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Abstract

Small Numbers in Supersymmetric Theories of

Nature

by

Michael Lawrence Graesser

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Mahiko Suzuki, Co-Chair

Dr. Ian Hinchliffe, Co-Chair

part in 10-32 to

the origin of the

theory for describ-The Standard Model of particle interactions is a successful

ing the interactions of quarks, leptons and gauge bosons at microscopic distance

scales. Despite these successes, the theory contains many unsatisfactory features.

The origin of particle masses is a central mystery that has eluded experimental

elucidation. In the Standard Model the known particles obtain their mass from

the condensate of the so–called Higgs particle. Quantum corrections to the Higgs

mass require an unnatural fine tuning in the Higgs mass of one

obtain the correct mass scale of electroweak physics. In addition,

vast hierarchy between the mass scales of the electroweak and quantum gravity

physics is not explained in the current theory.

1



Supersymmetric extensions to the Standard Model are not plagued by this fine

tuning issue and may therefore be relevant in Nature. In the minimal supersym-

metric Standard Model there is also a natural explanation for electroweak sym-

metry breaking. Supersymmetric Grand Unified Theories also correctly predict a

parameter of the Standard Model. This provides non–trivial indirect evidence for

these theories.

The most general supersymmetric extension to the Standard Model however,

is excluded by many physical processes, such as rare flavor changing processes,

and the non-observation of the instability of the proton. These processes provide

important information about the possible structure such a theory. In particular,

certain parameters in this theory must be rather small. A physics explanation for

why this is the case would be desirabIe.

It is striking that the gauge coupIings of the Standard Model uni~ if there is

supersymmetry close to the weak scale. This sugg%s that at high energies Nature

is described by a supersymmetric Grand Unified Theory. But the mass scale of

unification must be introduced into the theory since it does not coincide with the “

probable mass scale of strong quantum gravity.

The subject of this dissertation is both the phenomenology and model-building

opportunities that may lie behind the small

metric extensions of the Standard Model.

numbers that appear in supersym-
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Chapter 1

Introduction

,.

The Standard Model (SM) of particle physics interactions [1, 2] is an extremely

successful theory of Nature. It qualitatively accounts for many phenomena, such as

the meson and baryon mass spectrum, the small measured value for the kaon mass

difference, “neutral” current interactions – neutrino–electron scattering, for exam-

ple – and the weakly interacting nature of quarks at large momentum transfer, to

list a few. It also quantitatively agrees with all experimental measurements. The

measured anomalous magnetic moment of the electron agrees with the SM pre-

diction to a few parts per billion, and the measured and theoretical values for the

anomalous magnetic moment of the muon are consistent to one part per million.

These experiments represent tremendous tests of quantum electrodynamics – the

part of the SM describing electrons, muons and photons. The SM theory of quarks

and gluons – quantum chromodynamics – has also been experimentally tested at

SLAG during the 1970’s, and at Fermilab in the 1980’s. Further, many precise

measurements of the SM “weak” interactions performed at the LEP and SLAC

experiments in the late 1980’s and early 1990’s agree with

within their experimental uncertainties (a few percent).

the SM predictions to

While the SM has many descriptive successes, there are many issues that re-

1



main unexplained. The most outstanding issue is the origin of particle masses.

The SM is described by the non-abelian gauge symmetry StJ(3)C x SU(2)~ x

U(l)y. The representations of the SM particles under these gauge groups are given

in Table 1.1. Of these gauge groups, only the U( 1)em subgroup that corresponds

to electromagnetism is observed to be a long–range force. The SU(3)C force (or

quantum chromodynamics) is strong at large distances, so it confines quarks into

baryons and mesons (e.g. protons, neutrons and pions). The remaining “weak”

forces however, have an effective range of about 10-16 cm. This is because the

Z and W gauge bosons that mediate these “weak” forces are massive. On the

other hand, the non–abelian gauge symmetry implies that all the gauge bosons

should be massless like the photon. In addition, the Ieptons and quarks should be

massless as well.

The physical mechanism that generates these masses is not known. The parti-

cle masses are obtained by either introducing into the theory interactions – such

as mass terms for the gauge bosons and fermions – that explicitly break the elec-

troweak symmetry, or by introducing some new interactions whose dynamics spon-

taneously break the electroweak gauge symmetry. In tue former case the theory

is non–renormalizable at the one–loop level, so that the Standard Model is only

an effective theory. Further, the preservation of the unitarity of the theory im-

plies that WW interactions should become strong at high energies. In any case,

phenomena in the form of new interactions and/or particles should be discovered.

In the second option there must exist some additional undiscovered dynamics

2
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that is responsible for generating particle masses. There are additional unresolved

issues beyond this central mystery. The SM contains six quarks, three charged and

neutral neutrinos. The mass of these particles is an input into the theory – the SM

does not predict these masses. Since the ratio of the lightest massive particle (the

electron) to the heaviest particle (the top quark) is % 10–6, it is difficdt to believe

that this small number is part of a fundamental theory of Nature. An explanation

for the hierarchies found in the other fermions masses, and the parameters of the

Kobayashi–Maskawa matrix VKM [3], is also desired.

In the Standard Model electroweak symmetry breaking is achieved by intro-

ducing a scalar field H with Standard Model quantum numbers (1,2, 1/2). The

scalar potential for H is assumed to be

V(H) = m2HastH + $(H*H)2 (1.1)

and is the most general potential that is also gauge invariant and renormalizable.

Here ~ >0 so that the potential is bounded from below. The ground state of the

vacuum is found by minimizing V. In this case the physics of the ground state

depends on the sign of m 2. If m2 > 0 the minimum is at H = O. This ground

state is invariant under the full SM gauge transformations, so no symmetries are

broken at this vacuum. On the other hand, if rn2 <0 there is a local maximum at

H = O, and the local minimum occurs at a non-zero value for H. Using SU(2)~

and U(l )Y rotations,

[)

o
H=%

v

(1.2)
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minimizes V with TJ2= —4m2/A This vacuum is not left invariant by the action

of the SU(2)L x U(l)y gauge transformations. Only the combination of SU(2)~ x

U(l)y generators Q = T3+Y is left unbroken. Since this is none other than electric

charge, this vacuum breaks SU(2)~ x U(1) y + U( l).~. The Higgs mechanism

vresults in a mass of gv/2 =80 GeV for the W gauge bosons, and g + g v/2 =90

GeV for the Z gauge boson, where g and g’ are the SU(2)~ and U(l)y gauge

couplings, respectively. Numerically v = 247 GeV is determined from the Fermi

constant GF obtained from the muon lifetime. Since U(l).~ is left unbroken the

photon remains massless. So the symmetry breaking vacuum which corresponds

to m2 <0 correctly describes Nature. ,

This vacuum expectation value (vev) of the Higgs field can also be used to give

masses to the quarks and lept ens. The interaction

for example, where i, j are generation labels, is gauge invariant but results in

masses for the up–quarks once the vev for H given by Eqn. (1 .2) is inserted. In-

teractions of this type (so–called Yukawa interactions) can also be introduced to

give masses to the down–quarks and leptons.

So aside from the fact that the Higgs scalar particle has not been experimen-

tally observed this description of electroweak symmetry breaking is sound. This

description however, is theoretically unsatisfactory since the most important step

in the story, namely that the Higgs mass parameter m2 must be negative, is left

4



unexplained. An explanation for why m2 is negative, rather than positive, is de-

sired. There are even more distasteful features of this description once quantum

corrections to the scalar potential V are considered. These are now described.

In addition to the particle representations and their interactions, a short-

distance cut–off is also required. The physical interpretation for this cut–off is

the following. The Standard Model is a good description of Nature at distances

above at least 10–16 cm, or equivalently, at energies below 100 GeV. If the Standard

Model were a fundamental theory of Nature, then it would be a good description

at all energies. It is not expected for many reasons, however, that this is the

case. Firstly, the Standard Model does not explain electroweak symmetry break-

ing with any satisfaction. It also contains quadratic divergences (discussed in the

next paragraph) which are distasteful, and it would be incredibly surprising if

they were present in a fundamental theory. It also doesn’t explain why the mass

scale of electroweak interactions – 100 GeV to a TeV – is so much smaller than

the probable mass scale of (strong) gravitational effects, the Planck scale which is

roughly 1018 GeV. Further, the Compton wavelength and black hole event horizon

for a point particle with a mass of 1018 GeV coincide, so in describing physical

processes at Planck scale energies it is not possible to neglect either quantum

or gravitational effects. Both are equally important. But the Standard Model

does not include a quantum theory of gravity. For this reason it is expected that

at these energies the Standard Model (or any quantum field theory description

of Nature) will be replaced by a theory that includes a quantum description of

5
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Figure 1.1: Feynman diagrams contributing quadratic divergences to the Higgs

mass. Solid, dotted and wavy lines represent propagating” fermions, scalars and

gauge bosons, respectively.

gravity. So the Standard Model is not a correct description of Nature at these

high energies. Thus above some unknown energy scale A (or below some distance

scale he/A), the Standard Model is replaced by a better description of Nature. In

this sense the Standard Model is only an eflective theory of Nature, valid only for

energies E < A.

So in evaluating any physical processes it is physically sensible to restrict the

energies of the particles to be below A. Of interest for electroweak symmetry

breaking are the quantum corrections to the Higgs potential V. The interactions

of the Higgs scalar with the gauge bosons and with itself correct the expression

H

Hu
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for V given in Eqn. (1.1). In particular, the corrections to the m2 parameter are

given by the Feynman diagrams in Figure 1.1. As mentioned above, in evaluating

these corrections an energy cut–off A must be introduced. These diagrams give a

correction to m2 that is

c
—A2.

‘2 = ‘; + 16n-2
(1.4)

Here m; is the “bare” parameter for the Higgs mass (what was called m2 before),

and C’ is a function of the gauge and Yukawa couplings of the theory and is not

equal to zero in general. That Am2 w A2 means that this theory contains a

quadratic divergence.

This is distasteful for the following reason. Recall that the gauge boson mass is

m; R V2, and V2 m –m2 in turn. So –m2 must be roughly (100 GeV)2 N (TeV)2.

Since this is the left-hand side of Eqn. (1.4), m: and the A2 term must combine to

give the correct value for m 2. But if the Standard Model is a correct description

of Nature up to Planckian energies, i.e. A x 10 18 GeV, then in order to obtain the

correct order of magnitude for m2, m: and the A2 term in Eqn. (1 .4) must cancel

32I In other words, in the absence of this fine tuningeach other at one part in 10 .

of the parameters the “natural “ value for m2 is A2. Why the electroweak scale

of physics is so much smaller than the Planck scale, or any energy scale A of new

physics, is known as the hierarchy problem.

It is the presence of these quadratic divergences that suggest that the Standard

Model will be replaced by a more complete theory which will also provide a better

understanding of the origin of electroweak symmetry breaking. Since the resulting

7



m2 is of the right size if A zxTeV, new physics in the form of new particles and

interactions should be discovered at energies in this range.

Since supersymmetric gauge theories [5], quite remarkably, contain no quadratic

divergences 1 6[ ], particle physics models based on supersymmetry are promising

candidates for resolving the hierarchy problem. In this dissertation, the phe-

nomenology of supersymmetric theories is explored, with attention paid to phe-

nomenological problems with these models. These problems are of the “why

are

the

some numbers in these models so small” sort. This is in coherence with

philosophy that argues that the Standard Model is incomplete, e.g. why is

Lf~/lMP~ -10-16 so small?

In supersymmetric field theories all the particles appear in irreducible repre-

sentations of the supersymmetry algebra, referred to as supermultiplets. Since a

supersymmetry generator has a spinorial index, and the members of a supermul-

tiplet are related to each other by supersymmetry transformations, the individual

components of a multiplet will not have the same spin. For example, a chiral

supermultiplet is

()4’
F=

4.

(1.5)

and contains a complex scalar @ (spin O) and a two–component fermion ~a (spin

1Assuming ‘TrQx = Oif there is a U(I )x gauge group.
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1/2). Similarly, a vector multiplet is

()

Vp
v=

h

and contains a massless vector boson Vu (spin 1

x.. Note that in both

of freedom are equal.

(1.6)

and a two–component fermion

cases the number of bosonic and fermionic physical degrees

Further, the supersymmetry generators commute with the

gauge symmetry generators, so that all the components of a supermultiplet have

the same gauge group quantum numbers. Finally, a very important point for

the cancellation of quadratic divergences is that the supersymmetry generators

commute with the spacetime generators. This implies that all the components of

a multiplet have the same energy, and in particular, that they all have the same

rest mass.

Since supersymmetry transformations interchange bosons and “fermions, a su-

persymmetry transformation does not commute with a Lorentz group transforma-

tion. Nonetheless supersymmetry is also a spacetime symmetry since it enlargens

the group of spacetime transformations. In fact, the largest possible symmetry of

the S matrix 2 is the product of an internal global or gauge symmetry and a super-

symmetry [7]. So supersymmetric theories contain a larger spacetime symmetry

than their non–supersymmetric counterparts. This fact suggests that supersym-

metry is in some way relevant to Nature.

2The S matrix gives the quantum mechanical amplitude d for scattering an initial state into

a final state. The probability for this process is then proportional to IA12.
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A heuristic explanation for why supersymmetric theories contain no quadratic

divergences is the following. First suppose that the bare mass for the scalar par-

ticle in a chiral multiplet is equal to zero. Then since all the components of a

supermultiplet have the same mass, the fermion partner ~ is also massless. But in

this case the theory contains the chiral symmetry @ + ezO@for an arbitrary real

number ~. This symmetry is sufficient to guarantee that in perturbation theory

the fermion is ezactlg massless. But since by supersymmetry the scalar partner

must also receive the same quantum corrections, it therefore remains massless. So

there are no quadratic contributions to the mass parameter of the scalar particle.

This is realized in the loop expansion by the cancellation of the quadratic di-

vergences between different Feynman diagrams. In Figure 1.2(a), the scalar boson

& receives a quadratic divergence from its ~~ll~dz interaction with other scalars

42 (this notation also allows ~z = @l). There is also a quadratic divergence from

its coupling to the fermion superpartner @2 of 42. This contribution is shown in

Figure 1.2(b) and is numerically ezactly the opposite of the first contribution such

that the sum of the two Feynman diagram cancels, and there are no quadratically

divergent contributions to the mass of @l.

The argument for the cancellation of the quadratic divergences when the scalar

particle is massive is very similar. Supersymmetry implies that the fermion super-

partner has the same mass. But the total quantum correction to the fermion mass

must be Am u m. since in the limit that the bare fermion mass m. + O the chiral

symmetry forbids the generation of a mass in perturbation theory. But this cor-

10
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Figure 1.2: Cancellation in supersymmetric theories of quadratic divergences to

the scalar masses. Solid and dot ted lines represent propagating “fermions and

bosons respectively.

rection must by superwmmetry be identical to the correction to the scalar mass.

Thus even if the scalar particle is massive it receives no quadratic corrections to

its mass.

The absence of quadratic divergences can also be generalized to include su-

persymmetric gauge theories. In this case, the quadratic divergence from the

Feynman diagram with an internal gauge boson is canceled by the quadratic di-

vergence from the Feynman diagram with an internal superpartner of the gauge

boson, the gaugino. So in supersymmetric theories there are no quadratic diver-

gences 3. To re–cap, the basic reason for this is that supersymmetry relates the

scalar particle to its fermion superpartner which does not receive any quadratic

divergences. This relationship then protects the scalar particle from receiving any

quadratic divergences as well.

3See the previous footnote for the one restriction. Curious]y, this condition is also the same

as requiring the cancellation of the gravitational–gravitational-U( I)Q anomaly.
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So a supersymmetrized version of the Standard Model does not contain any

quadratic divergences andthehierarchy problem isatleast stabiZised. That is, once

the huge disparate scales Llz and Ikfpl are initially established, supersymmetry

insures that quantum corrections do not push the vev of H (and hence the masses

of all the Standard Model particles) up to the Planck scale.

In fact, the Planck scale and the weak scale are probably not the only mass

scales in Nature. For example, the scale of Grand Unification (see later), or the

mass scale of some new flavor physics, probably exist and are most likely orders

of magnitude larger than the weak sca~e. If scalar particles are in some way

involved in the physics at these other mass scales (just as the Higgs particle might

be involved in electroweak symmetry breaking), then in a non–supersymmetric

theory quantum corrections would tend to bring all these different mass scales

together. That is, the separation of mass scales could only be maintained at the

expense of an unnatural amount of fine tuning among the bare parameters of the

theory.

In supersymmetric theories, in contrast, there are non–renormalization theo-

rems which imply that no fine tuning is required to maintain these different mass

scales [6]. These generalize the cancellation of the quadratic divergences discussed

before. Similarly, non–perturbative non–renormalization theorems for the dimen-

sionless “Wilsonian” gauge–couplings and “superpotential” couplings exist and

are presented in Chapter 2. So in a supersymmetric theory of Nature it is possible

to envision a hierarchy of mass scales which are not destabilized by quantum cor-

12



rections. In these theories it is then sensible to address issues such as the physics

occurring at, and the possible origins of, these different mass scales.

So what does a supersymmetrized version of the Standard Model look like? The

simplest solution is to promote each gauge and matter particle of the Standard

Model to a complete supermultiplet.

superpartners (the gauginos) to the

Thus the theory now includes some fermion

gauge bosons, and scalar superpartners to

the quarks and leptons, referred to as squarks and sleptons, respectively.

supersymmetric version of the Standard Model contains at least twice as

particles.

.

So a

many

What about the Higgs particle H? An inspection of Table 1.1 indicates that the

leptons L have the same quantum numbers as the Higgs scalar H*. This suggests

the interesting possibility that the Higgs bosons could be the boson superpartners

of the Ieptons. In this case the Higgs field would have a lepton number, since it

would be in the same supermultiplet as the leptons. The breaking of electroweak

symmetry would also break lepton number and this has some phenomenological

difficulties, such

problem though

cannot generate

as generating neutrino masses that are too large. A more serious

is that it turns out that such a theory (with 3 Higgs doublets)

masses for the up-type quarks. For this reason this possibility is

not considered further in this dissertation.

So instead the Higgs sector is made supersymmetric by introducing fermion

superpartners, referred to as ‘higgsinos’, thus promoting H to a supermultiplet.

The higgsinos contribute to the gauge anomalies since they carry charge, and

13



in fact the introduction of only one Higgs supermultiplet results in non–vanishing

SU(2)~ x SU(2)~ x Y and Y3 gauge anomalies. These anomalies must be canceled

to preserve the unitarity of the theory. So an additional Higgs multiplet, ~, with

the opposite hypercharge, is introduced to cancel the anomalies. Another difficulty

with introducing only one Higgs supermultiplet is that supersymmetry prevents

If from giving mass to the leptons and down-quarks. It is perhaps surprising that

this is not the case for ~. For these two reasons two Higgs doublets are included

in the minimal supersymmetric extension to the Standard Model (the MSSM). In

this model then the mass for the up–quarks is obtained from the vev of H, and

that of the leptons and down–quarks

the MSSM is also given in Table 1.1,

supermultiplet.

from the vev of ~. The matter content of

where now each field @ is interpreted as a
.

The previous arguments establishes the particle content of the MSSM. But

what about the interactions between all these particles? These are obtained by

including all interactions that are renorrnalizable and consistent with supersym-

metry and all the gauge symmetries.

The requirement that the theory is renormalizable is not necessary, and in fact

is not expected. This is because the MSSM, just like the SM, is probably only an

effective theory, rather than a fundamental theory of Nature. At energies above

some unknown physical mass scale M, such as the Grand Unified mass scale, the

mass scale of some new flavor physics, or the Planck scale, to suggest a few, the

MSSM is replaced by a more fundamental theory. The effect of this high-energy
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‘@ NJ(3). su(2)~

Q 3 2

Uc 3 1

d’ 3 1

H 1 2

U(l)y + SU(3)C su(2)~ U(l)y

1/6 L 1 2 -1/2

-2/3 e’ 1 1 1

1/3 UC 1 1 0

1/2 z 1 2 -1/2

Table 1.1: Quantum number charges of one generation of Standard Model particles

with a right-handed neutrino, and two Higgs fields, under the Standard Model

gauge group G = SU(3)C x SU(2)L x U(l)Y. Here Q = (uL, d~), L = (u, e~),

H = (h+, ho), and ~ = (~, h-). The electric charge of a particle is Q,n = Y+T3~,

where here T3~ is the value of the diagonal generator of SU(2) ~ acting on ~, e.g.

+1/2 for u~ and –1/2 for dL.
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physics at low-energies, i.e. E << ~, is co either generate interactions suppressed

by Al, or to determine the parameters of the low-energy theory. These non-

renormalizable interactions are important if they violate some global symmetries of

the low-energy theory such as baryon number. Otherwise, their effect on physical

processes is smaller by roughly 13/i14 compared to the effect of the renormalizable

interactions. So they are irrelevant and it is sufficient to study the renormalizable

interactions of the low–energy theory.

The most general supersymmetric Standard Model that is consistent with all

the gauge symmetries has some phenomenological problems though. These prob-

lems involve the stability of the proton, and the mass spectrum of the superpart-

ners. These are discussed in turn.

Recall that the Higgs supermultiplet ~ and the lepton supermultiplets Li

have the same gauge quantum numbers. See Table 1.1. This was the origin of

the rejected speculation that the Higgs bosons could be the superpartners of the

leptons. In this context, though, this means that from any particle interaction

that contains ~, a new interaction consistent with all the gauge symmetries and

renormalizablity is obtained by replacing ~ ~ Li. Since the interactions with E

conserve lepton number 4, the new interactions with the replacement must violate

4The lepton number L of a lepton and anti-lepton is defined to be +1 and – 1 respectively.

The lepton number for the quarks and Higgs particles is O. Similarly, the baryon number B for

quarks (anti-quarks) is defined to be +1/3 (–1/3) (so that for example, the proton has B = 1)

and zero for all other particles.
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Figure 1.3: R–parity violating proton decay p + T“e+.

Iepton number.

Further, baryon number violating interactions are also allowed. Trilinear inter-

actions of the form ucdcdc that contain two quarks and one squark are consistent

with SU(3)C x SU(2)L x U(l)y invariance. These

since the interaction has B = – 1. Consequently

clearly violate baryon number

these interactions give rise to

processes that change, baryon number by one unit.

So the most general supersymmetric extension of the Standard Model, consis-

tent with the principles outlined above, violates lepton and baryon number. On

the other hand no lepton or baryon number violating processes, such as p -+ e~,

p -~ eee or n ~ ~ oscillation, have been experimentally observed. Thus the

reaction rates for these processes must be small if present.

In fact, the presence of both the baryon violating and lepton violating interac-

tions is a disaster. Since both baryon and Iepton numbers are no longer conserved

the proton is no longer stable. For example, the decay p + T“e+ is allowed. If

the dimensionless B–violating couplings AB and L–violating couplings AL which
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characterize the strength

lifetime for the proton is

of these interactions are numerically close to one, the

10-13 _ 10-15 seconds. The Feynman diagram for one

possible decay mode is given in Figure 1.3. This lifetime is incompatible with the

measured lower bound to the proton lifetime of about 1032 years. It can be made

compatible only if the product of the I?-violating couplings AB and L–violating

couplings AL are extremely tiny: ~~~~ < 10–25.

Why these couplings are so small is a puzzle, and suggests that either B or

L is a good symmetry of the renormalizable interactions. These dangerous inter-

actions can be forbidden by imposing a discrete symmetry, called R–parity. It

is implemented by requiring that the particle interactions are invariant under the

discrete symmetry Al ~ –M for a matter supermultiplet, and Hi -+ Hi for each

Higgs supermulitplet. This symmetry allows the trilinear interactions of the form

MiiWjHk which give mass to the matter particles, but forbids interactions of the

type ikfiikljikfk. It is the latter interactions that make the proton unstable, for ex-

ample. An inspection of Figure 1.3 indicates that the troublesome vertices cent ain

3 matter fields, which would be forbidden if this R–parity is a good symmetry.

But since the proton decay requires both B number and L number violation,

the phenomenological difficulties are not nearly as serious if only one of these

numbers is conserved. Thus the imposition of R–parity is perhaps too strong,

and maybe only B number or L number conservation is sufficient. What are the

phenomenological constraints in this case? Since the Yukawa couplings exhibit a

hierarchical structure there are good theoretical reasons to expect a hierarchical
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structure for the L number violating interactions if they exist. In Chapter 3 of

this dissertation rare processes such as K+ ~ T+VD, as well as top quarks decays,

are used to constrain these L number violating interactions.

The next difficulty with a naive supersymmetric extension of the Standard

Model occurs with the mass spectrum of the superpartners. As mentioned before,

the supersymmetry generators commute with the spacetime translation generators.

This implies that all the components of a supermultiplet have the same mass. So

for example, if supersymmetry were an exact symmetry of Nature, the superpart-

ner of the electron, the slepton, would have the same mass as the electron. This is
.

incompatible with experiment al observations, since no such select rons have been

detected. In fact, the current lower bound on the selectron mass from the LEP2

experiment is about 80 GeV, which is 105 times heavier than the electron.

These experimental facts imply that supersymmetry must be spontaneously or

“softly” broken. Since the motivation for supersymmetry was to solve the hier-

archy problem, the spontaneous breaking of supersymmetry must not reintroduce

quadratic divergences. Fortunately, the number of types of interactions that break

supersymmetry, but do not introduce quadratic divergences is small [8]. Masses for

the squarks, sleptons and gauginos may be added without introducing quadratic

divergences. These so-called “soft masses” are arbitrary and unrelated to the

masses of their superpartners. A very heuristic explanation for why no quadratic

divergences are introduced when these soft masses are introduced is the following.

First, since no quadratic divergences are present when the boson m and fermion
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~F masses are equal, the one–loop quantum correction to the scalar mass for

unequal masses is then

Am2 x

Here C is a function of the gauge

C(m2 – m;) + Am;. (1.7)

and Yukawa couplings of the theory and log A2,

and Am; is the correction to the fermion mass. This is seen more clearly (at

one–loop) by evaluating the Feynman diagrams in Figure 1.2. The diagram in

Figure 1.2(a) depends on the scalar mass m, but not on the fermion mass mF,

whereas the opposite is true for Figure 1.2(b). This, together with the fact that

Am2 = Am% in the supersymmetric limit m = mF, implies that the correction to

Am2 when m # mF must be of the form as in Eqn.(1.7).

So it is possible to give large enough masses to the superpartners of the Stan-

dard Model fields so as to avoid experimental detection, while simultaneously not

introducing any quadratic divergences.

The existence of these soft masses for the squarks and sleptons also provides

a natural explanation for the origin of electroweak symmetry breaking. Recall

that in the Standard Model this Higgs mass parameter m~ must be negative in

order for electroweak symmetry to be broken. This is introduced into the theory

without any explanation. In the MSSM by contrast, a negative m2 for the Higgs

mass parameter occurs quiie naturally, and is made possible by the large top

quark Yukawa coupling and for top squark masses heavier than about 100 GeV.

This is because the quantum corrections of the top squarks to m% (as in Figure
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1.2(a) with @2 =top squark) are always negative. On the other hand, the same

quantum corrections result in a less negative correction to the squarks masses.

The squarks also receive positive corrections from loops of gluinos, which do not

contribute to Am~. These tend to keep m2 >0 for the squarks. A m2 <0 for a

squark mass would be bad since this would break SU(3)C, and result in a weakly

interacting short range force (like SU(2)L) rather than the

is observed. Further, the color quantum numbers would not

confining force’ that

be conserved. This,

however, does not occur - only the

the squark and slepton m2s remain

Higgs mass parameter becomes negative and

positive. Thus the perturbative dynamics of

the MSSM with a mass spectrum between 100 GeV and 1

electroweak symmetry should be broken, and that the color

symmetries should be unbroken.

TeV predicts that the

and electromagnetism

The introduction of completely arbitrary soft masses for the squarks and slep-

tons has some phenomenological problems though. In the Standard Model in-

dividual lepton number is conserved. There are no processes such as p + e~,

T + ey, or p ~ eee which violate individual lepton number. This follows directly

from the symmetry ii + e;~’Zi of the SM interactions, where here li is a lepton

fermion. For generic soft masses in the MSSM this is not the case though. Since

there are 3 generations of X=Q, u’, dC, L and ec sparticles, there are in general

five 3 x 3 arbitrary mass matrices m~, one for each of the fields listed above.

To see that these generically break the flavor quantum numbers, first rotate the

fermions and their superpartners by a common rotation so that the fermion mass
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matrices are diagonalised. In this basis all the supergauge interactions conserve

flavor. The matrices m~, however, will not in general be diagonal in this basis.

This means, for example, that separate rotations on ~ and ji are not allowed if

m~p # O. Thus individual “smuon” and “selectron” numbers are not conserved.

But since the sleptons have the same global symmetries as the leptons because

they are in the same supermultiplet, individual electron and muon numbers are

also not conserved. Thus the presence of this mass mixing between smuons and

selections violates lepton number, and they result in many dangerous lepton vio-

lating processes. For example, the Feynman diagram

is given in Figure 1.4. Since

small, the mass mixing must

the branching fraction

be extremely small :

resulting in the decay p ~ e~

BR(p + ey) <10-11 is very

%S’o-’i’oo:ev)’ (1.8)

This rn~p is related to the mass difference Am’ between the two slepton eigenstates

and the mixing angle sin 19that diagonalises them (in the mass basis where the

leptons are diagonal):

m& = (Am’) sin t9cos 0. (1.9)

A similar mass mixing between the strange and down squarks leads to large

flavor changing processes,

ence of the neutral kaons.

Figure 1.5. Since AmK/mK N 10-14 is measured to be very small, in order to be

consistent with this measurement the masses of the first two generations squarks

and in particular contributes to AmK, the mass differ-

The Feynman diagram for a possible process is given in
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Figure 1.4: A supersymmetric contribution to

selectron, and fi” is a neutralino. The “cross”

must be even more degenerate:

e-

p j e~. Here F is a smuon, ~ is a

indicates a ji ~ ~ transition.

Am2
—sinf3cos4 ~ few x 10–3m2 (500fev)20

(1.10)

Thus two 500 GeV squarks must be degenerate to within a few hundred MeV! The

C_P-violating parameter c in the neutral kaon system provides an even stronger

constraint: if Am2 contains an order one phase the right–hand side of Eqn (1.10)

is a factor of 10 smaller.

Why these sleptons and squarks of different flavors must be so closely degen-

erate in mass, when there is no good reason to expect them to be, is referred to in

the literature as the “supersymmetric flavor prcblem”. There are several physics

explanations for why the masses or mixing angles appearing in Eqn. (1 .9) and in

Eqn.(1.10) are “naturally” small :

1. The short–distance theory contains a flavor symmetry. In the limit of

unbroken flavor symmetry the squarks and sleptons are degenerate in mass so that

the flavor changing processes are completely suppressed [9]. This flavor symmetry
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K o —0K

Figure 1.5: A supersymmetric contribution to K – ~ mixing. Here 5 is a strange

squark, ~ is a down squark, and j is a gluino. The crosses indicate 3 * d transi-

tions.

also forbids any of the smal

[9, 10], the first and second

Yukawa couplings.

generation particles

For example, in a U(2) theory

form a 2; the soft scalar mass

interactions must respect this symmetry, so only a common mass m; for g and

~ is allowed. The spontaneous breaking of the flavor symmetry is responsible for

generating the small Yukawa couplings, and also leads to flavor changing processes

as described above which are consistent with the measured values. Since the flavor

symmetry is the same for a particle or its superparticle, the hierarchy appearing in

VKM for the quarks may also appear in the matrices for the squarks and sleptons.

So a large mixing angle between ~ and E is conceivable. In Chapter 4 the prospect

for detecting the slepton mass mixing angles at the LHC is considered;

2. The spontaneous breaking of supersymmetry is cornnmnicated to the MSSM

by the SM gauge interactions at an energy scale below the mass scale responsible

for generating the fermion Yukawa interactions [11]. Since the gauge interactions
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do not distinguish between flavors, each slepton flavor receives the same soft mass,

and similarly the squark flavors are degenerate. So there are no dangerous flavor

changing processes. In Chapter 5 this framework is investigated, and it

that if the supersymmetry breaking sector is at low–energy, then this

introduces a large amount of fine tuning of the Higgs mass parameters

to obtain the correct Z mass. Some ideas for avoiding this difficulty

presented;

is found

solution

in order

are also

3. The first and second generation scalars are very heavy, 10 TeV or larger so

that the flavor changing processes are sufficiently suppressed. In Chapter 6 this

idea is investigated, and it is found that in order to avoid breaking color and charge,

a fine tuning comparable to that which was required to solve the supersymmetric

flavor problem is introduced into the Higgs mass parameters. Thus this solution

solves one fine tuning problem but introduces another;

the bizarre representation structure

4. The mixing angles are effectively zero. These so–called “alignment” models

[12] are not considered in this dissertation.

The next subject discussed here concerns

of the Standard Model. Recall that the representations of the Standard Model par-

ticles under the Standard Model gauge group are given in Table 1.1. One striking

feature of the representations is that they are so different from each other. Where

do these hypercharge assignments come from, and why do the particles appear in

those particular representations of SU(3)C x SU(2)~? Why even SU(3)C x SU(2)~?

Why not SU(4) x SO(7)? Is there a hidden relationship connecting the elements
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of this structure, or is it completely arbitrary? This is reminiscent of Mendeleev’s

Periodic Table of the Elements and the atomic theory that followed which provided

a deeper “picture” of the organization of the elements. Perhaps a more unifying

structure is also beneath the Standard Model. As these questions address the

structure of the Standard Model, any progress must be found in physics beyond

the Standard Model.

To underscore the significance of any possible answers to these questions, a

“fake” Standard Model is presented in Table 1.2. In this “fake” Standard Model,

the “quarks” occur in the 6 representation of SU(3), rather than the 3. The

gauge anomalies are canceled by having two “leptons” per generation. Note that

the SU(2) and hypercharge assignments of the “fake” SM particles are the same

as in the SM. So the “fake” SM particles have the same electric charge as their SM

counterparts. For one generation of fermions the low–energy physics of the “fake”

SM is qualitatively similar to that of the SM: here SU(3)C probably confines, giving

“protons” and “neutrons”; there are also electrons, muons and neutrinos. As in

the SM, the Higgs field II can break electroweak symmetry down to U(l).~ and

give mass to all the particles. So this “fake” SM imitates many of the qualitative

features of the SM, and the difference between the two is in the (important) details.

Observers in a Universe with the “fake” SM may also wonder about any underlying

unity to their world.

In [13] Georgi and Glashow put forward the beautiful idea that the Stan-

dard Model is unified into the single simple gauge group SU(5). An aesthetic

26



Q

u’

D’

SU(3) SU(2) U(l)y + SU(3) SU(2) U(l)y

6 2 1/6 El 1 1 1

F 1 -2/3 Ez 1 1 1

6 1 1/3 H 1 2 1/2

1 2 -1/2 Lz 1 2 -1/2

Table 1.2: An anomaly–free “fake” Standard Model. Here H is the Higgs scalar,

and all other fields are fermions. The physics of this model (for one generation)

is qualitatively similar to that of the Standard Model. But to the author’s ability

this model cannot be uiidied into a Grand Unified Theory.

strength of this proposal is that one generation of fermions fill complete SU(5)

represent ations without requiring any additional fermions. Just as remarkable,

one generation of fermions, together with a right-handed neutrino (v’), which is

independently hypothesized to generate small neutrino masses, together form a

complete representation of S0(10), the spinorial representation 16. The economy

of the fermion unification, and the elegance of the unification of the gauge groups

into a single gauge group is in itself very compelling.

It is next illustrated how these Grand Unified Theories [14] provide some insight

into the origin of the particle content of the Standard Model. In particular, a

key feature of these theories is that two unrelated particle groups of the Standard

Model, the leptons and quarks, are united into a single representation of the Grand

Unified Theory. In other words, the Grand Unified Theories do not distinguish
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between leptons and quarks.

