15.0 0.0959

%4 16.0 0.2579

X8 17.0 0.3165

X9 18.0 0.3907

%2 19.0 0.4606

X13 20.0 0.4625
x,1 21.0 0.6626

1.0 0.0000
2.0 0.0000
3.0 0.0000
4.0 0.0000

5.0 0.0000

6.0 0.0000
7.0 0.0000

8.0 0.0000
9.0 0.0000

11.0 0.0000

10.0 0.0000
12.0 0.0002
13.0 0.0014
14.0 0.0776
15.0 0.0892
18.0 0.3909
16.0 0.2949
19.0 0.4178
17.0 0.3616
21.0 0.5867
20.0 0.5806

xl n 22.0 0.7892 22.0 0.7117

Variable cc RCC CMN CL CMD SI
Name Rank p-Val Rank p-Val Rank p-Val Rank p-vd Rank p-Val Rank p-val

1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
2.0 0.0000
3.0 0.0000
4.0 0.0000

5.0 0.0000

6.0 0.0000
7,0 0.0000

8.0 0.0000

9.0 0.0000
10.0 0.0000
11.0 0.0002
12.0 0.0124
13.0 0.0252
14.0 0.0267

22.0 0.6771

18.0 0.4664

19.0 0.5583
20.0 0.5701

16.0 0.3026

15.0 0.1438
17.0 0.3446

21.0 0.6605

3.0
2.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
20.0
19.0
18.0
21.0
16.0
15.0
17.0
22.0

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.000o

0.0002
0.0035
0.0212
0.0697
0.5827
0.5414
0.4750
0.7113
0.1976
0.1348
0.3143
0.7753

2.0 0.0000
3.0 0.0000
6.0 0.0000
4.0 0.0000
5.0 0.0000
7.0 0.0000
8.0 0.0000
9.0 0.0000

10.0 0.0002
12.0 0.0040
11.0 0.0004
13.0 0.0206
16.0 0.1538
21.0 0.7431
18.0 0.4809
14.0 0.0425
22.0 0.9437
15.0 0.1402
17.0 0.2792
19.0 0.4932

20.0 0.5512

3.0 0.0000
2.0 0.0000
4.0 0.0000
5.0 0.0000
6.0 0.0000
7.0 0.0000
9.0 0.0001

10.0 0.0003
8.0 0.0000

12.0 0.0121
13.0 0.1164
11.0 0.0019
14.0 0.1164
21.0 0.6691
15.0 0.1843
17.0 0.2509
18.0 0.2899
16.0 0.1944
19.0 0.2954
20.0 0.4530

22.0 0.9950‘.,

a Table structure same as in Table 9.1.
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Table 9.5. Sensitivity Results Based on Stepwise Regression Analysis with Raw (i.e., Untransformed)
Data and Sample Size nL/-/S = 100 for Linear Test Problem with Model 3 (see Eq. (9.2))a

Variable R2 RC SRC p-Value

X22 0.20948 1.21OOE+O2 4.6052E–01

X21 0.36279 1.0000E+02 3 ,8038E–01

x, 0.50981 1.0000E+02 3.8141E-01

X2(3 0.63339 8. 1000E+O1 3.0763E-01

X2 0.73563 8.1000E+O1 3.0830E-01

X3 0.80541 6.4000E+01 2.4338E-01

X19 0.86382 6.4000E+01 2.4317E-01

%3 0.90285 4.9000E+01 1.8642E-01

X4 0.93449 4.9000E+01 1.8614E-01
X5 0.95728 3.6000E+01 1.3677E-01 ‘

%7 0.97297 3.6000E+01 1.3665E-01

‘6 0.98146 2.5000E+01 9.5070E–02

x~6 0.98978 2.5000E+01 9.5121E-02

%5 0.99340 1.6000E+01 6.0789E-02

X7 0.99710 1.6000E+01 6.0905E–02

x8 0.99833 9.0000E+OO 3.4256E-02

X14 0.99950 9.0000E+OO 3.4263E–02

% 0.99974 4.0000E+OO 1.5206E-02

%3 0.99997 4.0000E+OO 1.5225E-02

X*O 0.99999 9.9999E-01 3.8041E-03

%2 1.00000 1.0000E+OO 3.8018E–03

xl* 1.00000 -3.0113E-05 -1.1426E-07

a Table structure same as in Table 9.3.
b Iden&~ “Aues result from Imk of resolution in algorithm used in the cktdatiOn OfVev Smd P-v~ues-

2.7828E–08b
2.7828E–08
2.7828E-08
2.7828E–08
2.7828E–08
2.7828E-08
2.7828E-08
2.7828E-08
2.7828E-08
2.7828E–08
2.7828E–08
2.7828E–08
2.7828E-08
2.7828E–08
2.7828E–08
2.7828E–08
2.7828E–08
2.7828E–08
2.7828E–08
2.7828E–08
2.7828E-08
2.6792E–01

sample, CCS and SRCS are the same; thus, the CCS be-
tween the xi and fix) are also available from Table 9.5.
For example, Fig. 9.4 contains scatterplots with associ-
ated CCS of approximately 0.46052 for x22 and 0.38038
for x~l.

9.2 Monotonic Test Problems

The first monotonic test problem (Model 4 in
Campolongo et al. 2000) is defined by

f(x) =x~+x;, x= [x~,x~], (9.4)

With xi : U(O, 1) for i = 1, 2 (Model 4a), xi : U(O, 3) for i

= 1,2 (Model 4b) or xi : U(O, 5) for i = 1,2 (Model 4c).
Thus, f is the same in Models 4a, 4b, and 4c, but the
distributions assigned to the xi change. In the follow-
ing, Models 4a and 4C will be considered as this incor-
porates the two extremes in the behavior of f.

Latin hypercube sampling produces more stable
estimates of the CDFS for Models 4a and 4C than is the

case for random sampling (Fig. 9.5). This stability is
particularly noticeable for Model 4c, where the value of
fix) is dominated by a strong nonlinear relationship
involving X2; in this problem, the stratification associ-
ated with Latin hypercube sampling produces CDF es-
timates that are much more stable than those obtained
with random sampling.

Sensitivity analysis for Model 4C is not very inter-
esting due to the dominance of fix) by X2 (Fig. 9.6),
with the result that all of the sensitivity analysis proce-
dures under consideration identify x2 as the dominant
variable. Sensitivity analysis is more interesting for
Model 4a as both x1 and X2 affect fix). Therefore, only
sensitivity analysis for Model 4a will be discussed.

All procedures identify xl and X2 as affecting flX)
for Model 4a and the sample of size nLHS = 100 (Table
9.6). The well-defined effects of xl and x2 can be seen
in the corresponding scatterplots (Fig. 9.7). The pat-
terns are better defined in the scatterplots for nLHS =
1000 but still easily recognizable in the scatterplots for
nLHS = 100.
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1.8 LinearTest Problem. Model 3, nLHS = 100
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Fig. 9.4. ScatterPlots for linear test problem with Model 3 (see Eq. (9.2)).
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Fig. 9.5. Stability of estimated CDFS for monotonic test problem with Models 4a and 4C (see Eq. (9.4)).
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Fig. 9.6. Scatterplot with nLHS = 100 for monotonic

test problem with Model 4C (see Eq. (9.4)).

For perspective, various coefficients (i.e., CCS,
SRCS, PCCS, RCCS, SRRCS, PRCCS) involving xl, X2
and fix) are presented in Table 9.7. As should be the
case, CCS and SRCS are similar in size and PCCS are
larger than CCS and SRCS; similar patterns also hold for
RCCS, SRRCS and PRCCS. In this example, the coef-
ficients crdculated with raw (i.e., untransformed) data
have values that are similar to those of the correspond-
ing coel%cients calculated with rank-transformed data.
Thus, the problem is not as nonlinear over the distribu-
tions of xl and X2 as might be suggested by the defini-
tion off in Eq. (9.4), which is consistent with the linear
trends appearing in the scatterplots in Fig. 9.7. The use
of samples of size nLHS = 100 and nLHS = 1000 pro-
duce similar coefficient values. Thus, the behavior of
the function is being adequately captured with nLHS =
100, and little is gained by using a large sample size

(although the scatterplots are more visually appealing
for nLHS = 1000).

