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Abstract
We present mathematical proofs for two useful properties of the clusters generated by the
visual empirical region of influence (VERI) shape. The first proof shows that, for any d-
dimensional vector set with more than one distinct vector, that there exists a bounded
spherical volume about each vector v which contains all of the vectors that can VERI
cluster with v, and that the radius of this d-dimensional volume scales linearly with the
nearest neighbor distance to v. We then prove, using only each vector’s nearest neighbor
as an inhibitor, that there is a single upper bound on the number of VERI clusterings for
each vector in any d-dimensional vector set, provided that there are no duplicate vectors.
These proofs guarantee significant improvement in VERI algorithm runtimes over the
brute force O(N3) implementation required for general d-dimensional region of influence
implementations and indicate a method for improving approximate O(NlogN) VERI
implementations. We also present a related region of influence shape called the VERI
bow tie that has been recently used in certain swam intelligence algorithms. We prove
that the VERI bow tie produces connected graphs for arbitrary d-dimensional data sets (if
the bow tie boundary line is not included in the region of influence). We then prove that
the VERI bow tie also produces a bounded number of clusterings for each vector in any
d-dimensional vector set, provided that there are no duplicate vectors (and the bow tie
boundary line is included in the region of influence).
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I Introduction

The visual empirical region of influence (VERI) is a specific version [1,2] of the more
general region of influence (ROI) concept from graph theory [3]. ROIS are two-
dimensional (2-D) shapes that are defined with respect to pairs of vectors. The size of the
ROI for each pair of vectors is scaled with the separation of the points, and the
orientation of the ROI is determined by alignment with the line segment that would
connect the two points. ROIS determine pairwise clusterings through a seemingly simple
exclusionary rule -- any pair of vectors in a data set are clustered together iff no third
vector in the data set is inside the ROI defined by the pair. The ROI is applied to all pairs
of vectors in the data set. Many simple mathematical ROI shapes have been explored in
the literature, and the mathematical properties of the resulting graphs have been
examined. The VERI ROI shape resulted from our novel hypothesis that human
perceptual grouping of vectors might be modeled using the ROI concept. In this
approach, the VERI shape was regarded as an empirical entity to be fitted to data on
human cluster judgments. The VERI ROI shape was first discovered by Osboum and
Martinez through a set of psychophysical studies of human cluster perception [1,2]. That
work has confirmed that VERI provides a reasonable model of visual cluster judgments
obtained from a consensus of human subjects with normal visual perception.

A fast implementation of the VERI algorithm is essential for the many real world
applications that it can address [2,4,5]. However, a nai%eimplementation of the general
ROI graph calculation requires an O(N3) computation, where N is the number of vectors
in the data set. This follows from the apparent need to examine every pair of points for
potentiaI clustering, and the apparent need to consider every remaining point in the data
set as a potential inhibitor of each pair. We have previously described [1,6] an 0(N2)
cluster implementation and an O(Nti.*N@,t) VERI pattern recognition algorithm that
exist if the total number of pairwise VERI clusterings scales as O(N) when only the first
nearest neighbors of each vector are considered as inhibitors. However, no proof of this
condition has been presented previously. Here we prove a stronger result (which implies
this condition), namely that there is a single upper bound on the number of clusterings for
each vector in any data set (with no identical vectors) when only the first nearest
neighbors of the pairs of vector are considered as inhibitors. Thus, the runtime
performances are now guaranteed to be 0(N2) for the VERI cluster implementation and
O(Nti.*Nt=t) for the VERI pattern recognition algorithm for all data sets. We also
present a proof that specifies an upper bound on the distance from any vector v that must
be searched to find potential VERI clusterings with v. The upper bound is proportional to
the distance to the nearest neighbor of v. This property allows constant factor runtime
improvements in the VERI implementation by directly eliminating unnecessary
consideration of many pairs of vectors that can not cluster together. We conclude our
consideration of the VERI ROI with a discussion of the implications of these proofs for
certain approximate O(NlogN) VERI implementations that have been proposed
previously [6].