To begin, add to the Standard Model a right–handed neutrino, and introduce

an extra U(1), call it U(l)~_~. The B – L charge of a quark (anti–quark) is 1/3

(–1/3), and the negatively (positively) charged leptons have 1? – L charge –1

(+1). The B – L charge of the Higgs field is O in order for the Yukawa couplings

to be U(l)~_~ invariant. It is now possible to embed

SU(3)C x u(l)&L E SU(4). (1.11)

Here U(l) B-~ is the third diagonal generator of SU(4). Under this embedding

the fundamental of SU(4) decomposes as

4 + (3, 1/3)@ (1, –l). (1.12)

This is just a q @ 1 of the Standard Model! So

Here a is the SU(3)C index, and the doublets ~ =

(:)Lc=(:)have
been introduced. Note that Q’ has the opposite baryon number to Q. Now what’s

happened to U(l)Y? In fact, Y is a linear combination of the B – L in SU(4) and a

new U(l), call it U(l)~~. The relation between the charges is Y = (B – L)/2 + TR.

It follows that the TR charges of the SU(2)~ doublets Q, L are zero, and H and

~ have charge 1/2 and – 1/2. The SU(2)~ singlets @ and Lc have charges

+1/2 (– 1/2) for the upper (lower) components. That is, TR is just the diagonal

generator of an L5’U(2)R,with Qc, Lc N 2. It is then natural to extend the U(l)~~
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to the full SU(2)k. Thus the Standard Model particle content can be embedded

into the Pati–Salam group G = SU(4) x SU(2)~ x SU(2)~ [15]. Other than the

right–handed neutrino and the extra Higgs doublet ~, no new matter, i.e. non–

gauge, particles have been introduced. It is remarkable that the Standard Model

fields transform so simply under this new group :

one generation+ right-handed neutrino = (4,2,1 )@(~,l,2),

two Higgs fields = (2, 2). (1.13)

Compare the economy of this particle content to that of the Standard Model given

..
in Table 1.1.

One interesting fact about this semi-unification is that the proton is stable.

To see this, first note that the SU(4) gauge bosons decompose as 15= (3, 4/3)@

(~, -4/3) @ (8,0)@ (1,0) under SU(3)~ x U(l)~_L. Only the X ~ (3, 4/3) and

Y w (3, –4/3) states carry baryon number and can potentially mediate proton

decay. The point is that the Standard Model fields are contained in (4,2,1) or

@,1, 2), and each of these contains only one SU(3)C representation, i.e. Q or

Q’, but not both. Consequently, the four-Fermi operator obtained by integrating

out the massive SU(4) gauge bosons X or Y always contains two leptons, and

never three quarks. So the four–Fermi operator conserves lepton number and the

proton is stable. As will be seen later, this is in contrast to the predictions of more

popular Grand Unified Theories.

The embedding of the Standard Model into the Pati–Salam gauge group re-
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suits in an economy of particle content, but not of the gauge groups since there

are still three gauge group factors. A further unification into S0(10) or SU(5) is

possible though. The isomorphisms SU(4) ~ S0(6) and S0(4) ~ SU(2) x SU(2)

imply that the Pati–Salam gauge group is isomorphic to S0 (6) x S0 (4) which is

a maximal subgroup of S0 (10). This line of thought suggests that it is natural to

embed the Pati–Salam gauge group into S0 (10). This is in fact possible with an

even further increase of economy. The spinorial representation of S0 (6) is 8 and is

reducible to 4 @4’ due to chirality. Under the SO(6) ~ SU(4) isomorphism these

spinorial representations get mapped to the fundamental and anti–fundamental

representations of SU(4). Likewise, under the second isomorphism the spino-

rial representation of SO(4), 4 ~ (1, 2) @ (2, 1). Thus using this isomorphism

(4, 2,1) @@, 1,2) + (4@ 2) @ (4 @ 2) under SO(6) x SO(4). But this is just the

decomposition of the 16 of SO(10) a SO(6) x SO(4). The conclusion is that a

single generation of the Standard Model, plus a right–handed neutrino, fits exactly

into the 16 representation of SO(10).

This unification is very nice, but is it a generic feature of low-energy particle

physics models, or is it more unique? That is, is it likely than an arbitrary low–

energy particle physics theory can be embedded into a Grand Unified Theory?

The answer is most likely “no”,’ but the author has no proof. Instead, the “fake”

SM is presented as an example of a low–energy physics theory that is qualitatively

similar to the SM, but most likely cannot be unified into a Grand Unified Theory.

While the unification of the Standard Model into SO(10), or similarly, SU(5),
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is aesthetically pleasing and probably difficult to achieve in other “fake” Standard

Models, is there any other reason to believe that a Grand Unified Theory exists? In

fact, the simple Grand Unified Theories have some interesting phenomenological

implications, such as the instability of the proton and the unification of the gauge

couplings.

It was stated earlier that the Grand Unified Theories do not distinguish be-

tween quarks and Ieptons. Experimentally, however, this is clearly not the case:

quarks confine into protons and neutrons, leptons do not;

\ ferent from lepton masses; quark and lepton interactions

quark masses are dif-

are not the same, for

——
example, the cross–sections f7(dRdR + zRaR) (E) and o(LL + LL) (~) (here ~ is

a typical energy scale appearing in the interaction) are different. How can this be

reconciled with a Grand Unified Theory that unites quarks and leptons?

In Grand Unified Theories there are many massless gauge bosons beyond

of the Standard Model. For example, there are the X and Y bosons in the

those

Pati-

Salam group, there are twelve extra gauge bosons in SU(5), and thirty–three in

SO(10). Since they have not been detected yet, these gauge bosons must be

massive, and this means that the Grand Unified Theory must be spontaneously

broken at some mass scale ~~~* which is representative of the masses of the

extra gauge bosons. There is a decoupling theorem [16] which states that since

these gauge bosons are heavy and their masses do not break any of the SM gauge

symmetries, they have no measurable effect on scattering experiments performed

at energies E << MGUT and their only effect is to renormalize the parameters of
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the low–energy theory 5. Thus, except for phenomena forbidden in the Standard

Model such as proton decay, the physics of a Grand Unified Theory does not

appear in any of the low–energy experiments. So at energies E << JlfGuT the

effective theory is the SM (or MSSM), rather than a Grand Unified Theory. This

is the origin of the differences between leptons and quarks listed earlier: they

are caused by physics in the low–energy theory. What this does mean, however,

is that only at energies E ~ J4GUT are the symmetries of the Grand Unified

apparent. For example, in the minimal 577(5) theory both d’ and L are unified

together into a single ~. Thus at these high energies, for example, the cross–section

——
IS(~R~R -+ dRdR) (E ~ M~uT) = o(LL -+ LL) (E ~ MG~~), and the quarks and

leptons are not distinguishable.

It is interesting to see how this last result comes about. At low energies the

cross–sections are different because the gauge couplings of the Standard Model, al,

a2 and a3 are all different. These couplings are measured at LEP using electron

beams with energy E N Mz R1OO GeV. As the energy of a physical process

is increased, however, virtual quantum effects of order (log E/Mz) become large

and their effects can be summed up into an effective coupling ~i (E). Since in a

simple Grand Unified Theory there is only one gauge coupling ~Gu~, at energies

E ~ MGUT, the couplings az(E) of the Standard Model should all become equal

5Unless the experiment is searching for a process that is forbidden by the symmetries of the

low–energy theory, but allowedby the interactions of the high–energy theory, e. g. proton decay.

Then the high-energy physics is the leading effect.
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to the one gauge coupling a~u~(l?).

So the point is that a necessary condition for simple Grand Unified Theories

is that the Standard Model couplings should become equal (unify) at energies

E= M~uT. Further, the energy-dependence of the gauge couplings depends

on the particle content of the effective theory. Thus the gauge couplings of the

Standard Model gauge groups may or may not unify with just the Standard Model

particle content, or the particle content of some simple extension. It depends on

both the particle content and, of course, the experimentally measured values of

the Standard Model gauge couplings.

So do the couplings of the Standard Model or its simple extensions unify at

high energies? In fact, as is evident from Figure 1.6, the unification is not very

good in the Standard Model. In contrast, the gauge couplings in the MSSM do

unify at the few

as the sparticle

percent level, which is well–within theoretical uncertainties such

and Grand Unified mass spectrum. This is presented in Figure

1.7. This is remarkable since the particle content of the MSSM is dictated by the

requirement of supersymmetry and the cancellation of gauge anomalies, and not

of unification. Since this unification is highly non–trivial, it is a strong piece of

indirect evidence for both low–energy supersymmetry and supersymmetric Grand

Unified Theories.

Another nice consequence of a supersymmetric SO(10) GUT is that it provides

some theoretical explanation for why R–parity is a good symmetry. Recall that

the dangerous R–parity violating interactions are of the form MzMjMk, where i, j
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and k are flavor labels. In SO (10) gauge theories these interactions are forbidden

at the renormalizable level. This is because the matter fields are in the 16, so the

dangerous operator must be of the form 16i 16j 16~. These interactions, however,

are not SO (10) gauge invariant and so they do not exist.

A further inspection of Figure 1.7 indicates that the gauge couplings unify at

a mass scale h4GuT X 2 X 1016 GeV. This is somewhat puzzling for the follow-

ing reason. The only “fundamental” mass scale in Nature is the Planck scale,
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lfp~ % 1018 GeV obtained from Newton’s constant. It then seems unlikely that

the inferred unification scale MGUT is a fundamental scale in Nature.

The philosophy assumed in this dissertation is that the small number

MGu~/MPl z 10-2 is not fundamental, but rather hints at some more under-

lying physics. This is explored in Chapter 7 where two candidate Grand Unifica-

tion models are proposed, with Grand Unified gauge groups SU(6) and SO(10),

which generate the Grand Unification from the Planck Scale, i.e., the unifica-

tion mass scale MGUT is not

through the supersymmetric

ntroduced into the theory. This is roughly achieved

analog of dimensional transmutation, whereby the

small

some

coupling of a gauge group generates a mass scale at low–energies through

non–perturbative dynamics.

in addition, the models presented in Chapter 7- in particular, the SO(10)

model – also maintain the spirit of “unification and simplification”. In Grand

Unified models the gauge group must be broken down to the Standard Model gauge

group. This is achieved by the Higgs mechanism, just as in the Standard Model, by

introducing some scalar particles transforming under some representation of the

Grand Unified gauge group. For example, in minimal SU(5) a 24 is introduced,

whereas in phenomenologically successful SO (10) models many 45s and 54s must

be introduced. In the end, many particles must be introduced and the symmetry

breaking must be introduced into the theory. This is clearly the ugly part of

these models. In contrast, in the SO(10) model of Chapter 6, the representation

structure is rather simple. Further, the symmetry breaking is not introduced into
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the theory. The correct

why the correct vacuum

Finally, the S0(10)

vacuum is one of several discrete vacua, and the reason

was selected depends on the early history the Universe.

model also contains an unexpected result, and this has

to do with the lifetime of the proton. In simple Grand Unified Models, such as ,-

S0(10) or SU(5), the heavy gauge bosons can mediate proton decay. It occurs in

these models since both Q and u’ are unified into a single representation – the 10

in SU(5), and the 16 in S0(10). Thus there is an interaction ~ XQUC between

X and the 10, and also

exchange of the X gauge

an interaction ~ X*LdC between X and the ~. The

boson causes the proton to decay. In supersymmetric

Grand Unified Theories the lifetime of the proton jrorn this process is around

1034 – 1036 years and is beyond the reach of existing experiments.

In supersymmetric theories there is also an analogous and more dangerous pro-

cess in the Higgs sector that causes the proton to decay. In gauge theories with

the SU(5) subgroups, the particles must come in complete SU(5) representations.

This

ners.

was automatically satisfied for the fermions and their supersymmetric part-

Recall that in supersymmetric theories there are two Higgs doublets and they

do not form complete SU(5) (or of any larger gauge group) representations. If

H -5 in the SU(5) theory, then there are some “missing SU(5) partners”, H(3),

with quantum numbers (3, 1, – 1/3). These particle together with the missing

partners of ~ may form a Dirac particle and have some arbitrary mass ~Hc.

Since these fields carry charge they affect the evolution of the gauge couplings.

Requiring that the gauge couplings still unify (as they appear to) implies that the
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Figure l.8: Superfield

to proton decay. The

Feynman diagram from colored higgsino exchange leading

“cross” indicates that there is some mass mixing between

the two colored higgsinos.

masses of these colored Higgs fields must be close to MGUT. Why the masses of the

doublets and triplets in the 5 and ~ Higgs representation are so wildly different

is known in the literature as the “doublet-triplet” splitting problem. In fact, it

is possible to prove that the measured couplings unify in supersymmetric theories

only if there is a split SV(5) representation, as occurs in the MSSM. (If all the

matter (non–gauge) fields formed complete S.!.1(5) representations – i.e. imagine

there were no Higgs fields – then CV3(MZ)= 0.07 is predicted in disagreement with

its measured value 0.118 + 0.003.)

These colored Higgs fields can mediate proton decay in SO(10) or S.V(5) the-

ories. The Feynman diagram is given in Figure 1.8. The “cross” indicates that

there is some mass mixing between H(3) and ~(~). The exchange of the H(3)
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gives a decay p + K+FP and n -+ KOPP with a lifetime that is roughly

‘-102’(10%eV)2years-
(1.14)

This is to be compared with the measured lifetime which is larger than 1032 years.

The theoretical and experimental results are naively consistent only if MHC is

pushed up to 3 x 1017 GeV. This solution is theoretically unattractive as it requires

the positing of yet another mass scale.

While there are several solutions to this problem, this dilemma has an unex-

pected and novel resolution in the SO(10) model of Chapter 7. Roughly speaking,

the particular mechanism that generates the Grand Unification scale also naturally

generates tiny couplings of the order MGu~/MPl. These tiny couplings naturally

appear in the mass mixing of the colored Higgs fields, and result in a suppression

of roughly MGuT/MP1 in the “cross” appearing in the Feynman diagram in Figure

1.8. This was not introduced into the theory, but was a consequence of the non–

renormalizable operators used to split the doublets and triplets. The suppression

of the “cross” results in a suppression of roughly (MGu~/MPz)2 N 10-3 in the

decay rate, or in a lifetime of the proton that is a factor of 103 larger than before.

The resulting lifetime is then consistent with its measured value.
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Chapter Z

Non–renormalization Theorem for the Wilsonian

Gauge Couplings in Supersymmetric Theories

A direct proof that the homomorphic Wilsonian beta-function of a renormaliz-

able asymptotically–free supersymmetric gauge theory with an arbitrary semi–

simple gauge group, matter content, and renormalizable superpotential is ex-

hausted at l–loop with no higher loops and no non–perturbative contributions

is presented. This is a non–perturbative extension of the well–known result of

Shifman and Vainshtein.

2.1 Introduction

In their 1986 paper [17] Shifman and Vainshtein solved the anomaly puzzle in

supersymmetric gauge theories. They argued that the supersymmetric extension

of the anomaly equation should be written in operator form and then showed that

the coefficient of the trace anomaly involves the Wilsonian gauge beta–function

rather than the exact Gell–Mann and Low function [18]. The puzzle is resolved

if it can be showed that the Wilsonian gauge beta–function is one-loop exact.

A perturbative proof of the above statement was presented in [17] where it was
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argued that all possible operators that could, in principle, contribute to the gauge

beta–function beyond one–loop are necessarily of infrared origin, and should not

appear in the Wilsonian effective action.

In this Chapter a direct proof that there are no further non-perturbative viola-

tions is presented. More specifically, it is proven that the homomorphic Wilsonian

beta–function of an arbitrary renormalizable asymptotically-free supersymmetric

gauge theory with matter is exhausted at l–loop with no higher loops and no

non–perturbative contributions.

The technique used to employ the theorem was introduced by Seiberg [19] and

it is briefly reviewed here. To obtain the beta–function two versions of the theory

with different cutoffs and coupling constants and the same low energy physics are

compared. The couplings of the theory with the lower cutoff can be expressed in

terms of the couplings of the theory with the higher cutoff and the ratio of the

two cutoffs. Their functional dependence on the high cutoff couplings is restricted

using holomorphy of the superpotential and gauge kinetic

rules. Holomorphy is a consequence of supersymmetry. To

terms and selection

see this, elevate the

couplings to background chiral superfields. They must appear holomorphically in

the superpotential in order to preserve supersymmetry. Selection rules generalize

global symmetries in the sense that the couplings in the superpotential are allowed

to transform under these symmetries. Non-zero vacuum values of these couplings

then spontaneously break these symmetries. Here only consider U(1) and U(l)R

symmetries are considered. In the quantum theory they are generally anomalous,
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but the same technique used for the coupling in the superpotential can be used.

That is, it can be assumed that the O–angle is a background field that transforms

non–linearly to make the full quantum effective action invariant.

Then, following a method used in [20], these conditions on the functional rela-

tions between the couplings of the theories at different cutoffs are translated into

restrictions of the functional

that the gauge beta–function

form of the gauge beta–function. It can be shown

is a function of the homomorphic invariants allowed

by selection rules.

stricted further by

Then the functional

varying the couplings

dependence of the beta–function is re-

while keeping the invariants fixed. This

relates the beta–function of the original theory to” the beta–fmction of a theory

with vanishing superpotential. In addition, a strong restriction of the functional

dependence of the beta-function on the gauge coupling is obtained. It has ex-

actly the form of a one-loop beta–function. The only ambiguity left is a numerical

coefficient which can be calculated in perturbation theory.

Next a short detour is made to explain what is meant by the Wilsonian beia–

function [21]. The Wilsonian beta–function describes the renormalization group

flow of the bare couplings of the theory so that the low energy theory is cutoff

invariant. Additionally, the vector and chiral superfields are not renormalized,

i.e. canonical normalization of the kinetic terms [17] is not imposed. The usual

convention in particle physics is to canonically normalize the kinetic term. It is

obtained by using the covariant derivative i? + igA. Instead, here non–canonical

normalization of the kinetic term is allowed. The normalization of the gauge fields
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is such that the covariant derivative has the form d+ iA. The gauge coupling only

appears in front of the gauge kinetic term. In this case it is convenient to combine

the O–angle and gauge coupling constant g into the complex variable T = O/27r +

4ri/g2. In supersymmetric gauge theories the beta–function is homomorphic in the

bare couplings only if the fields are not renormalized. Even if there is a canonical

normalization at a higher cutoff, the Kahler potential will not be canonical at

the lower cutoff. The resealing of the chiral or gauge superfields is an anomalous

transformation [17] that destroys the holomorphy of the superpotential and the

beta–functionl. The relation between the beta–functions in the two normalizations

was first discussed

known exactly [18]

in [17]. The beta–function for canonically normalized fields is

and receives contributions to all orders in perturbation theory.

For a recent discussion of these issues see also [20]. Again it is emphasized that

this Chapter is concerned only with the homomorphic Wilsonian beta–function.

It should also be clearly stated that the proof is not valid if any one of the

one–loop gauge beta–functions is

when the one-loop beta–function

not asymptotically-free. This includes the case

vanishes. As will be seen, exactly in this case

the U(l)~ symmetry is non–anomalous. This makes it diflicult to control the

dependence of the beta-function on the gauge coupling.

1For some special theories like N = 2 SUSY Yang-Mills the resealing anomaly of the chiral

superfields cancels the resealing anomaly of the vector superfield [20]. For these theories the

statements made here are stronger since the canonical and homomorphicWilsonian couplings

coincide.
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Various partial versions of this result already existed. As already mentioned,

the perturbative non-renormalization theorem was proven in [17]. An analysis

of possible non–perturbative violations to this theorem in the case of a simple

gauge group with a vanishing superpotential could be found in [20]. It was also

known that in the case of a simple gauge group with only Yukawa interactions

present in the superpotential, possible rmn–perturbative corrections to the Wilso-

nian beta–function are independent of the gauge coupling [22]. It should also

be mentioned that for some supersymmetric gauge theories it is possible to deter-

mine the exact beta–function for the canonically normalized fields, including all the

non–perturbative terms [23]. The exact Wilsonian beta–function for these theories

could then be obtained if

tions were known exactly,

resealing anomaly is used

the resealing anomaly relating the different normaliza-

both perturbatively and non–perturbatively. While the

in various places in the literature [17, 23] to relate the

two gauge couplings, it was not clear to the author whether for these theories

the exact form of the anomaly, including non–perturbative terms is known. A

perturbative calculation of the anomaly was presented in [20].

Finally, it is noted that the theorem is valid in theories where no mass terms are

allowed by the symmetries of the theory. This is

many supersymmetric extensions of the Standard

of phenomenological interest as

Model share this characteristic.

2.2 Simple Gauge Group

The case of a simple gauge group G is considered first. Let the generalized
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superpotential ~ be defined to include the kinetic term for the gauge fields

ii= ‘. tr~(WaW”) + W,
6ktR

(2.1)

is the usual superpotential and trRTaT~ = tR6ab. Here ~ is the cutoff mass and

was factored out so that all the couplings are dimensionless. The gauge coupling

g and (?-angle are combined in the complex variable

e 47ri
T=~+—

92 “
(2.3)

Note that unitarity requires ~ to be valued in the upper half plane. Since d is a

periodic variable it is convenient to introduce a new variable q - e2”’T. It is valued

in the complex plane and transforms linearly under the anomalous transformations

to be discussed below. Weak coupling is at q = O.

Consider now a theory with a different cutoff Ill’ and with the same low energy

physics. The Lagrangian at the new cutoff is

L = ~ ] d20d20Z@~e2vh@i +
(/

d20@(#, &, m:j, ,>C’ M’) + h.c.
)

(2.4)
i

where in particular, the fields Qi are not renormalized to canonical normalization.

The Zi depends non–holomorphically on the couplings, so renormalizing the chiral

—
superfields would destroy the homomorphic form of W. The new coupling T’ is

a function of the old dimensionless couplings and the ratio M/M’. For later
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convenience this is written as

“ ln(kf/M’)). (2.5)T’ = r’(r, Aijk, Wj7 CZ1

Supersymmetry requires aholomorphic dependence of ~ on the first four argu-

ments. To see this, note that the couplings in the generalized superpotential can

reconsidered as vacuum values of background chiral superfields. Invarianceof

the action under supersymmetry transformations requires holomorphyofthesu-

perpotential.

To prove the non–renormalization theorem selection rules are used. These are

global symmetries of the superpotential with all couplings considered as chiral su-

perfields. The couplings are assigned non-trivial transformation properties under

the symmetry group.. These symmetries will be spontaneously broken by non-zero

vacuum values of the couplings. In general the symmetries are also anomalous.

They are are made non-anomalous by assigning a charge to q, i.e. transforming f?

to compensate for the anomaly. Consider the U(l)~ x U(1) global symmetry with

the following charge assignment:

U(l)R

u(1)

w. o~ A2j~ m~.j c~ q

1 2/3 o 2/3 4/3 2b0/3

o 1 –3 –2 –1 2 ~i t(Ra)

The quantity b. is given by b. = 3ta~j – xi t(&), where t(~) is the normalization

of the generators for the representation of the chiral superfield @i. For example,
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t = 1/2 for a fundamental of SU(IV). Define the gauge ~–function by

P2.i-r = d 27TiT’/MIzM = ~(r, &jk, ~ij, Ci).
dln(M/M’)

(2.6)

The holomorphy of T in (2.5) translates into holomorphy of the ~–function.

Since r -+ T + 1 is a symmetry of the theory, ~ is a single valued function of q

P27fi7 = .f(97‘ijk, mij, Ci). (2.7)

First, consider the case when at least one mass term, call it m*, can be non–zero.

If any ci could be non-zero, then there is a gauge singlet field which could be given

a Majorana mass, so this is the same case as above.

The gauge beta–function is iY(l)~ x U(1) invariant. This statement is non–

trivial and requires some explanation. Consider some arbitrary coupling A that

transforms linearly under some U(l) or U(l)R symmetry. Its beta–function Da

must also transform linearly with the same charge as A

eiQ’a~~(~, . . .) = ~~(eiQ’@A,. . .) (2.8:

where Q~ is the charge of ~. This is true in particular for the beta–function of q.

However in terms of the 7 variable

d d.

‘2”;7 = d ln(M/Al’)
27i-iT’= —2n-m’ pq = q-~ /dq.

dq
(2.9)

The additional q factor makes the T beta–function invariant. In what follows

only the gauge beta–function is considered since the argument for the other su-

perpotential couplings is similar and known, i.e. there are no perturbative [6] or
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rmn–perturbative [19] corrections to the usual superpotential. The subscript is

dropped and it is denoted as ~.

First consider U(l)R invariance. It requires that

(q77J~j
/j=f —— );,Azjk .

m!$7m~’m*
(2.10)

However, the variables of ~ are not U(l) invariant. They have charges

6t.~j, 0,3, –3, respectively. Invariance under U(l)~ x U(1) requires that ~ is a

yet another function

(
&4 ~.2tadj )P=F (/X, d ,dj+=,i,:.* m*a *

(2.11)

Next take the limit m. ~ O keeping q and all the arguments of F constant. If

bO >0, this corresponds to taking all couplings except r to zero. Assuming that

,/3is continuous it is found that ~(q, ~ij~, mij, Ci) = p(q, ~ijk = mij = ci. = O) and

thus it is independent of all the couplings in the superpotential. In fact when

the superpotential vanishes it is known [20] that there are no non–perturbative

corrections to the beta–function and the gauge coupling only runs at l–loop2. This

just reflects the fact that no U(l)R x U(1) homomorphic invariant can be constructed

solely in terms of q. Note the importance of holomorphy in these arguments. For

example, if holomorphy is not required qq is invariant under an arbitrary /7(1) and

U(l)R symmetry. So no higher loops or non–perturbative corrections are present

2Note that this result can also be written as ~g = –&g 3 which is just the standard l-loop

beta-function.
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and it is concluded that

(3= bo, (2.12)

thus extending the perturbative result of Shifman and Vainshtein [17].

An exception to the previous argument occurs when the gauge and global

symmetries of the theory allow only Yukawa couplings to be present in the super-

potential. For these theories

P = f((?, Ajk).

The beta-function must be U(l)~ invariant. This

(2.13)

requires

f(e2b”ai’3q,&jk) = f(q, k). (2.14)

Then byholomorphy~ is independent of q. Further, invariance of /3 under the

U(l) symmetry requires that fisafunction ofratiosof&j~ only. Choose one of

the non-zero ~ij~, Ax say, and divide through by A,. Then

(2.15)

Consider the limit &~ + Owhile keeping the ratios &j~/& constant. In this limit

/3 reduces to the one-loop result. So assuming that/3 is continuous, it follows that

~(~ij~) = p(~ij~ = O) = bo, i.e. it is independent of the Yukawa couplings.

To conclude this section, it is noted that the discussion of the proof of the the-

orem was divided into two cases requiring separate proofs. Here a short argument

is presented which extends the proof of the theorem, valid when at least one mass

term is allowed, to theories which do not admit any bare mass terms. Consider
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a theory with Lagrangian Z for which the symmetries of the theory forbid the

presence of any mass terms. To this theory, add a non–interacting gauge-singlet

field with mass m*. More concretely, the new theory defined at M is described by

the Lagrangian

(2.16)

This new theory satisfies the conditions of the theorem proven when at least one

mass term is allowed, so the beta-function of the new theory, &W, is exhausted at

one–loop. But on physical grounds it can be concluded that & is identical to ~,

the beta-function of the original theory, since in integrating over momentum modes

M to M’ the contribution from the gauge singlet completely factors out since it is

non–interacting. So by this argument the proof of the theorem for theories with

mass terms can be extended to theories for which mass terms are forbidden by the

symmetries of the model.

The results of this section are also valid for a semi–simple gauge group. The

proof of this is sketched in the next section.

2.3 Extension to a semi–simple gauge group

Assume that the gauge group is G = IIAGA with each GA a simple group. Also

assume that the superpotential has the form given in Section 2.2. Then if all the

simple gauge groups are asymptotically–free the Wilsonian beta–functions of all

the gauge couplings are one–loop exact.
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For each simple gauge group GA define

Q~ 47ri
TA=—+—

2T g;
(2.17)

and introduce qA s e2ni~Aas in Section 2.2. The U(1) R x U(1) selection rules

of Section 2.2 are extended by assigning all gauge chiral multiples W@ charge

(1, O). Then qA has charge (2b$/3, 2 ~z tA(~)). It will be convenient to define

~A - (qA)*. Then ~A has charge (2/3,2 xi tA (~)/t#). Weak coupling is at

~A = O since b~ is positive.

The beta–functions for each simple gauge group are defined as in Section 2.2,

so that

is a function of homomorphic invariants and invariant under the Lr(l)R x U(l)

symmetry.

The proof is done for two cases:

1. Only Yukawa couplings are allowed.

2. At least one mzj # O is allowed.

In the first case invariance of ~~ under U(l)~ requires that /!?Ais a function of

ratios of ~~ only. That is,

8A= ~A(fiB/~EL, ~~jk). (2.19)
-,

Here an arbitrarily chosen ~&, is selected and divided into the other ~Bs, so that

each ~B other than ~& appears in the argument of F only once. Now consider
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the weak coupling

beta–functions is

limit ~B + O for all the gauge couplings. The argument of the

/@/i$B*= exp 2~i(7B/bf – 7& /b~ ). (2.20)

Since by assumption the one-loop beta–functions all have the same sign it is pos-

sible to take this limit while keeping the ratios ~~/~& fixed. In this limit the

beta–function is a function of the Yukawa couplings only. So assuming that the

beta-functions are continuous in this limit, it is found that ~A(~B, ~ii~) = ~A(~B =

O,~ij~) = ~A(&~). But U(l) symmetry maybe used to conclude that PA is a func-

tion of &j~/~.. The argument of Section 2.2 may now be repeated to conclude

that @A (~Bj &jk) = constant.

For the second case a straightforward generalization of the argument of Section

2.2 may be repeated with the conclusion that

Then

FA is

the argument used in the first case of this Section is used

independent of all of the qB and superpotential couplings.

(2.21)

to conclude that

Note

The statement of this theorem for the case of a simple gauge group was also

made in the lecture notes [24].- In that proof the author considers a superpotential

containing no composite operators, i.e. only operators linear in the fundamental

fields. Of course such superpotential is not gauge invariant. It is however, only
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used in an intermediate step to simplify the study of the charge assignment for the

couplings in the physical gauge invariant superpotential. The U(1) charge of the

coupling of a composite operator equals the sum of the charges of the couplings of

the fundamental fields entering the composite. In [24] however, it is also assumed

that the U(l)~ charge of the couplings of composite gauge invariant operators in

the superpotential equals the sum of the charges of the couplings of fundamental

fields forming the composite. While this is true for usual U(1) symmetries since the

superpotential has charge zero and the sum of charges of the couplings must equal

minus the sum of charges of the fields entering the composite, for U(l)~ symmetries
*

the superpotential has charge two and the arithmetic is more complicated. Because

of this, the proof in [24] only works for a superpotential linear in matter fields,

i.e. when only gauge singlet chiral superfields are present. We also generalized the

theorem to a semi–simple gauge group.
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Chapter 3

.R–Parit y Violation

In this chapter it is argued that supersymmetric R-parity breaking (~) in-

teractions always result in Flavor Changing Neutral Current (FCNC) processes.

Within a single coupling scheme, these processes can be avoided in either the

charge +2/3 or the charge —1/3 quark sector, but not both. These processes are

used to place constraints on & couplings..The constraints on the first and the

second generations are better than those existing in the literature. The& inter-

actions may result in new top quark decays. Some of these violate electron-muon

universality or produce a surplus of b quark events in tt decays. Results from the

CDF experiment are used to bound these & couplings.

3.1 Introduction

The Minimal Supersymmetric Standard Model (MSSM) with the gauge group

G = SU(3)C x SU(2)~ x U(l)y contains the Standard Model particles and their

superpartners, and an additional Higgs doublet. In order to produce the observed
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spectrum of particle masses, the superpotential is given by

(3.1)

where L =

[:)andQ= (:)

denote the chiral superfields containing the

lepton and quark SU(2)~ doublets and E’, U“ and Dc are the SU(2)~ singlets,

all in the weak basis. H and ~ are the Higgs doublets with hypercharges 1/2

and – 1/2 respectively. The SU(2)~ and SU(3)C indices are suppressed, and i, j

and k are generation indices. However, requiring the Lagrangian to be gauge

invariant does not uniquely determine the form of the superpotential. In addition,

the following renormalizable terms

(3.2)

are allowedl. Unlike the interactions of the MSSM, these terms violate Iepton

number and baryon number. They may be forbidden by imposing a discrete sym-

metry, R–parity, which is (– l)3~+~+2s on a component field with baryon number

l?, lepton number L and spin S. Whether this symmetry is realized in nature must

be determined by experiment. If both lepton and baryon number violating interac-

tions are present, then limits on the proton lifetime place stringent constraints on

the products of most of these couplings. So, it is usually assumed that if R–parity is

violated, then either lepton or baryon number violating interactions, but not both,

are present. It is interesting that despite the large limits on the proton lifetime,

1A term p&H is also allowed. This may be rotated away through a redefinition of the L

and H fields [25].
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some products of the R-parity violating couplings remain bounded only by the re-

quirement that the theory remain perturbative [26]. If either L~QjD~ or U~D~D~

terms are present, flavor changing neutral current (FCNC) processes are induced.

It has been assumed that if only one R–parity violating (&) coupling with a

particular flavor structure is non–zero, then these flavor changing processes are

avoided. In this single coupling scheme [27] then, efforts at constraining R–parity

violation have concentrated on flavor conserving processes [28, 29, 30, 31, 32, 33].

It is surprising that, even though individual lepton or baryon number is violated

in this scheme, the constraints are rather weak.

In Section 3.2, it is demonstrated that the single coupling scheme cannot be

realized in the quark mass basis. Despite the general values the couplings may

have in the weak basis, after electroweak symmetry breaking there is at least one

large ~ coupling and many other & couplings with different flavor structure.

Therefore, in the mass basis the R-parity breaking couplings cannot be diagonal

in generation space. Thus, flavor changing neutral current processes are always

present in either the charge 2/3 or the charge – 1/3 quark sectors. These processes

are used to place constraints on R–parity breaking. Constrains on the first and

the second generations that are much stronger than existing limits are obtained.

The recent discovery of the top quark [34, 35] with the large mass of 176 GeV

opens the possibility for the tree level decays t + ~~+dk and t -+ & +~~ if R–parity

is broken. If the & couplings are large enough, then these decay channels may

be competitive with the Standard Model decay t ~ b + W. As no inconsistencies
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between the measured branching fractions and production cross-section of the top

quark and those predicted by the Standard Model (SM) have been reported, limits

on the branching fractions for the & decay channels may be obtained. Since the

existing lower bound on the mass of the lightest slepton is N 45 GeV [36], while the

strong interactions of the squarks make it likely that the squarks are heavier than

the sleptons, the decay t + & +d~ is more probable. In this analysis, it is therefore

assumed that only the slepton decay channel is present. In Section 3.3 the & top

decay channels are analyzed to place constraints on the t ~ ~++ dk coupling. For

this reason, in this chapter only the ~ terms LiQjD~ are assumed to be present.

The conclusions of Section 3.2, however, are valid even if the L&j13~ terms are

also present. Constraints on products of couplings when both JZ interactions are

present may be found in reference [37]. Section 3.4

compares them with limits existing in the literature.

summarizes the results and

3.2 Flavor Changing Neutral Current Processes

Flavor changing neutral current processes are more clearly seen by examining

the structure of the interactions in the quark mass basis. In this basis, the ~~~k

interactions are

‘~j@IW(vKM)@~ – ~~uj~)~~n (3.3)

where

(3.4)
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The superfields in Eqn. (3.3) have their fermionic components in the mass basis so

that the Cabibbo-Kobayashi-Maskawa (CKM) matrix [3] VKM appears explicitly.

The rotation matrices U~ and DR appearing in the previous equation are defined

by

dR~ = DRajC&i (3.6)

where qi (q~) are quark fields in the weak (mass) basis. Henceforth, all the fields

will be in the mass basis and the superscript m is dropped.