The sensitivity results for Model 4a can also be
summarized as the outcome of a stepwise regression
analysis (Table 9.8). As already observed in conjunc-
tion with Table 9.7, xl is identified as having a stronger
effect on the uncertainty in fix) than X2, and analyses
with raw (i.e., untransformed) data and rank-
transformed data produce similar results. Use of the
sample of size nLHS = 1000 produces little improve-
ment in the regression analyses, with R2 values for the
final regression model changing from 0.88580 and
0.87966 with raw and rank-transformed data with nLHS
= 100 to 0.88356 and 0,88482 for nLHS = 1000
(regressions not shown). Thus, as previously noted,
increasing the sample size in this example does not im-
prove the results of the sensitivity analysis.

The use of regression analysis with rank-
transformed data rather than raw data produced no im-
provement in the resultant regression model for Model
4a (Table 9.8). However, the potential exists for con-
siderable improvement when the dependent variable is a
nonlinear but monotonic function of the independent
variable(s). For example, a nonlinear but monotonic
relationship exists between X2 and fix) for Model 4C
(Fig. 9.6). In the analysis of this model, a regression
with rank-transformed data relating fix) to X2 with nLHS
= 100 produces a regression model with an R2 value of
0.97574; the corresponding regression with raw data
produces a regression model with an R2 value of
0.75003,

The second monotonic test problem
Campolongo et al. 2000) is defined by

H
6

f(X) = exp
z

biXi – ll(ebi – 1) / bi,
i=1

i=l

X= [X1,X2, . . ..xC].

(Model 5 in

(9.5)

Table 9.6. Sensitivity Results Based on CCS, RCCS, CMNS, CLS, CMDS and S1 for Monotonic Test
Problem whh Model 4a (see Eq. (9.4)) and nLHS = 10Oa

Variable cc RCC CMN CL CMD S1

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-val

xl 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.000o 1.0 0.0000

X? 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0004 2.0 0.0000
a Table siructure same as in Table 9.1.
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Fig. 9.7. ScatterPlots for monotonic test problem with Model 4a (see Eq. (9.4)).
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Table 9.7. Sensitivity Results Based on Coefficients (i.e., CCS, SRCS, PCCS, RCCS, SRRCS, PRCCS)
for Monotonic Test Problem with Model 4a (see Eq. (9.4))

Sample Size: nLILS = 100

Variable (=Cb SRCC Pccc
Namea p-Value Rank Value Rank Value Rank Value

xl 0.0000 1.0 0.7367 1.0 0.7401 1.0 0.9097

7=2 0.0000 2.0 0.5814 2.0 0.5857 2.0 0.8662

Variable RCCe SRRCf PRCCf

Named p-Value Rank Value Rank Value Rank Value

xl 0.0000 1.0 0.7688 1.0 0.7723 1.0 0.9122

X2 0.0000 2.0 0.5322 2.0 0.5373 2.0 0.8401

Samule Size: nLHS = 1000

Variable cc SRC Pcc
Name p-Value Rank Value Rank Value Rank Value

x, 0.0000 1.5 0.7310 1.0 0.7263 1.0 0.9051
X.2 0.0000 1.5 0.5967 2.0 0.5910 2.0 0.8660

Variable RCC SRRC PRCC

Name p-Value Rank Value Rank Value Rank Value

xl 0.0000 1.5 0.7531 1.0 0.7489 1.0 0.9108
X2 0.0000 1.5 0.5692 2.0 0.5637 2.0 0.8567

a Variables ordered by p-vatrre.sfor CCS.
b p-values, ranks arrdvahres for CCS.
c Ranks and values for SRCS and PCCS as indicated.
d Variables ordered by p-vahres for RCCS.
e p-values, ranks and valuesfor RCCS.
f Ranks and values for SRRCS and PRCCS as indicated.

Table 9.8. Sensitivity Results Based on Stepwise Regression Analysis for Monotonic Test Problem with
Model 4a (see Eq. (9.4)) and Sample Size nLHS = 100a

Raw Data

Variable R2 RC SRC p-Value

% 0.54273 1.0070E+O0 7.4014E–01 2.7828E–08

X2 0.88580 7.9861E–01 5.8573E-01 2.7828E-08

Rank-Transformed Data

Variable R2 RRC~ SRRCC p-Value

xl 0.59099 7.7229E–01 7.7229E–01 2.7828E-08

X2 0.87966 5.3728E–01 5.3728E-01 2.7828E–08

a Table structure srune as in Table 9.3.
b Rank regression coef%cient (RRC).
‘ Standardized rank regression coefficient (SRRC).
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withbl = 1.5, b2 = b3 = o“. = b6 =0.9 andxi : U(O, 1)

fori= 1,2, . ...6.

Latin hypercube sampling produces more stable
estimates of the CDF for fix) than does random sam-
pling (Fig. 9.8). However, the distribution has a long
tail to the right, and both sampling procedures show
considerable variation across replicates in the largest

observed value for fix). Thus, if accurate estimates of
the upper quantiles of the CDF were required, then it
would be necessary to use a large sample size or
possibly switch to an importance sampling procedure.
For functions that are as inexpensive to evaluate as ~ it
would be wasteful to invest the effort to design an im-
portance sampling procedure. However, as the cost of
evaluating the function (i.e., model) increases, at some
point use of importance sampling may become cost ef-
fective.

All tests (i.e., CCS, RCCS, CMNS, CLS, CMDS, S1)
identify xl as the most important variable for nLHS =
100 (Table 9.9); further, CCS and RCCS identify effects
for all six xi. Given the definition of J xl is the most
important variable with respect to the uncertainty in

fix), and X2, X3, . . . . x6 have equal-sized effects on this
uncertainty. For nLHS = 1000, all tests identify effects
for W six Xi.

The coefficients (i.e., CCS, SRCS, PCCS, RCCS,
SRRCS, PRCCS) involving the xi and jfx) are presented
in Table 9.10. The largest coefficients involve xl; ,X2,

x3, . . . . X6 have similar-sized coefficients; CCS and
SRCS are essentially equal, as is the case for RCCS and
SRRCS; PCCS and PRCCS are larger than the corre-
sponding CCS and RCCS, respectively; and all coeffi-
cients are positive, which is consistent with the use of
the xi in the definition of fix). Samples of size nLHS =
100 and nLHS = 1000 produce similar coefficient esti-
mates.

The scatterplots for xl and X2 show discernible, but
not particularly strong, patterns (Fig. 9.9). As should be
the case given the definition offl)() and the distributions
assigned to the xi, the scatterplots for xl show somewhat
stronger patterns than the scatterplots for X2. The scat-
terplots for X3,X4,x5,x6 are similar to those for X2.

The sensitivity results for Model 5 can also be pre-
sented as stepwise regression analyses with raw and
rank-transformed data (Table 9.11 ). The regression
analyses with both raw and rank-transformed data iden-
tify the effects associated with all six xi’s. Further, the
regression analyses with rank-transformed data produce

models with higher R2 values than the regression analy-
ses with raw data (i.e., 0.94119 versus 0.74993 for
nLHS = 100 and 0.96285 versus 0.80030 for nLHS =
1000). There is little difference in the regression results
obtained with nLHS = 100 and nLHS = 1000 (not
shown).

9.3 Nonmonotonic Test Problems

The first nonmonotonic test problem (Model 7 in
Campolongo et al. 2000) is defined by

8

f(x) = ~gi(xi), X=[X1, X2,...,43]

i=l

8

rI

14X~–21+#i=
l+ai

i=l

(9.6)

withal= 0,a2=l, a3=4.5, a4 =9, a~=a6=a~=a~=

99, andxi: U(O, 1) fori= 1,2, . . . . 8.