In the second half of this work we consider a ROI that has not been published previously.
This “VERI bow tie” ROI is shown in Fig. 1, and has proved useful in unpublished work
on swarm intelligent agent communication protocols. This ROI is made up of the union
of two wedge-shaped regions. The radius of each wedge is equal in length to the line
segment that would join the pair of vectors (for the rest of this proof we will call this line
segment the pair line). Each wedge area is obtained by sweeping each radius in an arc,
fixed at one of the pairs of vectors, with equal sweep areas on either side of the pair line.
The VERI bow tie ROI can have a variable total angle of sweep (centered about the pair
line) up to 120 degrees. Such bow tie ROIS contain vectors that are no farther from both
of the pair vectors than the separation of the pair itself. We prove that the VERI bow tie
produces connected graphs for arbitrary d-dimensional data sets (if the bow tie boundary
line is not included in the region of influence). We then prove that the VERI bow tie also
produces a bounded number of clusterings for each vector in any d-dimensional vector
set, provided that there are no duplicate vectors (and the bow tie boundary line is
included in the region of influence). These properties have implications for the robustness
of the intelligent agent applications that we will discuss in a separate publication.

II PrOOfi For d-dimensional data sets with more than one unique
vector, a finite spherical volume about each vector v contains all of the
vectors that can VERI cluster with v, and the spherical radius scales
linearly with the first nearest (nonidentical) neighbor distance to v

The key requirement for the proof is that the ROI completely enclose the two data vector
positions in the ROI such that the two data vector positions are not on the ROI boundary.
Any ROI that contains such regions, e.g. the VERI ROI, will satisfy this property. We
assume, without loss of generality, that the ROI regions around each of the pair of points
contain a circular area of nonzero radius r less than one in length (relative to a unity pair
spacing) which we illustrate in Fig. 2. By definition, any pair of vectors contained by a
distance R will not have a VERI grouping if a third vector exists which is within one of
the circular areas. This condition occurs when the third vector has a distance to one of the
vectors, call this RR, such that

RR c= r*R Eq. 1.

Let v be any vector in a d-dimensional data set S that contains two or more unique
vectors. Consider the nearest (nonidentical) neighbor of v, which we call v 1, for the data
set S. Let the nonzero distance between v and v1 be R1. Now consider any vector V2in S
with distance R2 to vector v. Vector V1will inhibit VERI clustering of v and V2when Eq.
1 is satisfied, i.e. when

R2 => R1/r. Eq. 2

(obtained by dividing both sides of Eq. 1 by the positive quantity r). Thus, all VERI
clusterings with arbitrary vector v must occur with vectors that are a distance less than
R1/r (proportional to the first nearest nonidentical neighbor spacing Rl).



IllDiscussion of proof consequences

This proof provides a mechanism for aborting the search for potential cluster partners in
certain cases. In particular, suppose that one has obtained a list of the j nearest neighbors
of each vector in preparation for executing the 0(N2) VERI implementation [1,6]. If the
first nearest neighbor distance D and the jth nearest neighbor distance Dj of a vector
satisfy the equation

Dj => D/r, Eq. 3

then only the j-1 list of nearest neighbors of this vector are candidates for clustering, and
there is no need to consider the entire data set when computing clusterings with this
vector.

The proof also provides guidance for making an approximate O(NlogN) “divide and
conquer” implementation of the VERI clustering [6] perform well. A divide and conquer
technique can efficiently partition the entire d-dimensional data set into M rectangular
boxes that contain at most a constant number of vectors n. The partitioning is an
O(NlogN) computation. This approach allows M VERI computations to take place
“independently” in the M boxes, and the computation times for each box take (constant)
n2 time. The results of this computation can be further improved by considering possible
clusterings that occur across box boundaries. The proof provides the conditions under
which potential clusterings from a vector in one box and vectors in certain distant boxes
may be ignored.

IVprOOf: A single bound on the number of VERI cluster neighbors
exists for all vectors in an d-dimensional data set that contains no
identical vectors when only the first nearest neighbors of the vector
pairs are considered as inhibitors.

We define a VERI cluster neighbor of a vector v in a data set S as: any vector w in S that
is not identical to v and is clustered by VERI to v. Now we prove that VERI produces a
single upper bound on the number of cluster neighbors for all data vectors in any d-
dimensional data set when only the nearest neighbors of all vectors are considered as
inhibitors. The key requirement is again that the ROI completely enclose the two data
point positions in the ROI such that the two data point positions are not on the ROI
boundary. We again assume, without loss of generality, that the ROI regions around each
of the pair of points contain a circular area of nonzero radius r (relative to a unity pair
spacing). The value of r must also be less than one to be appropriate for the VERI ROI,
so we also assume this condition.



We start by assuming that there is a vector v, in a data set S which contains no identical
vectors, that exhibits VERI cluster neighbors that increase in number without bound as
new vectors are added to the set S. We then show that this leads to a contradiction, so that
the number of VERI cluster neighbors for each vector is bounded. The proof concludes
with the construction of a single upper bound for the number of cluster neighbors that
depends only on the dimensionality of the data set and the size of r.