Unitarity of the rotation matrices implies that the couplings &k and ~zj~

satisfy

(3.7)

So any constraint on the & couplings in the quark mass basis also places a bound

on the & couplings in the weak basis.

In terms of comDonent fields. the interactions are. /

(3.8)

where e denotes the electron and ~ its scalar partner and similarly for the other

particles.

The contributions of the R–parity violating interactions to low energy processes

involving no sparticles in the final state arise from using the & interactions an

even number of times. If two A’s or At’swith different flavor structure are non–zero,
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flavor changing lowenergy processes can occur. These processesarec onsideredin

references [25] and [38], respectively. Therefore, it is usually assumed that either

only one A’ with a particular flavor structure is non–zero, or that the R–parity

breaking couplings are diagonal in generation space. However, Eqn. (3.8) indicates

that this does not imply that there is only one set of interactions with a particular

flavor structure, or even that they are diagonal in flavor space. In fact, in this case

of one ~~j~ # O, the CKM matrix generates couplings involving each of the three

down-type quarks. Thus, flavor violation occurs in the down quark sector, though

suppressed by the small values of the off-diagonal CKM elements. Below, these

processes are used to obt~;n constraints on R–parity breaking, assuming only one

It would be more natural to assume that there is only one large Ep coupling in

the weak basis, i.e., only one ~ijk # O. As has been indicated, this generates many

couplings with different flavor structure in the mass basis, e.g., many ~~~ns. It is

possible that

A( m ~ijkvKJfjm6kn.zmn — (3.9)

This will be the case if, for example, the rotation to the mass basis occurs only for

the charge +2/3 quark sector. Then, in addition to the Feynman diagrams that

contribute to the flavor changing neutral current processes when only one ~~jk is

present, there are new contributions involving the ~~~ti(m # j, n = k) vertices.

However, these new contributions interfere constructively with the operators that

are present in the effective Lagrangian that is generated when there is only one
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non-zero ~~j~. So if these more natural assumptions are made, any constraint

found for ~zj~ is slightly better than the constraint that is obtained when only one

&~ is present.

It would seem that the flavor changing neutral current processes maybe rotated

away by making a different physical assumption concerning which & coupling is

non–zero. For example, while leaving the quark fields in the mass basis, Eqn. (3.3)

gives

= Xzjk(fwj– -a(viifjp)qpi

(3.10)

(3.11)

(3.12)

where

ijk=LA (vKA4)7nj (3.13)

With the assumption that the ~~j~ coefficients have values such that only one ~zj~

is non–zero, there is only one interaction of the form NLDLDC. There is then no

longer any flavor violation in the down–quark sector. In particular, there are no

#?P contributions to the processes discussed

involving each of the three up type quarks.

below. But now there are couplings

So these interactions contribute to

FCNC in the up sector; for example, DO–~O mixing. We use DO–~O mixing to

place constraints on R–parity violation assuming only one ~ij~ # O. Thus, there

is no basis in which FCNC can be avoided in both sectors.

The conclusion that FCNC constraints always exist in either the charged –1/3
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Figure 3.1: ~ contributions to K“–xo mixing with one ~~j~ # O. Arrows indicate

flow of propagating left handed fields.

or charged 2/3 quark sectors follows solely from requiring consistency with elec-

troweak symmetry breaking, and is not specific to R–parit y violation. For exam-

ple, a similar conclusion about leptoquark interactions, which are similar to ~

interactions, is reached in reference [39]. 2

3.2.1 KO–~O Mixing

With one ~~j~ # O, the interactions of Eqn. (3.8) involve down and strange

quarks. So, there are contributions to ~“–~o mixing through the box diagrams

shown in Figure 3.1. A constraint on the ~P couplings is obtained by constraining

the sum of the flp and Standard Model contributions to the KL – Ks mass

difference to be less than the measured value.

Evaluating these diagrams at zero external momentum and neglecting the down

quark masses, the following effective Hamiltonian is generated

((vKM)j2(vKM);l) 2(JL7~’L)2 (3.14)

where moj is the sneutrino mass and mi~~ is the right-handed down squark mass.

2The author thanks Y. Grossman for bringing this work to his attention.
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As this operator is suppressed by the CKM angles, it is largest when ~~j~ is non-

zero forj=lorj =2.

The Standard Model effective Hamiltonian is [40]

s–2 _ G;R$M- – ~mc2((vKM)12(vKM);1)2(dL7~sL)2 (3.15)

where the CKM suppressed top quark contribution, the up quark mass, QCD

radiative corrections, and long distance effects have been ignored.

The AS = 2 effective Hamiltonian is then

uAS=2 = ?-@;=2 + 7t&s=2 (3.16)

~ G(~ijk, mi,, rn~~~, VKM) (dL7pSL)2 (3.17)

In the vacuum saturation approximation, thiseffective Hamiltonian contributes

an amount

(Am),~ = mK. - rnK~ = ~firnKBKReG(&k, mii, rn&k) (3.18)

to the ~L – KS mass difference. With j~ = 160 MeV [41], BK w 0.6 [42],

mK = 497 AleV [36], and l(Am).xPl = 3.510x 10–12 MeV [36], and m. ~ 1.0 GeV,

the constraint is

(3.19)

where .zZ= m~i /(100 GeV) and ~k = mj~,/(lOO GeV). This constraint applies for

j = 1 or j = 2 and for any i or k. The constraint for j = 3 is not interesting as the

CKM angles suppress the $i!P operator relative to the Standard Model operator.
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3.2.2

The

BO–~O Mixing

~ interactions also contribute to both l?”-~o mixing and 13~-@ mixing

through box diagrams

mixing is expected to

similar to those given in the previous section. As 13~-@

be nearly maximal, it is not possible at present to place

a constraint on any non–Standard Model effects that would add more mixing.

However, 13°~0 mixing has been observed [43] with a moderate xd - Am~/17~ =-

0.7 [36].

The effective Hamiltonian generated by these ~ processes is

This is largest when & is non-zero.

The dominant contribution to l?”-~o mixing in the Standard Model is [44]

7f;M&2 =
q((VKM)33(VKM);, )2 G(Xt)(~L7’~L)2 (3.21)

where xt = m~/m~, and

G(x) =
4–11X+X2 3X2in x

4(X _ 1)2 – 2(1 _ X)3 (3.22)

For a top mass of 176 GeV, G(xt) = 0.54.

A constraint for &t, is obtained by demanding that the sum of the Standard

Model and ~P contributions to the BL – Bs mass difference not exceed the mea-

sured value. With j~ = 200 kfev (41], ~B N 1.2 [45], ~B = 5279 ~ev [361,

[(Am)e,Pl = 3.3 x 10-’0 MeV [36] and lV~~131 ~ 0.004 [36], a conservative con-
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Figure 3.2:~ contribution to K++~+vV with one&~#O.

straint is

(3.23)

with ~i and Wk as previously defined. In this case the ~ couplings are only weakly

constrained.

In addition to inducing ll”-~o mixing, these interactions also contribute to the

b ~ s + ~ amplitude. However, with reasonable values for squark

masses, the constraint is significantly weaker than that found from

analysis.

and sneutrino

the top quark

3.2.3 K+ += ~+v~

The tree-level F’eynman diagram in Figure 3.2 generates an effective Hamil-

tonian which contributes to the branching ratio for K+ ~ K+vfi. Using a Fierz

rearrangement, a straightforward evaluation of this diagram gives

(3.24)

There is also a Standard Model contribution to this decay [44]. This is an
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order of magnitude lower than the existing experimental limit. A bound on the

& coupling is obtained by assuming that the FP effects dominate the decay rate.

As the matrix element for this semileptonic decay factors into a Ieptonic and

a hadronic element, the isospin relation

(3.25){~+(p) l~~,dlK+(k)) = fi(~O(p)lWvulK+ (k))

can be used to relate 17[K+ + m+vti] to 17[K+ +- rove+]. The effective Hamil-

tonian for the neutral pion decay channel arises from the spectator decay of the

strange quark. It is

(3.26)

So in the limit where the Iepton masses can be neglected,

rpf+ + 7T+ViDi]

r[~+ -+ 7r0ve+]

valid for i = 1, 2

‘(4!}i;Rk)2~vK;
or 3, since in the massless neutrinoThis ratio is

approximation, the integrals over phase space in the numerator and

cancel. So using BR[K+ + n+vfi] s 5.2 x 10–9 [46] (90%CL) and B.R[K+ ~

~“ve+j = 0.0482 [36], the constraint is

(3.27)

and electron

denominator

forj=lorj=

conservative upper

(90%CL) (3.28)

2. Using lV~~131 > 0.004 [36] and lV”~2,~l ~ 0.03 [36], a

bound for ~[~~ is

1A:3k1~052(KTaJ@0%cL)<
(3.29)
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3.2.4 Do–Do Mixing

If there is only one ~zj~ in the mass basis, then from Eqn. (3.12) it is clear

that flavor changing neutral current processes will occur in the charge +2/3 quark

sector. Rare processes such as DO–~O mixing, Do + p+p– and D+ -+ X+l+l”, for

example, may be used to place tight constraints on &~. For illustrative purposes,

in this section ~“–~o mixing is considered.

The interactions in Eqn. (3.12) generate box diagrams identical to those dis-

cussed in the previous sections if both the internal sneutrino (neutrino) propaga-

tors are replaced with slepton (lepton) propagators and the external quarks lines

are suitably corrected.

the ~ effects generate

Using the same approximations that were made earlier,

the following effective Hamiltonian

.

?-iqp = iai’”ti+ik)((vKM)2j(vKM);j)2 (zL7~uL)2 (3.30)

With j~ = 200 l14eV [41], m* = 1864 MeV [36], and I(Am).ZPl ~ 1.32 x

10-10 MeV [36](90%CL), the constraint on ~zj~ for j = 1 or j = 2 is

lx2’kls016((10~:ev)(1::v)2)-’(’0%(3.31)

3.3 Top Quark Decay

In the Standard Model, the dominant decay mode for the top quark is

t+b+W (3.32)
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with a real W gauge boson produced,

r[t4v+b]=@
87r&

This has a partial decay width

f&]2 (1 – x&)(l – 22$+ z~) (3.33)

where Xw = mw/mt. The b quark mass has been neglected.

The R-parity violating interactions (see Eqn. (3.8) with j = 3) ~~~~~~~ft~

contribute to the decay t~ + ~~ + dm at tree level [47], if cinematically allowed.

This is possible only if there exist sleptons lighter than the top quark. The partial

width for this process is

(3.34)

with yi - m~ /mt [47]. The mass of the down type quark has been neglected. If

this is the only non-zero R–parity coupling, the two top quark decay channels are

t + b + W and t + dRk + ~~, with branching fractions 1 – z and Z, ,respectively.

The Lightest Supersymmetric Particle (LSP), denoted by ~“, is assumed to be

neutral and that the real slepton decays with 1007o branching fraction to the ~“

and a lepton. The presence of a non-zero R–parity breaking coupling implies that

the jj” is no longer stable [5]. The two dominant decays are [47] ~“ ~ vi + b + ~k

and ~“ + Vi + 6 + d~. The LSP decays inside the detector if [30]

&,l ~ 6 X 10-5fi ((1::V)2+(10;:V)2) (’O;::V)5’2 (3.35)

where ~ is the Lorentz boost factor of ~ 0. For this decay chain to be cinematically

allowed, mp ~ mb for k = 1 or k = 2, and mio ~ 2mb for k = 3 are required.

‘Jsing the previous equation, the maximum lower bound on ~~~~such that the LSP
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decays inside the detector is 0.0003 x W for k = 3, and 0.002 x ~ for k = 1

or k = 2; all for 300 GeV squark masses. In the following ~~~~is assumed to be

larger than this value so that the LSP decays within the detector.

If a top quark decays through this R-parity violating process, the final state

will contain one Iepton, at least one b quark and missing transverse energy. The

two novel features of this decay channel are that it spoils lepton universality and,

when k = 3, produces a surplus of b quark events. Both of these signatures can

be used to test the strength of R–parity violation.

The CDF collaboration reconstructs t~ quark events from observing: (1) dilep-

ton (electron or muon) events coming from the leptonic decays of both the W’s;

or (2) one lepton event arising from leptonic decay of one W and jets from the

hadronic decay of the remaining W boson. CDF also requires a b-tag in the lep-

ton+jets channel. If the lightest slepton has a mass between 50 and 100 GeV,

then the kinematics of the decay L +

decay of the W boson. A slepton of

LEP limit on the Z decay width [36].

then the b quark produced

than the b quark from the

the slepton decay will have

in the top

top decay

~“ + 1~will be similar to’that of the leptonic

mass less than 45 GeV is ruled out by the

If the slepton mass is close to the top mass,

decay via this channel will have less energy

via the SM channel. Also, the lepton from

more energy than the lepton from the W decay. These

will affect the lepton and the b.quark detection efficiencies. Although these decay

channels will be present for any slepton lighter than the top quark, for the pur-

pose of obtaining a constraint, it is assumed that there is a slepton with a mass in
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the range given above. The presence of the R–parity violating coupling will then

contribute signals to all of these channels.

It is assumed that the i = 1 coupling is non-zero. However, all that is required

is that the slepton in the generation with the non–zero coupling have a mass in

the range quoted above, i.e., if ~{~~ # O then we require 50 GeV < m: <100 GeV,

and if ~~~k # O then 50 GeV < m~ < 100 GeV is required. Assuming also that

the CDF data is consistent with lepton universality, the constraints we obtain for

~~a~ and ~~~~are identical.

In the k = 1,2 cases, two b quarks are always produced in a t~ event. In the

k = 3 case, the LSP decays into bbvi or ~btii. Thus, four or six b quarks may be

produced if one or both of the top quarks decay through the R-parity breaking

channel; this possibility must be treated separately.

3.3.1 &k, k # 3

The branching fraction for the di–electron event is

.BR[ti+ ee +X] =X2+ L2(1 – Z)2 + 2Lx(1 – x) (3.36)

with L = leptonic branching fraction of W, approximately 1/9. The first term

arises from both top quarks decaying via the R–parity violating interaction; the

second is the Standard Model contribution; and the third is the contribution from

one top quark decaying through the R–parity breaking channel and the other

top quark decaying through the Standard Model channel. The other branching
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fractions are

Bfqtf+pp +x] = L2(1+2 (3.37)

Bl?[tj+ pe + X] = 2(1 – X)2L2 + 2z(1 – z)L (3.38)

l?R[t~ -+ p + jets] = 2(1 – x)2L(l – 3L) (3.39)

Bl?[tf+ e +jets] = 2(1 – Z)2L(1 – 3.L) + 2X(1 – Z)(l – 3L) (3.40)

The factor of l–3Listhe hadronic brarnching fraction of the Wboson. Alsojit

is that assumed that the branching fraction for t ~ 1 + ~“ is close to one. Here

the leptonic events produced from the Standard Model decay of the W boson into

rv~ are ignored.

Two independent constraints on the ~ interactions may be obtained from the

top quark data. CDF has observed the -tt cross section to be O(t~.ZP = 6.81~:~

pb [35]. The QCD calculation [48] gives the value a(-t~~~ = 5.52~~:~~ pb for

mt = 176 GeV.

The first method is to compare the ratio of theoretically predicted values for

the numbers of events found in two channels with the experimentally observed

ratio. For example, o(-t~t~ x BR[tZ + p + jets] x J Ldt x (detection efficiencies) is

the number of p +jets events that should have been observed where J Ldt is the

integrated luminosity. This theoretical prediction contains uncertainties in both

the value for the -t~production cross section and in the lepton and the b quark

detection efficiencies. In comparing the ratio

(~(t~~~ x ~R[tf j e + jets]) / (~(t~~,
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the uncertainties in the -h?cross section cancel.

cancel. If the electron and the muon detection

The &detection efficiencies

efficiencies in the lepton +

also

jets

channel are equal, these uncertainties will also cancel. The only remaining errors

are statistical. The CDF collaboration reported observing 37 &tagged events in

the lepton + ~ 3 jets channel. In this set there were 50 b-tags, with a background

of 22 b-tags. A conservative estimate for the background in the 37 events is 22.

This leaves 15 tt events in the lepton +jets channel. Since no inconsistencies with

electron-muon universality have been reported, a central value of 7 p +jets and 7 e

+jets events will be assumed. This leads to

Bl?[t-t -+ e + jets]~~ = #(e+ jets events) = ~+~

13R[ti ~ p + jets]t~ #(p + jets events) -
(3.42)

Inserting the theoretical predictions for the branching ratios leads to the constraint

x < La/(1 + L a), where a is the uncertainty in the previous ratio. In this case,

a = b = l/fi. This gives x <0.077 at 9570CL which leads to

l&~l <0.41 (95% C’L) (3.43)

for k = 1 or k = 2 and a slepton of mass 100 GeV.

A

these

similar analysis may be performed for the

channels should lead to a good constraint

dilepton channels. In principle

since a non–zero ~{~~ coupling

will lead to an excess of electrons observed in the di–electron channel over the

number of muons observed in the di–muon channel. However at present only a

small number of dilepton events have been observed and an interesting constraint

cannot be obtained.
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In the other method the number of events produced in a given channel

compared with the theoretical expectation. The number of produced events

is

is

a[t~~~ x ~R[t + z+jets]~~ x ~~dt. Here ~[t~~fi is the production cross section

calculated in perturbative QCD for the assumed top quark mass of 176 GeV. The

fact that the number of experimentally observed events in any given channel is

consistent with, within experimental errors, the number expected in the Standard

Model will also be used. The actual number of events detected depends upon the

detection efficiency. We will use the number of observed events in any channel to

determine the statistical accuracy with which the rate in that channel is measured,

and then constrain the strength of the ~ terms by requiring that the rate is not

changed by more than the error.

This leads to the constraint

Bl?[tf --+ 1+ jets, x]t~ ~ [~~ezp

B.R[tt + 1 + jets, z = O]t~ = a[t~t~
(3.44)

within theoretical and experimental errors. Using the theoretical and experimental

values for the production cross sections [35, 48] leads to

62< Bl?[ti+ 1+jets,%]~~

– I?R[t~-+ 1 +jets, s = O]t~
~l+d

with e = 0.89 and d = 1.05. The constraint on x is then

( 1 – 2L – ~(1 – 2L)2 – 4Ld(l – L)
x~min l—e,

2(1 – L)

(3.45)

(3.46)

The first entry is the constraint from the y + jets channel and the second entry is

from the e + jets channel. For these values of ~ and d, the constraint is x s 0.11.
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For a 100 GeV slepton this translates into the constraint

[A{,,[ <0.48

fork= lork =2.

(3.47)

For this coupling the analysis of the previous section must be modified inthe

lepton + jets channel since the b-detection efficiencies no longer cancel. This is

because in the l?-paritybreaking decay channel three b quarks are produced. To

correct for this, introduce the function P(k,n) that gives the probability that,

given that nbquarks are produced, kofthem are detected. Then the numberof

observed single b quark events expected in the e+jets channel is

#(e + jets events) = (2(1 - Z)2L(1 - 3L)P(1, 2) + 2$(1 - x)(1 - 3L)P(1, 4))

XN (3.48)

where

(3.49)

With P(172) ~ P(I, n) for n >2, then

#(e +jets events) 2 (2(1 - r)2L(l – 3L) + 2~(1 – Z)(I – 3L)) P(1, 2) x N

(3.50)

These approximations will give a conservative limit for ~{~~. The analysis of the

previous section may now be carried out with the following restrictions:
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(i) In comparing the ratio of the numbers of events detected in two channels with

the theoretical prediction, the inequality in Eqn. (3.50) indicates that only upper

limit in Eqn.(3.42) may used;

(ii) In comparing the number of events detected in a channel with the theoretically

predicted value for that channel, only the upper bound in Eqn. (3.45) may be used

in the e+jets channel, and either limit may be used in the p+ jets channel. With

these caveats, a conservative limit on the branching fraction for t ~ b + [f is then

(

1 – 2L – J(I – 2L)2 – 4Ld(l – L)
x~rnin La/( I+ La), l–c,

2(1 – L)
)

(3.51)

For the errors quoted in the previous section, the result

IA;,,[ <0.41 (95% CL).

is

(3.52)

As the R–parity breaking decay channels produce three b quarks, then for mod-

erate values of ~~~~or ~~~~, semileptonic events containing four and six b quarks

should be observable at the Tevatron. The non–observance of these events should

provide the strongest test for the R–parity breaking couplings ~~~~or ~~~~. If limits

on the branching fractions for the t; pair to decay into these excess b quark chan-

nels are known, then the R–parity branching fraction x is cc nstrained. Namely,

/ —\

dL2 +B2(1 – 2L) – L

I–2L
(3.54)

—

dB3 (3.55)

4. BR[t~-X+ >3b’s+e]<B4~ x<;
(l-,=) (356)
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(3.57)

This constrains l&l. To constrain 1~~~~1,interchange e with p in the previous

equations.

The constraints on /&

those obtained from examir..

and l&.3 I found in this section are comparable to

ng & contributions either to Z + b~ and Z +

1+1- decays [32] or to forward–backward asymmetry measurements (A~~) in e+e-

collisions [28]. The point of this exercise has been to illustrate how canparable

~ constraints maybe obtained from analyzing top quark decays even though the

experimental and theoretical errors are still large. These processes will provide

much better tests of R–parity violation once more top quark decays are seen.

3.4 Summary

In this chapter it has been argued that R–parity breaking interactions always

lead to flavor changing neutral current processes. It

single & coupling in the charge +2/3 quark sector.

with electroweak symmetry breaking demands that ~

is possible that there is a

But requiring consistency

couplings involving all the

charge – 1/3 quarks exist. That is, a single coupling scheme may only be possible

in either the charge 2/3 or the charge – 1/3 quark sector, but not both. As a result,

flavor changing neutral current processes always exist in one of these sectors. The

processes K+ + K+vfi, K“– ~“ mixing, B“– ~“ mixing and Do– Do mixing

have been used to constrain the & couplings. If there is CKM–like mixing in
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the charged – 1/3 quark sector, then the constraints are quite stringent; see Table

3.1. The tightest constraint is on ~~j~ for j = 1,2 and any z and k. This comes

from the rare decay K+ + T+vfi. The constraints we obtain for the first two

generations are more stringent than those presently existing in the literature.

The R–parity breaking interactions lead to the top quark decay t + ii+ d~, if

the slepton is lighter than the top quark. Some of the new top quark decays spoil

electron-muon universality or result in t; events with more than 2 b quarks. At

present, the CDF collaboration has not reported any inconsistencies with lepton

universality or reported any events with more than 2 b quarks. These decays also

lower the branching fractions for Standard Model top quark decays. Both of these

observations are used to constrain some fiP couplings.

A list of the known model independent constraints on the ~jj~ couplings is

presented in Table 3.2. Although several of these couplings are constrained by

different low energy processes, only the smallest known upper limit is listed. With

the exception of ~~t~, the constraints on the third quark generation couplings are

only of order e/ sin 6W. Once more top quark decays are observed the signatures

discussed in this chapter will more tightly constrain these couplings.
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0.012” 211 o.012a 311 o.012a

112 0.012” 212 0.012” 312 o.012a

113

121

o.012a

0.012”

213

221

o.012a

o.012a

313

321

o.012a

0.012”

122 0.012” 222 0.012” 322 0.012’

123 o.012a 223 o.012a 323 o.012a

131 0.196 231 o.19b 331 o.19b

132 o.19b o.19b

o.19b

o.19b

o.19b

232

233

332

333133 0.001’

Table 3.1: Constraints on ~~j~ from:(a) ~+ j ~+vfi (90%CL); (b) b ~ SVD

(90%CL) [49]; (c)v. mass (90%C’L) [29]

suming CISItl-like mixing in the charged

100 GeV sparticle masses.

These constraints were obtained as-

– 1/3 quark sector. All limits are for
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~~j~ A~j~ A:jk

111 0.03’ 211 o.09b 311 0.18d

112 0.03’ 212 o.09b 312 0.18d

113 0.03’ 213 o.09b 313 0.18d

121 0.26f 221 0.17’ 321 0.18d

122 0.45’ 222 0.17e 322 0.18d

123 0.26’ 223 0.17’ 323 0.18d

131 0.26f 231 0.229 331 0.26h

132 o.4~ 232 o.4i 332 0.26h

133 O.oolj 233 o.4i 333 0.26h

Table 3.2: Constraints on &~ from:(a) charged current universality (95% CL)

[28]; (b) 17(n + e~.)/17(~ --+ pVP) (la) [28]; (c) A&~ (la) [28]; (d) BR[~ +

7rv.] (95%C’L) [31]; (e) BRIDO + K-p+vJ/B.RIDO -+ K-e+Ve] (95% CL) [31];

(f) atomic parity violation and eD asymmetry (la) [28]; (g) v, deep-inelastic

scattering (95% CL) [28]; (h) partial 2° decay width (95%CL)

decay (95%CL); (j) Ve mass (90%CL) [29]. All limits are for

masses.

[32]; (i) top quark

100 GeV sparticle
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Chapter 4

Signals of Supersymmetric Flavor Violation at

the LHC

In a generic supersymmet ric extension of the Standard Model, there will be

Iepton flavor violation at a neutral gaugino vertex due to misalignment between

the lepton Yukawa couplings and the slepton soft masses. Sleptons produced at

the LHC through

number of events

the cascade decays of squarks and gluinos

with 4 leptons. This channel could give a

supersymmetric lepton flavor violation under conditions which

can give a sizable

clean signature of

are identified.

4.1 Introduction

In the supersymmetric Standard Model (SM), the quadratically divergent cor-

rections to the Higgs (mass)z cancel due to supersymmetry (SUSY). The remain-

ing corrections are logarithmically divergent, proportional to the SUSY breaking

masses of the sparticles (the superpartners of the SM particles) and result in a

negative Higgs (mass)2 due to the large top

superpartners of the SM particles must have

quark Yukawa coupling. Thus, the

masses ~ 1 TeV in order for SUSY

to solve the gauge hierarchy problem and lead to natural electroweak symmetry

79



breaking.

With the sparticle masses at the weak scale, these new particles (especially

gluinosandsquarks) will be produced insignificant amounts at the LHC. After

the initial discovery of the sparticles, the focus will be on precision measurements

of their masses and mixings just as, for example, the next step after ,the discovery of

the heavy quarks was the measurement of their detailed properties. In this chapter,

a relatively clean signal at the LHC for detecting the mixing angle between the

scalar partners of the charged leptons (the sleptons) is presented.

A flavor-violating signal is obtained from the production of real sleptons, fol-

lowed by their oscillation into a different flavored slepton, and subsequent decay

to a lepton. Some formulae for these oscillations are given in section 4.1.1. At

a ee linear collider, the production of slepton pairs can then give ep events with

missing energy. This was studied in [50, 51]. Dilepton flavor and CP violating

signals

LHC) ,

signal.

at the LHC and NLC were studied in [52]. At a hadron collider (the

sleptons can be pair-produced by the Drell–Yan process giving the same

This was studied in [53, 54], and is a promising signaI for large flavor mix-

ing angles and when the SUSY background is known to be smz 11. Real sleptons

can also be produced at the LHC in the decays of the next-to-lightest neutralino

(x:), which are mainly produced in the cascade decays of gluinos and squarks.

In section 4.3.1, flavor violating dilepton events from x; decays are briefly con-

sidered. The production of x: pairs can give rise to events with 4 leptons, with

the dramatic flavor violating signal identified by a (3e + p) or (3p + e) lepton
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signature, hard jets, no b–jets, and of course missing energy. This is discussed

in section 4.3.2. Conditions on the supersymmetric spectrum that are favorable

for the suppression of the dominant supersymmetric background, occurring from

heavier neutralino/chargino and stop decays, are identified. Ideas for determining

the remaining dominant supersymmetric background occurring from -r decays are

also presented. These are all conveniently summarized in the end of the chapter.

In section 4.3.2, a brief estimate of the expected 4-lepton signal at a generic

point in SUSY parameter space is given.

in the “minimal supergravity” inspired

Next, in section 4.3.2, a particular point

parameter space is considered [55,. 56].

It is found that at this LHC Point, a 5cJ discovery (20 exclusion) is obtained

for a right-handed (RH) first and second generation mixing angle sin OR >0.13

(sin 6R > 0.08) with an integrated luminosity of 100 fb-’ at low luminosity. The

discovery potential at high luminosity is still optimistic though less quantitative,

due to uncertainties in T–jet detection efficiencies and larger b–jet mistagging

rates. In any case, the values for the mass splitting (between E and ~) that are

favorable for the discovery of a signal satisfy the p + e~ bound even for a maximal

mixing ‘angle. Thus the LHC has the opportunity of probing mixing angles that

are beyond the reach of the current p -+ e~ limit.

4:1.1 Lepton Flavor Violation due to Slepton Mass Mixing

To begin consider the lepton-slepton-neutral gaugino vertex with the leptons
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and sleptons in the gauge basis:

E 9~u9e 19~u9exo,
a (4.1)

where a = 1,2,3 is a flavor index. Next perform a unitary transformation, V, on

both 19 and ~~to go to the mass eigenstate basis for the l’s:

(4.2)

In this basis the coupling remains diagonal in flavor space (now denoted by a). In

general, however, the slepton and lepton mass matrices are not related so that the

same unitary matrix, V, may not diagonalize them both. In this general case, the

slepton (mass)2 matrix in the

slepton (mass)2 matrix in the

basis ~0 is not diagonql. For example, even if the

gauge basis f: ~U9eof Eqn. (4.1) is diagonal but not

M 1, it will have off-diagonal elements in the basis ~a of Eqn. (4.2). So, a further

unitary transformation, W, is needed to rotate to the slepton mass basis. In this

basis the slepton-lepton-gaugino vertex is:

So, in the

in general

there is a

mass basis for Ieptons and sleptons (Za and ii) a mixing matrix W # 1

appears at the neutral gaugino-lepton-slepton vertex. This means that

coupling between, for example, E (in the mass basis), p and X“ – this

will be referred to as SUSY lepton flavor violation. The focus of this chapter is

the detection of this SUSY lepton flavor violation at the LHC.

The theoretical expectations for W are varied. In models with broken flavor

symmetries, it is expected that W N VK~. In such cases a Cabibbo-like mixing
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angle for the first two generations and a Am/m close to the p + ey bound is

expected [57]. In contrast, in models of gauge-mediated supersymmetry breaking

the dominant contribution to the soft masses is universal and it naively appears

that there is no interesting flavor physics. There is, however, a subdominant flavor

non–universal supergravit y contribution. This likely results in large mixing angles

[52]. The magnitude of Am/m depends on the supersymmetry breaking scale and

while clearly model–dependent, could easily be w 17/m or larger, which is needed

to give an observable flavor-violating signal at the LHC (this is discussed later in

this section).

For simplicity, the case {.’ 1 – 2 mixing with mixing angle O is discussed. In this

case there are strong limits on the mixing angle and the E —~ mass splitting from

lepton flavor changing processes. For example, p + e~ gives an important con-

straint. For degenerate left-handed sleptons, and with the LSP (x!) approximately

bino-like (so), the constraint on sin 213~and the mass splitting Am between the

right-handed sleptons is approximately

sin 20~(Am)/m
‘oo’xw

(4.4)

(A more proper formula is given in section 4.3.2).

Suppose a real selectron is produced in the basis of Eqn.(4.2) (say in association

with an electron). Since ~ (a = 1) is not a mass eigenstate, there is a probability

that as it propagates it will convert to a F (o = 2) and hence decay into a p
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[51, 52]:

P(Ea=~ + px~) = 2sin2Ocos26 x, (4.5)

where x = (Am)2/ ((Am)2 + r2) is the quantum interference factor and assuming

BR(~ + lx!) = 1. Here I? is the decay width of the slepton. Note that for

Am ~ I’ the interference effect can be neglected so that z -1. In this case the

oscillation probability can be large. Typically, I’ ~ ae~m N O.Olm so that x w 1 if

(Am)/m ~ 0.01. This is close to the upper bound from the p + e~ limit, so there

could be a suppression due to either x or sin O [51, 52]. It is possible, however,

that for a specific SUSY spectrum the decay width could be much smaller than

this naive estimate, allowing for a larger range of Am/m consistent with the rare

decay limit (even for large mixing angles) and x N 1 so that the oscillation signal

is not suppressed 1.

Similarly, a neutralino can decay into e+ ~- or e- p+ through an intermediate

slepton:

X! + i+l-, i-l+ + 1+1-X;. (4.6)

Using Eqn. (4.5) the rate for a flavor violating decay is

BR(X~ -+ e+p-x~) = 2 sin2 Ocos2 Ox x BR(x~ + E-e+, ~+p-). (4.7)

Here to simplify notation Ell?(xj ~ E-e+, jitp-) = 13R(x; + ;-e+) + BR(x~ +

ji+p-). This notation will be used throughout the chapter. Also, the BR on the

right-side of Eqn. (4.7) is in the absence of any mixing. In the case of interest here

1In fact, this occurs at the LHC Point discussed in section 4.3.2.
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of small mass splittings, Am << m, the neutralino decay rate into selections or

smuons are equal in the absence of any mixing. Next, in the absence of mixing,

BR(X~ ~ e+e-x~) = 2 13R(xj + E+e-). (4.8)

The factor of two occurs since x; may decay to E’s of both charges. This result

and Eqn. (4.7) relates the flavor-violating and flavor-conserving decays:

13R(X~ + e+p-x~) = 2 sin26cos26 Z x 13R(X~ ~ l+l-X;), (4.9)

where the BR on the right-side of the above equation is in the absence of mixing.

Here 1 is either e or p. This result applies for x; decays to real sleptons, i.e.,

for mx: > mi. For mx~ < tii, there is an additional suppression of (Am)/m in

the decay amplitude due to the supersymmetric analog of the Glashow-Iliopoulos-

Maiani (GIM) cancellation as in the case of p + e~, resulting in negligible ep

signal. So an observable ep signal requires the production of real sleptons 2.

4.2 Slepton Production by Drell–Yan Process

One way to produce sleptons at a hadron collider is through the Drell-Yan

process:

(4.10)

Thus the production of sleptons is identified by events with no jets, 2 hard isolated

leptons and A, assuming that x! is stable or decays outside the detector. These

events will be referred to as “flavor conserving” dilepton events.

2Alignment models with Am w m are not considered here since sin@- 0(10–2).
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There is a SM background to the s~.gnal from W+ W- and it production. These

backgrounds are known, in principle. In [58] a set of kinematic cuts on the Ieptons,

as well as a jet–veto, are found which sufficiently reduce these backgrounds. These

cuts reduce the signal as well – of course, the reduction is much more for the

background.

There is also a SUSY background from pp + X+x- + W+ W- X~X~.

background depends on the model–dependent x+x- production cross section.

This

But,

for supergravity motivated parameter choices with mq x mg, this background can

be sufficiently reduced by using the same cuts used to remove the SM background

[58]. For example, from the analysis of [58] (see Table III of [58]) with 10 (fb)-’

and for a slepton mass N 100 GeV there are N 20 signal events with no background

events remaining after the cuts.

Actually, a clever method [54] for detecting the sleptons is to form the asymme-

try AF = N(e+e- +p+p–) –N(e+p- +e-p+). The background does not contribute

to AF, so a non-zero value would provide evidence for slepton production.

In the lepton flavor mixing case the pair production of sleptons will produce

ep events with $T – these events will be referred to as “flavor violating” dilepton

events. The background to this signal is from the same sources as for the flavor

conserving dilepton signal (with the same rate) as well as from 7?” production

followed by Ieptonic decays of m.

The detection of SUSY Iepton flavor violation using the above flavor violating

dilepton events for the CMS detector at the LHC was studied in references [53, 54]
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for the case of maximal mixing (8 = 7r/4). With the mixing angle being maximal,

the flavor violating dilepton signal rate is high; see Eqn. (4.5) (assuming x ~ 1).