Latin hypercube sampling produces estimates of the
CDF for f(x) that are more stable than those produced
by random sampling (Fig. 9. 10).

‘Tests based on CCS and RCCS fail to identify any
of the xi as affecting XX) for nLHS = 100 and also for
nLHS = 1000 (Table 9.12). In contrast, tests based on
CMNS, CLS, CMDS and S1 identi~ significant effects
for xl and X2 for both nLHS = 100 and nLHS = 10oo,

with the exception that the S1 test does not identify X2
for nLHS = 100. In addition, smaller effects are indi-
cated for X3 (CMN, CL, CMD) and X4 (CMN, CL,
CMD, S1) for nLHS = 1000. Tests based on CCS and
RCCS fail to identify the effects of xl and X2 on XX)

because these effects are both nonlinear and nonmono-
tonic (Fig. 9.11). In contrast, such effects are readily
identified by CMNS, CLS, CMDS and S1. All the coef-
ficients involving XX) and the xi’s (i.e., CCS, SRCS,
PCCS, RCCS, SRRCS, PRCCS) are essentially zero;
similarly, the regression analyses with raw and rank-
transformed data produce no meaningful results.

The second nonmonotonic test problem (Model 8
in Campolongo et al. 2000) is defined by

[X21 2]

f(x) = h(xz)
z

Ci (X’2 )gi (X1 , X2 ), x = [xl> ’21, (9.7)

i=O

where h, ci ad gi are defined by
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Fig. 9.8. Stability of estimated CDF for monotonic test problem with Model 5 (see Eq. (9.5)).

Table 9.9. Sensitivity Results Based on CCS, RCCS, CMNS, CLS, CMDS and S1 for Monotonic Test
Problem with Model 5 (see Eq. (9.5))a

Samule Size: nLHS = 100
Variable cc RCC CMN CL CMD S1

Name Rank P-Val Rank p-val Rank p-Val Rank p-Val Rank p-Val Rank p-val
xl 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000

X4 2.0 0.0005 5.0 0.0009 3.0 0.0161 4.0 0.0095 6.0 0.1468 5.0 0.2436

X5 3.0 0.0007 6.0 0.0029 2.0 0.0006 2.0 0.0011 3.0 0.0342 2.0 0.0156
X2 4.0 0.0041 4.0 0.0007 4.0 0.0211 5.0 0.0098 2.0 0.0087 3.0 0.0180
X6 5.0 0.0051 3.0 0.0004 6.0 0.0840 6.0 0.0184 4.0 0.0477 6.0 0.4530
X3 6.0 0.0052 2.0 0.0003 5.0 0.0464 3.0 0.0070 5.0 0.0780 4.0 0.0540

SampleSize: rzLHS= 1000
Variable cc RCC CMN CL CMD S1

Name Rank p-Val Rank p-val Rank p-Val Rank p-Val Rank p-Val Rank p-val
x, 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
X5 2.0 0.0000 6.0 0.0000 3.0 0.0000 4.0 0.0000 5.0 0.0000 5.0 0.0000

X2 3.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000

X4 4.0 0.0000 4.0 0.0000 5.0 0.0000 3.0 0.0000 3.0 0.0000 4.0 0.0000
X3 5.0 0.0000 3.0 0.0000 4.0 0.0000 6.0 0.0000 6.0 0.0000 6.0 0.0000
X6 6.0 0.0000 5.0 0.0000 6.0 0.0000 5.0 0.0000 4.0 0.0000 3.0 0.0000

a Table structure same as in Table 9.1.

74



Table 9.10. Sensitivity Results Based on Coefficients (i.e., CCS, SRCS, PCCS, RCCS, SRRCS, PRCCS)
for Monotonic Test Problem with Model 5 (see Eq. (9.5))a

Samule Size: nLHS = 100

Variable cc SRC Pcc
Name p-Value Rank Value Rank Value Rank Value

xl 0.0000 1.0 0.5078 1.0 0.5223 1.0 0.7221

X4 0.0005 2.0 0.3459 3.0 0.3446 3.0 0.5673

X5 0.0007 3.0 0.3371 2,0 0.3509 2.0 0.5739

X2 0.0041 4.0 0.2868 5.0 0.2952 5.0 0.5080

‘6 0.0051 5.0 0.2803 6.0 0.2837 6.0 0.4929

X.3 0.0052 6.0 0.2793 4.0 0.2973 4.0 0.5108

Variable RCC SRRC PRCC
Name p-Value Rank Value Rank Value Rank Value

xl 0.0000 1.0 0.5852 1.0 0.6013 1.0 0.9273
X3 0.0003 2.0 0.3596 2.0 0.3763 2.0 0.8404
X(j 0.0004 3.0 0.3591 3.0 0.3669 3.0 0.8339

Xz 0.0007 4.0 0.3405 4.0 0.3456 4.0 0.8183
x4 0.0009 5.0 0.3334 5.0 0.3317 5.0 0.8071
X5 0.0029 6.0 0.2992 6.0 0.3142 6.0 0.7912

Sample Size: nLHS = 1000
Variable cc SRC Pcc
Name p-Value Rank Value Rank Value Rank Value

xl 0.0000 1.0 0.5259 1.0 0.5217 1.0 0,7594

X5 0.0000 2.0 0.3412 2.0 0.3367 2.0 0.6017

Xz 0.0000 3.0 0.3297 4.0 0.3241 4.0 0.5871
x4 0.0000 4.0 0.3275 3.0 0.3251 3.0 0.5882
X3 0.0000 5.0 0.3274 5.0 0.3220 5.0 0.5846
.tfj 0.0000 6.0 0.3032 6.0 0.3044 6.0 0.5629

Variable RCC SRRC PRCC
Name p-Value Rank Value Rank Value Rank Value

xl 0.0000 1.0 0.5960 1.0 0.5917 1.0 0.9508
X2 0.0000 2.0 0.3624 2.0 0.3558 2.0 0.8792

X3 0.0000 3.0 0.3553 4.0 0.3486 3.0 0.8751
X,j 0.0000 4.0 0.3484 5.0 0.3462 5.0 0.8736

‘6 0.0000 5.0 0.3467 3.0 0.3486 4.0 0.8751
X5 0.0000 6.0 0.3431 6.0 0.3380 6.0 0.8687

a Table structure same as in Table 9.7.
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Table 9.11. Sensitivity Results Based on Stepwise Regression Analysis for Monotonic Test Problem with
Model 5 (see Eq. (9.5)) and Sample Size nLHS = 10Oa

Raw Data

Variable R2 RC SRC p-Value

xl 0.25787 4.407lE+O1 5.2230E-01 2.7828E-08

X5 0.37674 2.9727E+01 3.5091E-01 2,9036E–08
X4 0.49249 2.9194E+01 3.4459E-01 2.9872E-08

X2 0.58539 2.4960E+01 2.9519E-01 1.7598E-07

X3 0.66967 2.5164E+01 2.9734E–01 1.5130E–07

‘6 0.74993 2.4008E+01 2.8369E–01 4.1674E–07

Rank-Transformed Data

Variable R2 RRC SRRC p-Value

x, 0.34245 6.0130E-01 6.0130E-01 2.7828E-08

‘6 0.48424 3.6689E-01 3.6689E-01 2.7828E-08
X3 0.62262 3.7628E-01 3.7628E-01 2.7828E-08
X2 0.73162 3.4561E-01 3.4561E-01 2.7828E–08
X4 0.84275 3.3165E-01 3.3165E–01 2.7828E-08

X5 0.94119 3.1419E-01 3.1419E–01 2.7828E-08

a Table structure same as in Table 9.8.
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Table 9.12. Sensitivity Results Based on CCS, RCCS, CMNS, CLS, CMDS and S1 for Nonmonotonic Test
Problem with Model 7 (see Eq. (9.6))a

SampleSizenLHS = 100
Variable cc RCC CMN CL CMD SI

Name Rank p-val Rank p-val Rank p-Val Rank p-Val Rank p-Val Rank p-Val

x, 1.0 0.1657 1.0 0.2382 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000