Let Sv be the set of cluster neighbors of v in S. For any fixed number N of vectors in set
S that is large enough so that the set Sv is nonempty, we must be able to add arbitrarily
many new vectors w to S, each of which: is also a cluster neighbor of v, i.e. is also in Sv;
does not eliminate any of the other vectors in Sv by acting both as a nearest neighbor and
as an inhibitor, i.e. the increase in the number of vectors in Sv by adding w is not offset
by eliminating any of the existing cluster neighbors of v.

Consider the nearest neighbor of v, which we call vI, for the data set S of size N. Let the
nonzero distance between v and v 1 be R1. As proved above, all groupings to v must
occur with vectors inside the boundary of radius R2 given by

R2 = R1/r. Eq. 4

Thus, any additional vector w that is added to S must be within the finite volume of the d-
dimensional sphere of radius R2 around vector v.

Similarly, a new vector w will inhibit all of the existing VERI clusterings if it is closer to
v than distance ROgiven by

RI = RO/r. Eq. 5

Since r is less than unity, such a new vector would be closer to v than the previous
nearest neighbor and would become the new (inhibitor) nearest neighbor of v. R1 is the
previous nearest neighbor distance to v, so that all prior members of Sv must be at least
that far from v. Thus, any additional vector w that is added to Sv must be more than a
fixed, lower bound distance ROaway from v to avoid eliminating existing cluster
neighbors from Sv.

Finally, note that any new cluster neighbor w, by definition, is surrounded by a volume
that contains no nearest neighbor inhibitor to prevent the clustering of w with v. Since all
such w must be at least distance ROaway from v, there must be a vector-free volume
around each w that has a radius Rw which satisfies

Rw > r*RO. Eq. 6a

or

Rw>?*R1. Eq. 6b



We have now established that each additional cluster neighbor w must simultaneously
satisfy two properties:
(1) it must be located in a finite volume spherical d-dimensional shell centered around v.
(2) it must be located at the center of a spherical d-dimensional volume, with radius
greater than a fixed, nonzero lower bound, that contains no other vectors.

Property 2 guarantees that the volume occupied by the vectors in Sv increases without
bound as the number of such vectors increases, which contradicts property 1. Thus, every
vector has a bounded number of cluster neighbors.

Properties 1 and 2 can be used to construct a single upper bound that applies to any
vector. The total spherical volume available to cluster neighbors around any vector is
given by

Cl*(RI/r)d, Eq. 7

where d is the dimensionalit y of the data set, C1 is a constant that depends only on d and
R1 is the distance from the vector to the first nearest neighbor. Each cluster neighbor
must occupy the center of a spherical volume

C1*(R1* #)d Eq. 8

that contains no other vectors. The upper bound on the number of cluster neighbors is
determined by how many of the d-dimensional spherical volumes given in Eq. 8 can be
packed into the volume given in Eq. 7 such that the center of each spherical volume does
not occupy any other spherical volume. Alternatively, the bound can be determined from
the packing of spheres with a radius reduced by half (i.e. equal to R1*s?/2) such that the
sphere volumes do not overlap. The packing value is proportional to the ratio of the
volumes in Eqs. 7 and 8. Thus, the number of cluster neighbors m for any vector must
satisfy

m < C2/r3d, Eq. 9

where C2 is a constant (associated with the packing efficiency of smaller d-dimensional
spheres into a larger d-dimensional sphere) that depends only on the dimensionality d.
This single upper bound depends only on the dimensionality of the data set and the r
value of the ROI, and thus holds for all vectors.

V PIW)fi(Edgeless) VERI bow tie ROI produces a single connected
graph for any d-dimensional data set