In fact, the number of flavor conserving and flavor violating events from slepton

production in this case are the same and each is equal to one half the signal in

the zero mixing case so that AF = O (unlike the case of zero or non-maximal

mixing). In the case where the production cross–sections for staus (7) and the

lightest charginos are comparable to that of the sleptons, the production rate

for the SUSY

signal (in the

background to ep events is w 4% of the total flavor conserving

absence of mixing). 3 Thus, the “chargino and stau backgrounds

are much smaller. The high signal and low SUSY background rate (compared to

the signal) for maximal mixing enables detection of a 50 flavor violating signal for

sleptons masses up to 250 GeV and LSP masses mx: < 0.4mz~ with an integrated

luminosity of 100 fb-l

There are some objections to the generality of this result, though. A more

general spectrum could result in a larger chargino or stau background. For ex-

ample, there is no reason to expect the chargino production cross–section to be

related to the slepton production cross–section. However, as mentioned above, the

kinematics of slepton production and decay are different enough from that of the

chargino background that an appropriate set of kinematic cuts could distinguish

3Here, it is assumed that BR (x+ + W+~) N 100% so that the leptonic BRs of x+ are the

same as for W. If the left-handed sleptons are lighter than x+, then the leptonic BRs of x+ may

be enhanced substantially, in turn increasing the SUSY background.
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the two, at least for supergravity motivated parameter choices with comparable

squark and gluino masses [58]. Next, the stau background is sensitive to the stau

mass, which is likely to differ from the selectron and smuon masses 4.

background has softer leptons, so a cut on the ~ of the leptons may

The stau

help dis-

tinguish this background from the signal. The success of this

statistics and knowledge of the stau production cross–section.

the SUSY background may not be small.

may require large

Thus, in general,

Next, detection of flavor violation for smaller mixing angles is discussed. Since

the signal is M sin26, it is significantly smaller for say Cabibbo-like mixing an-

gles. In this case, it

it is comparable to

is crucial to know the

the signal (assuming

SUSY background more precisely since

similar cross sections for sleptons and

charginos). While the quantity AF (> O for non-maximal mixing) is, up to sta-

tistical fluctuations, background–free as far as slepton detection is concerned, it

is not useful for providing evidence for slepton flavor violation since the chargino

background would need to be determined first. This is because the deviations

in the values of AF and lV(ep) from the SM for a non-zero mixing angle could

be reproduced, in the case of zero mixing angle, with a lower slcpton production

cross–section and a higher chargino production cross–section.

Even if the SUSY background can be reduced sufficiently by an appropriate

set of cuts, since the signal is suppressed by the small mixing angle (there will

4The rare decays T + e~, T + p-y and ~ + e~ allow for 0(1) splitting between the third and

first two generation scalars for CK~–like mixing angles.
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also be a reduction of the signal due to these cuts), it may not possible to probe

Cabibbo-like mixing angles. For example, in the case of no mixing, Table 4 of

reference [54] gives 195 dilepton signal events for the set of cuts labeled 1 with

L = 10fb-l and a slepton mass of 100 GeV. The number of signal events in the

case of mixing for L = 100fb-l is then 1950 x 2 x sin2t9COS26 (assuming x w 1).

The SM background from WW production is 9920 for the same set of cuts. Thus

a 5cTsignal (requiring S/@ > 5) is possible only for sin 0 ~ 0.4. Since this signal

was obtained for a 24 GeV LSP, only larger angles will be probed for larger LSP

masses (since the leptons will be softer in that case). For sleptons heavier than

100 GeV the prospects for detecting small mixing angles are clearly worse.

Thus, in the situation where the SUSY background is known to be small, e.g.

if an appropriate set of cuts for a more general spectrum can separate the chargino

background from the signal, then the flavor violating dilepton events from Drell-

Yan production of sleptons is a promising signal for the detection of flavor violation

in the case of large mixing angles. Otherwise, it is important to look for other

discovery channels for slepton flavor violation.

4.3 Slepton Production in Cascade

The other way to produce sleptons is through

Decays

the cascade decays of gluinos

and squarks. At the LHC, the production cross sections of squarks and gluinos are

much larger than the Drell–Yan production of sleptons, neutralinosj and charginos.

So, a larger production of sleptons (if they are light) is expected in the cascade
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decays than from direct Drell–Yan production. In a generic SUSY event, the

production of two real (or virtual from gluino decay) squarks will be followed

by their cascade decays ultimately to the LSP through intermediate electroweak

sparticles (sleptons, charginos, neutralinos). Assuming for simplicity that the

spectrum is gaugino-like, i.e., Xg % W3, XT = ~+ and x! H B, the following

squark decays are obtained:

BR((j~ -+-q)g) = 1,

BR((jL + q)(!)= $

BR(~~ -+ q’xp-) = ;.

Thus, a typical SUSY event is:

-+ XEwx;w + X,

+,–
with XEW, x& one of X:,27 XI .

(4.11)

(4.12)

4.3.1 Dilepton Events

If one of the squarks decays to x; followed by the decay of x; to a slepton (if

BR(x~ ~ [Z) is significant) a large number of ep events in the presence of lepton

flavor mixing (see Eqns. (4.6)

least 2 high ~ jets and large

and (4.9) ) is obtained. These events also have at

+T.

There is no background from W+ IV- production since this background con-

tains no hard jets (assuming jet detection is good). There is a background from
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t; production followed by leptonic decays of the W’s from the top quarks. This

can be reduced by rejecting events with .&jets or using a high A cut.

There is a SUSY background from the decays of both squarks to charginos,

followed by chargino decays to W+, W-or ~, ~. This background is distinguishable

from the signal though. The invariant mass distribution of the 2 leptons from the

X:decayh= a sharpedge(Whichis a function of the neutralino and slepton

masses) [55, 56] unlike the case of the 2 leptons from X+x– decays. Also, the

angle between the 2 leptons from the decay of x: is likely to be smaller than in the

case of 2 Ieptons from X+ and x–. Such kinematic cuts on the invariant mass of

the dileptons and the angle-’” etween them easily reduce the number of background

events sufficiently if we are interested in detecting flavor conserving dileptons from

x! decays.

But, in the case of the flavor violating dilepton events, (as in section 4.2)

since the signal is suppressed by the mixing angle (while the background is the

same), the number of background events that survive (relative to the signal) after

cuts depends crucially on the model–dependent cross sections for producing X+X-

0 5 So in general it is difficult to be sure that the cuts have reduced thevs. X2 .

5For example, the ratio of the number of events with x+x– to those with (at least) one X9is

larger for s-channel Q? production than for gluino pair production which is seen as follows. For

the jj case, the probability of getting two @Lis 1/4 compared to a probability of 3/4 for getting

at least one ~L whereas for s-channel ~~ production the probabilities are the same. Same sign

chargino events are also obtained from fjjjproduction whereas s-channel ~~ production can give

only opposite-sign chargino pairs. Thus, if the s-channel @ production is larger, the number
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background sufficiently.

In the circumstance

6

that x~x” are dominantly produced from jtj cascade de-

cays, the X+x– flavor violating background can be estimated as follows. An equal

number of same-sign and opposite–sign chargino pairs are expected since j is a

Majorana particle. The same-sign chargino pairs produce same-sign dileptons so

that the opposite–sign chargino ep background can be estimated from the number

of same-sign ee and pp events. Unfortunately, in the more general case the X+x+

and x+x– production cross sections are not related since the chargino pairs do not

always come from gluino pair decays. For example, pp a ~L~~ can lead to X+x–,

but not to X+X+.

It might be possible to estimate the x+x- background by analyzing the (ob-

served) (signal + background) distribution of the invariant mass of the flavor

violating dileptons [59]. As mentioned earlier, the dilepton invariant mass dis-

tribution for x; decay has a sharp edge unlike the case of the background. The

position of this edge (denoted by Alll) can be easily found by looking at the dis-

tribution of the invariant mass of flavor conserving dileptons (where the X+X-

of X+X– events relative to X: events increases.

6There is also a SUSY background from x: decays to ?T followed by leptonic decays of the

r’s. A cut on the dilepton invariant mass can reduce this: the leptons from the T decays are

softer than those from the E/fl/x~ decays and so have a smaller invariant mass. But, since,

in general, BR (x! + i%) is not related to BR (x! + ile), as for the chargino background, we

cannot be sure that the ?r background has been sufficiently reduced (by the cuts) since this

background is unknown.
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background is very small) [55, 56]. In the case of flavor violating decays, the exis-

tence of an edge in the (observed) opposit~flavor dilepton distribution ( e.g. ep)

at Alll would then be an indication of flavor violation. However, since the flavor

violating dilepton signal is suppressed by (small) mixing relative to the flavor con-

serving dilepton signal (whereas the X+x– background is the same for both kinds

of dileptons), the edge at Mll in the opposite flavor dilepton case might not be as

sharp as for the same flavor dilepton case – this depends on the model-dependent

cross sections for producing x+x– vs. xi.

Next, in the distribution of the invariant mass of the flavor violating dileptons,

the events beyond Mll (this value can be obtained from the same flavor dilepton

distribution if the edge is not so sharp in the opposite–flavor dilepton distribution)

are mostly from the x+x– background [59]. Extrapolating (assuming say a flat

distribution for the X+x- background) from the data in this region, the X+X-

background in the region with invariant mass less than Mll can be estimated. An

excess of ep events (with invariant mass between zero and Mzl) over this estimate

will be a signal for flavor violation. 7 This extrapolation may not be reliable

for invariant masses much smaller than Mll since the distribution of the X+X-

background in this region is not known. A detailed simulation is required to know

this distribution (it is known only that it does not have an edge at Mll). Near M1l

the extrapolation should be more reliable and that is the region where the signal

7The invariant mass of the leptons from the YT decays (from x$!)is less than MU and so this

background cannot be estimated this way.
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is peaked (since the flavor violating dileptons from x: decay also have a sharp

edge at Mll). An excess in this region (rather than the whole regicm between

zero mass and lfll) might thus be a better signal for flavor violation [59] – as

mentioned earlier, the distribution will have a edge (or a “step”) at Mll. Also, the

?T background in the

decays are softer [59].

to Mll is used.

region near ikfll is negligible since the leptons from these

However, statistics are larger if the region from zero mass

The chargino background can also be eliminated in considering a flavor violat-

ing and CP violating dilepton signal [52]. The presence of non–trivial phases in

the slepton mixing matrix W breaks C’P, and results in a non-vanishing asymme-

try: lV(e+p– – e-p+) # O. In this case, the X+x- background is not important

since it is CP symmetric.

To summarize, if the number of ep events (that pass certain cuts) from either

Drell-Yan or cascade production is used to detect flavor violation, the SUSY

background from X+x- pairs (which passes the same cuts) is difficult to estimate,

in general, and may be too large. The possibility of using the observed opposite–

flavor dilepton mass distribution (in the case of cascade decays) to estimate the

chargino background is interesting, though, and warrants further study [59].

4.3.2 Events with 4 leptons

A dramatic flavor violating signal is obtained through the pair production of

two x!s, followed by the decays of both x!js to slepton and lepton pairs. Such an
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event contains 4 leptons and occurs if both squarks in a SUSY event decay into

z:. If one of the x;s has a flavor violating decay: x: -+ 11 ~ ep, then events

containing 3e lp, or 3p le will be produced. A typical decay chain is then:

(4.13)

These events are identified by 4 isolated Ieptons (with the 3+1 flavor structure), at

least 2 high ~ jets, A, and concentrating on only those events produced from the

decays of first two generation squarks, no b–jets. These events will be referred

to as “flavor violating” 4 lepton events. The absence of b–jets is important in

distinguishing the signal from other SUSY and SM backgrounds (see below).

The backgrounds to these events arise from both SM and SUSY sources.

The dominant SM background occurs from t~ production with semileptonic

decays of the bs (or -@ production with 2 Ieptons from ~) and Ieptonic decays of

the Ws. In this case, however, the leptons from b decays will not be isolated (or

the invariant mass of 2 of the leptons will be zero in the case of tEy). Also, these

events have 2 b quarks and can be rejected using b-jet veto. Double gauge boson

production can give 4 Iepton events, but none of these events have the 3+1 flavor

structure. Triple gauge boson production (WWZ or WWY) can give events with

4 leptons and the correct flavor asymmetry, but some initial state gluon radiation

is needed to give the 2 hard jets. The production cross–section for such events is
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small. Also, events of this kind can also be rejected since the invariant mass of 2

of the leptons will either be zero or mz.

One important obstacle in identifying flavor-violating dilepton events was the

potentially large background from X+x- production. In the 4 lepton signal, how-

ever, there is no X+x– background from the squark decays since this gives only 2

leptons.

The weak decay ~ + WI’, if cinematically allowed, can lead to a possible

background. For example, the process

++
xl p+vx; (4.14)

is a potential background. For the first two generation squarks, however, the

decay ~ + WI’ is cinematically forbidden. This is because the mass splitting

in an electroweak doublet occurs from the electroweak D—terms and is less than

m~/md < mw. This process is allowed for the top and bottom squarks, but such

an event contains 2 b-jets and this background can be reduced with a b-jet veto.

There is a SUSY background to the flavor violating 4 lepton events from

duction of heavier neutralinos or chargino in the cascade decays of squarks.

example,

pro-

For



X;+w+x- -+’ W+”””7

#j-+il + ee(cxpp)x?. (4.15)

This background is smaIl in the so-called gaugino-like region. In this region there

is very little gaugino-Higgsino mixing. Then, the heavier chargino and the two

heaviest neutralinos are dominantly Higgsinos and the two lightest neutralinos

and the lighter chargino are mainly gauginos; this turns out to be typical of the

SUSY parameter space still allowed by experimental data. Thus, the decays of

the first two. generation squarks into the heavier neutralinos or chargino are highly

suppressed by the first two generation Yukawa couplings, small gaugino-Higgsino

mixing, and also by phase space.

Another potentially large background can also occur from the production of

the heavier sleptons (say, the left-handed) and/or sneutrinos. Sleptons can decay

to @ and Z to x:1 if cinematically allowed. If the neutralino and chargino decay

to Ieptons, then this decay chain can give 3 (or 2) leptons. With 1 (or 2) leptons

from another decay of this kind (or some other decay chain), this can mimic the

flavor violating 4-lepton signal. If the left-handed sleptons are paired produced

through the Drell–Yan mechanism, then these events do not contain any hard jets

and may be rejected. Thus, the only source for a background from heavier sleptons

is their production in the decays of gluinos and squarks. Such a decay does not

occur directly, but only through the decays of gluinos and squarks to the heavier

neutralino and chargino. The heavier neutralinos and chargino can then decay

to the left-handed sleptons. As argued in the previous paragraph though, in the
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gaugino-like region, the heavier neutralinos/chargino are dominantly Higgsinos so

that their decays to the sleptons are suppressed by the lepton Yukawa couplings

,

and small gaugino/Higgsino mass mixing angles. So this background is negligible.

However, top squarks (and bottom squarks for large tan@ will have significant

decay branching fractions into heavier neutralinos or chargino even if they are

purely Higgsinos since the third generation Yukawa couplings (and hence couplings

of the squarks to Higgsinos) are large. Further, as mentioned earlier, Ws may be

produced in the direct decay of stops or sbottoms. Also, top quarb from stop

or sbottom decays produce Ws. Both of these processes give additional isolated

leptons. This

to the lighter

leads to a potential background even if stops or sbottoms decay only

chargino and neutralinos. For example, the following decay chain is

a possible background:

i% ~ b~– + t~:,

t + W+b~e+ b+...,

x- + W–x; +p–+ .”.,

xl + e+e-x~. (4.16)

These backgrounds to flavor violating 4 lepton events can be reduced by rejecting

any 4 lepton event that contains at least one 1 b-jet. Note that the top or bot-

tom squark background has at least 2 b quarks. The efficiency for rejecting this

background is discussed in a later section where a specific spectrum is considered.

There is also an important SUSY background from decays of taus and staus
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produced from the decays of two x~s. That is,

x! + ~T ~ ew! + -.,

x! + ~z+ ee (or fW)x!- (4.17)

This background can be estimated/measured as follows. In the above decay chain,

if one T decays hadronically instead of leptonically, the result is 3e 1~-jet events.

If a lower bound on the ~-jet detection efficiency is known, an upper bound on the

number of 3e lp events coming from r decays is obtained by using the number of

3e 1~-jet events. An excess of 3e 1P events over this background is a signature of

lepton flavor violation.

Lastly, the following x; decay chains can also give flavor violating dileptons:

X! + “h(or)ZX~

h (or) Z ~ TT ~ ep. (4.18)

In combination with another x: decay to ee or pp, these decay chains can give

flavor violating 4-lepton events. In the gaugino region, the decay X; ~ ZX~ is

suppressed since there is no vertex with Z and 2 neutral gauginos. In any case,

an e#ective BR (x; + ~~) can be defined to include these two decay chains in

addition to the xl - 7T decay. It will be shown in section 4.3.2 that this (in

general unknown) BR does not affect the estimate of the (effective) T background

obtained by using the 3e l-r-jet events.

A quick estimate of number of 4 lepton events
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A typical value for the total SUSY production cross section (gluinos and

squarks) at the LHC is:

(4.19)

with M N 1 TeV, as w 0.1 and summed over colors and generations (the factor of

10). Assuming that the probability to get a ij~ is 1/2 and l?l?(~~ + x: q) = 1/3,

this gives

‘x~x:Nosu’y(:”)2 (:)2N3pb
(4.20)

If ~R(X] + x~l+z-) N 0.16 (for each of i = e, p) and for w one year of running at

low luminosity which gives an integrated luminosity of L w 10 (i%)-l, the expected

number of events is :

N (%x:) ~ 30,000,

N (4 Jwhere 1 = e, p) = (2x 0.16)21V (x~x~) N 3300,

N (31+ i’) = 4sin2 @cos2Ox IV(4Z) N 550,

for sind = 0.2 and z N 1. To be clear,

SFV ~ N(31 + 1’) = (N(e+p-p+p-) + (+ + –)) + (~ + e),

and

N(41) = N(e+e-e+e-) + N(e+e-p+p-) + N(p+p-p+p-) + SFV.

(4.21)

(4.22)

(4.23)

In the next section this definition for N(41) is trivially extended to include leptons

produced by the decay of TS. Thus, typically, a large number of 4 Iepton flavor
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violating events is expected from the cascade decays of squarks 8.

Detailed estimates at Point 5 (Point A) of LHC studies

One Point of the LHC supersymmetry studies [55, 56] contains a spectrum that

is favorable for the detection of a flavor-violating 4 Iepton signal. The minimal

supergravity input parameters for this point are:

m. = 100 GeV, ikfllz = 300 GeV, A. = 300 GeV,

tan~ = 2.1, sgn(p) = + , mtOP = 170 GeV. (4.24)

Renormalization group evolution of these input parameters to the weak scale re-

sults in a mass spectrum which is given in Table 4.1. Note that mX: = 230 GeV >

miR w 160 GeV so that the decay of x; into real sleptons is allowed.

The production cross-section for SUSY particles is presented in Table 4.2, and

is dominated by ijj production. In total Osusy x 16 pb. To estimate the number of

signal and

These are

is reduced

background events, the branching fractions of the sparticles are needed.

given in Table 4.3. Note that at this Point BR(x~ ~ ~’li) N 0.12 and

due to the large branching fraction 13R(x; ~ hx~). This gives from

8Both x-s decaying to flavor violating dileptons gives (e+p- )(e+p– ) and (e+p– )(p+e–)

events. The latter cannot be distinguished from the events where one x: decays to e+e– and

the other to p+p–. The former events can also be used as a signal of flavor violation, but the

number of these events is expected to be very small since they require both x~s to decay into

flavor violating dileptons. For simplicity these events were not included in Eqn.(4.23).
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Table 4.1: Mass spectrum in GeV at LHC Point [55, 56]. Here ~ = ii, ~, ~, .5, and

@j 1750 ijij , ij~ 8300 @* 2380

Table 4.2: The production cross–sections in fb for different SUSY particles at the

LHC Point [55, 56]. Here all flavors ~~ = Z, j, 5, 3 and H = L, R are summed

over.
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ij + @L 30 14

15 26

99

100

5

Table 4.3: Branching fractions (in percent) for sparticles at LHC Point [56]. Here

decays of first two generation squarks the number of x: pairs produced

(4.25)

(The factors of 1/2 and 1/4 are easy to understand: 1/2 of all ~~ produced froms-

channel gluon and 4–point contact interaction 9, and 1/4 of all ~~’s produced (from

t-channel gluino exchange) are left-handed pairs.) This is for one year of running

at low luminosity (L = 10 fb-l ) and for one detector. Hereafter estimates of event

numbers will use this integrated luminosity. A realistic detection efficiency of 90%

for single e, p, and 90% for the single-prong decay r ~ m (13R N 0.11)

used. These are needed to determine the number of 4-lepton and 3-lepton

will be

+r–jet

9It is assumed that all of the Qr production is by this channel. This is reasonable since most

of the hard collisions at LHC energies are likely to be gluon-gluon.
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I events that are detected. Later, a comment on a more realistic ~-jet detection will

I be made.

I Next the 4-lepton signal and background are estimated.

I Due to the decay chain

(4.26)

= (115 14. z(t------- .,

Using the above BR and EIR (x; -+ id) = 0.12 for each of 1 = e, p and

13R (7 -+ ev) N Ill? (7 -+ pv) % 1/2 x 0.35,

)BR (x; +- eex~, ppx~ = 2 x 0.12 x (1 –2sin26cos2 Ox)

+& x (0.35)2 x ;,

BE (x! -+ epx~) = 2 x 0.12 x 2sin20cos2 Ox

+.RT x (0.35)2 x ;, (4.28)

where the first terms in each equation are from decays of ~ and ji and the second

terms are from T decays.

Then, the total number of 4-lepton events expected from X; pair decays (in-

cluding detection efficiencies, but parameterizing the acceptance cut as &CuT – see
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later 10) is

N(41) = N (xjxj) x (BR (x8 ~ ee, pp, ep))2 (0.9)4 x &cuT

= 3400x (0.24 +R, x (0.35 )2)2 x(0.9 )4x@~T

z 149x&cuT. (4.29)

To get 3elp+3p le events, one X~hasto decay into. ee/ppand theothertoep.

Thus, the number of 3e lp + 3P le events from flavor-mixing for sin O = 0.2 and

x w 1 (it is shown later that these values are consistent with the p -+ ey limit) is

SFV = N (x~x~) x BR (x; -+ eex~, /wx~) x (0.9)4 X ECUT

x2 x 0.24 x 2sin2 0COS2t9x

~ 20 x &C~T. (4.30)

There is an extra factor of 2 since either x; can decay to flavor violating dileptons.

Next, the number of 3e lp + 3p le events from Ieptonic decays of rs produced

from x; is
.

(B~v = N (X&~) X 2 X ~ X (0.35)2 X ;)

( 0,x (09)4 x ‘,1x ‘CuTxBR x: ~ eex!, PPX1

.

~ 9 x &CuT. (4.31)

Here, E41is the acceptance for 4 leptons with 2 of them coming from the decay

chain x; + ~r rehztive to that for all 4 leptons coming from xl -+ &e or pjl. Since

1°Detection efficiencyrefers to the probabilityy that the lepton (or r-jet in a later case) will be

detected given that it passes the acceptance cuts.
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the leptons from the I- decay are softer, it is expected that e41~ 1. 11 To get the

number in the last line above, S41x 1 has been assumed.

Finally, the above 2 numbers are from the leptonic decays of 2 X8S from the

decays of first two generation squarks only. As mentioned before, stop/sbottom

decays to W, x: etc. can give a background to the flavor violating 4-lepton signal

(see Eqn.(4.16)). To reject these events, a b-jet veto is used. This implies that

events with 4 leptons coming from 2 x: decays with (at least) one x; coming from

a stop/sbottom decay will also be rejected; this is the reason for not including the

x; pairs from stop/sbottom decays in the numbers above.

Measuring the background from x; -+ rr decays is discussed next.

As mentioned earlier, the idea is to measure the number of (3e r – jet) +

(2elp ~-jet) +... events where ~-jet refers to the hadronic decay of ~. At this

LHC Point the number of these events (including detection efficiencies) is

N(31 + T – Jkk) = N (x~x~) X 2 X (~ X 2 X ().35X E,) X ECUT X

0,x (0$03 x &’1 (432)BR (x: + f=xlWx;lePxl

A factcr of 2 is due to either~ decaying to a jet. Here, ET includes BR (~ -+ hadron)

and the efficiency for detecting a hadronic decay of r. The variable e31is the accep-

tance for (3+ 17 –jet) relative to that for 4 leptons all of which come from the decay

chain X; + ~e, j.ip. It is expected that 1 ~ c31 ~ c41 since the lepton from the ~

11Strictly speaking, the factor &41should be included in determining N(41) and SFV as well.

But since the number of events in these samples from ~ decays is very small, it is a good

approximation to assume e4~w 1 in those numbers.
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decay is softer than the ~-jet and since the r decay products (both lepton and jet)

aresofter than theleptons from thedecay chain X~+Ee, ~p. From Eqns. (4.31)

and (4.32) and assuming BR (x: -+ eex~, ppx~) ~ ~R (xl -+ eex~, PPX1, ePXf),

the following relation is obtained

0.9 x y x ’541
~Fv m N(31 + r – jet) x

ZXE31XE~ “
(4.33)

Note that ~ cancels in the ratio. Thus, using the (3/+ T – jet) detection together

with an understanding of the r detection efficiency (e7), as well as the acceptance

for 4 leptons (with 2 of them from r decays) versus (3 leptons +~-jet) (eA1/5Sl),

the number of (3e lp + 3P le) events from T decay (Eqn. (4.31)) contained in the

full 4-lepton sample can be obtained from the above relation. This is important,

as it means that the x: + rr background to the flavor-violating signal can be

determined without knowing the relative branching fraction of X: to h, il, or ?T.

Assuming that the detection efficiency for the decay r + TV (which has a BR

of 0.11) is 0.9 so that e~ = 0.9 x 0.11, and assuming E31= 1 gives

N(31 + r – jet) w 11 x ECUT. (4.34)

Independent of this, it is worth remarking that with enough statistics it might

be possible to measure l?R(x~ + hx~), BR(xj -+ Ee, &p) and BR(x~ + ?~)

assuming that these are the dominant decay modes of x:. The decay chain x: +

hx~ a bbx~ (where X; is from cascade decays of squarks as usual) gives b~ events

with high pT jets and ~T. Comparing these to the number of dilepton events from
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X;decays gives

Similarly, the number of 31 + 1~–jet events compared to 4–lepton events is

N(31 + T – jet) ~

N(41)

(4.35)

%

BR(x~ ~ ~ex~, jlpx~)”
(4.36)

All the events in the above two equations have

make sure that these are from cascade decays

surements and the assumption that ~ BRs =

in addition high pT jets and fi to

of squarks. From these two mea-

1 the above-mentioned branching

information to theratios can be obtained. This could provide

flavor violating signal disc+wed here.

complementary

Returning to the main subject of this section, an observation of an excess of

the ‘flavor violating’ 4–leptons events over those from r decay (Eqn. (4.31)) would

be a strong evidence for Iepton flavor violation. But, before concluding that SUSY

Iepton flavor violation has been detected, the background to the flavor violating

4 lepton events from stop/sbottom production (see Eqn. (4.37) below) must be

removed, and also the ~-jet detection efficiency S7 must be known.

issues are discussed next.

The T hadronic decays from Z -+ TT at the LHC were simulated for

These two

the ATLAS

detector in [60] 12. This study shows that a detection efficiency e. for a hadronic

T decay (including the multi-prong decays, i. e, a total T decay BR of 0.65) of

x 40 x 0.65% with a rejection factor of 15 for non-~ jets can be achieved. This is

12There is also a study of detecting ~-jets from heavy SUSY Higgs decay for the CMS detector

[61].
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possible since ~-jets have lower particle multiplicity, narrower

invariant mass than the QCD jets [60]. A similar. detection

profile and smaller

efficiency (or even

better detection efficiency and rejection of non-~ jets if the strategy is optimized

for this case) for ~-jets from sparticle decays could be expected.

The important point about this though is that it suffices to know a lower

limit on the ~-jet detection efficiency to get an upper limit on the number

of (3e lp) +

Eqn.(4.33)).

even though

(3p le) events from tau decays using the (3e ~ – jet) events (see

Similarly, since E41 ~ :31, an upper limit on BFV can be obtained

these s’s may not be known precisely. Also, if the ~-jet detection

(and QCD jet rejection) is good, there will be large number of events with 2 lep-

tons and 2 ~-jets from 2 x; decays. These can be used in addition to the 3 lepton

1~-jet events to estimate the background to flavor violating 4 Iepton events from

?/T decays.

To reduce the stop and sbottom backgrounds a b-jet veto can be used. Before

using this veto, the number of expected 3e lp + 3p le events from decays of i or ~

to W, X!, X~ etc. (in the absence of any flavor mixing) can be estimated using the

production cross–sections

result is, including lepton

and branching fractions

detection efficiencies:

from Tables 4.2 and 4.3. The

Each of these events has at least 2 b quarks. So with a b-detection efficiency of

60% (and rejection factor of 200 against non-b jets at low luminosity [62]), the
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number of 3e lp + “T” events from stop/sbottom decays after the b-jet veto goes

down to 8. This can be further reduced by using a b-tagging efficiency of 90%

with a mistagging rate of 25~0 (i. e., rejection factor of 4 against non-b jets) at

low luminosity [56, 62]; this will reduce the signal by a bit. This strategy can be

optimized depending on the luminosity [62].

Lastly, to get actual number of events, the cuts used to select these events must

also be taken into account. The efEect of these cuts on the signal and background

rates is buried in the fudge factor EcuT. For example, ~ ~ 10 GeV and I q Is 2.5

is required to be able to detect e or p. Also, to reduce any remaining small SM

background, i.e., to make sure that these are SUSY events, various cuts on *T, ~

of jets, a variable kfeff [55, 56] related to ~T, pT of jets, can be imposed. Analysis

of the events simulated in [56] showed that there were N 40 events with 4 leptons

with no b-jets that pass all the cuts mentioned above compared to the estimate of

N 149 from cross–sections and BRs, Eqn. (4.29): there is an acceptance factor of

&cxIZ’N 1/4 from the various kinematic cuts. We have also checked that almost all

of these (simulated) events have 2 x~s as expected. 13 There are very few events in

this sample (from the simulation) with heavier neutralinos/chargino in agreement

with the expectation from the very small BRs of the first two generation squarks

to these sparticles at this point in the SUSY parameter space [56] (see Table 4.3).

The number of events (from the simulation) with at least 1 b quark and 4 leptons

13The information about whether an event in the simulation has x~s, &, X$Setc. is from the

event generator.

110



is also in rough agreement (up to the acceptance factor) with the number of 4

lepton events with at least lstop/sbottomexpectedfromthe cross-section and

branching fraction estimates. 14

Including an acceptance factor ofecu~~ l/4forbothbackground and signal,

a b–jet detection efficiency of60’%o (which was not included in Eqn.(4.37)) and

detection

efficiency

efficiency of 90% for the decay r + TV, and a 66% 4-lepton detection

(the ~ and lepton detection efficiencies were included in the previous esti-

mates of SFV etc.), a summary of the expected number of events at low luminosity

is :

While these numbers may be a little small for one detector and one year of running

at low luminosity (L = 10fb-l ), there is cause for optimism. More integrated

luminosity L from >1 year of running and/or 2 detectors can significantly increase

the statistics. Further, a larger Bll(xj + [Z)would give more statistics. This could

occur at a point in the SUSY parameter space with a heavier Higgs boson, and

14wJehave also checked that these simulated events do have at least 1 stop/sbottom. There

are very fewevents in this sample with no stops/sbottoms but with bjets from initial state gluon

radlat ion.
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thus a lower 1312(x~ +- hx~).

To illustrate the discovery or exclusion significance of these results, an inte-

grated luminosity of L = 100 fb-l is considered. This could occur for 5 years of

15 For this integrated luminosity thererunning at low luminosity for two detectors .

are 22 4–lepton flavor violating events from the ?/r background, and 30 3–lepton

~—jet events. There will also be 125 4–lepton flavor violating events

b–jet veto from the ~/~ background. Next, the b–tagging efficiency is

before the

optimized

so that the ~/~ background is (less than or) equal to the la statistical error in 7/T

background while at the same time the reduction of the signal due to mistagging

is small. This is achieved with a b–tagging efficiency of 8070, rather than the 6070

of before. At this higher tagging efficiency there is a mistagging rate of 1 in 50,

so there is very little reduction of the signal. With an 80910b—tagging efficiency,

5 f/~ background events remain since each event has at least 2 b–jets. Then the

background is dominated by the 7/T decays. A 5cr (20) discovery (exclusion) re-

quires that S/@ >5 (S/@> 2), and

a 50 discovery is obtained for

fisin 26’~ >0.26 (50 discovery)

15one year of running at high luminosity is

this requires >23 (> 9) signal events. So

or sini3~ > 0,13 for x ~ 1. (4.39)

also possible. In this case however, the b–jet

mistagging rate increases to 1 in 6 for a b–tagging efficiencyof 8070 [62]. Since most of the

signal events occur from @ production and so contain at least three hard jets, approximately

40% of the signal could be rejected. In this case the discovery (and exclusion) limits on sin 8R

increase by about

known since a low

25%. In addition, the tau-jet detection efficiencyat high luminosity is not

luminosity was used in the ATLAS study.
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If no signal is observed then the 20 exclusion limit is

fisin 26~ >0.16 (20 exclusion) or sin OR >0.08 for x N 1. (4.40)

To end this section, these values of sin2d~ and Am/m that may be probed

bythe LHC are comparedto the constraintson these parameters obtained from

p~ey. The LHCsignal isproportional tosin220~z, withz~l if Am~I’ and

z << 1 if Am << I’. The decay p + e~ places an upper limit on sin 28RAm/m

(Eqn.(4.4)) so that there is competition between the two probes of flavor violation.

Thus, in order for the signal at the LHC to be significant in the region of the

(sin 2i3~, Am/m) plane beyond the reach of the p ~ ey limit, there should be a

range of Am/m where Am ~ I’ so that z N 1 and Am/m is small enough (for

a given value of sin 28R) so that p --+ e? is suppressed. It will be seen that for

Am/m w I’/m (so that x w 1), at this LHC Point, sin 26R is unconstrained by

the p + e~ limit, affording the LHC the opportunity to either detect a signal or

extend the limit.

At this Point X! x ~ 0. A computation of the one-loop so contribution gives

sin 20R
+(100 ~:’R)2 - ‘441)

20$’(~& ~R, t) <0.013 X

Here a~ = fi~/~~Y (~ = L, R), t = (A+ ~tan/!?)/fiR,

(4.42)

with

K(x, y) =
l+2xlogz–z2

(4.43)
g($) – 9(Y), ~(x) =

x–y 2(x – 1)3 ‘
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and

H(x) =
–Z3 + 932 + 9X – 17 – (6 + 18x) logz

6(x – 1)5
(4.44)

Two useful facts are H(1) = $K(l, 1) = –1/20; hence the factor of 20 on the

left side of Eqn. (4.41). At this LHC Point, mi~ w160 GeV, mx~ ~ 120 GeV, and

m~L w 240 GeV. Inputing these masses into the above formula simplifies it to:

sin 20~ ~ Am~

0.39 fiR
X (1 + 0.48t) <0.03 X

m ‘445)

At this Point t x 5 – 10. However, a larger variation in t is allowed without

affecting the flavor violating signal, since both A and sgn(p) do not qualitatively

affect the 4–lepton event rate 16. In any case, the values sin 28R m 0.39 and

AmR -17 (so that x N 1) with a typical value of r N a.~m ~ 10-2 x fiR are

consistent with p + e? – recall that sin 2(3R x 0.39 and z H 1 was assumed to

obtain the estimate of SFV in Eqn. (4.30). In fact, at this LHC Point r N 125

MeV [56], so that 17/m N 8 x 10-4 which is smaller than a,~. So for Am/m ~

2 17/m z 1.6 x 10-3, it follows that x v 1. From Eqn. (4.45) and for maximal

mixing (sin 26R = 1), Am/m < 0.39 x 0.03/(1 + 0.48t) H 4 x 10-3 (for t x 5).