X3 2.0 0.4400 3.0 0.4666 3.0 0.2294 3.0 0.3469 7.0 0.7358 3.0 0.1010

X8 3.0 0,4518 2.0 0.4090 7.0 0.7298 8.0 0.7661 7.0 0.7358 8.0 0,9489

X6 4.0 0,4566 6.0 0.5905 5.0 0.6637 6.0 0.7193 4.5 0.5918 7.0 0.8666

-% 5.0 0.4758 4.0 0.5528 8.0 0.7360 7.0 0.7623 7.0 0.7358 6.0 0.6728

X5 6.0 0.6796 5.0 0.5860 6.0 0.7179 5.0 0.4218 4.5 0.5918 2.0 0.0698

X2 7.0 0.7545 8,0 0.9833 2.0 0.0010 2.0 0.0055 2.0 0.0206 4.0 0.1601

X4 8.0 0.9581 7.0 0.9002 4.0 0.4531 4.0 0.3902 3.0 0.0916 5.0 0.5615

Sample Size nLHS = 1000

Variable cc RCC CMN CL CMD SI
Name Rank p-Val Rank p-Val Rank p-val Rank p-Val Rank p-Val Rank p-vat

x, 1.0 0.2089 1.0 0.1838 7.0 0.7123 7.0 0.7153 6.0 0.2873 6.0 0.4153

‘6 2.0 0.2644 3.0 0.2813 8.0 0.8882 8.0 0.7586 7.0 0.6411 8.0 0.9394
xg 3.0 0.2943 2.0 0.2345 6.0 0.6228 6.0 0.4925 8.0 0.7652 7.0 0.6544

X4 4.0 0.3376 4.0 0.4287 4.0 0.0045 4.0 0.0140 4.0 0.0224 3.0 0.0156

X2 5.0 0.6614 6.0 0.9430 2.0 0.0000 2.0 0.000o 2.0 0.0000 2.0 0.0000
x] 6.0 0.7620 8.0 0.9708 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000

x’s 7.0 0.8045 7.0 0.9433 5.0 0.4128 5,0 0.3011 5.0 0.1712 5.0 0.2412

X3 8.0 0.9197 5.0 0.7315 3.0 0.0001 3.0 0.0034 3.0 0.0220 4.0 0.1178

‘ Table structure same as in Table 9.1.

h(x*) = 2-X2 , Cj(~2) = (-l)i (:2 )(2x~~2i ),

x2–2i
gi(xl, xJ =X1 ,

and xl: U(–I, 1), X2: DU(5), [-] designates the greatest
integer .fonction, and x: DU(n) indicates that x has a

uniform distribution over the integersj = 1, 2, . . . . n.

Latin hypercube sampling and random sampling
produce estimates of the CDF forflx) that exhibit simi-
lar stability (Fig. 9.12). This behavior is in contrast to
the other examples, where Latin hypercube sampling
tends to produce more stable CDF estimates than ran-
dom sampling.

For nLHS = 100, tests based on CMNS and S1
identify an effect for xl (i.e., p-values < 0.05) (Table
9.13). The test based on CLS with a p-value of 0.0723
also suggests an effect for xi. None of the remaining
tests (i.e., CCS, RCCS, CMDS) indicates an effect for xl.
The test based on S1 with a p-value of 0.0698 suggests a
possible effect for X2; none of the other tests have p-
values that suggest an effect for X2 For nLHS = 1000,

all tests indicate an effect for xl, and the test based on
S1 also indicates an effect for X2.

This example has complex patterns involving xl
and X2 (Fig. 9.13). These patterns partially emerge for
nLHS = 100 and are readily apparent for nLZfS = 1000.
Of the tests under consideration, the test based on S1 is
most effeetive in identifying these patterns. Due to the
complexity of the relations involving xl, X2 and fix),
none of the previously considered coet%cients (i.e.,
CCS, SRCS, PCCS, RCCS, SRRCS, PRCCS) have values
that provide any useful insights on these relationships.
Similarly, stepwise regression analyses with raw and
rank-transformed data fail to provide any useful in-
sights.

The third nonmonotonic test problem (Model 9 in
Campolongo et al. 2000) is defined by

‘4 .
~(x) = sin xl +Asin2 X2 +llx3 sln xl,

x = [xl, X2,x3], (9.8)

with A=7, B= O.1, andxi: U(–x, m) fori= 1, 2, 3.
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Nonmonotonic Test Problem: Model 7, nLHS = 100
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Fig. 9.11. ScatterPlots for nonmonotonic test problem with Model 7 (see Eq. (9.6)).

79



1.0

0.9

0.8

~ 0.7

II

0.2

0.1

nn

NonmonotonicTest Problem:Model 8 (LH

-..,
–1.0 -0.6 –0.2 0.2 0.6 1,0

PredictedValue: f(x)

NonmonotonicTest Problem:Model 8 (Rando
) 1,,,,,,,,,1,,,,,~,,,1~, ,,, s,, ,[, ,,,

)

-0.6 -0.2 0.2 0.6 1.0

PredictedValue f(x)

TRI-6342-6061-O

Fig. 9.12. Stability of estimated CDF for nonmonotonic test problem with Model 8 (see Eq. (9.7)).

Table 9.13. Sensitivity Results Based on CCS, RCCS, CMNS, CLS, CMDS and S1 for
Problem with Model 8 (see Eq. (9.7))a

Nonmonotonic Test

SampleSizenLHS = 100
Variable cc RCC CMN CL CMD S1

Name Rank p-Val Rank p-val Rank p-Val Rank p-val Rank p-Val Rank p-val

xl 1.0 0.1968 2.0 0.3458 1.0 0.0346 1.0 0.0723 1.0 0.1468 1.0 0.0003

X2 2.0 0.2412 1.0 0.2722 2.0 0.7078 2.0 0.7449 2.0 0.9384 2.0 0.0698

SampleSizenLHS = 1000
Variable cc RCC CMN CL CMD S1

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-val

% 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
X9 2.0 0.6222 2.0 0.0659 2.0 0.9090 2.0 0.2553 2.0 0.1847 2.0 0.0000

a Table structure same as in Table 9.1
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Fig. 9.13. Scatterplots for nonmonotonic test problem with Model 8 (see Eq. (9.7)).
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For this example, the CDF estimates obtained with
Latin hypercube sampling are more stable than those
obtained with random sampling (Fig. 9.14).

In sensitivity analyses with nLHS = 100, all tests

identi~ xl as affecting flx) (Table 9.14). In addition,
the CMNS, CLS, CMDS and S1 tests also identify an
effect for x2. None of the tests identifies an effect for
X3. For nLHS = 1000, all tests indicate an effect for xl,
and tests based on CMNS, CLS, CMDS and S1 indicate
an effect for X2. In contrast, CCS and RCCS fail to indi-
cate an effect for X2. Further, the test based on S1 also
identifies an effect for X3.

Examination of scatterplots clearly shows that xl,
X2 and X3 have readily discernible influences on j(x)
(Fig. 9.15). The tests based on CCS and RCCS are
completely missing the nonlinear and nonmonotonic

patterns induced infix) by X2 and X3. Tests based on
CCS and RCCS are able to identify a slight increasing
pattern in the relationship between xl and fix); but this
is only part of the patterns appearing in Fig. 9.15. Tests
based on CMNS, CLS and CMDS identify the pattern
associated with X2 but fail to identify the pattern asso-
ciated with X3 that tends to produce similar means and
medians across the entire range of x3. In contrast, thk
pattern was detected by the test for S1 with nLHS =
1000.