The “edgeless” VERI bow tie ROI does not include the boundary line of the shape, i.e. it
does not inhibit pairwise groupings if there are vectors exactly on the ROI boundary line.
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We assume that there is a d-dimensional data set A that yields more than one connected
subgraph via the edgeless bow tie ROI, and show that this leads to a contradiction. For
each pair of distinct connected subgraphs produced for data set A, there exists (at least)
one “interpair” of points (i.e. one of the two points is in each of the two subgraphs) such
that the distance between this point pair is a greatest lower bound on the distances
between all such interpair distances of this pair of subgraphs. Call this the closest point
interpair for the pair of subgraphs. There further exists (at least) one of these closest point
interpairs such that the distance between this pair of points is a greatest lower bound on
the set of distances of the closest point interpairs for all pairwise combinations of distinct
subgraphs. Call the points of this particular pair pl and p2, and call the subgraphs that
contain these points Al and A2, respectively. Since pl and p2, by definition, come from
distinct connected graphs, there cannot be a grouping between pl and p2. Now consider
the edgeless circular bow tie applied to pl and p2. For the grouping to be inhibited, there
must be another point p3 that is in the ROI area. By the definition of the edgeless VERI
bow tie shape (with sweep angles limited to less than 120 degrees), this point p3 is closer
to both pl and p2 than the distance between pl and p2. Point p3 belongs to one of the
distinct connected subgraphs of A. Assume p3 belongs to the subgraph Al. Then the
subgraphs Al and A2 have an interpair of points (p2,p3) with distance less than the
(pl,p2) distance. But this contradicts (pl,p2) being the closest interpair for Al and A2.
Similarly, assuming the p3 belongs to subgraph A2 leads to a contradiction that (pl,p2) is
the closest interpair for Al, A2. The only possibility remaining is that p3 belongs to
another distinct subgraph, call this A3, that is different from A 1 and A2. Subgraph Al
and A3 have an interpair (pl ,p3) with smaller distance than the (p1,p2) distance. This
means that the closest interpair distance for Al and A3 must also be less than the closest
interpair distance for Al and A2. This contradicts (pl,p2) being the greatest lower bound
on all distinct subgraph closest interpair distances. Thus our original assumption leads to
contradiction, so there does not exist an N-D data set that yields more than one connected
subgraph via the edgeless VERI bow tie.

We note that this property for planar graphs (i.e. 2-D data) can also be obtained by
recognizing that the edgeless VERI bow tie is contained within the well-known LUNE
ROI[3]. The LUNE ROI has been proven to produce connected planar graphs.

VI h)ofi An upper bound on the number of VERI bow tie cluster
neighbors exists for all vectors in an d-dimensional data set that
contains no identical vectors

We define a VERI bow tie cluster neighbor of a vector v in a data set S as: any vector w
in S that is not identical to v and is clustered by the VERI bow tie ROI to v. For this proof
we consider the boundary line of the bow tie to be included in the ROI. We prove that the
VERI bow tie produces an upper bound on the number of cluster neighbors for all data
vectors in any d-dimensional data set (without identical vectors).



This proof is conceptually similar to the proof in Sec. IV. Solid angles in d-dimensional
space play the same role here that spherical volumes played in the previous proof. The
present proof can be extended in a straightforward manner to show that a single upper
bound exists for all vectors. We start the proof by assuming that there is a vector v, in a
data set S which contains no identical vectors, that exhibits VERI bow tie cluster
neighbors that increase in number without bound as new vectors are added to the set S.
We then show that this leads to a contradiction, so that the number of VERI bow tie
cluster neighbors for each vector is bounded. \

Let Abe the nonzero sweep angle of the VERI bow tie ROI. Let Sv be the set of bow tie
cluster neighbors of v in S. For any fixed number N of vectors in set S that is large
enough so that the set Sv is nonempty, we must be able to add arbitrarilyy many new
vectors w to S, each of which: is also a bow tie cluster neighbor of v, i.e. is also in Sv;
does not eliminate any of the other vectors in Sv by acting as an inhibitor, i.e. the increase
in the number of vectors in Sv by adding w is not offset by eliminating any of the existing
cluster neighbors of v.

Consider the nearest cluster neighbor of v, which we call vI, for the data set S of size N.
Let the nonzero distance between v and VI be R1. Any additional vector w that is added
to S and Sv cannot occupy a d-dimensional cone of sweep angle A that radiates from v
and is centered about the pair line associated with v and V1.This is true because the
vector w will either be inhibited from clustering with v (if the dkince from w to v is
greater than Rl) or it will inhibit the clustering of v and V1(if the distance from w to v is
less than or equal to Rl). Each additional member of Sv that does not eliminate existing
members of Sv must be placed in an infinite cone of nonzero solid angle that contains no
other vectors. Thus, the d-dimensional solid angle around v required for new members of
Sv that don’t eliminate existing members must increase without bound. But this is
impossible for a vector space of finite dimensionality, since such spaces contain only a
finite solid angle around each vector in the space.
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Fig. 1 VERI bow tie region of influence. The squares indicate the positions of the pair of
vectors that are tested for clustering. The dashed lines indicate the wedge-shaped regions
discussed in the text.

Fig. 2 The circular subset of the VERI region of influence used in the proofs. The
squares indicate the positions of the pair of vectors that are tested for grouping. The radii
r are identical and are less than one in length, where the separation of the squares is taken
to be unity spacing.
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