Thus for 1.6 x 10-3 ~ Am/m ~ 4 x 10-3 and sin 28~ = 1, p -+ e~ is satisfied and

x N 1. So at this Point even for maximal mixing there is a large range of Am/m

for which x N 1 and p -+ e~ is safe. Of course, smaller mixing could be probed by

the LHC, in which case the upper bound on Am/m allowed by p + e? is larger

In this case for a given sin ORthere is a larger range of Am/m for which x w 1 (so

that there is no suppression of the LHC signal) and p -+ e~ is safe.

161tis important to maintain the relation my: > m;R though.
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4.4 Summary

The point of this Chapter is to demonstrate that it is possible to detect SUSY

leptonflavor violation at the LHC using events with 41eptons from the cascade

decays of squarks provided the following conditions are satisfied:

O. Either R–parity isconservedor X~ (LSP) decays outside the detector,

1. x; pair production in cascade decays of squarks is large and x; has a large

decay branching fraction to ~1 (to get enough statistics),

2. Hadronic decays of TS can be detected with a known efficiency so that the

background from the x: + TT decay can be estimated,

3. The b-jet detection efficiency is good so that the background from events

with stop/sbottom can be rejected,

4. The stop/sbottom production rate, either direct or in gluino decays, is not

too much larger than the production of first two generation squarks,

5. The first two generation squarks decay largely to x;, X! and X:, so that

the background to flavor violating 4 lepton events from decays of heavier neu-

tralinos/chargino to Ws, lighter chargino, heavier sleptons etc. is small. This

condition can be realized in the so-called gaugino-like region,

6. The mass splitting is Am M r or larger, so there is no suppression of the

signal due to the quant urn interference effect.

The arguments presented here are clearly semi-quantitative, and further study

requiring a detailed simulation of these processes is required.
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Chapter 5

Finetuning in Low–Energy G

The fine tuning in models of low energy gauge mediated supersymmetry break-

ing required to obtain the correct Z mass is quantified. To alleviate the fine tuning

problem, a model with split (5+5) messenger fields is presented. This model has

additional triplets in the low energy theory which get a mass of O (500) GeV from

a coupling to a singlet. The improvement in fine tuning is quantified and the spec-

trum in this model is discussed. The same model with the above singlet coupled

to the Higgs doublets to generate the p term is also discussed. A Grand Unified

version of the model is constructed and a known doublet–triplet splitting mecha-

nism is used to split the messenger (5 + $) ‘s. A complete model is presented and

some phenomenological constraints are discussed.

5.1 Introduction

One of the outstanding problems of particle physics is the origin of electroweak

symmetry breaking (EWSB). In the Standard Model (SM), this is achieved by

one Higgs doublet which acquires a vacuum expectation value (vev) due to a

negative mass squared which is put in by hand. The SM has the well known

gauge hierarchy problem ~4]. It is known that supersymmetry (SUSY) stabilizes
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the hierarchy between the weak scale and some other high scale without any fine

tuning if the masses of the superpartners are less than few TeV [63, 64]. The

Minimal Supersymmetric Standard Model (MSSM) is considered as a low energy

effective theory in which the soft SUSY breaking terms at the correct scale are

put in by hand. This raises the question : what is the origin of these soft mass

terms, i.e., how is SUSY broken ? If SUSY is broken spontaneously at tree level in

the MSSM, then there is a colored scalar lighter than the up or down quarks [65].

So, the superpartners have to acquire mass through either radiative corrections

or non–renormalizable operators. Thus there is a “hidden” sector where SUSY is

broken spontaneously at tree–level and then communicated to the MSSM by some

“messengers”.

There

the right

are two problems here: how is SUSY broken in the hidden sector at

scale and what are the messengers ? There are models in which a

dynamical superpotential is generated by non–perturbative effects which breaks

SIJSY [66]. The SUSY breaking scale is related to the Planck scale by dimensional

transmutation. Two possibilities have been discussed in the literature for the

messengers. One is gravity which couples to both the sectors [67]. In a supergravity

theory, there are non–renormalizable couplings between the two sectors which

generate soft SUSY breaking operators in the MSSM once SUSY is broken in the

“hidden” sector. In the absence of a flavor symmetry, this theory has to be fine

tuned to give almost degenerate squarks and sleptons of - “

which is required by Flavor Changing Neutral Current

117

the tirst

(FCNC)

two generations

phenomenology



[65, 68]. The other messengers are the SIVIgauge interactions [11]. In these models,

the scalars of the first two generations are naturally degenerate since they have

the same gauge quantum numbers. This is an attractive feature of these models,

since the FCNC constraints are naturally avoided and no fine tuning between the

masses of the first two generation scalars is required. If this lack of fine tuning is a

compelling argument in favor of these models, then it is important to investigate

whether other sectors of these models are fine tuned. In fact, it will be argued

(and this is also discussed in [69, 70, 71]) that the minimal model (to be defined

in section 5.2) of low–energy gauge-mediated SUSY breaking requires a minimum

770 fine tuning to generate a. correct vacuum (Z mass) if no superpartners are

discovered at LEP2. Further, if a gauge-singlet and extra vector–like quintets

are introduced to generate the “p” and “BP” terms, then the minimal model of

low energy gauge–mediated SUSY breaking requires a few percent fine tuning to

correctly break the electroweak symmetry. These fine tunings makes it difficult

to understand, within the context of these models, how SUSY is to offer some

understanding of the origin of electroweak symmetry breaking and the scale of the

Z and W gauge boson masses.

This chapter is organized as follows. Section 5.2 reviews both the “messenger

sector” in low energy gauge–mediated SUSY breaking models that communicates

SUSY breaking to the Standard Model and the pattern of the sfermion and gaugino

masses that follow. Section 5.3 quantifies the fine tuning in the minimal model

using the Barbieri–Giudice criterion [63]. Section 5.4 describes a toy model with
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split (5+ ~) messenger representations that improves the fine tuning. To maintain

gauge coupling unification, additional triplets are added to the low energy theory.

They acquire a mass of 0(500) GeV by a coupling to a singIet. The fine tuning in

this model is improved to - 40%. The sparticle phenomenology of these models

is also discussed. Section 5.5 discusses a version of the toy model where the above

mentioned singlet generates the p and p; terms. This is identical to the Next–

to–Minimal Supersymmetric Standard Model (NMSSM) [72] with a particular

pattern for the soft SUSY breaking operators that follows from gauge–mediated

SUSY breaking and this particular solution to the fine tuning problem. Then this

model is shown to be tuned to w 201%0,even if LEP does not discover SUSY/light

Higgs. It is also shown that the NMSSM with one complete messenger (5+ $) is

fine tuned to w 2%. Section 5.6 discusses how it is possible to make this toy model

compatible with a Grand Unified Theory (GUT) [13] based upon the gauge group

SU(5) x SU(5). The doublet-triplet splitting mechanism of Barbieri, Dvali and

Strumia [73] is used to split both the messenger representations and the Higgs

multiples. Section 5.7 presents a modeI in which all operators consistent with

symmetries are present and for which the low energy theory is th~ model of section

5.5. In this model R-parity (-RP) is the unbroken subgroup of a 2A global discrete

symmetry that is required to solve the doublet–triplet splitting problem. This

model has some metastable particles which might cause a cosmological problem.

Appendix A gives the expressions for the Barbieri–Giudice parameters (for the

fine tuning) for the MSSM and the NMSSM.
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5.2 Messenger Sector

Inthemodels oflowenergy gauge-mediated SUSY breaking [69, 74] (hence-

forth called LEGM models), SUSY breaking occurs dynamically in a “hidden”

sector of the theory at a scale Adyn that is generated through dimensional trans-

mutation. SUSY breaking is communicated to the Standard Model fields in

two stages. First, a non-anomalous U(l) global symmetry of the hidden sec-

tor is weakly gauged. This U(l)x gauge interaction communicates SUSY break-

ing from the original SUSY breaking sector to a messenger sector at a scale

Amess w cyxffdvn/(&) 2X3follows. The particle content in the messenger sector

consists of fields ~~, ~– charged under this U(l)x, a gauge singlet field S, and

vector–like fields that carry Standard Model quantum numbers (henceforth called

messenger quarks and leptons). In the minimal LEGM model, there is one set

of vector–like fields, ~, 1, and q, ~ that together form a (5 + 5) of SU(5). This

is a sufficient condition to maintain unification of the SM gauge couplings. The

superpotential in the minimal model is

w ~~ss = A@b+f#Ls + ;ASS3 + Aqsqq + A@. (5.1)

The scalar potential is

In the models of [69, 74], the @+,@_ fields communicate (at two-loops) with the

hidden sector fields through the U(1) gauge interactions. Then, SUSY breaking in
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the original sector generates a negative value N – (ax A~V.)2 /(47r)2 for the mass

parameters m ~, m: of the @+ and o- fields. This drives vevs of 0 (A~.~~) for the

scalar components of both ~+ and o–, and also for the scalar and F-component

of S if the couplings As, gx and ~+ satisfy the inequalities derived in [70, 75].1

Generating a vev for both the scalar and F-component of S is crucial, since this

generates a non-supersymmetric spectrum for the vector-like fields q and 1. The

spectrum of each vector–like messenger field consists of two complex scalars with

masses M2 + B and two Weyl fermions with mass M where M = MI’, B = JFs

and A is the coupling of the vector-like fields to S. Since the breaking of the

SM at this stage is undesired, M2 – B ~0. In the second stage, the messenger

fields are integrated out. As these messenger fields have SM gauge interactions,

SM gauginos acquire masses at one loop and the sfermions and Higgs acquire soft

scalar masses at two–loops [1I]. The gaugino masses at the scale at which the

messenger fields are integrated out, Ane.~ = M are [74]

(5.3)

The sum in Eqn. (5.3) is over messenger fields (m) with normalization

Tr(T’T~) = N$/(m)@’ where the T’s are the generators of tile gauge group G in

the representation R, ~1(z) = 1 + O(Z), and Asusy a B/M = Fs/S = xA~,,~

with x = B/M2. 2 Henceforth, the approximation Asusy N Ame~~is used. The

1This point in field space is a local minimum. There is a deeper minimum where SM is broken

[70, 75]. This problem is avoided by adding another singlet to the messenger sector [70]. This

does not change the conclusions found here about the fine tuning.

‘If all the dimensionless couplings in the superpotential are of O(1), then x cannot be much
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C~(Si) (

,

,
Ck@(A~eSS)

A- (5.4)

exact one–loop calculation [76] of the gaugino mass shows that ~1(x) ~ 1.3 for

x ~ 1. The soft scalar masses at A~,.,.. are [74]

mz’ = 2A~u~Y ~ N~(m)

{“{ 4X )

smaller than 1.

m,G \ *II ) \Am L–-/

where C~ (si) is the Casimir of the representation of the scalar i in the gauge group.

G and ~2(x) = 1 + O(x). The exact two–loop calculation [76] which determines ~2

shows that for x <0.8 (0.9), ~2 differs from one by less than l% (5Yo). Henceforth

fl (x) = 1 and j’(x) = 1 are used. In the minimal LEGM model

~G (A~e~$
AfG(Am.~~) = q~ )A

mess7 (5.5)

47r } 471

where Q = T3~+ Y and al is the SU(5) normalized hypercharge coupling. Further,

C~ = 4/3 and Cz = 3/4 for colored triplets and electroweak doublets respectively.

The spectrum in the models is determined by only a few unknown parameters.

As Eqns. (5.3) and (5.4) indicate, the SUSY breaking mass parameters for the

Higgs, sfermions and gauginos are

The scale of A~eSSis chosen to be ~ 100 TeV so that the lightest of these particles

escapes detection. It follows that the intrinsic scale of supersymmetry breaking,. .
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A~V., is~lOOOOTeV. Thegoldstino decay of thelightest Standard Model super-

partner then occurs outside the detector [77]. The phenomenology of the minimal

LEGM model is discussed in detail in [77].

5.3 Fine Tuning in the Minimal LEGM

A desirable feature of gauge mediated SUSY breaking is the natural suppression

of FCNC processes since the scalars with the same gauge quantum numbers are

degenerate [11]. But, the minimal LEGM model introduces a fine tuning in the

Higgs sector unless the messenger scale is low. This has been previously discussed

in [69, 70] and quantified more recently in [71]. This discussion is outlined in order

to introduce some notation.

The superpotential for the MSSM is

W = pHUHd + WYakaWa. (5.8)

The scalar potential is

V = jL~/Hu]2+ p~/Hd12– (p~HuHd + h.c.)+11-terms + VI–LOOP, (5.9)

where V1-lOOPis the one–loop effective potential. The vev of H. (Hal), denoted by

VU(~d), is responsible for giving mass to the UP (down) –type quarks, p: = mid +P2,

p: = m~u + P2 and P;, 3 m~u, m~~ are the SUSY breaking mass terms for the

31-4isoften wfitten ~ BP+
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Higgs fields. 4 Extremizing this potential determines, with tan ~ - vU/v~,

1 2 _/3 – ~~ tan2 /?
–mz —
2 tan2~–1 ‘

(5.10)

P:
sin2@ = 2.2 (5.11)

p~+p;’

where fi~ = p: + 28V1–LOV/dv~. For large tan O, m~/2 x -(m~ti + p2). This

indicates that if lm~U I is large relative to m;, the p2 term must cancel this large

number to reproduce the correct value for m;. This introduces a fine tuning in

the Higgs potential, that is naively of the order m~/(2]m~W [). It is demonstrated

below that this occurs in the minimal LEGM model.

In the minimal LEGM hodel, a specification of the messenger particle con-

tent and the messenger scale A~.~~ fixes the sfermion and gaugino spectrum

at that scale. For example, the soft scalar masses for the Higgs fields are

% a2(Ame$~)Ame,~/ (4T). Renormalization Group (RG) evolution from An,$~ to

the electroweak scale reduces m~u due to the large top quark Yukawa coupling,

At, and the squark soft masses. The one loop Renormalization Group Equation

(RGE) for m~u is (neglecting gaugino and the trilinear scalar term (llUQilc) con-

tributi-ms )

(5.12)

which gives

4The scale dependence of the parameters appearing in the potential is implicit.
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Ontheright-hand side of Eqn. (5.13) the RGscaling ofm~andm~. has been ne-

glected. Since thelogarithm ltlwln(An.,~/mi) issmall, itisnaively expected that

rn~u will not be driven negative enough and will not trigger electroweak symmetry

breaking. But in this case the squarks are heavy. For example, the squarks are

% 500 GeV (1 TeV) for a messenger scale Am.., = 50 TeV (100 TeV. Thus the

radiative corrections from virtual top squarks are large. A numerical solution of

the one–loop RGE (including gaugino and the trilinear scalar term (HU@l’) con-

tributions) determines –m~u =(275 GeV)2 ((550 GeV)2) for A~.~~ =50 TeV (100

TeV) and setting At = 1. Therefore, m~/(2[m~U 1) NO.06 (0.01), an indication of

the fine tuning required.

To reduce the fine tuning in the Higgs sector, it is necessary to reduce lm~u I;

= –0.5rn~. The large value of lm~w ~at the weak scale is aideally so that m~U =

consequence of the large hierarchy in the soft scalar masses at the messenger scale:

m~~ < m~u << m; ~C. Models of sections 5.4,5.5, and 5.7 attempt to reduce the
>

ratio m~/m~u at the messenger scale and hence improve the fine tuning in the

Higgs sector.

The fine tuning may be quantified

The value 0“ of a physical observable

eters (Ai) of the theory. The fundamental parameters of the theory are to be

distinguished from the free parameters of the theory which parametrize the so-

by applying one of the criteria of [63, 64].

O will depend on the fundamental param-

lutions to O (Ai) = O*. If the value O* is unusually sensitive to the underlying

parameters (Ji) of the theory then a small change in Ji produces a large change
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in the value of O. The Barbieri–Giudice function

A* ao
C(o, AJ = J—

(-)* ~~i 10==0” (5.14)

quantifies this sensitivity [63]. This particular value of O is fine tuned if the

sensitivity to Ai is larger at O = O* than at other values of O [64]. If there are

values of O for which the sensitivity to Ai is small, then it is probably sufficient

to use c(O, Az) as the measure of fine tuning.

The function c(m~, Az) is determined by performing the following. The spar-

ticle spectrum in the minimal LEGM model is determined by the four parame-

ters Amess, P;, P, and tan D 5. ‘The scale Amess fixes the boundary condition for

the soft scalar masses, and an implicit dependence on tan@ from At, ~b and ~r

arises in RG scaling6 from PRG = An,SS to the weak scale, that is chosen to be

- 2). The extremization conditions of the scalar potentialp~~ = m: + ~(rii~ + mtc

(Eqns.(5.10) and (5.11)) together with mz and m, leave two free parameters that

are chosen to be A~,ss and tan ~ (see Appendix A for the expressions for these

functions).

A numerical analysis yields the value of c(m~, p2) that is displayed in Figure

5.1 in the (tan/3, Amess) plane. Note that c(m~, p’) is large throughout most of

the parameter space, except for the region where tan /3 > 5 and the messenger

scale is low. A strong constraint on a lower limit for AneS, is from the right-

handed selectron mass. Contours m~~ = 75 GeV (~ the LEP limit from the

5Here an arbitrary p: at An~~~is allowed for.

GThe RG scfllng of ~~was neglected.

126



run at W x 170 GeV 78]) and 85 GeV (N the ultimate LEP2 limit [79]) are

also plotted. The (approximate) limit on the neutralino masses from the LEP

run at @ = 170 GeV, mX~ + mX: = 160 GeV and the ultimate LEP2 limit;

mx: + mX: w 180 GeV are also shown in Figures 5.la and 5.lc for sgn(p) = –1

and Figures 5. lb and 5. ld for sgn(p) = +1. The constraints from the present and

the ultimate LEP2 limits on the chargino mass are weaker than or comparable to

those from the selectron and the neutralino masses and are therefore not shown.

If mz were much larger, then c * 1. For example, with mz = 275 GeV (550 GeV)

“and A~e~~= 50 (100) TeV, c(m~; p2) varies between 1 and 5 for 1.4 X tan ~ % 2,

and is x 1 for tan/3 > 2. This suggests that the interpretation that a large value

for c(m~; p2) implies that mz is fine tuned is probably correct.

From Figure 5.1 it is concluded that in the minimal LEGM model a fine tuning

of approximately 7% in the Higgs potential is required to produce the correct value

for mz if no sparticles are discovered at LEP2. Further, for this fine tuning the

parameters of the model are restricted to the region tan/? >5 and A~.,~ N 45

TeV, corresponding to mz~ x 85 GeV. It has also been checked that adding more

complete (5 + ~)’s does not reduce the fine tuning.
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Figure 5.1: Contours of c(nz~; p2) =(10, 15, 20, 25, 40, 60) for a MSSM with a

messenger particle content of one (5 + ~). In figures (a) and (c) sgn(p) = – 1 and

in figures (b) and (cl) sgn(p) = +1. The constraints considered are: (1) mz~ =75

GeV , (II) rnxy + mx; = 160 GeV, (III) m~~ =85 GeV, and (IV) mx; + mi: = 180

GeV.



5.4 A Toy Model to Reduce Fine Tuning

5.4.1 Jlodel

In this section the particle content and couplings in the messenger sector that

are sufficient to reduce \m~ti I is discussed. The aim is to reduce m~/m~u at the

scale A~.3s.

The idea is to increase the number of messenger Ieptons (SU(2) doublets)

relative to the number of messenger quarks (SU(3) triplets). This reduces both

m~/m~U and m~/m~~ at the scale A~,$3 (see Eqn.(5.4)). This leads to a smaller

value of lm~a I in the RG

lowered since mz~ is larger.

scaling (see Eqn. (5.13)) and the scale A~e.~ can be

For example, three doublets and one triplet at a scale

A~.., =30 TeV, so that mER x 85 GeV gives lm~u (n~Q)I

This may be achieved by the following superpotential in

s (100GeV)2 for ~, = 1.

the messenger sector

.

w = Aq, sqlql + Al, sllL + A12S12L + A13s13G + ;ASS3

1
+LJXf@+ + #NN3 + &#q2~2 + ~qSNqs@, (5.15)

where N is a gauge singlet. The two pairs of triplets q2, ~2 and q3,ij3are required at

low energies to maintain gauge coupling unification. In this model the additional

leptons /2,12 and 13,13couple to the singlet S, whereas the additional quarks couple

to a different singlet N that does not couple to the messenger fields ~+, ~-.

This can be enforced by discrete symmetries (such a model is discussed in section

5.7). Further, discrete charges that forbid any couplings between N and S at the
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renormalizable level are assumed to exist (this is true of the model in section 5.7)

so that SUSY breaking is communicated first to S and to N only at a higher loop

level.

5.4.2 Mass Spectrum

Before quantifying the fine tuning in this model, the mass spectrum of the

additional states is briefly discussed. While these fields form complete represen-

tations of SU(5), they are not degenerate in mass. The vev and F-component

of the singlet S gives a mass An.~$ to the messenger lepton multiples if the

F-term splitting between the scalars is neglected. As the squarks in qi + ~i

(i=2,3) do not couple to S, they acquire a soft scalar mass from the same two-

Ioop diagrams that are responsible for the masses of the MSSM squarks, yielding

rn~ z a3 (A~e~~) A~u~Y/(fim). The fermions in q+~ also acquire mass at this scale

since, if either Aqzor ~~~ N O(1), a negative value for m~ (the soft scalar mass

squared of N) is generated from the A~Nqij coupling at one loop and thus a vev for

N N m~ is generated. The result is mz/m~ x fiK/~3(A~,,,)(A~.,. /AsusY) = 85.

The mass splitting in the extra fields introduces a threshold correction to

sin2 @w if it is assumed that the gauge couplings unify at some high scale

iMGuT R1OIG GeV. This splitting shifts the prediction for sin2 (?Wby an amount

= –7x 10–4 ln(rnl/m~)n, where n is the number of split (5+ ~).7 In this case n =2

7The complete (5 + ~), i.e., 11,~1and gl, ijl, that couples to S is also split because & # Ag

at the messenger scale due to RG scaling from itfGuT to A~e~~. This splitting is small and
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and ml/m~ ~ 85, so Asin2 Ow N –6 x 10– 3. If a3(lkfz) and ~~n(~z) are used as

input, then using the two-loop RG equations sin2 Ow(MS) = 0.233 + 0(10-3)

is predicted in a minimal SUSY-GUT [80]. The error is a combination of

weak scale SUSY and GUT threshold corrections [80]. The central value of

the theoretical prediction is a few percent higher than the measured value of

sin2 Ow(MS) = 0.231 & 0.0003 [36]. The split extra fields shift the prediction of

sin2 (3Wto w 0.227+ 0( 10–3) which is a few percent lower than the experimental

value. In sections 5.6 and 5.7 it is shown that this spectrum is derivable from a

SU(5) x SU(5) GUT in which the GUT threshold corrections tosin26W could be

~ 0(10-3) –0(10-2) [81]. It is possible that the combination of these GUT thresh-

old corrections and the split extra field threshold corrections make the prediction

of sin2 @w more consistent with the observed value.

5.4.3 Fine Tuning

To quantify the fine tuning in these class of models the analysis of section

5.3 is applied. In the RG analysis the RG scaling of ~~, the effect of the extra

vector–like triplets on the RG scaling of the gauge couplings, and weak scale SUSY

threshold corrections were neglected. That this approximation is consistent has

been checked a postiori. As in section 5.3, the two free parameters are chosen

to be A~.,~ and tan ,B. Contours of constant c(m~, p2) are presented in Figure

5.2. Shown are contours of mz~ + mx: = 160 GeV, and mz~ = 75 GeV in Figure

neglected.
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5.2a forsgn(p) = –1, and5.2bforsgn(p) =+1. These areroughly the present

limits from LEP (including the run at fi~ 170 GeV [78]). The (approximate)

ultimate LEP2 reaches [79] mx, + mx; = 180 GeV, and mgR = 85 GeV are shown

in figure 5.2c for sgn(p) = – 1 and figure 5.2d for sgn(p) = +1. Since p2 (= (100

GeV)2) is much smaller in these models than in the minimal LEGM model, the

neutralinos (x! and xl) are lighter so that the neutralino masses provide a stronger

constraint on A~e~~ than does the slepton mass limit. The chargino constraints

are comparable to the neutralino constraints and are thus not shown. It is clear

that there are areas of parameter space in which the fine tuning is improved to w

40% (see figure 5.2). -

While this model improves the fine tuning required of the p parameter, it would

be unsatisfactory if further fine tunings were required in other sectors of the model,

for example, the sensitivity of m; to p:, A~,~~ and At and the sensitivity of m~

to p2, p:, A~.~, and At. These are all found to be less than or comparable to

c(m~; N2). The other fine tunings are now discussed in detail.

For large tan ~, the sensitivity of m; to p:, c(m~; p:) a 1/ tan2 @, and is there-

fore smaller than c(m~; p2). A numerical analysis shows that c(m~; p:) g c(m~; p2)

for all tan ~.

In the one–loop approximation m~u and m~~ at the weak scale are

portional to A~,3, since all the soft masses scale with A~e~~ and there is

a weak logarithmic dependence on Am,,. through the gauge couplings.

pro-
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Figure 5.2: Contours of c(m~; p2) =(1, 2, 3, 5, 7, 10) for a MSSM with a messenger

particle content of three (1+ ~)’s and one (q+ ~). In figures (a) and (c) sgn(p) =

– 1 and in figures (b) and (d) sgn(p) = +1. The constraints considered are:

(I) rnz~ =75 GeV’ , (II) rnxy + rrzig = 160 GeV, (III) rne~ =85 GeV, and (IV)
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c(m~; m~~) + c(m~; m~u ). It is also found that c(m~; A~,.~) x c(m~; p2)+l over

most of the parameter space.

In the one-loop approximation, m~ti (i) is

Then, using t x ln(An.~~ /mQ,) zs ln(fin/a~) x 4.5 and ~~ H 1, c(m~; At) is (see

Appendix A)

4 dm~u (t)
c(m~; At) x — ‘:3

x 50 (600 GeV)2”
(5.17)

m; a?

This result measures the sensitivity of m; to the value of At at the electroweak

scale. While this sensitivity is large, it does not reflect the fact that At(AfPl)

is the fundamental parameter of the theory, rather than At(lkfW..~). Using both

numerical and analytic computations it is found that, for this model with three

(5+ ~)’s in addition to the MSSM particle content, 6A,(NfW.a~) w 0.1 x 6A,(AlPl),

and therefore

(5.18)

For a scale of A~.~~ = 50 TeV (mQ x 600 GeV), c(m~; ~~(MPl)) is comparable

to c(m~; p2) which is x 4 to 5. At a lower messenger scale, A~,~~ x 35 TeV,

corresponding to squark masses of x 450 GeV, the sensitivity of m~ to At(Mpl) is

x 2.8. This is comparable to c(m~; p2) evaluated at the same scale.

The sensitivity of mt to the fundamental parameters is discussed next. Since,
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687 616 612 319 125

656 546

Table 5.1: Soft scalar masses in GeV for messenger particle content of three (1+~)’s

and one q + ~ and a scale A~.s, = 50 TeV.

mf = ij12sin2 j3A~,

(5.19)

is obtained. Numerical computations determine that the last term in c(m~; Ai) is

small compared to c(m~; ~z) and thus over most of parameter space c(mt; Ai) x

~c(m~; Ai). As before, the sensitivity of mt to the value of At at the GUT/Planck

scale is much smaller than the sensitivity to the value of At at the weak scale.

5.4.4 Sparticle Spectrum

The sparticle spectrum is now briefly discussed to highlight deviations from

the mass relations predicted in the minimal LEGM model. For example, with

three doublets and one triplet at a scale of A = 50 TeV, the soft scalar masses

(in GeV) at a renormalization scale p~~ = m: + ~(m~, + m~$) x (630 GeV)2, for

At = I, are snown m

Two observations

\ + , “ Table 5.1.

that are generic to this type of model are: (i) By construc-
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tion, the spread in the soft scalar masses is less than in the minimal LEGM model.

(ii) The gaugino masses do not satisfy the one-loop SUSY-GUT relation Jfi/ai =

constant. In this case, for example, 1143/a3 : Azf2/a2 x 1:3 and lvf3/a3 : 1111/al x

5:11 to one-loop.

It is also found that for tan ~ k 3, the Next Lightest Supersymmetric Particle

(NLSP) is one of the neutralinos,

handed stau. Further, for these

whereas for tan /? <3, the NLSP is the right–

small values of tan/3, the three right-handed

sleptons are degenerate to within H 200 MeV.

5.5 NMSSM

In section 5.3, the p term and the SUSY breaking mass pi were put in by

hand. There it was found that these parameters had to be fine tuned in order to

correctly reproduce the observed Z mass. The extent to which this is a “problem”

may only be evaluated within a specific model that generates both the ,u and p:

terms.

For this reason, in this section a possible way to generate both the p term and

p; term in a manner that requires a

section 5.2 or section 5.4 is discussed.

minimal modification to the model of either

The easiest way to generate these mass terms

is to introduce a singlet N and add the interaction NHUHd to the superpotential

(the NMSSM) [72]. The vev of the scalar component of N generates p and the vev

of the F-component of N generates p:.

Note that for the “toy model” solution to the fine tuning problem (sectior,
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5.4), the introduction of the singlet occurs at no additional cost. Recall that in

that model it was necessary to introduce a singlet N, distinct from S, such that

the vev of N gives mass to the extra light vector-like triplets, qz,qa (i = 2,3)

(see equation 5.15). Further, discrete symmetries (see section 5.7) are imposed to

isolate N from SUSY breaking in the messenger sector. This last requirement is

necessary to solve the fine

of N acquired a vev at the

tuning problem:

same scale as S,

if both the scalar and F–component

then the extra triplets that couple to

N would also act as messenger fields. In this case the messenger fields would form

complete (5 + ~)’s and the fine tuning problem would be reintroduced. With N

isolated from the messenger sector at tree level, a ~-ev for N at the electroweak

scale is naturally generated, as discussed in section 5.4.

Next, a comment on the necessity and origin of these extra triplets is made.

Recall that in the toy model of section 5.4 these triplets were required to maintain

the SUSY-GUT prediction for sin2 (3W. Further, it will be seen that they are

required in order to generate a large enough

of the singlet N). Finally, in’ the GUT model

–rn~ (the soft scalar mass squared

of section 5.7, the lightness of these

triplets (as compared to the missing doublets) is the consequence of a doublet–

triplet splitting mechanism.

The superpotential in the electroweak symmetry breaking

Afy
W = ~N3 + AqNqg – A~NHUH~,

sector is

(5.20)

which is similar to an NMSSM except for the coupling of N to the triplets. The
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superpotential in the messenger sector is given by Eqn. (5.15).

The scalar potential is 8

-(A~NHuHd + h.c.) + Vi.t.op. (5.21)

The extremization conditions for the vevs of the real components of lV, H. and

Hd, denoted by vN, VUand vd respectively (with v = ~’v~ + v; x 250 GeV), are

with

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

The expected

The RGE’s must

size of the Yukawa couplings ~~, AN and AH is now discussed.

be used to evolve these couplings from their values at NIGuT or

h4P1 to the weak scale. The quarks and the Higgs doublets receive wavefunction

81~ models of gauge mediated SUSY breaking, AH=O at tre~level and a non-zero value of

AH is generated at one loop. The trilinear scalar term ANN3 is generated at two–loops and is

neglected.
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renormalization from SU(3 and SU(2) gauge interactions respectively, whereas

the singlet iV does not receive at one–loop any wavefunction renormalization from

gauge interactions. So, the couplings at the weak scale are in the order: Jq N

0(1) > AH > AN if they all are 0(1) at the GUT/Planck scale.

It is next shown that without the Nqij coupling it is difficult to drive a vev for

N. The one loop RGE for mfi is

Since N is a gauge-singlet, mfi = O at A~.~~. Further, if Aq = O, an estimate for

m; at the weak scale is then

(5.29)

i.e., AH drives mfi negative. The extremization condition for VN, Eqn. (5.22), and

using Eqns. (5.24) and (5.26) (neglecting AH) shows that

has to be negative for N to acquire a vev. This implies that m~w and mid at A~~S,

have to be greater than w (350 GeV)2 which implies that a fine tuning of a few

percent is required in the electroweak symmetry breaking sector. With A* ~ 0(1),

however, there is an additional negative contribution to m% given approximately

by
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This contribution dominates the one in Eqn. (5.29) since Aq > AH and the S(

1, ~ have soft masses larger than the Higgs. Thus, with Aq # O, m; + ~~t

naturally negative.

Fixing mz and mt, leaves the following parameters : An.~~, Aq, AH, AN,

and vN. Three of the parameters are fixed by the three extremization cond

leaving three free parameters that for convenience are chosen to be A~.~~, tan

and AH. The signs of the

and no spontaneous CP

the following relations

‘2,

vevs are fixed to be positive by requiring a stable w

violation. The three extremization equations detx

where

The s~perpotential

the values of these

1 ti~ti tan2 /3 —ti~~2_
P – –~m~+

l–tan2@ ‘

2p~ = sin 2~(2p2 + fi~U + iii~~).

term iV.HUHd couples the RGE’s for m~u, mid and m;.

masses at the electroweak scale are, in general, compl

functions of the Yukawa parameters At, AH, AN and ~~. In this case, two of

Yukawa parameters (~~ and AN) are determined by the extremization equ

and a closed form expression for the derived quantities cannot be fount

simplify the analysis, the dependence of m~w and mid on AH induced in RGs
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from ilme.. to the weak scale is neglected. Then rn~u and m~~ depend only on

A~.~, and tan ~ and thus closed form solutions for AN, VN and rn~ can be obtained

using the above equations. Once fi~ at the weak scale is obtained, the value of

Aq is obtained by using an approximate analytic solution. An exact numerical

solution of the RGE’s then shows that the above approximation is consistent.

5.5.1 Fine Tuning and Phenomenology

The fine tuning functions considered below are c(O; AH), c(O; AN), c(O; At),

c(O; Aq) and c(O; Amess ) where O is either m; or mt. The expressions for the fine

tuning functions and other details are given in Appendix A. In the RG analysis the

approximations discussed in subsection 5.4.3 and above were used and found to be

consistent. Fine tuning contours of c(m~; AH) are displayed in Figures 5.3a and

5.3b for AH = 0.1 and Figures 5.3c and 5.3d for AH = 0.5. Numerical computations

show that the other fine tuning functions are either smaller or comparable to

c(m~; AH). 9

The existing phenomenological constraints on this model and also the ultimate

constraints if LEP2 does not discover SUSY/light Higgs(h) are discussed. These

are shown in. Figures 5.3a, 5.3c and Figures 5.3b, 5.3d respectively. The processes

‘In computing these functions the weak scale value of the couplings ~AI and AH has

been used. But since AN and AH do not have a fixed point behavior, it is found that

~~(~Gu~)/~~(~z) ~~~(mZ)/d~~(~G~~) N 1 so that, for example, c(rn~; ~~(~G~~)) =

C(m>;~~(mz)).
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Figure 5.3: Contours of c(rn~; AH) for the NMSSM of Section 3.5 and a messen-

ger particle content of three (1 + ~)’s and one (q + I). In figures (a) and (b),

c(vz~; AH)=(4, 5, 6, 10, 15) and AH =0.1. In figures (c) and (d), c(nz~; AH) =(3,

4, 5, 10, 15, 20) and AH=0.5. The constraints considered are: (I) mh + m. = mz,

(II) mz~ =75 GeV, (111) mxy + mx: = 160 GeV, (IV) mh = 92 GeV, (V) m,, =85

GeV, and (VI) miy + m-g = 180 GeV. For AH =0.5, the limit mh >70 GeV

constrains tan ~ <5 (independent of A~e.~) and is thus not shown,
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e+e– + Zh, e+e–-+ (h+pseudoscakw), e+e–-+ X+X–, e+e–~ x~x~, and e+e–+

~Rg~ observable at LEP are considered. Since this model also has a light pseu-

doscalar, the upsilon decays T+ (y + pseudoscalar) are also considered. It is

found that the model is phenomenologically viable and requires a N 20% tuning

even if no new particles are discovered at LEP2.