Due to the lack of strong linear or monotonic rela-
tionships between xl, x2, X3 and flx), individual coeffi-
cients (i.e., CCS, SRCS, PCCS, RCCS, SRRCS, PRCCS)
are close to zero and provide little useful information to
help in determining the effects of xl, x2 and X3 on fix).
For the same reasons, stepwise regression analysis with
raw or rank-transferred data is not very informative.
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Fig. 9.14. Stability of estimated CDF for nonmonotonic test problem with Model 9 (see Eq. (9.8)).
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Table 9.14. Sensitivity Results Based on CCS, RCCS, CMNS, CLS, CMDS and S1 for Non monotonic Test

I

Problem with Model 9 (see Eq. (9.8))a

SampleSizenLH.S= 100
Variable cc RCC CMN CL CMD S1

Name Rank p-Vd Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-vd
xl 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 2.0 0.0001 1.0 0.0000

X3 2.0 0.5667 2.0 0.6361 3.0 0.6917 3.0 0.5495 3.0 0.9384 3.0 0.0615
x? 3.0 0.8327 3.0 0.8393 2.0 0.0000 2.0 0.0000 1.0 0.0000 2.0 0.0008

SampleSizenLH,s= 1000
Variable cc RCC CMN CL CMD S1

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-val
xl 1.0 0.0000 1.0 0.0000 1.5 0.0000 1.5 0.0000 2.0 0.0000 1.5 0.0000
X3 2.0 0.0162 2.0 0.0187 3.0 0.0438 3.0 0.0347 3.0 0.1446 3.0 0.0000
X2 3.0 0.97’99 3.0 0.9999 1.5 0.0000 1.5 0.0000 1.0 0.000o 1.5 0.0000

I a Table structure same as in Table 9.1.
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1.5
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Fig. 9.15. ScatterPlots for nonmonotonic test problem with Model 9 (see Eq. (9.8)).
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10.0 Performance Assessment for the
Waste Isolation Pilot Plant

10.1 Stochastic and Subjective
Uncertainty

As indicated in Sect. 2, many large analyses in-
volve two distinct sources of uncertainty: stochastic or
aleatory uncertainty, which arises because the system
under study can behave in many different ways, and
subjective or epistemic uncertainty, which arises from
an inability to specify an exact value for a quantity that
is assumed to have a constant value within a particular
analysis. An example of such an analysis is the U.S.

Nuclear Regulatory Commission’s reassessment of the
risk from commercial nuclear reactors in the United
States (commonly referred to as the NUREG-1 150
analysis after its report number), where stochastic un-
certainty arose from the many possible accidents that
could occur at the power plants under study and subjec-
tive uncertainty arose from the many uncertain quanti-
ties required in the estimation of the probabilities and
consequences of these accidents (U.S. NRC 1990-1991,
Breeding et al. 1992, Helton and Breeding 1993). Nu-
merous other examples also exist (e.g., McKone 1994,
Allen et al. 1996, Price et al. 1996, Payne et al. 1992,

PLG 1983, PLG 1982).

This presentation will use the PA carried out in
support of the DOE’s 1996 Compliance Certification
Application (CCA) for the WIPP as an example of an
analysis involving both stochastic and subjective uncer-
tainty. Parts of this analysis involving the model for
two-phase flow in the BRAGFLO program (Sect. 3)
have already been introduced and used to illustrate un-
certainty and sensitivity analysis in the presence of
subjective uncertainty. Although the analyses with

BRAGFLO were an important part of the 1996 WIPP
PA, they constitute only one component of a large
analysis. The following provides a high-level overview
of sampling-based uncertainty and sensitivity analysis in
the 1996 WIPP PA. The need to treat both stochastic
and subjective uncertainty in the 1996 WIPP PA arose
from regulations promulgated by the U.S. Environ-
mental Protection Agency (EPA) and briefly summa-
rized in the next paragraph.

The following is the central requirement in the
EPA’s regulation for the WIPP, 40 CFR 191, Subpart
B, and the primary determinant of the conceptual and
computational structure of the 1996 WIPP PA
(p. 38086, U.S. EPA 1985):

$191.13 Containment requirements:

(a) Disposal systems for spent nuclear
fuel or high-level or transuranic radioactive
wastes shall be designed to provide a reason-
able expectation, based upon performance
assessments, that cumulative releases of radi-
onuclides to the accessible environment for
10,000 years after disposal from all significant
processes and events that may affect the
disposal system shall: (1) Have a likelihood of
less than one chance in 10 of exceeding the
quantities calculated according to Table 1
(Appendix A)l; and (2) Have a likelihood of
less than one chance in 1,000 of exceeding ten
times the quantities calculated according to
Table 1 (Appendix A).

(b) Performance assessments need not
provide complete assurance that the require-
ments of 191.13(a) will be met. Because of the
long time period involved and the nature of the
events and processes of interest, there will
inevitably be substantial uncertainties in pro-
jecting disposal system performance. Proof of
the future performance of a disposal system is
not to be had in the ordinary sense of the word
in situations that deal with much shorter time
frames. Instead, what is required is a reason-
able expectation, on the basis of the record
before the implementing agency, that compli-
ance with 191. 13(a) will be achieved.

The EPA also promulgated 40 CFR 194 (U.S. EPA
1996), where the following elaboration on the intent of
40 CFR 191.13 is given (pp. 5242-5243, U.S. EPA
1996):

$194.34 Results of performance assessments.

(a) The results of performance assess-
ments shall be assembled into “complemen-
tary, cumulative distribution functions”
(CCDFS) that represent the probability of

1Radionuclide releases normalized to amount of radio-
active material placed in the disposal facility; see U.S.
EPA 1985 or Helton 1993a for a description of the
normalization process.
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exceeding various levels of cumulative release
caused by all significant processes and events.
(b) Probability distributions for uncertain
disposal system parameter values used in
performance assessments shall be developed
and documented in any compliance applica-
tion. (c) Computational techniques, which
draw random samples from across the entire
range of the probability distributions devel-
oped pursuant to paragraph (b) of this section,
shall be used in generating CCDFS and shall be
documented in any compliance application.
(d) The number of CCDFS generated shall be
large enough such that, at cumulative releases
of 1 and 10, the maximum CCDF generated
exceeds the 99th percentile of the population
of CCDFS with at least a 0.95 probability. (e)
Any compliance application shall display the
full range of CCDFS generated. (0 Any com-
pliance application shall provide information
which demonstrates that there is at least a 95
percent level of statistical confidence that the
mean of the population of CCDFS meets the
containment requirements of $ 191.13 of this
chapter.

In addition to the requirements in 40 CFR 191.13 and
40 CFR 194.34 just quoted, 40 CFR 191 and 40 CFR
194 contain many additional requirements for the certi-
fication of the WIPP for the disposal of TRU waste.
However, it is the indicated requirements that determine
the overall structure of the 1996 WIPP PA.
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Fig. 10.1. Boundary line and associated CCDF speci-
fied in 40 CFR 191, Subpart B (Ftg. 2, Hel-
ton et al. 1998b).

subjective uncertainty (Sect. 2). The probability space

(S,u, J.ujPJ for subjective uncertainty used in the

1996 WIPP PA has already been introduced in Sect. 3,
with Table 3.1 listing 31 of the 57 uncertain variables
associated with the elements X~Uof & Specif~cally,

X~Uis a vector of the form

x ~u =[x~, x~,...,x57] (10.1)

Together, 191. 13(a) and 194.34(a) lead to a CCDF
and boundary line as illustrated in Fig. 10.1, with the
CCDF for releases to the accessible environment re-
quired to fall below the boundasy line. The CCDF de-
rives from disruptions that could occur in the future and
is thus characterizing the effects of stochastic uncer-
tainty. In contrast, 194.34(b) and (c) require the chrrrac-
terization and propagation of the effects of subjective
uncertainty. Ultimately, this uncertainty will lead to a
distribution of CCDFS of the form illustrated in Fig.
10.1, with this distribution deriving from subjective
uncertainty.

Analyses that maintain a distinction between sto-
chastic and subjective uncertainty require the introduc-

tion of a probability space (& ~~t, pJ for stochastic

uncertainty and a probability space ( $“U, ~,u, P,U) for

in the 1996 WIPP PA, where xl, X2,..., X31are listed in
Table 3.1 and the remaining elements of X~U(i.e., X32,

x33, . . . . X57) are listed in Table 5.2.1 of Helton et al.