The constraints on the scalar and pseudoscalar spectra of this model are first

considered. There are three neutral scalars, two neutral pseudoscalars and one

complex charged scalar. First consider the mass spectrum of the pseudoscalars.

At the boundary scale A~.~s, SUSY is softly broken in the visible sector only by

the soft scalar masses and the gaugino masses. Further, the superpotential of

Eqn. (5.20) has an R-symmetry. Therefore, at the tree level, i.e., with AH =0, the

scalar potential of the visible sector (equation 5.21) has a global symmetry. This

symmetry is spontaneously broken by the vevs of iVR, ~~, and 11$ (the superscript

R denotes the real component of fields), so that one physical pseudoscalar is

massless at tree level. It is

“=&
where the superscripts 1

second pseudoscalar,

(VNNI + v sin 2P cos /lH~ + v sin 2P sin ~H~) , (5.37)

denote the imaginary components of the fields. The

A
H:-.~NI+ H:

—+—
vN v sin ~ Vcosp’

(5.38)

(5.39)



through the l$’N[2 term in the scalar potential.

The pseudoscalar a acquires a mass once an AH-term is generated, at one-loop,

through interactions with

the one-loop RGE, AH is

AH

the gauginos. Including only the wino contribution in

given by

(5.40)

where ikf2 is the wino mass at the weak scale. Neglecting the mass mixing be-

tween the two pseudoscalars, the mass of the pseudo–Nambu–Goldstone boson is

computed to be

(.)E (40)2 ~ 28~eV sin2~

(

&

)

z (GeV)2. (5.41)
sin2 2/3+ (*)

If the mass of a is less than 7.2 GeV, it could be detected in the decay ‘Y -+ a+~[36].

Comparing the ratio of decay width for T + a + ~ to T -+ p- + p+ [36, 82], the

limit

sin 2/3 tan ~

J(*V)2 + sin’ ‘0
<0.43 (5.42)

is found.

Further constraints on the spectra are obtained from collider searches. The

non–detection of Z + scalar + a at LEP implies that the combined mass of the

lightest Higgs scalar and a must exceed N 92 GeV. Also, the process e+e- +Zh

may be observable at LEP2. For AH = 0.1, the constraint rnh + m. 292 GeV is
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stronger than mk 270 GeV which is the limit from LEP at @ N 170 GeV [78].

The contour of m~ + m. = 92 GeV is shown in Figure 5.3a. Shown in Figure 5.3b

is the contour of mh, = 92 GeV (W the ultimate LEP2 reach [83]). For AH = 0.5,

the constraint mh A 70 GeV is stronger than mh + m. ~ 92 GeV and restricts

tan /3 S 5 independent of A~.,s. The contour mh = 92 GeV is shown in Figure

5.3d. Note that the allowed parameter space is not significantly constrained.

These limits make the constraint of Eqn. (5.42) redundant. The left–right mixing

between the two top squarks was neglected in computing the top squark radiative

corrections to the Higgs masses.

The pseudo-Nambu-Goldstone boson a might be produced along with the

lightest scalar h at LEP. The tree-level cross section in units of R = 87/s nb is

a(e+e– + h a) N 0.15
‘2 “v(’+> :)’ (5-43)(s - m~)’

where g~/ cos 6W is the Z(adh – h~a) coupling, and

V(Z, Y, z) = ~(z – Y – .Z)2 – 49z. If h = CNNR + cwHj + cdH~, then

(5.44)

A numerical check of the parameter space allowed by mh 270 GeV and AH ~0.5

shows that the production cross–section for ha is less than both the current limit

set by DELPHI [84] and a (possible) exclusion limit of 30 fb [83] at @ x 192 GeV.

The production cross–section for hA is larger than for ha and A is therefore in

principle easier to detect. However, for the parameter space allowed by mh >70

GeV, numerical calculations show that mA 2 125 GeV, so that this channel is

145.



not cinematically accessible.

The charged Higgs mass is

(5.45)

which is greater than about 200 GeV in this model since rn~~ 2 (200 GeV)2 for

Amess k 35 TeV and as I-L2~ –m&u.

The neutralinos and charginos may be observable at LEP2 at @ N 192 GeV if

mx+ <95 GeV and mx~ + mX; % 180 GeV. These two constraints are ‘comparable,

and thus only one of these is displayed in Figures 5.3b and 5.3d, for AH = 0.1

and AH = 0.5 respectively. Also, contours of mX~ + mX: = 160 GeV (N the LEP

kinematic limit at @ w 170 GeV) are shown in Figures 5.3a and 5.3c. Contours of

85 GeV (AJthe ultimate LEP2 limit) and 75 GeV (N the LEP limit from X x 170

GeV) for the right-handed selectron mass further constrain the parameter space.

The results presented in all the figures are for a central value of mt=175 GeV.

By varying the top quark mass by 10 GeV about the central value of mt= 175

GeV the fine tuning measures and the LEP2 constraints (the Higgs mass and the

neutralino masses) are found to vary by x 30 Yo, but the qualitative features are

unchanged.

From Figure 5.3 it is seen that there is parameter space allowed by the present

limits in which the tuning is % 30 %. Even if no new particles are discovered at

LEP2, the tuning required for some region is N 20%.

It is also interesting to compare the fine tuning measures with those found
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in the minimal LEGM model (one messenger (5 + ~)) with an extra singlet N to

generate the p and p; terms. 10 In Figure 5.4 the fine tuning contours for c(m~; AH)

are presented for ~H=O. 1. Contours of m:~ = 75 GeV and mx~ + mx~ = 160 GeV

are also shown in Figure 5.4a. For AH = 0.1, the constraint mh + ma >92 GeV is

stronger than the limit mh 270 GeV and is shown in the Figure 5.4a. In Figure

5.4b, the (approximate) ultimate LEP2 limits are shown, i.e., mh = 92 GeV,

mxy + mx; = 180 GeV and m~~ = 85 GeV. Of these constraints, the bound on the

lightest Higgs mass (either m~ + m. 292 GeV or mh k 92 GeV) provides a strong

lower limit on the messenger scale. So in the parameter space allowed by present

limits the fine tuning is % 2% and if LEP2 does not discover new particles, the

fine tuning will be < 1%. The coupling AH.is constrained to be not significantly

larger than 0.1 if the constraint mh + m. Z 92 GeV (or mh 292 GeV) is imposed

and if the fine tuning is required to be no worse than lYo.

5.6 Models Derived from a GUT

This section discusses how the toy model of section 5.4 could be derived from

a GUT model.

In the toy model of section 5.4, the singlets N and S do not separately couple

to complete SU(5) representations (see Eqn. (5.15)). If the extra fields introduced

to solve the fine tuning problc.m were originally part of (5 + ~) multiplets, then

1°It is assumed that the model contains some mechanism to generate –m; w (100GeV)2 –

(200GeV)2;for example, the singlet is coupled to an extra (5+ ~).
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(a)
(T$V) ,
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(T:V)
(b)

1
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tanfl

Figure 4

Figure 5.4: Contours of c(rn~;~~) =(50, 80, 100, 150, 200) forthe NMSSM of

Section 5 with AH =0.1 and a messenger particle content of one (5+5). The

constraints considered are: (I) mh + m. = mz, (II) mzR =75 GeV, (III) m~~ +

mi; = 160 GeV, (IV) mh =92 GeV, (V) m~~ =85 GeV, and (VI) mxq + m~: =

180 GeV. A central value of mt =175 GeV is assumed.
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the missing triplets (missing doublets) necessarily couple to the singlet S(N). The

triplets must beheavy inorder to suppress their contribution to the soft SUSY

breaking mass parameters. Iftheonly other mass scale iskfGu~, then they must

acquire a mass at iMGuT. This is just the usual problem of splitting a (5+ $) [13],

For example, if the superpotential in the messenger sector contains four (5+ 5) ’s,

then the SU(3), triplets in the (51 + 51)’s and the SU(2) doublet in (~~ + 5~)

must be heavy at iMGuT so that in the low energy theory there are three doublets

and one triplet coupling to S. This problem can be solved using the method

of Barbieri, Dvali and Strumia [73] that solves the usual Higgs doublet:triplet

splitting problem. The mechanism in this model is attractive since it is possible

to make either the doublets or triplets of a quintet heavy at the GUT scale. Their

model is now briefly described.

The gauge group is SU(5) x SU(5)’, with the particle content X(24, 1),

2’(1, 24), @(5, @ and ~(~, 5) and the superpotential can be written as

A supersymmetric minimum of the scalar potential satisfies the F - flatness con-

ditions



With the ansatz 11

,X= Vz diag(2, 2,2, –3, –3) , Z’ = VE,diag(2, 2,2, –3, –3), (5.49)

the F@ = O condition is

diag(A43, iM3,Af3, M2, M2] “diag[v3, VS,VS,VZ,VZ]= O, (5.50)

where Lf3 = lkf@+ 2AvZ + 2~’vX1 and Af2 = ikf@– 3AvZ – 3A’vZ) and the second

matrix is the vev of Q. To satisfy this condition, there is a discrete choice for the

pattern of vev of@ : i) 03 # Oand J13 = O or ii) V2# Oand J42 = O. Substituting

either i) or ii) in the FX and F’z, conditions then determines V3 (or V2). With two

sets of fields, 01, @l with V3 # O and @2,32 with V2 # O , we have the following

pattern of symmetry breaking

SU(5) x SU(5)’ ‘Z* (SU(3) x SU(2) x u(l)) x (SU(3) x SU(2) x u(l))’

‘~ SM (the diagonal subgroup). (5.51)

If the scales of the two stages of symmetry breaking are about equal, i.e. V2, VZ1,~

V3, V2 N MGUT, then the SM gauge couplings unify at the scale MGUT. 12

11The two possible solutions to the F-flatness conditions are X = v~ diag(2, 2,2, –3, –3) and

X = v=diag(l, 1,1, 1,–4).

12See [73]and [81]for models which give this structure of vevs for the @fields without using

the adjoints.
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The particular structure of the vevs of @l and 02 can be used to split repre-

sentations as follows.

Consider the Higgs doublet-triplet splitting problem. With the particle content

5h(5, 1), ~~(~, 1) and X(I, 5), X(l, ~) and the superpotential

the SU(3) triplets in 5~, ~~ and X, X acquire a mass of order MGUT whereas the

doublets in 5~, ~~ and X, X are massless. Now only one pair of doublets is wanted

in the low energy theory (in addition to the usual matter fields). The doublets in

X, X can be made heavy by a bare mass term MGUTXX. Then the doublets in

5~, ~~ are the standard Higgs doublets. But if all terms consistent with symmetries

are allowed in the superpotential, then allowing AIGu~@l @l”, MGUTXX, 5~x@1

and 5~X@1 implies that a bare mass term for 5~~~ is allowed. Of course, a p term

p5hS~ of the order of the weak scale can be put in by hand, as in section 5.4.

However, it is theoretically more desirable to relate all electroweak mass scales to

the original SUSY breaking scale. So, the p term should be related to the size

of SUSY breaking. Recall that in section 5.5 it was shown that the NMSSM is

phenomenologically viable and “unfine tuned” in these models.

The vev structure of 02, @2 can be used to make the doublets in a 5 + 5 heavy.

Again, there are two pairs of light triplets and one of these pairs can be given a

mass at the GUT scale.

This mechanism of making either doublets or triplets in a (5+ ~) heavy can be
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used to show how the model of section 5.4 is derivable from a GUT. The model

with three messenger doublets and one triplet is obtained from a GUT with the

following superpotential

Here, some of the “extra” triplets and doublets resulting from splitting (5+ $)’s

are massless at the GUT scale. For example, the “extra” light doublets are used

as the additional messenger leptons. After inserting the vevs and integrating out

the heavy states, this corresponds to the superpotential in Eqn. (5.15) with the

transcription:

51,51 + lz, i’

xl,x~ + 1~,1.

5q,5q + qz,qz

Xq, xq + q~, ijj. (5.54)

This section is concluded with a remark about light singlets in SUSY-GUT’S
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with low energy gauge mediated SUSY breaking. 13 In a SUSY–GUT with a singlet

N coupled to the Higgs multiples, there is a potential problem of destabilizing

the mW,.k/~GuT hierarchy, if the singlet is light and if the Higgs triplets have

a SUSY invariant mass of 0 (~Gu~) [85]. In the LEGM models, a B–t ype mass

for the Higgs triplets and doublets is generated at one–loop with gauginos and

Higgsinos in the loop, ar.@ with SUSY breaking coming from the gaugino mass.

Since SUSY breaking (the gaugino mass and the soft scalar masses) becomes soft

above the messenger scale, Ame~~w 100 TeV, the B–type mass term generated

for the Higgs triplets is suppressed, i.e., it is 0((~/4m)M2A~e$$/M~uT). Similarly

the soft mass squareds for the Higgs triplets are O(m~,~~A~,~,/lZf~uT). Since the

triplets couple to the singlet N, the soft scalar mass and B–term generates at

one–loop a linear term for the scalar and F–component of N respectively. These

tadpoles are harmless since the SUSY breaking masses for the triplets are so

small. This is to be contrasted with supergravity theories, where the B–term~

~(mWe.~~GuT) and the soft mass N ~(m~eak ) for the triplet Higgs generates a

mass for the Higgs doublet that is at least N ~(/mW.ak~GuT/(4~) ).

5.7 One complete Model

The model is based on the gauge group GZOC= SU(5) x SU(5)’ and the global

symmetry group G910 = 23 x Z~ x 24. The global symmetry acts universally

on the three generations of the SM. The particle content and their G~OCx G910

13The author thanks H. Murayama for bringing this to his attention.
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quantum numbers are given in Tables 5.2 and 5.3. The most general renormal:

superpotential that is consistent with these symmetries is

W=W~+W~+Ws+WA+Ws+WG +W7,

where,

W2 = MIXIX,

WG = –AH5~5hN + ;ANN3 + ~~NXX

+AIoN’~X~ + AllN’XqX + ~ANIN’3,

W7 = A:5210j5h + A;lo210j5h.

The origin of each of the Wi’s appearing in the superpotential is easy to u

stand. In computing the F=O equations at the GUT scale, the only non–t

contributions come from fields appearing in WI, since all other Wis are bilin~

fields that do not acquire vevs at the GUT scale. The function of WI is to gen

the vevs E, Z’ N diag [2,2,2, –3, –3], ~~ = 02 N diag [0, 0,0, 1,1] and 6T =

diag [1,1,1, O,O]. These vevs are necessary to break GIOC-+ SV(3)C x SU(2) x t
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(this was explained in section 5.6). The role of W~ and Wa is to generate the nec-

essary splitting within the many (5 + ~)’s of GIOCthat is necessary to solve the

usual doublet–triplet splitting problem, as well as to solve the fine tuning problem

that is discussed in sections 5.3, 5.4 and 5.5. The messenger sector is given by

W5. It will shortly be demonstrated that at low energies this sector contains three

vector–like doublets and one vector–like triplet. The couplings in WG and W7 at

!ow energies contain the electroweak symmetry breaking sector of the NMSSM, the

Yukawa couplings of the SM fields, and the two light vector–like triplets necessary

to maintain the few percent prediction for sin2 (3Was well as to generate a vev for

N.

Next it is shown that the low energy theory of this model is the model that is

discussed in section 5.5.

Inserting the vevs for @l and @l into W~, the following mass matrix for the

colored triplet chiral multiples is obtained:

\,

(5.63)

and all other masses are zero. There are a total of four vector–like colored triplet

fields that are massive at MGUT. These are the triplet components of (5~, Xh),

(~~, X~), ($, Xl) and (xl, T*), where T~ is that linear combination of triplets in

155



51 and X that marries

to TH, T~, is massless

the triplet component of Xl. The orthogonal combination

at this scale. The massless triplets at MGUT are (Sg, S9),

(X,, x,) and (X, T~), for a total of three vector-like triplets. By inspection, the

only light triplets that couple to S at a renormalizable level are 5q and ~~, which

was desirable in order to solve the fine tuning problem. Further, since X contains

a component of T~, the couplings of the other light triplets to the singlets N and

N’ are

where Aq = ~~ cos a’, ~11 = Al1cos a’ and a’ is the mixing angle between the

triplets in 51 and X,

desirable to generate

sin c151. The AgNTLi~ coupling is also

terms (see section 5.5).

In section 5.4, 5.5 it was also demonstrated that with a total of three messen-

ger doublets the fine tuning required in electroweak symmetry breaking could be

alleviated. By inserting the vev for 02 into W4, the doublet mass matrix is given

as

[ .1[1

Ml o 0 x

(11, 5,, x,) o 0 A,V@, 5,

0 x3v@2 o Xq

and all other masses are zero. At kfG~~ the heavy doublets are (Xl, X), (5~, X*)

(5.65)

and (Sg, Xq), leaving the four vector–like doublets in (5~, ~~), (51, ~~), (X, Xl) and

(X~, X~) massless at this scale. Of these four pairs, (5~, $~) are the usual Higgs

doublets and the other three pairs couple to S
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The (renormalizable)

w=

superpotential at scales below MGUT is then

+AllN’q2~3 – ~HNHuHd + ~~NIN’3

+&L5i111+ ~7sijlql + ~@&

+A9si313+ & + W7, (5.66)

where the fields have been relabeled to make, in an obvious notation, thei{ SU(3) x

SU(2) x U(l) quantum numbers apparent.

This section concludes with comments about the choice of 24 as a discrete

symmetry and about non–renormalizable operators in our model.

The usual R–parity violating operators 10sM$sM~sM are not allowed by the

discrete symmetries, even at the non–renormalizable level. In fact, R–parity is a

good symmetry of the effective theory below MGUT. By inspection, the fields that

acquire vevs at MGUTare either invariant under 24 or have a 24 charge of 2 (for

example, @l), so that a 22 symmetry is left unbroken. In fact, the vevs of the other

fields S, N, N’ and the Higgs doublets do not break this 22 either. By inspecting

the 24 charges of the SM fields, we see that the unbroken 22 is none other than the

usual R–parity. So at MGUT, the discrete symmetry 24 is broken to ~. Also note

that the 24 symmetry is sufficient to maintain, to all orders in I/Mpl operators,

the vev structure of @l and 02, i.e., to forbid unwanted couplings between 01 and

@2that might destabilize the vev structure [81]. This pattern of vevs was essential

to solve the doublet–triplet splitting problem. It is interesting that both R-parity
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invariance and requiring a viable solution to the doublet–triplet splitting problem

can be accommodated by the same 24 symmetry.

The non–SM matter fields (namely, the messenger 5’s and X’s and the light

triplets ) have the opposite charge to the SM matter fields under the unbroken 22.

Thus, there is no mass mixing between the SM and the non-SM matter fields.

Dangerous proton decay operators are forbidden in this model by the discrete

symmetries. Some higher dimension operators that lead to proton decay are al-

lowed, but are sufficiently suppressed. These’ are discussed below.

Renormalizable operators such as l(ls~ 10s~5~ and 10,SM~S~~q are forbidden

by the 23 symmetries. This is. necessary to avoid a large proton decay rate. A

dimension-6 proton decay operator is obtained by integrating out the colored

triplet scalar components of 5~ or .5*. Since the colored scalars in 5* and SQ

have a mass ~0(50 TeV), the presence of these operators would have led to an

unacceptably large proton decay rate.

The operators 10S~lOSMIOSM~,S~/lMPl and 10s~ 10sMIOs~~s~ x

(@@/Al~l)”/AfP~, which give dimension-5 proton decay operators, are also forbid-

den by the two Z~ symmetries. The al~owed non–renormalizable operators

generate dimension–5 proton decay operators are sufficiently suppressed.

that

The

operator 10sM 10sMIOsM~s~IV/ (IMpl)2, for example, is allowed by the discrete

symmetries, but the proton decay rate is safe since vNl N 1 TeV.

The operators 10z5j@l (X or Xq)/AfPl could, in principle, also lead to a large

proton decay rate. Setting al to its vev, the superpotential couplings, for example,
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~ij(U;D~x(g) +QzLj~(g)) aregenerated with Azjsuppressed only byv~l/Mpl. In

this model the colored triplet (scaIar) components of X and Xq have a mass m. N

500 GeV, giving a potentially large proton decay rate. But, in this model these

operators are forbidden by the discrete symmetries. The operator 10i~j@lXS/lkf~l

is allowed giving a four SM fermion proton decay operator with coefficient N

(v@l v~/A4~l)2/m~ N 10-34 GeV-2. This is smaller than the coefficient generated

by exchange of the heavy gauge bosons of mass kfGulI, which is w g~~T/i@~T N

1/2 10-32 GeV-2 and so this operator leads to proton decay at a tolerable rate.

With our set of discrete symmetries, some of the messenger states and the

light color triplets are stable at the renormalizable level. Non-renormalizable op-

erators lead to decay lifetime for some of these particles of more than about 100

seconds. This is a problem from the viewpoint of cosmology, since these particles

decay after Big-Bang Nucleosynthesis (BBN). With a non–universal choice of dis-

crete symmetries, it might be possible to make these particles decay before BBN

through either small renormalizable couplings to the third generation (so that the

constraints from proton decay and FCNC are avoided) or non–renormalizable op-

erators. Alternatively, if the reheat temperature is below the mass scale of these

particles they will not have a relic abundance today. These issues, however, are

beyond the scope of this chapter.

5.8 Summary

In this chapter the fine tuning required in models of low energy gauge–mediated
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w x D

G,oc (24, 1) (1, 24)

z~ 1 1

z; 1 1

z~ 1 1

(5, 1)

a’

1

c’

(5,1)

1

1

c’

10i sh $h

(lo,1) (5, 1) (5, 1)

a a a’
—

1 1 b’

c c’ c’ ‘

(5, 5) (5, 5) (5, 5) (5, 5)

1 1 1 1

1 1 1 1

1 1 c’ c’

xl xl 5q

(1,5) (1,5) (5, 1)

1 a 1

1 1 b’

1 1 1

(5, 1)

a’

b

1

Table 5.2: SU(5) x SU(5)’ x Z~ x Z: x Z1 quantum numbers for the fields of

the model discussed in section 7. The generators of Z3 x Z: x Z4 are labeled by

(a, b,c). The three SM generations are labeled by the index i.



w Xq Xq x~ x~ x x

Gloc (1,5) (1, 5) (1, 5) (1, 5) (1, 5) (1, 5)

z~ a 1 a a2 a2 a

z; b2 b b 1 1 b2

ZJ 1 1 1 1 1 1

‘J s N N’ $+ 4-

z~ a 1 a a C-L

z; 1 b b2 1 1

z~ 1 1 1 1 1

Table 5.3: SU(5) x SU(5)’ x ZS x Z~ x Zl quantum numbers for the fields of

the model discussed in

(a, b, c). The three SM

section 7. The generators

generations are labeled by

of Z3 x Z: x Z4 are labeled by

the index i.
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SUSYbreaking toobtain the correct Zmass was quantified. It was demonstrated

that the minimal model requires a fine tuning of order N 7% if LEP2 does not

discover a right-handed slepton. It was discussed how models with more messenger

doublets than triplets canimprove the fine tuning. Inparticular, amodel witha

messenger field particle content of three (1 + ~)’s and only one (q + @ was tuned

to w 40%. It was found that it was necessary to introduce an extra singlet to give

mass to some color triplets (close to the weak scale) which are required to maintain

gauge coupling unification. It was also discussed how the vev and F-component of

this singlet could be used to generate the ~ and BM terms. It was found that for

some region of the parameter space this model requires ~ 25% tuning and that

limits from LEP do not constrain the parameter space. This is in contrast to an

NMSSM with extra vector–like quintets and with one (5+ ~) messenger field, for

which it was found that a fine tuning of N 1‘Yois required and that limits from

LEP do significantly constrain the parameter space.

It was further discussed how the model with split messenger field representa-

tions could be the low energy theory of a SU(5) x SU(5) GUT. A mechanism

similar to the one used to solve the usual Higgs doublet–triplet splitting problem

was used to split the messenger field representations. All operators consistent

with gauge and discrete symmetries were allowed. In this model R-parity is the

unbroken subgroup of one of the discrete symmetry groups. Non–renormalizable

operators involving non–SM fields lead to proton decay, but at a safe level.
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Chapter 6

Non–decoupling of the First and Second

Generation Scalars

The supersymmetric contributions to the Flavor Changing Neutral Current

processes may be suppressed by decoupling the scalars of the first and second

generations. It is known, however, that the heavy scalars drive the stop masses

squared negative through the two–loop Renormalization Group evolution. This

tension is studied in detail. Two new items are included in this analysis: the effect

of the top quark Yukawa coupling and the QCD corrections to the supersymmetric

contributions to AmK. Even with Cabibbo–like mixing between the squarks of the

first two generations, these squarks must be heavier than ~ 40 TeV to suppress

AmK. This implies, in the case of a high scale of supersymmetry breaking, that the

boundary value of the stop mass has to be greater than N 7 TeV to keep the stop

mass squared positive at the weak scale. Low–energy supersymmetry breaking at

a scale that is of the same order as the mass of the heavy scalars is also considered.

In this case the finite parts of the two–loop diagrams are computed to estimate

the contribution of the heavy scalar masses to the stop mass squared. It is found

that for Cabibbo–like mixing between the squarks, the stop mass at the boundary

needs to be larger than N 2 TeV. Thus, for both cases, the large boundary value of
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the stop masses leads to an unnatural amount of fine tuning to obtain the correct

Z mass.

6.1 Introduction

The origin of electroweak symmetry breaking (EWSB) and the subsequent

gauge hierarchy problem are two large mysteries of the Standard Model (SM).

Supersymmetry (SUSY) provides a promising solution to these problems, by both

stabilizing the weak scale against radiative corrections[6], and by naturally break-

ing the electroweak symmetry through the quantum corrections of the superpart-

ner of the top quark to the Higgs boson mass [86]. It is known, however, that

generic weak scale values for the masses of the first two generation scalars give

rates for many flavor violating processes that are in disagreement with the experi-

mental observation. The measured value of AmK and detection limits for p + ey,

and p + 3e, for example, require that the first two generation scalars be degener-

ate to within a few tenths of a percent if their masses are at the weak scale [65, 68].

Constraints from CP violation are generally even more severe. Understanding the

origin of this degeneracy is the supersymmetric flavor problem,. Attempts to re-

solve this puzzle without introducing any fine tuning include: using approximate

non–abelian or abelian symmetries [87]; communicating supersymmetry breaking

to the visible sector by gauge interactions that do not distinguish between flavors

[11]; squark-quark mass matrix alignment [88]; and raising the soft masses of the

first two generation scalars to the tens of TeV range [89, 90,91,92,93, 94, 95, 96].
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The phenomenological viability and naturalness of this last scenario is the sub-

ject of this chapter. To suppress flavor changing processes, the heavy scalars must

have masses between a few TeV and a hundred TeV. The actual value depends on

the degree of degeneracy and mixing between the masses of the first two genera-

tion scalars. As discussed in Reference [97], the masses of the heavy scalars cannot

be made arbitrarily large without breaking color and charge. This is because the

heavy scalar masses contribute to the two–loop Renormalization Group Equation

(RGE) for the soft masses of the light scalars, such that the stop soft mass squared

become more negative in RG scaling to smaller energy scales. This negative con-

tribution is large if the scale at which supersymmetry breaking is communicated

to the visible sector is close to the Grand Unification scale[97]. With the first two

generation soft scalar masses x 10 TeV, the initial value of the soft masses for

the light stops must be x (few TeV)2 to cancel this negative contribution [97] to

obtain the correct vacuum. This requires, however, an unnatural amount of fine

tuning to correctly break the electroweak symmetry[63, 64].

In this chapter these issues are analyzed. Two new items not previously dis-

cussed within this context are included: the effect of the large top quark Yukawa

coupling, At, in the RG evolution, that drives the stop soft mass squared more neg-

ative; and QCD radiative corrections in the AmK constraint [98]. This modifies

the bound on the heavy scalar masses that is consistent with the measured value

of AmK. This, in turn, affects the minimum value of the initial scalar masses that

is required to keep the scalar masses positive at the weak scale.
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This severe constraint obtained for the initial stop masses assumes that su-

persymmetry breaking occurs at a high scale. This leaves open the possibility

that requiring positivity of the scalar masses is not a strong constraint if the scale

of supersymmetry breaking is not much larger than the mass scale of the heavy

scalars. In this chapter this possibility is investigated by computing the finite

parts of the same two–loop diagrams responsible for the negative contribution to

the light scalar RG equation, and using these results as an estimate of the two–

loop contribution in an actual model of low-energy

is found that in certain classes of models, requiring

supersymmetry breaking. It

positivity of the soft masses

may place strong necessary conditions that such models must satisfy in order to

be phenomenologically viable.

This chapter is organized as follows. In section 6.2 an overview of the ingre-

dients of the analysis is presented. Some philosophy and notation is discussed.

Section 6.2.1 discusses the constraints on the masses and mixings of the first two

generation scalars obtained from AmK after including QCD corrections. It is

found, in particular, that Cabibbo–like mixing among both the first two genera-

tion left–handed squarks and right–handed squarks requires them to be heavier

than 40 TeV. Section 6.2.2 discusses the logic of the RG analysis, and some for-

mulas are presented. This analysis is independent of the AmK analysis. Sections

6.3 and 6.4 apply this machinery to the cases of low–energy and high–energy su-

persymmetry breaking, respectively. Section 6.3 deals with the case in which the

scale at which SUSY breaking is communicated to the SM sparticles is close to the
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mass of the heavy scalars. The finite parts of the two–loop diagrams are used to

,estimate the negative contribution of the heavy scalars. For Cabibbo–like mixing

among the left–handed and right–handed squarks of the first two generations the

boundary value of the stop masses has to greater than N 2 TeV to keep the stop

masses squared positive at the weak scale. This results in a fine tuning of naively

170 in elect roweak symmetry breaking [63]. Also discussed are the cases where

there is O(1) mixing among only the right or left squarks of the first two genera-

tions, and requiring positivity of the slepton masses squared implies a constraint

on the stop masses of N 1 TeV if gauge–mediated boundary conditions are used

to relate the two masses. This is comparable to the direct constraint on the initial

stop masses. Section 6.4 considers the case where the SUSY breaking masses for

the SM sparticles are generated at a high scale (N 1016 GeV). In this case,
.

ative contribution of the heavy scalars is enhanced

boundary conditions for the stop and Higgs masses

by a large logarithm.

are considered and it

the neg-

Various

is found

that for an order of 0.2 degeneracy between the first two generation squarks, the

boundary value of the stop mass needs to be larger than -J 7 TeV. This gives a

fine tuning of naively 0.02% [63]. For 0(1) mixing between the left (right) squarks

only, the minimum initial value of the stop is - 4(2) TeV. In section 6.5 the scale

of supersymmetry breaking is varied between 50 TeV and 2 x 1016 GeV. Uppers

bounds on the amount of degeneracy required between the first two generation

scalars, that is consistent with positivity of the light scalar masses, naturalness in

electroweak symmetry breaking, and the measured value of AmK, are obtained.
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These results are summarized in Figures 6.12 and 6.13. The results of this chap-

ter are summarized in section 6.6. Appendix B discusses the computation of the

two–loop diagrams which give the negative contribution of the heavy scalars to

the light scalar mass squareds.

6.2 Overview.

The chiral particle content of the Minimal Supersymmetric Standard Model

(MSSM) contains 3 generations of ~+10 representations of SU(5). The super-

symmetry must be softly broken to not be excluded by experiment. Thus the

theory must also be supplemented by some “bare” soft supersymmetry breaking

parameters, as well as a physical cutoff, itl~u~y. The “bare” soft supersyrnmetry

breaking parameters are then the coefficients appearing in the Lagrangian, defined

with a cutoff Msusy. It will be assumed for simplicity that the bare soft masses,

fi~,O, the bare gaugino masses MA,O, and a bare trilinear term for the stops, &At,o,

are all generated close to this scale. The MSSM is then a good effective theory at

energies below the scale Msusy, but above the mass of the heaviest superpartner.

an

The physical observable at low-energies will depend on these parameters. If

unnatural degree of cancellation is required between the bare parameters of

the theory to produce a measured observable, the theory may be considered to be

fine tuned. Of course, it is possible that a more fundamental theory may resolve

in a natural

problem are

manner the apparent fine tuning. Solutions to the gauge–hierarchy

well–known examples of this. The Higgs boson mass of the SM is fine
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tuned if the SM is valid at energies above a few TeV. This fine tuning is removed

if at energies close to the weak scale the SM is replaced by a more fundamental}

theory that is supersymmetric[6].

One quantification of the fine tuning of an observable 0 with respect to a bare

parameter A. is given by Barbieri-Giudice [63] to be

(6.1)

It is argued that this only measures the sensitivity of 0 to ~o, and care should

be taken when interpreting whether a large value of A necessarily implies that

0 is fine tuned [64]. It is not the intent of this chapter to quantify fine tuning;

rather, an estimate of the fine tuning is sufficient and Eqn. (6.1) will be used. In

this chapter the value of 0 is considered extremely unnatural if A(O; Ao) >100.

The theoretical prediction for AmK (within the MSSM) and its measured value

are an example of such a fine tuning: Why should the masses of the first two gener-

ation scalars be degenerate to within 1 GeV, when their masses are 0(500 GeV)?

Phrased differently, the first two generation scalars must be extremely degenerate

for the MSSM to not be excluded by the measured value of AmK. An important

direction in supersymmetry model building is aimed at attempting to explain the

origin of this degeneracy.

One proposed solution to avoid this fine tuning is to decouple the first two

generation scalars since their masses are the most stringently constrained by the

flavor violating processes [89, 90, 91, 92, 94, 95, 96]. In this scenario, some of the
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first two generation scalars have

r25 (nlo) will denote the number

masses M.s >> rnz. To introduce some notation,

of ~ (10) scalars of the MSSM particle content

that are very heavy 1. Thus at energy scales E << k?s the particle content is that

of the MSSM, minus the n5 ~ and nlo 10 scalars. In the literature this is often

a function of the bare parameters of the theory. The relation used here,

the tree–level, is

(6.2)

however, other possible and equally valid sources of fine tunings.

value of the Z mass is such an example [63]. The minimum of the

referred to as ‘The More Minimal Supersymmetric Standard Model’ [92].

There are,

The measured

renormalized Higgs potential determines the value of the Z mass which is already

known from experiment. The vacuum expectation value (vev) of the Higgs field is,

in turn,

valid at

It is clear from this Equation that requiring correct electroweak symmetry breaking

relates the value of the soft Higgs masses at the weak scale, m~~ (PG) and m~u (PG),

to the supersymmetric Higgs mass p. A numerical computation determines the

dependence of m~w (pG) and m~~ (pG) on the bare parameters MA,O,m~i,0and Ms.

In the MSShl, the cancellation required between the bare parameters of the theory

for it not to be excluded by the Z mass increases as the scale of supersymmetry

breaking is increased. Typically, the bare mass of the gluino, stops, and the first

two generation squarks must be less than a few TeV and ten TeV, respectively,

1It is assumed that the heavy scalars form complete S.?7(5)multiples to avoid a large Fayet–

Illiopoulus D– term at the one-loop level[96,92].

170



forsuccessful electroweak symmetry breaking not to be fine tuned at more than

the one per cent level [63, 64, 96].

These two potential fine tuning problemsm –

lem and that of electroweak symmetry breaking -

for they both relate to the size of supersymmetry

the supersymmetric flavor prob-

are not completely independent,

breaking [96, 97]. Thus the con-

sistency of any theoretical framework that attempts to resolve one fine tuning issue

can be tested by requiring that it not reintroduce any comparable fine tunings in

other sectors of the theory. This is the situation for the case under consideration

here. Raising the masses of the first two generation scalars can resolve the super-

symmetric flavor problem. As discussed in [96], this results in a fine tuning of m;

through the two–loop dependence of rn~u (PG) on A4.s. There is, however, another

source of fine tuning of mz due to the heavy scalars: these large masses require

that the bare masses of the stops, in particular, be typically larger than a few

TeV to keep the soft masses squared positive at the weak scale [97]. This large

value for the bare stop mass prefers a large value for the vev of the Higgs field,

thus introducing a fine tuning in the electroweak sector. Further, this fine tuning

is typically not less than the original fine tuning in the flavor sector. This is the

central issue of this chapter.

6.2.1 ~mK Constraints

At the one–loop level the exchange of gluinos and squarks generates a AS =

2 operator. In the limit of interest here, A.43 << MS, the AS = 2 effective
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Lagrangian at the scale Ms obtained by integrating out the squarks is

(a;(Ms) C1O1+ dl@l + C404+ C505+ h.) .
~eff = ~16M: (6.3)

Terms that are O(Al~/kf~) are subdominant and neglected. Next, the exact result

is expanded in powers of C$LL,RR= SL,RCL,RTIL,R(rn~ — rn~)LL,RR/fiiV, L,R? where

ii~v is the average mass of the scalars, and where qL,R is the phase and SL,R is the

1 – 2 element of the WL,R matrix that appears at the gluino–squark–quark vertex2.

Since this

analysis is

approximation underestimates the magnitude of the exact result this

conservative [97]. The coefficients Ci to leading order in dLL, JRR, are

(6.4)

The coefficient ~1 is obtained from Cl with the replacement 6~L -+ 6~R. The

operators 0~ are

and @l is obtained from 01 with the replacement L + R. The Wilson coefficients,

Cl –’C5, are RG scaled from the scale of the squarks, Ms , to 900 MeV using the

2In this chapter only 1-2 generation mixing is considered. Direct L – R mass mixing is also

neglected.
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anomalous dimensions of the operators, 01 – 05. The anomalous dimension of 01

is well–known [99] and is pdC1 /dp = a~C’l /r. The other anomalous dimensions

may be found in Ref. [98] and have been independently verified by the author

(also see Ref. [98] for a more general analysi~of QCD corrections to the SUSY

contributions to K – ~ mixing). These authors, however, choose to RG scale

to phad, defined by o. (pho~)=l. The validity of the perturbation expansion is

questionable at this scale; here instead the RG scaling is stopped at 900 MeV,

where as (900 MeV) N .4. The result is

G (/Jhad) = Klel(k’k)

c~(p~a~)= K~c4(A’fs)+ ;(64 – K5)c5(A’!&)

c~(/J~aJ= K5C5(MS) (6.6)

where

( a, (mc)
K1 =

a~(900 MeV) )“27(::2;)’’25( :[:1)”23

‘(:ki)’’21(::t:;)’’+(n5+3n10)02)2)

K4 –4= 1$~

(6.7)

The effective Lagrangian at the hadronic scale is then
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The SVSY contribution to the K – ~ mass difference is

(&-nK)SuSy = 2Re < K1.C.ffl~ >.

The relevant matrix elements (with bag factors set to 1) are

<K

<K

(6.9)

(6.10)

in the vacuum insertion approximation. The values [36] m. = 497 MeV, j~ = 160

MeV, m. = 150 MeV , (AmK).zp = 3.5 x 10-12 MeV, and a~(ikfz) = 0.118 are

used. This gives cz~(m~) = 0.21, a~(mc) = 0.29 and a~(900 MeV) = 0.38 using

the one–loop RG evolution. Once values for (n.5, nlo, J~~, J~~) are specified, a

minimum value for MS is obtained by requiring that (AmK) SUSY= (Am~) exp. h

the case that both dRR # O and d~~ # O, both the left–handed and right–handed

squarks are assumed to be heavy, so that (n5, nlo) = (2, 2). In this case only

the dominant contribution to AmK, which is N ~~~dj~, is required to equal the

measured value of Amjy. If dRR # O and ~~~ = O, only the right–handed squarks

are assumed to be heavy, and thus (n5, nlo) = (2, O). Similarly, if d~~ # O and

JRR = O then (n5, nlo) = (O,2). Limits are given in Tables 6.1 and 6.2 for some

choices of these parameters. These results agree with Ref. [98] for the same choice

of input parameters. For comparison, the limits gotten by neglecting the QCD

corrections are also presented in Tables 6.1 and 6.2. Here d~~ (d~~) = (z) 1, (ii)

0.22, (iii) 0.1, and (iv) 0.04 are considered. These correspond to: (i) no mixing
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@mm (n5,nlo) = (2,2) (725,nlo) = (2,2)

QCD incl. no QCD

1 182 TeV 66 TeV

0.22 40 TeV 15 TeV

0.1 18 TeV 7.3 TeV

0.04 7.3 TeV 3.1 TeV

Table 6.1: Minimum values for heavy scalar masses MS obtained from the mea-

sured value of AmK assuming Lf~/i’@ <<1. The limits labeled ‘QCD incl.’ include

QCD corrections as discussed in the text. Those labeled as ‘no QCD’ do not.

and no degeneracy; (ii) Cabibbo–like mixing; (iii) Cabibbo–like mixing and ~ 0.5

degeneracy; and (iv) Cabibbo–like mixing and Cabibbo–like degeneracy. Only

cases (i), (ii) and (iii) are expected to be relevant if the supersymmetric flavor

problem is resolved by decoupling the first two generation scalars. Note that for

(n~, nIO) = (2, O), Table 6.2 implies that Afs must be larger than N 30 TeV if it is

assumed there is no small mixing or degeneracy (d~~ = 1) between the first two

generation scalars.

The limits obtained from the measured rate of CP violation are now briefly

discussed. Recall that the CP violating parameter e is approximately

,61 /Im < ~l~,fjl~ > I

&AmK ‘
(6.11)

and its measured value is Icl ~ Iqoo]=2.3 x10-3 [36]. In this case, the small value
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Re(d~~) (~~~ = O) (n~, n~~) = (2, O) (n~,nlO) = (2, O)

QCD”incl. no QCD

1 30 TeV 38 TeV

0.22 7.2 TeV 8.9 TeV

0.1 3.4 TeV 4.1 TeV

0.04 1.4 TeV 1.7 TeV

Table 6.2: Minimum values for heavy scalar masses MS obtained from the

sured value of AmK assuming Al~/Af~ << 1. The limits labeled as ‘QCD

mea-

incl.’

include QCD corrections as discussed in the text. Those labeled as ‘no QCD’ do

not. The limits for (n~, nlO) = (O, 2) obtained

shown.
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of c implies either that the phases appearing in the soft scalar mass matrix are

extremely tiny, or that the masses of the heavy scalars are larger than the limits

given in Tables 6.1 and 6.2. In the case where the phases are O(l),

Im < K\ L,ff[l? >~ Re < K[L.ff Il? > and thus the stronger constraint on Ms

is obtained from c and not AmK, for the same choice of input parameters. In

particular, the constraint from CP violation increases the minimum allowed value

of M.s by a factor of 1/ ~~ ml 2.5. This significantly increases the minimum

value of the initial light scalar masses that is allowed by the positivit y requirement.

6.2.2 RGE analysis

The values of the soft masses at the weak scale are determined by the RG

evolution. In the DR’ scheme [101, 102, 103], the RG equations for the light scalar

masses are, including the gaugino, A–term and At contributions at the on~loop

level and the heavy scalar contribution at the two-loop level [104],

with q = (3, 2, 1) for ~i = HU, ~, ;, respectively, and zero otherwise. For simplicity

it is assumed that AfA,o/~A,o are all equal at A4susy. The initial value of the gluino

mass, lf3,0, is then chosen to be the independent parameter. To avoid .a large
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Fayet-Illiopoulus n–term at the one-loop level, the heavy scalars are assumed to

form complete SU(5)representations[96, 92]. SU(5) normalization forthe U(l)

coupling constant is used and Q = T3 + Y. Finally, C~ is the quadratic Casimir

for the gauge group GA that is 4/3 and 3/4 for the fundamental representations of

SU(3) and SU(2), and 3/5~2 for the U(1) group. The cases (ns, nlO)= (I) (2, 2),

(H) (2, O), (111) (O,2) are considered. The results for the case (3, O) is obtained, to

a good approximation, from Case (II) by a simple scaling, and it is not discussed

any further.

Inspection of Eqn. (6.12) reveals that in RG scaling from a high scale to a

smaller scale the two–loop gauge contribution to the soft masses is negative, and

that of the gauginos is positive. The presence of the large At Yukawa coupling

in the RGE drives the value of the stop soft mass squared even more negative.

This effect increases the bound on the initial value for the stop soft masses and

is included in this

fixed at 167 GeV.

In the MSSM

analysis. In this analysis the top quark mass in MS scheme is

there is an extra parameter, tan ~, which is the ratio of the

vacuum expectations values of the Higgs fields that couple to the up–type and

down–type quarks respectively. Electroweak symmetry breaking then determines

the top quark mass to be mt = At/@I sin ~ with v ~ 247 GeV. In this analysis the

regime of small to moderate tan,6 is considered, so that all Yukawa couplings other

than At are neglected in the RG evolution. In this approximation the numerical

results for ~i # ; or ~ are independent of tan ~. In the numerical analysis of
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sections 6.3 and 6.4 tan @=2.2 is considered. In section 6.5 tan ~ = 10 is also

considered.

In the case of low-energy supersymmetry breaking, the scale MSUSY is not

much larger than the mass scale of the heavy scalars. Then the logarithm

~ln(MsuSy/MS) that appears in the solution to the previous RG equations is

only 0(1). In this case the finite parts of the two–loop diagrams may not be

negligible and should be included in the analysis. These finite parts are used to

estimate the size of the two–loop heavy scalar contribution in an actual model.

The full two-loop expression for the soft scalar mass at a renormalisation scale

#R is @UU (PR) = * (pR) + m~i.it. (pR), where ~t (PR) is the solution to the

RG equation in DR’ scheme, and m~init, (PR) is the finite part of the one-loop

and two–loop diagrams, also computed in DR’ scheme. The finite parts of the

two–loop diagrams that contain internal heavy scalars are computed in Appendix

B and the details are given therein. The answer for these two-loop finite parts is

(assuming all heavy scalars are degenerate with common mass M:)

( 7r2 ( ))‘&inik(P~) = ‘~ MAK) – ‘Y + -j-- – 2 – in ~

‘;(aA!R))’ ‘:
(n~ + 3nH))cjMs

(6.13)

where the gaugino and fermion masses are neglected. Since the DR’ scheme is

used to compute the finite parts of the soft scalar masses, the limits obtained

on the initial masses are only valid, strictly speaking, in this scheme. This is
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especially relevant for the case of low scale SUSY breaking. So while these finite

parts should be viewed as semi–quantitative, they should suffice for a discussion

of the fine tuning that results from the limit on the bare stop mass. For the case

of high scale SUSY breaking, the RG logarithm is large and so the finite parts are

not that important.

The numerical analysis for either low-energy or high-energy supersymmetry

breaking is described as follows.

The RG equations are evolved from the scale iMsu,sy to the scale at which the

heavy scalars are decoupled. This scale is denoted by ps and should be O(JWs).

The RG scaling of the he;vy scalars is neglected. At this scale the finite parts of the

two–loop diagrams are added to m~i (ps). Note that since the two–loop information

included in the RG analysis is the leading O(Af~) effect, it is sufficient to only use

tree–level matching at the scale ps. Since the heavy scalars are not included in

the effective theory below MS and do not contribute to the gauge coupling beta

functions, the numerical results contain an implicit dependence on the number of

heavy scalars. This results in a smaller value for a~(~s) compared to its value if

instead all the scalars have a ~ lTeV

and so it is included in our analysis 3.

mass. This tends to

The soft masses are

weaken the constraint,

then evolved using the

one–loop RGE to the mass scale at which the gluinos are decoupled. This scale is

fixed to be PG=l TeV.

3This is the origin

analysis of [97]in the

of a small numerical discrepancy of w 107obetween these results and the

approximation At = O.
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A constraint on the initial value of the soft masses is obtained by requiring that

at the weak scale the physical scalar masses are positive. The experimental limit is

N 70 GeV for charged or colored scalars[100]. The physical mass of a scalar is equal

to the sum of the soft scalar mass, the electro–weak D–term, the supersymmetric

contribution, and some finite one-loop and two–loop contributions. As mentioned

in the previous paragraph, in the effective theory below MS

part from the heavy scalars is included in value of the soft

the finite two–loop

scalar mass of the

light sparticles at the boundary, defined

loop contributions are proportional to the

at PR = ps - Ms. The finite one–

gaugino and other light scalar masses,

and are smaller than the corresponding logarithm that is summed in rn~(PR).

So these finite one–loop parts are neglected. Further, the electroweak D–terms

are less than 70 GeV. For the scalars other than the stops, the supersymmetric

contribution is negligible. In what follows then, rn~(PG) >0 is required for scalars

other than the stops. The discussion with the stops is complicated by both the

large supersymmetric contribution, m:, to the physical mass and by the L – R

mixing between the gauge eigenstates. This mixing results in a state with mass

squared less than min(m~ + m;, m;. + m?), so it is a conservative assumption

to require that for both gauge eigenstates the value of m~, + m: is larger than

the experimental limit. This implies that m~,k(70 GeV)2– (175 GeV)2 = –(160

2 >0 is required. This results in an error thatGeV)2. Instead, in what follows mii _

is (160 GeV)2/2mti,0 H 26 GeV if the constraint obtained by neglecting mt is N 1

TeV. For the parameter range of interest it will be shown that the limit on the
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initial squark masses is N 1 TeV, so this approximation is consistent.

Then the above two analyses are combined as follows. The AmK constraints of

section 6.2.1 determine a minimum value for MS once some theoretical preference

for the 6’s is given. Either a natural value for the 6’s is predicted by some model,

or the 6’s are arbitrary and chosen solely by naturalness considerations. Namely,

in the latter case the fine tuning to suppress AmK is roughly 2/6. Further, a

model may also predict the ratio lf3/A4,s. Otherwise, Eqns. (6.1) and (6.2) may

be used as a rough guide to determine an upper value for MS, based upon nat-

uralness considerations of the Z mass. Without such a limitation, the positivity

requirements are completely irrelevant if the bare gluino mass is sufficiently large;

but then the Z mass is fine tuned. Using these values of lM3 and M,s, the RGE

analysis gives a minimum value for the initial stop masses which is consistent with

Am~ and positivity of the soft masses. This translates into some fine tuning of

the Z mass, which is then roughly quantified by Eqns. (6.1) and (6.2).

Finally, this analysis may also be extended to include models that contain a

Fayet-Illiopoulos hypercharge D–term, ~~, at the tree-level. The effect of the

D–term is to shift the soft scalar masses, m~,O ~ iii~,O = m~,O+ ~~D. In this case,

the positivity analysis applies to ti~,O, rath~ than m~,O.

6.3 Low Energy Supersymmetry Breaking

This section investigates the positivity requirement within a framework that

satisifes both of the following: (i) supersymmetry breaking is communicated to
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the visible sector at low energies; and (ii) multi–TeV scale soft masses, MS, are

generated for some of the first two generation scalars. This differs from the usual

low~nergy supersymmetry breaking scenario in that here M: >> rn~,,0 is assumed.

In the absence of a specific model, however, it is difficult to obtain from the posi-

tivity criterion robust constraints on the scalar spectra for the following reasons.

At the scale lblSuSY it is expected that, in addition to the heavy scalars of the

MSSM, there are particles that may have SM quantum numbers and supersymme-

try breaking mass parameters. All these extra states contribute to the soft scalar

The sign of this contribution depends on, amongmasses of the light particles.

other things, whether the soft mass squared for these additional particles is posi-

tive or negative – clearly very model–dependent. The total two–loop contribution

to the light scalar masses is thus a sum of a model–dependent part and a model

independent part. By considering only the model–independent contribution only

isolated one particular contribution to the total value of the soft scalar masses

near the supersymmetry breaking scale has been isolated. However, these results

are used to estimate the typical size of the finite parts in an actual model. That

is, if in an actual model the sign of the finite parts is negative and its size is of

the same magnitude as in Eqn. (6.13), the constraint in that model is identical to

the constraint obtained here. The constraint for other values for the finite parts

is then obtained by a simple resealing.

Before discussing the numerical results, the size of the finite contributions are

estimated in order to illustrate the problem. Substituting MS = 25 TeV, a3 (25
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I
TeV) N 0.07 and al(25 TeV) w 0.018 into Eqn. (6.13) gives

dm~ w -(410 GeV)2(n5 + 3n10) (.2.,)2 (6.14)
\Lc) .Lev)

for squarks, and

/ nI- ,2

Jm~. x-((n5+3n10)(70 GeV)2+(n5-n10)( lOOGeV)2)[2~v~v~ (6.15)

fortheright-handed selection. Thenegative contribution islarge iflvfS~25TeV.

For example, ifn~ =nlo =2 then dm~~ s –(200 GeV)2 and c$m~x –(1.2 TeV)2.

If n~ =2, nlo = O, then dm~. s -(170 GeV)2 and Jm; x -(580 GeV)2.

In this low–energy supersymmetry breaking scenario, it is expected that

A4.SUSYw Ms. In the numerical analysis Lf,susy = ps is assumed since the

actual messenger scale is not known. The scale ps is chosen to be 50 TeV. At

the scale ps =50 TeV the ps–independent parts of Eqn. (6. 13) are added to the
*

initial value of the soft scalar masses. The soft masses are then evolved using the

RG equations (not including the two-loop contribution) to the scale PG= lTeV.

First, the constraints the positivity requirement imply for ~i # ~~ or ~R are

discussed. In this case m~, is renormalized by I@., il.1~, m}i,Oand the initial value

of TrYm2 - Dy,o. A numerical computation gives

m~i (pG) = m}i,o + (0.243C; + 0.0168C: + 0.00156Yi2)M;,o + cD x 10–3YiDy,o

–(0.468C~ + 0.095C~ + 0.0173~2)~(n5 + 3n10) x 10-3M~

-(n~ - nlo) ((-0.00058 + 0.0016(n5 + 3n10))M~ - 0.925M~,o) H x 10-3

–0.0174(725 – nlo)Yi x 10–3M; (6.16)
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where the strongest dependence on (n5, nlo) has been isolated.

appearing in front of Dy,o is cD = —6. The numerical coefficients in

The coeffi

Eqn.(6.16)

depend on (n5, nlo) and the numbers presented in Eqn. (6.16) are for (ns, n]

(2,0). This sensitivity is, however, only a few percent between the four ,

under consideration here 4. Requiring positivity of the soft scalar masses dir

~,,o/M~and M~,o/M~.constrains rn~

The value of Dy,o depends on the spectrum at the supersymmetry b]

ing scale, and is therefore model–dependent. To obtain model–independent

straints from the positivity requirement, the combination ti2-fi,0 = m~i,o + f

10-3 x fiDy,o is constrained. Only this combination appears in the weak-scale T

for the scalar”mass of fi. The numerical effect is small, since with Dy,o w O(m

the coefficient of m~,,o is shifted from 1 to N (1 – 6) x 10-31j.

The positivity requirement fiz~, for fi # ~ or ~ is given in Figure 6.1 for diff~

values of n5 and nlo. That is, in figure 6.1 the minimum value of fifi ,o/M,sreql

to keep the soft masses positive at the scale PG is

these Figures it is seen that the positivity criterion

plotted versus M~,o/M,s. I

is weakest for n5=2 and nl

This is expected since in this case the heavy particle content is the smallest. ~

that even in this “most minimal” scenario the negative contribution to the m:

are rather large. In particular, Figure 6.1 implies that for

Ills N 25 TeV, dm~~ -- –(190 GeV)2 for ibf3,0 as large as

is the two–loop contribution from the hypercharge D–term

4This dependence is included in Figure 6.1.
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the large negative mass squared. In the case (n5, nlo)=(2, 2), Figure 6.1 implies

that for ills ~ 25 TeV, dm~= x – (210 GeV)2 and dm~c x –(1.1 TeV)2 for lf3,0 as

large as 1 TeV.

The positivity requirement for the stops is obtained next. In this case it is not

possible to directly constrain the boundary values of the stops for the following

simple reason. There are only two positivity constraints, whereas the values of

m; (PG) and m~C(PG) are functions of the three soft scalar masses m; o, m~Co and,

m~U,.. To obtain a limit some theoretical assumptions must be made to relate the

three initial soft scalar masses.

The numerical solutions to the RG equations for tan /3=2.2 and (ns, mO) =

(2, O) are

1
m~(/@) = –0.0303A~ + 0.00997AJ43,0 + 0.322A4~,o+ CDx – x 10–3DY,0

6

–0.0399(m~U,0 + m~c,o)+ 0.960m~,o – 0.000645 c~lM~

–2
m;. (/@) = –0.0606A~ + 0.0199 A~J13,0 + 0.296@. + cD x ~ x 10–3DY,0

+0.920m~c,o – 0.0797(m~ti,o+ m~,o)– 0.000492cRM~

i
??&ti(/.@) = –0.0909A: + o.0299A#3,0 – 0.0289M:,0 + CD X : X lo-3&o

&

+0.880m~ti,o – 0.119 (m~,o + m~~,o)+ 0.0000719 c~Af~.

The numerical coefficients other than that of ills do not vary more

(6.17)

than a

few percent between the different values for (n~, nlo), and thus this dependence

is not shown. The values of the MS coefficient are (CL,cR, CH) = (1,1, 1),

(3.62, 3.84, 4.59), (2.78, 3.04, 3.92), for (n~, nlo) = (2,0), (2,2) and (O,2), respec-
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tively. Also, cD = –6. Inspecting Eqns. (6.1) and (6.2) implies that to keep m;

fine tuned at less than 1% (A s 100) in each of the bare parameters, the following

must be satisfied : p< 460 GeV; h?s,o~2.3 TeV; m~,o<l.7 TeV; ms<80 TeV and

m10S50 TeV for (n5, nlo) = (2, 2). Finally, for other values of these parameters

the fine tuning increases as A = 100 x fi2/ti~, where rno is the value of iiz that

gives A = 100.

It is possible to show, using the fact that YHU+ YQ+ YU~= O, that the solutions

in Eqn. (6.17) are unchanged if m~,Ois replaced with iiz~,o= m~,o + cD x 10–3YiDy,o

and set Dy,o = O. In what follows then, the posivitity analysis is used to constrain

ti~,o for the stops. The a:lfference between ti~,o and m~,o is small, though, owing to

the small coefficient appearing in front of Dy,o. In the remainder of this section

the tilde on fi~,O will be removed to simplify the notation.

To constrain the initial values of the stop masses only gauge–mediated super-

symmetry breaking mass relations are considered. An inspection of Eqn. (6. 17) re-

veals that to naturally break electroweak symmetry a small hierarchy m~a,0> m~u,o

is required. This is naturally provided by gauge-mediated boundary conditions

5. The relations between the soft scalar masses when supersymmetry breaking is

communicated to the visible sector by gauge messengers are [11]

a;(kfsusy)
m~,o = ~ ~ C;

A cl!:(lfs~~y) + a?(Msusy)/5m~c’o”
(6.18)

Substituting these relations into Eqn. (6.17) and assuming At,o =0 determines

51n fact, low–energy gauge-mediated supersymmetry breakhg provides “too much” elec-

troweak symmetry breaking [105].
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m? (PG) and m~c(PG) as a function of kf3,0, ikf~ and m~C~. Figure 6.2 plots the min-

imum value of m~,,o/M3,0 required to maintain both m~(PG) ~ O and m~C(PG) ~ O.

Another interesting constraint on these class of models is found if it is assumed

that the initial masses of all the light fields are related at the supersymmetry

breaking scale by some gauge–mediated supersymmetry breaking (GMSB) mass

relations, as in Eqn. (6.18). This ensures the degeneracy, as required by the flavor

changing constraints, of

required if, for example,

of mfi,0 for~#; orF,

any light scalars of the first two generations. This is

one of nb or nlo are zero. Then in the previous limits

constraints on the initial value of mG are obtained by

relating m~i,o to mi.,o using Eqn. (6.18). In this case the slepton masses provide

the strongest constraint and they are also shown in Figure 6.2. This result may

be understood from the following considerations. The two–loop hypercharge D-

term contribution to the soft mass is m Yz(n5 – n10)a1a3M~ and this has two

interesting consequences. The first is that for n5 # nlo, the resulting drnz is

always negative for one of Ec or ~. Thus in this case there is always a constraint

on m~Conce gauge-mediated boundary conditions are assumed. That this negative

contribution is large is seen as follows. The combined tree–level mass and two–loop

contribution to the selectron mass is approximately m~.,o – kml a3M~ where k is

a numerical factor. Substituting the gauge–mediated relatlon m~.,o N @~/a~m~.,o >

the combined selectron mass is a~/a~(m~C,o – lc(a3/al)a~Mj). Since the combined

mass of the stop is w m~co– k’a~J4~, the limit for m~co obtained from the positivity

requirement for m& is comparable or larger than the constraint obtained from
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requiring that m~c remains positive. For example, with n~ = 2, n10 = O and

IM,sN 25 TeV, the right-handed slepton constraint requires that mi.,o N 1.1 TeV.

For n10=2, n5=0 and J4’s w 25 TeV, X3 is driven negative and implies that m~.,o N

1 TeV. From Figure 6.2 it is seen that these results are comparable to the direct

constraint on mi.,o obtained by requiring that color is not broken.

The positivity analysis only constrains mt,,O/M~ for a fixed value of Al~,o/Jf~.

To directly limit the initial scalar masses some additional information is needed.

This is provided by the measured value of AmK. If some mixing and degeneracy

between the first two generation scalars is assumed, parameterized by (d~~, d~~),

a minimum value for MS is obtained by requiring that the supersymmetric contri-

bution to AmK does not exceed the measured value. The results given in section

6.2 are used to calculate this minimum value. This result together with the posi-

tivity analysis then determines a minimum value for mi~,o for a given initial gluino

mass lkf3,0. The RG analysis is repeated with P.S = Ms, rather than p.s=50 TeV.

Only the results found by assuming GMSB mass relations between the scalars

are presented. These results are shown in Figure 6.3. The mass limits for other

~ are easily obtained from the information provided in Figure 6.1 and Table 6.2

and are not shown. From Figure 6.3 we find that for (ns, nlo ) = (2, 2) and M3,0

less than 2 TeV, mi.,o must be larger than 8 TeV for ~= = 1, and larger

than 1.8 TeV for ~= = 0.22. This results in A(m~, m~,o) of 2000 and 120,

respectively. In this case both the squark and selectron limits for m%,0 are com-

parable. The limits for other choices for <= are obtained from Figure 6.3
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excluded. Low–energy gauge–mediated supersymmetry breaking mass relations

between the light sparticles and tan ~ =2.2 are assumed.
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byasimple scaling, since toagood approximation Am~~d~~J~~/M~. For the

cases (n5, n10) =(2, 0)and(0,2), thecorresponding limits are much weaker.. In

the case (n5, nlo) = (2, O), for example, only for dRR N 1 does the selectron mass

limit require that mic,o WI TeV. The limits for a smaller value of J are not shown.

This section concludes with some comments about how these results change if

CP violation is present in these theories with 0(1) phases. Recall from section 6.2

that for the same choice of input parameters, the limits on the initial stop masses

increases by

Firstly, this

about a factor of 12. This may be interpreted in one of two ways.

constrains those models that were relatively unconstrained by the

Am~ limit. Concentrate only on those models with n~ = 2 and nlo = O, since this

case is the most weakly constrained by the combined AmK and positivity analysis.

The conclusions for other models will be qualitatively the same. Inspecting Figure

6.3 implies that the limit mi~,o >1 TeV 6 is only true if JRR N O(1). Smaller values

of JRR do not require large initial stop masses. From the CP violation constraint,

however, smaller values for JRR are now constrained. For example, if 6RR NO.1

and O(1) phases are present, then m;.,0 >1 TeV is required. Secondly, the strong

constraint from c could partially or completely compensate a weakened constraint

from the positivity analysis. This could occur, for example, if in an actual model

the negative two–loop contribution to the stop mass squared for the same initial

input parameters is smaller than the estimate used here. For example, if the

estimate of the two–loop contribution in an actual model decreases by a factor of

GFor GMSB relations only. The direct constraint on the stop masses is slightly weaker.
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m (12.5)2 and 0(1)

J is identical to the

phases are present,

values presented in

the limit in this case from c for the same

Figure 6.3.

6.4 High Scale Supersymmetry Breaking

This section considers the case in which SUSY breaking is communicated to

the MSSM fields at a high energy scale, that is taken to be 7 MGUT = 2 x 1016

GeV. In this case, the negative contribution of the heavy scalar soft masses to

the soft mass squareds of the light scalars is enhanced by N ln(iMGuT/50 TeV),

since the heavy scalar soft masses contribute to the RGE from MGUT to mass of

the heavy scalars. It

negative contribution

is clear that as the scale of SUSY breaking is lowered the

of the heavy scalar soft masses reduces.

This

analysis

Ref. [97],

scenario was investigated in Ref. [97], and the difference between that

and the results presented here is briefly discussed. In the analysis of

the authors made the conservative choice of neglecting At in the RG

evolution. The large value of At can change the analysis, and it is included here.

Here it is found that for some pattern of initial stop and up–type Higgs scalar

masses, e.g. universal scalar masses, this effect increases the constraint on the

stop masses by almost a factor of two. This results in an increase of a factor of

3–4 in the amount of fine tuning required to obtain the correct Z mass. Further,

7This choicefor the high scale is done to remain agnostic about any physics appearing between

the Grand Unification scale and the Planck scale. This also results in a conservative assumption,

since the negative two-loop contribution is smaller with M.SUSY = MGUT.
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in combining the positivity analysis with the constraints from the AmK analysis,

the QCD corrections to the Flavor Changing Neutral Current (FCNC) operators

has been included, as discussed in section 6.2. In the case (n~, nlO) = (2, 2), this

effect alone increases the positivity limit by a factor of N 2 —3. The combination

of these two elements imply that the positivity constraints can be quite severe.

This section proceed as follows. First, the RGEs are solved from MGUT to

ps where the heavy scalars are decoupled. At this scale, the finite parts of the

two–loop diagrams are added. Next, the RGEs are evolved (without the heavy

scalar terms in the RGEs) from ps to PG using these new boundary conditions.

Except where stated otherwise, the scales ~s and PG are fixed to be 50 TeV and

1 TeV, respectively.

For fi # ~, ~ the numerical computations give

~;~ (PG) = ~;~ ~ + (2.84Cj + 0.639Cj + 0.159y~2)@o + CDY~Dy,O

–(4.38C; + 1.92C; + 0.622~2)& + 37zIO)X 10-3A4:

+(n5 – nlo) (17.2@. + (0.226 – 0.011(n5 + 3nlo))@ ~ X 10-3

–0.829(n5 – nlo)y~ X 10-3 M:. (6.19)

These results agree with Ref.[97] for the same choice of input parameters. The ~

term proportional to Dy,o, and the terms in the last line result from integrating

the one–loop hypercharge D–term. In this case CD = –0.051. As in the previous

section, the numerical coefficients in Eqn. (6.19) depend on (n5, nlo) through the

gauge coupling evolution, and the numbers in Eqn.(6.19) are for (n5, nlo) = (2, O) 8.

8The numerical results presented in Figure 6.4 include this dependence.
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Requiring the soft masses squared to be positive constrains ti~,O = rn~,O+ c~YDY,o.

Figure 6.4 plots the values of fii, ~/Al.s that determine fh~, (flc) = O as a function

--
of M3/MS, for fi = -L? Qit %7 ~ and ;:. It is emphasized that the results

presented in Figure 6.4 are independent of any further limits that FCNC or fine

tuning considerations may imply, and are thus useful constraints on any model

building attempts.

For the stops, the numerical solutions to the RGEs for tan ~ = 2.2 are

1
m~(flG) = –0.021A~ + 0.068AtM3,0 + 3.52M~,o+ cD x –Dy,o

6

–~.142(m~U,o + m~,o) + 0.858m~,o– CL x 0.00613M~

–2
m?. (~G) = —0.042A~+ 0.137AtM3,0 + 2.33M~,o+ cD x —Dy,o

3

–0.283(nz~U,o + m~,o)+ 0.716m~c,o– CRx 0.00252Mj

1
T?_& (I!@) = –().()63A~ + o.zo6AtM3,0 – l.TzMi,o ~ CD x jDY,O

–0.425(m~,o + m~.,o) + 0.574m~u,o + CH x 0.00193M~ (6.20)

where (CL,cR, CH) = (1, 1, 1), (3.57, 4.92, 5.15), (2.7, 4.16, 4.27) for (n5, nlo) =

(2, O), (2, 2) and (O,2), respectively. Also, cD = –0.051. The mixed two-loop

contribution to the RG evolution is m (n,5—nlo) and is not negligible. Thus there

is no simple relation between the c’s for different values of n5 and nlo. From

Eqns. (6.2) and (6.1) it is clear that to keep m; fine tuned at less than 1%

(A < 100) in each of the bare parameters, then the following must hold : @

460 GeV; M3,0~300 GeV; m;,,o<.87 TeV; m5,z<16 TeV; and mlo,z<10 TeV, for

(n5, nlo) = (2, 2). The fine tuning of the Z mass with respect to the heavy scalars
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is discussed in [96]. Finally, for other values of these parameters the fine tuning

increases as A = 100 x iiz2/iiz~, where tio is the value of fi that gives A = 100.

As in section 6.3, Eqns. (6.20) are rewritten in terms of rh~,o = m~,o+ c~~lly,o.

This is equivalent to setting Dy,o, = O in Eqns. (6.20), and relabeling m~,o + fif,o.

In what follows, the positivity analysis is used to constrain fi~,o. Since cD is small

and Dy,o N 0(m2), the difference between fi~,o and m~,o is small. To simplify the

notation, in the remainder of this section the tilde is removed from fi~,o.

As was also discussed in section 6.3, some relations between m: o, m~Co and

m~u,o are needed to obtain a constraint from Eqn. (6.20), using m; (~G) > 0

and m~c(PG) > 0. Both model~ependent and model–independent constraints

on the initial values of the stop masses are discussed next. The outline of the rest

of this section is as follows. First, universal boundary conditions are assumed.

These results are presented in Figure 6.5. Model–independent constraints are ob-

tained by the following. Assume that m~U,o = O and choose At,o to maximize

the value of the stop masses at

Figure 6.6. It is further argued

the weak scale. These results are presented in

that these constraints represent minimum con-

straints as long as m~ti,0 > 0. To obtain another set of model independent con-

straints, the electroweak symmetry breaking relation is used to eliminate m~ti,o in

favor of p. Then the positivity limits for different values of j2/lM,s are presented,

where ji2 = ~2 + ~m~, and assume that m~~,o = O to minimize the value of p

9. These limits are model–independent and are presented in Figure 6.7, for the

‘Strictly speaking, this last assumption is unnecessary. Only the combination J% s jz –
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case n5 = nlo = 2.

obtained from AmK.

These analyses are then combined with the limits on MS

This section then concludes with some discussion about the

anomaIous D–term soIutions to the flavor problem.

First universal boundary conditions are considered for the stop and Higgs

masses. That is, assume that m? o = m~c o = m~w,0 = fit. Figure 6.5 plots

for tan~ = 2.2 the

and m~c(PG) > 0.

minimum value of fio/J14,s required

This value of tan ~ corresponds to

case that (n5, nlo) = (2, O

may be found in Ref. [97].

For comparison, the results gotten assuming At = O

For n~ = nlo = 2, note from figure 6.5 that if J14s

20 TeV and the gaugino masses

6.2 TeV. This limit is weakened

this case, this large initial stop

A w (6 TeV)2/m~ w 4200, i.e.

correct Z mass.

Next assume m~U,o = O and

are small, the limit on the stop mass is mic,o

to 6 TeV if lM3,0Z 300 GeV is allowed. Even

mass requires a fine tuning that in this case

a fine tuning of <10–3 is needed to obtain the

choose the initial value of At,o to maximize the

value of m;. (~G). The va~ues of m; o and m~cot , are chosen such that m~(PG) >0>

and m~c”(PG) > 0. Note that in this case the constraint is weaker because the At

contribution to the RG evolution of the stop masses is less negative. These results

are plotted in Figure 6.6.