1998a. The probability space (&W, ~~u, pJ was de-

fined by specifying distributions for the elements of X~U

as indicated in Eq. (1.3) and illustrated in Fig. 4.3,

In the 1996 WIPP PA, the probability space (c$”t,

tit, p,t) for stochastic uncertainty derives from the

many different disruptions that could occur at the WIPP
over the 10,000 yr regulatory time frame imposed on it.
In particular, regulatory guidance and extensive review
of potential features, events and processes (FEPs) that
could affect the WIPP led to the elements x~~ of the
sample space $t being defined as vectors of the form
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x~t =[tl,ll, el, ~,pl, ~1, t2,12, e2, b2, p2, a2,...,
~~

1stintnrsion 2nd intrusion

tn,ln, en, bn, pn, an, tmin~,

- (10.2)

where n is the number of exploratory drilling intrusions
for natural resources (i.e., oil or gas) that occur in the
immediate vicinity of the repository, tiis the time (yr) of
the tfi intrusion, li designates the location of the iti in-
txusion, ei designates the penetration of an excavated or
nonexcavated area by the Zti intrusion, bi designates
whether or not the ith intrusion penetrates pressurized
brine in the Castile Fm, pi designates the plugging pro-
cedure used with the Zti intrusion (i.e., continuous plug,
two discrete plugs, three discrete plugs), ai designates
the type of waste penetrated by the iti intrusion (i.e., no
waste, contact-handled (CH) waste, remotely handled
(RH) waste), and tmin is the time at which potash mining
occurs within the land withdrawal boundary (Chapt. 3,

Helton et al. 1998a). The definition of ($t, ~$b P.f)

was then completed by assigning a distribution to each
element of x~~(Chapt. 3, Helton et al. 1998a).

The FEPs review process also led to the identifica-
tion of processes and associated models for use in the

estimation of consequences (e.g., normalized radionu-
clide releases to the accessible environment in the con-

text of the EPA regulations) for elements x~l of ~~f (Fig.

10.2, Table 10.1). Symbolically, this estimation process
can be represented by

f (Xst ) = fc (% )+ fsP [% ! fb’ (% )]

+ fDBR {X$t >fsp [% >fB (xst)]~fB (Xst )}

+ fMB [X,t, fB (% )] + fm [% ~fB (XW )1
+ fs [% 3fb’ (%t )]

( ) fN-Pps,! fB (%,)]]$+ fS-T ~st,O~ fS–F ‘s?,0 Y

(10.3)

where flx~t) - normalized radionuclide release to the

accessible environment associated with x~t and, in gen-
eral, many additional consequences, Xsf - particular
future under consideration, Xst,o - future involving no
drilling intrusions but a mining event at the same time
trrli~as in Xsr, fc(xst) - cuttings and cavings release to

accessible environment for x~t calculated with

CUTTINGS_S, fB(x,t ) - results calculated for xst

with BRAGFLO (in practice, fB(xJ is a vector contain-
ing a large amount of information including time-
dependent pressures and saturations for gas and brine),

CUlllNGS-S (Release of Cuttings, Cavings, Spallings, Brine to
BRAGFLO_DBR Accessible Environment)

I

(:
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I
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I
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.
Panel Seal BRAGFLO\ “=MB139 ~

‘(Brine Flow) PANEIJNUTS I
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Not to Scele Environment ~
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Fig. 10.2. Computer programs (models) used in 1996 WIPP PA (Fig. 5, Helton et al. 1998b).
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Table 10.1. Summary of Computer Models Used in the 1996 W IPP PA (Table 1, Helton et al. 1998b).

BRAGFLO: Calculates multiphase flow of gas and brine through a porous, heterogeneous reservoir. Uses finite
difference procedures to solve system of nonlinear partial differential equations that describes the mass conserva-
tion of gas and brine along with appropriate constraint equations, initial conditions and boundary conditions. Ad-
ditional information: Bean et al. 1996; Sect. 4.2, Helton et al. 1998a.

BRAGFLO_DBR: Special configuration of BRAGFLO model used in calculation of dissolved radionuclide re-
leases to the surface (i.e., direct brine releases) at the time of a drilling intrusion. Uses initial value conditions

obtained from calculations performed with BRAGFLO and CUTTINGS_S. Additional information: Stoelzel et
al. 1996; Sect. 4.7, Helton et al. 1998a.

CUTTINGS_S: Calculates the quantity of radioactive material brought to the surface in cuttings and cavings and
also in spallings generated by an exploratory borehole that penetrates a waste panel, where cuttings designates
material removed by the drillbit, cavings designates material eroded into the borehole due to shear stresses result-
ing from the circular flow of the drilling fluid (i.e., mud), and spallings designates material carried to the borehole
at the time of an intrusion due to the flow of gas from the repository to the borehole. Spallings calculation uses
initial value conditions obtained from calculations performed with BRAGFLO. Additional information: Berglund
1992, 1996; Sects. 4.5,4.6, Helton et al. 1998a.

GRASP-INV: Generates transmissivity fields (estimates of transmissivity values) conditioned on measured
transmissivity values and calibrated to steady-state and transient pressure data at well locations using an adjoint
sensitivity and pilot-point technique. Additional information: LaVenue and Rama Rao 1992, LaVenue 1996.

NUTS: Solves system of partial differential equations for radionuclide transport in vicinity of repository. Uses
brine volumes and flows calculated by BRAGFLO as input. Additional information: Stockman et al. 1996; Sect.
4.3, Helton et al. 1998a.

PANEL: Calculates rate of discharge and cumulative discharge of radionuclides from a waste panel through an
intruding borehole. Discharge is a function of fluid flow rate, elemental volubility and radionuclide inventory.
Uses brine volumes and flows calculated by BRAGFLO as input. Based on solution of system of linear ordinary
differential equations. Additional information: Stockman et al. 1996; Sect. 4.4, Helton et al. 1998a.

SANTOS: Solves quasistatic, large deformation, inelastic response of two-dimensional solids with finite element
techniques. Used to determine porosity of waste as a function of time and cumulative gas generation, which is an
input to calculations performed with BRAGFLO. Additional information: Bean et al. 1996; Stone 1997a, 1997b;

Sect. 4.2.3, Helton et al. 1998a.

SECOFL2D: Calculates single-phase Darcy flow for groundwater flow in two dimensions. The formulation is
based on a single partial differential equation for hydraulic head using fully implicit time differencing. Uses
transmissivity fields generated by GRASP-INV. Additional information: Roache 1993, Ramsey and Wallace
1996; Sect. 4.8, Helton et al. 1998a.

SECOTP2D: Simulates transport of radionuclides in fractured porous media. Solves two partial differential

equations: one provides two-dimensional representation for convective and diffusive radionuclide transport in
fractures and the other provides one-dimensional representation for diffusion of radionuclides into rock matrix
surrounding the fractures. Uses flow fields calculated by SECOFL2D. Additional information: Roache 1993,
Ramsey and Wallace 1996; Sect. 4.9, Helton et al. 1998a.
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fsd%, .fB(%)] - spallings release to accessible en-

vironment for x~~ calculated with the spallings model

contained in CUTTINGS.S, fDBR{X,tj fsdx$t,

-f-B(xsr)l ~ fB(xst)} - direct brine release to accessi-

ble environment for X,t calculated with a modified ver-
sion of BRAGFLO designated BRAGFLO.DBR,

fkm[x.t , .fB(%t)1 - release through anhydrite marker

beds to accessible environment for X$f calculated with
NUTS, ~DL[Xst, ~B(xst)l - release through Dewey

Lake Red Beds to accessible environment for x~t calcu-

lated with NUTS, ~S[X~t, ~B(x~t )] - release to land

surface due to brine flow up a plugged borehole for x~f

calculated with NUTS or’ PANEL as appropriate,

.fs-F (Xsz,o) - flow field calculated for X,t,o with

SECOFL2D, ~N_P[X.t, ~B(x,t )] - release to Culebra

for X~tcalculated with NUTS or PANEL as appropriate,

~d ~s-@st,o> fsdxst,o), &-P[xsr, ~B(Xst)l } -

ground water transport release through Culebra to ac-
cessible environment calculated with SECOTP2D (X$t,o

is used as an argument to ~S–T because drilling intru-
sions are assumed to cause no perturbations to the flow
field in the Culebra).

The probability space (&t, ~~t, p$t) for stochastic

uncertainty and the function ~ indicated in Eq. (10.3)
lead to the required CCDF for normalized releases to
the accessible environment (Fig. 10.1). In particular,
this CCDF can be represented as an integral involving

($,, J,,, PJ and .f (Fig. lo.3). If ($,, ~.t, PJ ~d ~
could be unambiguously defined, then the CCDF in Fig.
10.3 could be determined with certainty and compared
against the specified boundary line. Unfortunately, such
certainty does not exist in the 1996 WIPP PA, which

leads to the probability space ( S’u, ~.u, pJ for subjec-

tive uncertainty.

When the elements XSUof S~u are included, the

function~in Eq. (10.3) has the form fix~fi X.U). In turn,
the expression defining the CCDF in Fig. 10.3 becomes

prob(Rel > R IX~U )

=
J

8R[~(x$t , x,U )Idsr (xsr Ixsu )dvst ~ (10.4)
s~~

where 6R~)(~~, xJ] = 1 iffix~t, xsw) > R and O iffl%

X$u) 5 R. Uncertainty in x~u as characterized by

(~,~, ~,u, PSM)then leads to a distribution of CCDFS,

with one CCDF resulting for each XSUin S$u (Fig. 10.4).
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Fig. 10.3. Definition of CCDF specified in 40 CFR
191, Subpart B as an integral involving the

probability space ( S~t, ~$t, pJ for stochastic

uncertainty and a function f defined on S~t

(Fig. 4, Helton et al. 1998b).
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Fig. 10.4. Individual CCDFS conditional on elements
X~Uof S’u (i.e., CCDFS represented by [R,

prob(Rel > RIx~U)]; see Eq. (10.4)) and as-

sociated mean CCDF (i.e., CCDF repre-

sented by [R, prob (Rel > R)]; see Eq.

(10.7)).
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10.2 Implementation of Analysis (10.4). Similarly, the mean CCDF is defined by the

points [R, prob(Rel > R)], where

The guidance in 194.34(a) was implemented by de-

veloping the probability space ( &fi ~~z, pJ, the func-

tion flx~t, x~u), and a Monte Carlo procedure based on
simple random sampling (Sect. 5.1 ) for the approxima-
tion of the integral, and hence the associated CCDF, in
Eq. (10.4). Conditional on an element X~Uof $’U, the

Monte Carlo approximation procedure has the form

nS

prob(Rel > R IX$u ) =
z

a~[f(x,f,j , X.u )lfn~, (10.5)

iel

where x~t,i, i = 1,2,..., nS = 10,000, is a random sample

of size nS from ( $t, ~~t, pJ. This approximation pro-

cedure required evaluating the models in Table 10.1 for

a relatively small number of elements of $~t and then

using these evaluations to construct flX~t,~, x~u) for the
large number of sample elements (i.e., nS = 10,OOO)
used in the summation in Eq. (10.5) (see Helton et al.
1998a for numerical details).

The guidance in 194.34(b) was implemented by

developing the probability space (S~u, ~~u, pJ. Latin

hypercube sampling (Sect. 5.3) was selected as the
sampling technique required in 194.34(c) because of the
efficient manner in which it stratifies across the range of
each sampled variable. For a Latin hypercube or ran-
dom sample of size n, the requirement in 194.34(c) is
equivalent to the inequality

1 – o.99n >0.95, (10.6)

which results in a minimum value of 298 for n. In con-
sistency with the preceding result, the 1996 WIPP PA
used an LHS of size 300 from the probability space

(&~, ~~~, p..) for subjective uncertainty. Actually, as
discussed below, three replicated LHSS of size 100 each
were used, which resulted in a total sample size of 300
(Sect. 5.6). Further, the requirement in 194.34(d) is met
by simply providing plots that contain all the individual
CCDFS produced in the analysis (i.e., one CCDF for
each LHS element; i.e., plots of the form indicated in
Fig. 10.4).

The requirement in 194.34(f) involves ~e mean of
the distribution of CCDFS, with this distribution result-
ing from subjective uncertainty (Fig. 10.4). In particu-
lar, each individual CCDF in Fig. 10.4 is conditional on
an element X~u o f &U and is defined by the points [R,

prob(Rel > RIxJ], with prob(Rel > RIxJ given in Eq.

90

prob(Rel > R) = mean probability of a release

greater than size R

= Js prob(Rel > RIX,u )d$U(x$u)dV$U
Su

.
= J [J8R[f(x.t ,X.U )Idsr(xst I ‘SU )dvst

s W s,~ J

dsu (xsu Wsu (10.7)

and d~u(xJ is the density function associated with ( S’u,

420 Pm).

The integral over Ssu in the definition of

prob(Rel > R) is too complex to be determined ex-

actly. The EPA anticipated that a sampling-based inte-
gration procedure would be used to estimate this inte-
gral, with the requirement in 194.34(O placing a condi-
tion on the accuracy of this procedure.

Given that Latin hypercube sampling is to be used
to estimate the outer integral in Eq. (10.7), the confi-
dence intervals required in 194.34(f) can be obtained
with a replicated sampling technique proposed by Iman
(1982). In this technique, the LHS to be used is repeat-
edly generated with different random seeds. These

samples lead to a sequence probr (Rel > R), r = 1, 2,

. . . . nR, of estimated mean exceedance probabilities,

where probr (Rel > R) defines the mean CCDF ob-

tained for sample r (i.e., prob, (Rel > R) is the mean

probability that a normalized release of size R will be
exceeded; see Eq. (10.7)) and nR is the number of inde-
pendent LHSS generated with different random seeds.
Then,

nR_

prob(Rel > R) = ~ probr(Rel > R) I nR (10.8)

r=l

and

[xnR _

1
2

SE(R) = prob(Rel > R) – probr(Rel > R)

r=l

}

1/2

/nR(nR – 1) (10.9)



provide an additional estimate of the mean CCDF and
estimates of the standard errors associated with the in-
dividual mean exceedance probabilities. The t-

distribution with nR–1 degrees of freedom can be used
to place confidence intervals around the mean exceed-
ance probabilities for individual R values (i.e., around
_
prob(Rel > R) ). Specifically, the 1+x confidence in-

-
terval is given by prob(Rel > R) t t1_~2 SE(R), where

t142 is the l–a/2 quantile of the t-distribution with

nR–1 degrees of freedom (e.g., t1_d2= 4.303 for a =
0.05 and nR = 3). The same procedure can also be used
to place pointwise confidence intervals around percen-
tile curves. The implementation of this procedure is the
reason for the three replicated LHSS indicated in Sect.
5.6.

At the beginning of the computational implementa-
tion of the 1996 WIPP PA, only the 31 variables in Ta-
ble 3.1 that are used as input to BRAGFLO had been
fully specified (i.e., their distributions Dj had been un-
ambiguously defined); the remaining variables that
would be incorporated into the definition of Xsu were
still under development. To allow the calculations with
BRAGFLO to proceed, the LHSS indicated in Sect. 5.6
were actually generated from nX = 75 variables, with
the fwst 31 variables being the then specified inputs to
BRAGFLO and the remaining 44 variables being as-
signed uniform distributions on [0, 1]. Later, when the
additional variables were fully specified, the uniformly
distributed variables were used to generate sampled
values from them consistent with their assigned distri-
butions. This procedure allowed the analysis to go for-
ward while maintaining the integrity of the Latin hyper-
cube sampling procedure for the overall analysis. As
previously indicated, 26 additional variables were
eventually defined, with the result that the elements Xsu

of &V had an effective dimension of nX = 57.

10.3 Uncertainty and Sensitivity
Analysis Results

The CCDF used in comparisons with the EPA re-
lease limits (Figs. 10.1, 10.3) is the most important sin-
gle result generated in the 1996 WIPP PA. This CCDF
arises from stochastic uncertainty. However, because
there is subjective uncertainty in quantities used in the
generation of this CCDF, its value cannot be known
with certainty. The use of Latin hypercube sampling
leads to an estimate of the uncertainty in the location of

this CCDF (Fig. 10.5), with the individual CCDFS
falling substantially to the left of the release limits. The
left frame (Fig. 10.5a) shows the individual CCDFS
obtained for replicate R1, and the right fiarne (Fig.
10.5b) shows the mean and selected quantile curves
obtained from pooling the three replicates. The mean
curve in Fig. 10.5b is formally defined in Eq. (10.7),
and the construction procedures used to obtain the in-
dividual curves in Fig. 10.5b are described in conjunc-
tion with Fig. 7.8.

The replicated samples described in Sect. 5.6 were
used to obtain an indication of the stability of results
obtained with Latin hypercube sampling. For the total
release CCDFS in Fig. 10.5, the results obtained for the
three replicates (i.e., R1, R2, R3) were very stable, with
little variation in the locations of the mean and quantile
curves occurring across replicates (Fig. 10.6a). Indeed,
the mean and quantile curves for the individual repli-
cates overlay each other to the extent that they are al-
most indistinguishable. As a result, the procedure indi-
cated in conjunction with Eqs. (10.8) and (10.9) pro-
vides a very tight confidence interval around the esti-
mated mean CCDF (Fig. 10.6b).

The sampling-based approach to uncertainty analysis
has created a pairing between the LHS elements in Eq.
(5. 16) and the individual CCDFS in Fig. 10.5a that can
be explored with the previously discussed sensitivity
analysis techniques. One possibility for investigating
the sources of the uncertainty that give rise to the distri-
bution of CCDFS in Fig. 10.5a is to determine what is
giving rise to the variation in exceedance probabilities
for individual release values on the abscissa. This
variation in exceedance probabilities can be investi-
gated in exactly the same manner as the variation in
pressure at individual times was investigated for the
pressure curves in Fig. 7.5 and presented in Fig. 8.3.
Specifically, PRCCS, SRRCS, or some other measure of
sensitivity can be calculated for the exceedance prob-
abilities associated with individual release values. This
measure for different sampled variables can be plotted
above the corresponding release values on the abscissa
and then connected to obtain a representation for how
sensitivity changes for changing values on the abscissa.
For the CCDFS in Fig. 10.5a, this analysis approach
shows that the exceedance probabilities for individual
release values are primarily influenced by WMICDFLG
and WTA UFAZL (shear strength of waste), with the ex-
ceedance probabilities tending to increase as
WMICDFLG increases and tending to decrease as
WTAUFAIL increases (Fig. 10.7).
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individual CCDFS for replicate R 1, and (b) mean and percentile curves estimated from 300 CCDFS ob-
tained by pooling replicates RI, R2 and R3 (Figs. 6,7, Helton et al. 199Sb).
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Fig. 10.7. Sensitivity analysis based on PRCCS for
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Another possibility is to reduce the individual
CCDFS to expected values over stochastic uncertainty
and then to perform a sensitivity analysis on the resul-
tantexpected values. Inthecontext of the CCDFrepre-
sentation in Eq. (10.4), this expected value can be for-
mally defined by

The LHS in Eq. (5.16) then results in a sequence of
values E(R I x~UJ, k = 1,2, . . .. nLHS, that can be ex-

plored with the previously discussed sensitivity analysis
procedures. For example, stepwise regression analysis
shows that WMICDFLG and WA UFAIL are the domi-
nant variables with respect to the uncertainty in

E(R IX$U~ but with lesser effects due to a number of

additional variables (Table 10.2).

This section briefly describes the 1996 WIPP PA
and illustrates uncertainty and sensitivity analysis in the
context of this PA. Additional details are available in
other presentations (Helton et al. 1998a, Helton 1999,
Helton et al. 1999).

Table 10.2. Stepwise Regression Analysis with
Rank-Transformed Data for Expected Normalized
Release Associated with Individual CCDFS for
Total Release Due to Cuttings and Cavings,
Spallings and Direct Brine Release (Table 5, Hel-
ton 1999)

Expected Normalized Release

Stepa Variableb SRRCC R2d

1 WMICDFLG I 0.60 0.40

2

3
4

5
6

7
8

WTAUFAIL

WGRCOR
WPRTDIAM

HALPOR

BHPRM

HALPRM

WASTW.ICK

–0.39
0.21

–0.19
0.17

-0.17
0.16
0.11

0.55
0.59
0.63
0.65
0.68
0.71
0.72

9 ~ANHPRM 0.09 0.73
a Steps in stepwise regn%ion anatysis.
b Variables listed in order of selection in regression anatysis

with ANHCOMP and HALCOMP excluded from entry into
regression model.

c Standardized rank regression coeftlcients (SRRCS) in final
regression model.

d Cumulative R2value with entry of each variable into regres-
sion model.
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11.0 Summary

Sampling-based methods for uncertainty and sensi-
tivity analysis have a number of desirable properties,
including (i) conceptual simplicity, (ii) ease and flexi-
bility in adaptation to specific analysis situations, (iii)
stratification over the range of each uncertain variable,
(iv) direct estimation of distribution fimctions to charac-
terize the uncertainty in model predictions, and (v)
availability of a variety of sensitivity analysis tech-
niques.

The results of sampling-based uncertainty and
sensitivity analyses are conditional on the distributions
assigned to the uncertain (i.e., sampled) variables.
Thus, care must be used in assigning these distributions.
A possibility is to carry out multiple iterations of an
analysis. The first iteration could be performed with
rather crude distribution assumptions to determine the
most important variables. Then, additional resources
could be focused on characterizing the uncertainty in
these variables before a second iteration of the analysis
is carried out.

A number of techniques for sensitivity analysis
have been described. However, many additional tech-
niques for analyzing multivariate data exist that could
be productively applied in a sampling-based sensitivity
analysis. In particular, there are undoubtedly many
pattern recognition techniques that could be success-
fully adapted for use in sensitivity analysis.

Sampling-based uncertainty and sensitivity analyses
are usually performed for two reasons: (i) to determine
the uncertainty in model predictions (e.g., to ascertain if
model predictions fall within some region of concern),
and (ii) to determine the dominant variables that give
rise to the uncertainty in model predictions (e.g., to
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identify the variables on which limited research funds
should be concen@ated). However, there is also a third
reason to perform a sampling-based uncertainty and
sensitivity analysis: (iii) to verify that the model under
consideration is operating correctly. Due to the concur-
rent variation of many model inputs and the efilcacy of
sensitivity analysis procedures in identifying the effects
of model inputs on individual model predictions, sam-
pling-based uncertainty and sensitivity analysis proce-
dures provide a powerful tool for model and analysis
quality assurance.

Sampling-based sensitivity analysis procedures are
based on identifying patterns in a mapping between
model inputs and predictions. Different procedures are
predicated on the identification of different types of
patterns. Thus, a procedure will not perform well if the
mapping under consideration does not contain the type
of pattern that that particular procedure seeks to iden-
tify. As a result, a good sensitivity analysis strategy is
to use severrd different procedures that seek to identify
different types of patterns. With this approach, there is
a reasonable chance that each important model’ input
will be identified by at least one of the procedures.

Sensitivity analysis provides a way to identify the
model inputs that most affect the uncertainty in model
predictions. However, sensitivity analysis does not
provide an explanation for such effects. This explana-
tion must come from the analysts involved and, of
course, be based on the mathematical properties of the
model under consideration. An inability to develop a
suitable explanation for the effects of a particular model
input is often indicative of an error in the development
of the model or the implementation analysis.
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