This case is discussed in some more detail to argue

m~~,O/ tan2 ~ appears in the analysis. Thus for rn~~,o # O the

that the minimum value

results are unchanged if the

replacement ji ~ fi~ is made.
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of mti,0 obtained in this way will be valid for all m~u z O and all A~,o. Eliminate

the At,o term by choosing At,o = kM3,0 such that the At contributions to m;, (KG)

is maximized. Other choices for At,o require larger values for m~, o to maintain2,

m~,(PG) = O. The value of k k determined by the following. A general expressionz

for the value of the soft masses of the stops at the weak scale is

m:(/@) = –aA;,o + bAt,oM3,0+ C~:,o + ““-, (6.21)

m~c (~G) = –2aA~,o + 2bAt,oM3,0+ dM~,o+ 0.”, (6.22)

with a, c and d positive. The maximum value of m~i(PG) is obtained by choosing

At,o = bM3,0/2a. The value of the stops masses at this choice of At,o are

b2
m:(/@) = (C+ ~)~:,o + “-“, (6.23)

b2
@C(~G) = (d+ 2-#J!f:,o + “.-. (6.24)

An inspection of Eqn. (6.20) gives b = 0.068 and a = 0.021 for tan ~ = 2.2. In this

case the “best” value for At,o is A~o ~ 1.61kf3,0. It then follows that the quantity

b2/4a = 0.055 is a small correction to the coefficient of the gaugino contribution

in Eqn. (6.20). Thus the difference between the minimum initial stop masses for

At,o = O and At,o= Afo is small. Next assume that rn~U,o = O. Requiring that

both m~(PG) = O and m;. (PG) = O determines a minimum value for m~o and

2miC o. Now since the m~ti,o contribution to both the stop soft masses is negative

(see Eqn.(6.20)), the minimum values form? o,, found by the preceding procedure

are also minimum values if any m~m,0 >0 is allowed.

200



So for all At,O and all m~V,O z O, the limits presented in Figure 6.6 represent

lower limits on the initial stop masses if it is required that the soft masses remain

positive at the weak scale. Further, the limits in this case are quite strong. For

example, Figure 6.6 implies that if ills N 20 TeV and lt43,0 N 200 GeV (so that

Af3,0/Afs N10-2), then the initial stop masses must be greater than 3.5 TeV in the

case that (n5, nlo) = (2, 2). The results are stronger in a more realistic scenario,

w rn~C~/9 the constraints are larger by onlyi.e. m~U,0 >0. If, for example, m~u,0 ,

a few percent. In the case that m~u,0 = m~.,o = rn~,o, presented in F@re 6.5,

however, the constraint on the initial # mass increases by almost a factor of two.

So far relation between mfiu,0 and m~.,o has been assumed in order to obtain

constraints on the initial stop masses; e.g., m~w,0 = O or m&U,o= m~C,o. Perhaps

a better approach is to use the EWSB relation, Eqn. (6.2), to eliminate m~u,0 in

favor of P2. This has the advantage of being model–independent. It is also a

useful reorganization of independent parameters since the amount of fine tuning

required to obtain the correct Z mass increases as P is increased. To obtain some

limits m~~,o = O is chosen 10 to minimize the value of P2, and m~u,0 is required

to be positive. The minimum value of mF,o/lMS and mi,o/Ms for different choices

of jll/fkfs are gotten by solving m;, (PG) = O and m? (~G) = O. These results are

presented in figure 6.7. In this figure the positivity constraints terminate at that

value of IM3,0which gives rn~u,0 = O.

As discussed in the above, reducing the value of mfiti,o decreases the positivity

1°This assumption is unnecessary. See the previous footnote.
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limit on m~i,O. Consequently the fine tuning of m; with respect to m~,,O is also

reduced. But using Eqns. (6.20) and (6.2), it can be seen that decreasing m~u,0

while keeping m~c (/@) = O and m: (~G) = O results in a larger p, thus increasing

the fine tuning with respect to p. This can also be seen from figure 6.7. It is

found, for example, that if IM~,O/A.lS~ 0.01, the small value ~/ll,s = 0.01 requires

mEi,O/Ms N 0.25. For J14S = 10 TeV, this corresponds to p N 100 GeV and

mfi,0 > 2.5 TeV. A further inspection of figure 6.7 shows that for the same value

of lbf3,0/lMS, a value of m;,o/MS = 0.17 is allowed (gotten by decreasing mfiu ,.)

only if jl/Ms is increased to 0.14. This corresponds to p = 1.4 TeV for Ms = 10

TeV; this implies that A(m~; p) w 930. Thus the limit on the initial stop masses

can only be decreased at the expense of increasing p.

Finally, the limits become weaker if m~w,o <0. This possibility is theoretically

unattractive on two accounts. Firstly, a nice feature of supersymmetric extensions

to the SM is that the dynamics of the model, through the presence of the large

top quark Yukawa coupling, naturally leads to the breaking of the electroweak

symmetry [86]. This is lost if electroweak symmetry breaking is already present at

the tree–level. Secondly, the fine tuning required to obtain the correct Z mass is

increased. Figure 6.7 implies that while reducing m~ti,0 below zero does reduce

the. limit on the initial stop masses, the value of p increases beyond the values

quoted in the previous paragraph, thus further increasing the fine tuning of the Z

mass. This scenario is not discussed any further.

Next the positivity analysis of this section is combined with the results of
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section 6.2 to place lower limits on the soft scalar masses. For given values of

d~~, JRR, a minimum value of M,s, Ms,~z., k found using the results of section 6.2.

This is combined with the positivity analysis in Figure 6.6, to produce the results

shown in Figure 6.8. Also shown are other limits gotten by assummg m~ti,0 = m~c,o.

These results are presented in Figure 6.9. Figure 6.10 also presents the stop mass

limits for different values of p, restricted to m~u,O 20 and for ~m” = 0.04.

In all cases the heavy scalars were decoupled at M,s,~~n,rather than 50 TeV, and

so the positivity analysis was repeated. The value of At,. was chosen to maximize

the value of the stop masses at the weak scale. For completeness, the results

for the cases (n5, nlo) = [2, O) and (O,2) and m~ti,O = O are presented in Figure

6.11. To repeat: the minimum allowable values for the stop masses consistent with

m~w,0 > 0, gotten by setting m~u,o = O, are given in Figures 6.8 and 6.11.

Next some consequences of this numerical analysis are discussed. Only the

case n5 = nlo = 2 is considered, since this is the relevant case to consider if

the supersymmetric flavor problem is explained by decoupling the heavy scalars.

Other choices for n5 and nlo require additional physics to explain the required

dege.leracy or alignment of any light norl–third generation scalars. From Figures

6.8 and 6.9 it is seen that for ~=- = 0.22 and M~,o < 1 TeV, mi,,ok7 TeV

is required. If instead both A (m;; M:) and A (m;; M3,0) are restricted to be less

than 100, then M,s% 10 TeV and M3,0< 300 GeV is required. To not be excluded

by Am~, further require that ~=SO.06. For this value of ~= = 0.06,

a minimum value for mi,o of ~1 .5—2.5 TeV is gotten by resealing the results in
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figures 6.8and6.9for /-= O.04byanamount O.O6/O.O4. Therange depends

on the value of rn~U,0, with the lower (upper) limit corresponding to m~w,0 = O

(m~c,O). Thus A(m~; m;, ~) ~ 400 – 800. This fine tuning can be reduced only byt,

either increasing A43,0- which increases A(m~, IM3,0)beyond 100 – or by reducing

MS – which requires a smaller value for <=. So unless {= is naturally

small, decoupling the heavy scalars does not provide a natural solution to the

flavor problem.

This section concludes by discussing the constraint this analysis implies for

those models which generate a split mass spectrum between different generations

through the D-term contributions of the anomalous U(1) gauge symmetry[91, 95,

94]. In the model of set D of [94], there are two i!%at 7 TeV and 6.1 TeV and two

10s at 6.1 and 4.9 TeV, respectively, so that AmK is suppressed. These values

must be increased by a factor of 2.5 to correct for the QCD enhancement of the

SUSY contribution to ~mK, as discussed in section 6.2. To obtain a conservative

bound on the initial stop masses from the positivity requirement, first assume

that all the heavy scalars have a common mass iVl,S= 2.5 x 5TeV= 12.5 TeV.

(It would have been 5 TeV without the QCD correction.) Then assuming a weak

scale value of the gluino mass that is less than 710 GeV and setting m~ti,0 = O

(m~c,o), Figure 6.6 (6.5) implies that m;,. z 2.1 (3.6) TeV is required. This leads to

A(m~; m~o) >580 (1700). Tc obtain a better bound, the analysis is repeated using

n5m~+3n10m~o = ((7 TeV)2+(6.1 TeV)2+3x (6.1 TeV)2+3x (4.9 TeV)2) x (2.5)2.
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for (n~, nlo) = (2, 2). It is found (assuming m~ti,o = O and the gluino mass at

the weak scale is less than 710 GeV) that mi,o :2.4 TeV. In the model of [95],

cl~~ = d~~ x 0.01. To obtain a limit on the initial stop masses, use the bound

obtained from either Figures 6.8 or 6.9 for 6RR = d~~ s 0.04, and divide the limit

by a factor of 4. By inspecting these Figures it is seen that this model is only

weakly constrained, even if m~ti,0 w m~,o. Next the limits in this model when

O(1) CP violating phases are present is discussed. To obtain the minimum value

of MS in this case, the minimum value of MS obtained from the AmK constraint

for 6~~ = JRR = 0.04 should be multiplied by 12.5/4; dividing by 4 gives the result

for d~~ = (5RR= 0.01, and multiplying by 12.5 gives the constraint on MS from

~. The result is A4sk 23 TeV. Next, assume that JV?3,0is less than 300 GeV, so

that the value of the gluino mass at the weak scale is less than 710 GeV. This

gives k?3,0/Al,s ~ 0.013. Using these values of lkf3,0 and Ms, an inspection of

Figures 6.5 and 6.6 implies that mi,o must be larger than 3.9 TeV to 6.9 TeV,

depending on the value of m~u,o. This gives A(m~; m~,o) >2000. In the model of

[91], M3,0/Ms % 0.01 and mf,o/~s x 0.1. Inspecting Figures 6.5 and 6.6 implies

that these values are excluded for (n5, nlo) = (2,2) and (O,2). The case (2, O) is

marginally allowed. The model of [91] with (725,nlo) = (2, 2) and At = O was also

excluded by the analysis of Ref. [97].

6.5

In

Using Finetuning to Constrain J

this section, the messenger scale, M,susy, is varied between the GUT scale
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and a low scale w 50 TeV, and the boundary values of the stop and gluino masses

are restricted so that EWSB is not fine tuned. This gives us an upper limit to 6

if both positivity of the stop mass squareds at the weak scale and suppression of

AmK is imposed. In other words, values for (6, A4.SU,SY)are determined which sat-

isfy the following requirements: 1. Suppression of the SUSY contribution to AmK

by making the mass of the first two generation scalars, kf~, large. 2. Positivity

of the stop masses squared and 3. Fine tuning in electroweak symmetry breaking

does not exceed 1% or 10% (i. e., both A(m~, m~O) and A(m~, kf~,O) are smaller

than either 100 or 10).

An upper limit to 6 satisfying the above requirements is obtained as follows.

For a given ibf~u~Y compute, using Eqns.(6.1) and (6.2), the boundary values of

the stop mass, mt,~.., and the gluino mass, Af3,~.Z, such that both A (m;, m~,o)

and A(m~, Af3,0) are equal to some maximum value An.. which is chosen to be

100 or 10. 11 Substituting these values of the bare stop12 and gluino masses into

11In computing the A‘s, tan ~, in addition to mfi (mz ), should be regarded as a function of.

the bare parameters. However, this additional contribution to the A’s is small for tan,# ~ 2

and also makes the magnitude of A larger. This dependence which is a conservative choice is

neglected.

12Strictly speaking, we should translate the upper bound on m?, ~ into an upper bound on %:, ~,, ,,

using fi~i,0 = m~,,O+ CDYE,DY,O + Yii(D, i.e.,to that combination appearing in the positivity

constraint. Instead, we use the same bound for both m~, o and fi~, o. This is reasonable,., t,

since CD is generally small (<0.05), and DY,O w 0(m2 ). In any case, this effect is in the

opposite direction for ~ and ~. In the case that <D # O, a slightly larger (()(30%)) value for

6 may be allowed as compared to CD = O. Thki is because if CD < 0, the maximum value
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the expression for the weak–scale value of the stop mass squared, determines the

maximum value of MS, IMS,n.Z, such that the stop masses squared at the weak

scale are positive. Using this value for A4.s and the analysis described in section

6.2.1, an upper limit to 6 is obtained from the A~K constraint. This value of

J and AfsusY then satisfies the above–mentioned three requirements. This can

be seen as follows. For the given AlsusY, if 6 is larger than this limit, then to

suppress AmK, MS has to be larger than Afs,~~Z. But, then to keep the stop

masses squared positive at the weak scale, the boundary value of either the stop

or the gluino mass has to increase beyond mi,~~x or M3,~~z respectively, leading

to A(m~, m~o) or A(m~, ~V~3,0)larger than A ~~r, i.e., increasing the fine tuning

in EWSB.

In Figures 6.12 are shown the limits on ~m as a function of MsUsy for

the case (TZ5= 2, nlo = 2). In the top of figure 6.12, m~w,o = O is assumed. GMSB

relations between the stop and Higgs masses are assumed in the bottom of Figure

for m;= ~ is larger than m; ~az. This, in turn, allows for a larger value of M5, and hence 8.

Naturalness considerations limit l~Dl, though. The EWSB relation for m~, Eqn.(6.2), contains

a term linear in CD. Requiring that A(m~, CD) <100 implies that I(D l%(D,moz s (900 GeV)2.

Thus for a high scale of supersymmetry breaking, the upper bound on rn~C~ may be increased

This roughly translates into an increase of w ~ = 1.3 in the limit to d. The actual limit will

be smaller, since with this choice of sign for CD, the positivity constraint for the left-handed stop

is now stronger. It is thus reasonable to require that the maximum value of fi~ ~ be comparable
,,
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6.12. For both cases, A~.Z = 100, tan ~ = 2.2 and 10 are considered. For other

choices for A~~Z, the upper limit to J roughly scales as ~An.Z/lOO, since both

rni,~a~, ~~,~., and therefore itf~,~.. scale as ~=.

In the case of GMSB mass relations, the boundary value of the Higgs mass and

the stop masses are comparable for high Ivfsu,sy. Since m~ti,O results in a negative

contribution to the stop mass squared, this tends to reduce the stop mass squared

at the weak scale as compared to the case m~u,0 = O. Then, from the above

analysis, it is possible to see that Afs,n~Z and, in turn, the limit on 6 is smaller

for the GMSB case as compared to the case

comparing the top and bottom of Figure 6.12.

In Figure 6.13 the limits on 6RR and 6LL

O,nlo = 2) are shown, respectively. Here m~ti,

m~a,o = O. This can be seen by

for (n~ = 2, nlo = O) and (n~ =

n= O is assumed and tan b = 2.2.

and 10 are considered. If A~~X is chosen to be 100, then a constraint on 6 (3 ~ 0.5)

is obtained only for high values of ikf,susy. So, instead An.. is chosen to be 10.

Further numerical computations for tan ~ = 10 determine that the limits on

the boundary value of the stop mass from requiring positivity of the mass squared

at the weak scale do not differ by more than a few percent from the case tan ~ = 2.2

(for the same values of the gluino and heavy scalar masses). However, the fine

tuning of EWSB for the same gluino and stop mass is smaller for tan ~ = 10 as

compared to tan ~ = 2.2. Thi~ is because, for tan/3 = 10, At is smaller than in the

case tan ~ = 2.2. Hence the sensitivity of the weak scale value of m~w to m? o and

A13,0is smaller. Also, the tan2,B/(tan2~–’1) factor in Eqn. (6.2) is smaller, further
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reducing the sensitivity of m~ to rn~~ and Lf3,0. In other words, for tan ~ = 10,

mi,~~Z and Lf3,n.Z are larger so that lfs,~.. and, in turn, the limit on J is larger.

This can be seen in Figures 6.12 and 6.13.

6.6 Summary

This chapter has studied whether the SUSY flavor problem

making the scalars of the first and second generations heavy,

(~few TeV), without destabilizing the weak scale. If the scale,

SUSY breaking is mediated to the SM scalars is close to the

can be solved by

with masses lfs

MSUSY,at which

GUT scale, then

the heavy scalars drive the light scalar (in particular the stop) mass squareds

negative through two–loop RG evolution. In order to keep the mass squareds at

the weak scale positive, the initial

masses, mfi,o, must typically be ~

value of the stop (and other light scalar) soft

1 TeV, leading to fine tuning in EWSB. Two

new effects are included in this analysis: the effect of At in the RGEs which makes

the stop mass squareds at the weak scale more negative and hence makes the

constraint on the initial value stronger, and the QCD corrections to the SUSY

box diagrams which contribute to K – ~ mixing.

Some results of the analysis for A4SUSY= MGUTcan be summarized as follows.

The gluino mass (at the weak

so that the fine tuning of m;

scale) is restricted to be less than about 710 GeV,

with respect to the bare gluino mass, lt43,0, is not

worse than l’?lo.This requires that M3,02300 GeV. Also assume that m~U,0 = O to

maximize the value of the stop masses at the weak scale. Then for ~= = 0.22,
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Ms ~ 40 TeV is required to be consistent with AmK. With these assumptions, this

implies that for M3,0 less than 1 TeV, mia,0 >6.5 TeV is needed to not break color

and charge at the weak scale. Even for {m = 0.04, it is found that Ms ~ 7

TeV is needed. This implies that mi,o > 1 TeV is required if M3,0 <300 GeV.

This results in a fine tuning of N 1%. For 6LL = 1 and d~R = O, it is found that

Ms ~ 30 TeV and mi,o >4.5 TeV. For ~~~ = 0.22 and ~~~ = O, M,s ~ 7 TeV and

mi,o > 1 TeV are found. For 6LL = O and 6RR = 1, Ms ~ 30 TeV and m~~,0>2.5

TeV are found. The constraints are weaker for smaller values of J. In a realistic

model, m~w,o might be comparable to m: o and the constraints on mi,o in this case

are stronger. This is also discussed. It is noted that independent of the constraint

from K – K mixing, this analysis can be used to check the phenomenological

viability of any model that has heavy scalars. The phenomenological viability of

the anomalous D–term solution is also discussed, and is found to be problematic.

The possibility that Msusy = MS was also considered. In this case, there is

no RG log enhancement of the negative contribution of the heavy scalar masses

to the light scalar masses. For this case, the finite parts of the two–loop diagrams

are computed and used as estimates of the two–loop contribution of the heavy

scalars to the light scalar soft mass squareds. These results are combined with the

constraints from K – K mixing to obtain lower limits on the boundary values of

the stops. As an example, gauge–mediated SUSY breaking boundary conditions

were assumed for the light scalars. If n5 # nlo ther. one of the selectron masses,

rather than the stop masses, provides the stronger constraint on mii,0 once gauge-
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mediated boundary conditions are used to relate m:c,o and m~,o to m~i,0. Some of

the results can be summarized as follows. The gluino mass at the weak scale is

restricted to be less than about 2.3 TeV, again to avoid more than 170 fine tuning

of m; with respect to the gluino mass. For ~= = .22 it is found that mii,0 ~

1.4 TeV is required. The fine tuning of m; with respect to the stop mass is w 1.5%

in this case. For the cases d~~ = O and JRR = 1, and d~~ = 1 and 6RR = O it

is found that mi,o ~ 1 TeV. As before, the constraints on mi,o for smaller values

of J are weaker than N 1 TeV. Again, the constraints in an actual model of this

low–energy supersymmetry breaking scenario could be different, and the results

discussed here should be treated as estimates only. The CF’ violating constraints

from e are also discussed, and find that these limits increase by a factor of N 12 if

0(1) phases are present.

Finally, in section 6.5

50 TeV and 2 x 1016 GeV

the scale of supersymmetry breaking is varied between

Uppers bounds to 6, that are consistent with positivity

of the light scalar masses, naturalness in electroweak symmetry breaking, and

(~mK)ezP, are obtained. These results are summarized in Figures 6.12 and 6.13.
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Chapter 7

Dynamically Generating the Grand Unification

Scale

Two models which generate the supersymmetric Grand Unification Scale from

the strong dynamics of an additional gauge group are presented. The particle

content is chosen such that this group confines with chiral symmetry breaking.

Fields that are usually introduced to

stead as composite degrees of freedom

due to the confining dynamics. The

break the Grand Unified group appear in-

and can acquire vacuum expectation values

models implement known solutions to the

doublet-triplet splitting problem. The S0(10) model only requires one higher di-

mensional representation, an adjoint. The dangerous colored Higgsino-mediated

proton decay operator is naturally suppressed in this model to a phenomenologi-

cally interesting level. Neither model requires the presence of gauge singlets. Both

models are only technically natural.

7.1 Introduction

One of the most beautiful ideas for physics beyond the Standard Model (SM) is

the idea [13] that the gauge groups of the Standard Model (SM unify into a single
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gauge group, the Grand Unified Theory (GUT). This would provide some common

understanding for the diversity of particle content and parameters that constitute

the Standard Model. That one generation of fermions can be accommodated

by a single 16 of SO(10) is too remarkable to be a coincidence! More indirect

evidence for this framework is provided by the precision electroweak data. These

suggest that the gauge couplings of the Standard Model unify at a high energy

scale. In fact, a very good agreement with the data is obtained if softly–broken

supersymmetry is realized close to the weak scale.

This naturally leads to a consideration of supersymmetric GUTS [65]. The scale

of supersymmetric unifica~lon inferred from the data is llGuT w 2 x 10IG GeV.

Above this scale Nature may be described by a supersymmetric GUT. The value of

this scale given by the data does not appear to be directly related to any other mass

scale in Nature. The closest scale is the reduced Planck mass, M = 1/{-,

which is about a factor of 100 larger than the GUT scale. Most attempts at

supersymmetric model building remain agnostic about the origin of the GUT

scale, and simply put into the theory by hand both the scale and pattern of

symmi;try breaking. While this is technically natural in supersymmetric theories,

it completely avoids the issues of the origin of the GUT symmetry breaking and

the small value of MGuT/M. This issue is particularly relevant if the scale M

is representative of a fundamental scale of new physics. If this is the case, then

the small value of the supersymmetric Grand Unification scale compared to the

Planck scale is perplexing.
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Some of these

velopments in the

issues can be addressed by applying some of the recent de-

strong dynamics of supersymmetric gauge theories [107]. In

particular, the strong dynamics of an additional gauge group that confines

chiral symmetry breaking at a scale close to the GUT scale is considered.

with

The

idea of using strong dynamics to generate the supersymmetric GUT scale has only

recently been explored [108, 109, 110]. This was first explored in Reference [108],

where a dynamically generated superpotential with a runaway behavior is used

to generate A4GuT/Af. In Reference [110] the confining dynamics without chiral

symmetry breaking is used in a novel manner to solve the doublet-triplet splitting

problem. In that model though, a large top quark Yukawa coupling is only possi-

ble if the unification scale is uncomfortably close to the Planck scale. In Reference

[109] the quantum confinement with chiral symmetry breaking is used to generate

the GUT scale.

The idea of using strong supersymmetric dynamics to generate ratios of sym-

metry breaking scales has also been applied to flavor symmetries [111, 112]. The

first phenomenological application of quantum confinement with chiral symmetry

breaking in this context is given in Reference [112].

The outline of this chapter is as follows. Section 6.2 describes some features

that are common to the models presented in section 6.3 and 6.4. Section 6.3 in-

troduces a model with an SU(6) GUT group. Section 6.4 introduces the preferred

model which has an SO (10) GUT group.
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7.2 Overview

In the models presented in this chapter an extra gauge group Gc is introduced

and assumed to become strong at a scale A N lfGuT. The particle content of Gc is

chosen so that it confines with chiral symmetry breaking. This sector of the theory

will be called the ‘confining sector’. By identifying the GUT group, GGUT, with

a global symmetry of the confining sector, the composite fields of the confining

sector are charged under the GUT group. For example, in the first model presented

below, an adjoint of SU(6)GUT is composite. In the second model, a symmetric and

antisymmetric tensor of SO (10) GUT is composite. This differs from the model of

Reference [109], where the confining sector in that model does not contain particles

charged under the GUT group. Below the scale of confinement, some of the

composite fields will acquire vacuum expectation values (vevs) as a consequence

of the dynamics of confinement. In the modeki presented here there is a discrete

set of supersymmetric vacua. In one of these vacua the vevs of the composite fields

break the GUT group; this together with some superpotential interactions lead to

a phenomenologically acceptable vacuum. The small value of iMGuT/IMP~ is then

understood as naturally arising from the dimensional transmutation of the small

gauge coupling of Gc at the Planck scale.

The simplest example of a

finement with chiral symmetry

superpotential 107]. This will

supersymmetric gauge theory that exhibits con-

breaking is SU(N) with N flavors Q + ~ and no

be the model for the confining sector. It is con-
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jectured that below the scale of strong dynamics, A, of the SU(N) group, the

appropriate e degrees of freedom are the confined “baryons” B, ~, and “mesons”

hzl of the SU(iV) group, where

(7.1)

The charges of the baryons and mesons under the global SU(N) x SU(N) x U(l)~,

are indicated in parentheses. The space of supersymmetric vacua for the baryons

and mesons is described by [107]

det M – B~= A2N. . (7.4)

The left–hand side of this equation vanishes at the classical level as a consequence

of the Bose statistics of the superfields Q and ~. Quantum corrections result

in a non-vanishing value for the right-hand side. The important point is that

along the supersymmetric vacua, some of the confined fields necessarily acquire

vevs, breaking the global symmetry down to a subgroup. This conjecture satisfies

two nontrivial consistency tests [107]: homomorphic decoupling of one flavor; and

t’Hooft anomaly matching of the unbroken global symmetries.

In this chapter a diagonal subgroup of the global symmetry of the confining

sector is gauged and identified with the GUT group. The mesons of the confining

sector therefore transform under the GUT group. It will be assumed that the
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weakly gauging of a global symmetry of the confining sector does not affect the

confining dynamics of Gc, and does not ruin the quantum modification with chiral

symmetry breaking.

weakly gauged at the

This is a reasonable assumption

scale A N kf~uT -2x 1016 GeV.

since the GUT group is

Perhaps the most difficult problem in GUT model building is the origin of the

doublet-triplet mass splitting. The excellent agreement between the measured and

theoretically predicted value of sin2 (3Wassumes that the particle content below

the unification scale contains the

two electroweak Higgs doublets.

(supersymmetric) SM chiral matter content plus

In a minimal SU(5) GUT, the Higgs fields fit

into a 5 and F of SU(5). The presence of the remaining particle content of these

representations–the two colored Higgs triplets– much further than a few decades

below the GUT scale completely ruins this agreement. More generally, requiring

that there exists one large split SU(5) representation is a strong constraint on

model building. The models presented in this chapter implement two known

solutions to this problem: the Higgs as “pseudo-Goldstone bosons” [113] and

the “Dimopoulos-Wilzcek” [114] missing vevs mechanism. The latter solution is

implemented in an S0 (10) GUT gauge group, whereas the former is based upon

an SU(6) GUT group.

In the models presented here the quantum confinement is therefore not directly

responsible for the doublet-triplet splitting. The structure outlined above must

be supplemented with a non-vanishing superpotential in order to implement the

doublet-triplet splitting. A non-vanishing superpotential must be added in any
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case: a generic point on the quantum modified constraint breaks SU(N) x U(l)B/

down to U(l)~-l. This provides too much symmetry breaking. A point that only

breaks to a larger subgroup is therefore an enhanced symmetry point, correspond-

ing to a particular choice of the vevs of M and 13. At the enhanced symmetry

point, there are many massless particles in addition to the Nambu-Goldstone mul-

tiples. These correspond to the would-be Goldstone bosons of the more generic

symmetry breaking pattern, and at the enhanced symmetry point, transform as ad-

joints under the unbroken gauge group. These particles must acquire masses from

additional superpotential interactions. These superpotential interactions then ex-

plicitly break the global symmetry of the confining sector down to G~u~ x U(l) B,.

It is then a concern whether the presence of this superpotential might destabi-

lize the confinement and chiral symmetry breaking. The form of the superpotential

for the fundamental fields of the group Gc, Q, ~, and any fields *M not charged

under Gc, in the two models presented here is

~ = ~C(Q,~, @M)+ ~M(tiM). (7.5)

The superpotential Wc involving the confining fields will by fiat contain only

non-renormalizable operators, suppressed by a scale assumed to be either the

Planck mass or reduced Planck mass. If confinement occurs, the coefficient c of

an operator with mass dimension d in the low-energy theory that arose from an

operator with N (~Q)s in the high energy theory is expected to be

c m ~ x AN/JL?N-d, (7.6)
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where A is a constant that is expected to be of order unity. For the models

considered below, d = – 1, 0 or 1, N is 1 or 2, and N – d is positive. Since

these coefficients are suppressed by powers of A/M, the presence of these terms in

the superpotential is a small perturbation to the quantum confinement. It is then

reasonable to expect that these operators do not destroy the quantum confinement

with chiral symmetry breaking. This assumption will be made for the remainder

of the chapter.

In the usual GUT model building framework, the unification of the gauge cou-

plings can be significantly affected by the presence of M-l suppressed operators

[115]. In an SU(5) model, for example,

have non-renormalizable interactions with

the gauge field-strength tensor $’ can

an adjoint Z. The operator cZI’F/4M

results in a tree-level relative shift of the gauge couplings l/g~ that is approxi-

mately CkfGu~/M. This translates into a shift in the low-energy value of sin O&

that for M/MGuT = 20 is A sin 19~(Mz) N *few x c x 10-3. In the GUT mod-

els presented in this chapter, some of the higher dimensional representations are

composite. For the composite fields, the gravitational smearing operator arises

from a higher dimension operator in

this operator below the confinement

the fundamental theory. The coefficient of

scale then contains an additional suppres-

sion of A/M. This extra factor completely suppresses the smearing effect unless

the coefficient of the operator in the fundamental theory is unnaturally large–of

~(kf/MGuT)-and MGuT/M is N 1/20. Non-composite higher dimensional fields

can contribute to the gravitational smearing. In the S0 (1O) model, it turns out
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that these contributions are completely negligible.

This section concludes with a discussion of some technical issues that occur

throughout the chapter. Implicit in the discussion that follows will be the assump-

tions that (global) supersymmetry is unbroken, and that the mm-trivial Kahler

potential has a strictly positive definite Kahler metric [112].

Supersymmetric minima are found by looking for solutions to the F–flatness

equations O = Fi = 6’4iW for the confined and @&ffields. This is rather naive,

since the vevs of the fields will typically be O(A) and the Kahler potential is

non-calculable for these field values. It is not clear then that the “baryons” and

“mesons” are the correct degrees of freedom. For the purposes of determining

the existence of supersymmetric vacua with a particular pattern of symmetry

breaking, however, the last assumption of the previous paragraph is sufficient

[112]. With these assumptions, a supersymmetric vacuum found using a trivial

Kahler potential will remain supersymmetric for the non-trivial Kahler potential.

The spectrum of the particle masses is also important for phenomenology. For

this, knowledge of the Kahler potential is required. Despite the absence of this

information, a few important points about the mass spectrum can be extracted

from the superpotential [112]. For example, a particle that is massless (zero eigen-

vector of F’i,~) in the case of a canonical Kahler potential for the confined fields will

remain massless in the case of a non–trivial Kahler potential. Similarly, a massive

particle in the trivial Kahler potential will remain massive for a non–trivial Kiihler

potential. So the mass spectrum computed by assuming a trivial Kahler potential
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will be used to check that the superpotential with a non–trivial Kahler poten-

tial results in superheavy masses to all the particles that should have superheavy

masses.

In the models presented here, the superpotential interactions that involve the

confining fields occur from higher dimension operators, so that after confinement

the superpotential coupling of those operators is ~ ~ ~(A/Lf)” << ~, with A N

0(1). Particles that acquire their mass from these operators will then have masses

somewhat below the GUT scale. These masses remain incalculable though, since

they should be computed at a scale that is comparable to the vev that is generating

the mass, which in this cas; is O(A).

The oneloop prediction for sin2 & is modified by the presence of these light

states below the GUT scale since they do not in general form complete SU(5) rep-

resentations. An attempt at quantifying this correction is made by assuming that

the naive calculation–i.e. assuming a canonical Kahler potential–of the spectrum

gives the correct

further, that the

mass spectrum to within a factor of a few (times unity), and

correction to sin2 (3Wfrom particles with masses much smaller

than t}.e confinement scale is well–approximated by the usual one-loop computa-

tion. The corrections from particles with masses near the confinement scale are

not calculable and not discussed.

Finally, in the two models presented here certain operators allowed by the

gauge symmetries of the theory must be absent from the superpotential in order

not to ruin the doublet-triplet splitting mechanisms. All the dangerous operators
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cannot be forbidden by any global symmetries, since some of them will have the

same quantum numbers as other operators that are required to be present in

the superpotential. If these models were only the effective

fundamental field theory, then the dangerous operators could

at the tree-level by integrating out some heavy particles at

case however, the full theory above the Planck scale is not

not a field theory. It is then possible that the full theory could be responsible for

theory of some more

perhaps be generated

the scale M. In this

known and probably

the absence of these dangerous operators, even though from the low-energy theory

they cannot be forbidden by any symmetries.

7.3 W(6) X W(6)

The gauge group is SU(6)C x SU(6)~u~ where one factor of SU(6) is the

confining group Gc, and the other factor is the SM unified gauge group. Consider

six flavors, Q + ~ of SU(6) that are also charged under the SU(6)GUT. Further,

introduce two Higgs fields H, ~, and an adjoint EN that are charged under only

the sU(6)GuT. The particle content under SU(6)C x SU(6)GU~ k then
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The SU(6)C group is assumed to confine at a scale A N AIGuT with a quantum

modified constraint. In this case the confined “meson” M: w ~~Q~ N 35 + 1 un-

der the SU(6) GUT symmetry. The “baryons” B N EQGand ~ w c@ are singlets

under the SU(6)Gu~ group. No gauge singlets are required in the fundamental

theory.

The superpotential in terms of the fundamental fields is chosen to be

The scale M is assumed to be the reduced Planck mass ~2 x 1018 GeV. The trace

sums over the SU(6) GUTindices. All the dimensionless parameters are assumed to

be of order unity. This superpotential contains the minimum number of interac-

tions necessary (as shown below) to successfully implement in the phenomenolog-

ically preferred vacuum the doublet–triplet splitting and give GUT scale masses

to all the other particles. A more general superpotential is allowed provided that:

(1) Only non-renormalizable operators involving Q, ~ are allowed. (2) To keep

the Higgs doublets light, the superpotential that only involves the 35s and the H,

H fields must preserve a SU(6) x SU(6) global symmetry [113]. The operators

——
H(QQ)”JY and ~(Z~)”H, for example, must be absent. (3) Supersymmetry is

not spontaneously broken.

After confinement occurs, the superpotential written in terms of the confined
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It is expected that

(7.8)

as an estimate of the size of the couplings in the confined description. The quan-

tum modified constraint has been added using a Lagrange multiplier A. This su-

perpotential contains all the non–perturbative (superpotential) information from

the strong SU(6)C dynamics. It is interesting that in this case a term in the

superpotential for Q~ that generates a cubic term trZ3 is not required. In most

supersymmetric GUT models, the cubic term is required to obtain a non-trivial

vacuum. In this case, it is the interaction A det (E + a) from the quant urn modified

constraint that balances the mass terms to obtain a non-trivial supersymmetric

vacuum.

The F–flatness equations are

det(~ + o/fi) – BE = A6, (7.9)
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(7.13)

(7.14)

(7.15)

In addition to the phenornenologically preferred vacuum, these equations include

other discrete solutions. In some of these

example, a solution with o and A non-zero,

solutions SU(6) GUT is unbroken. For

and all other vevs equal to zero, exists.

So although the preferred vacuum is discrete, it is assumed that it was selected in

the early history of the universe. This could occur if, for example, the preferred

vacuum is a global minimum of the scalar potential after supersymmetry

effects are included.

To break SU(6) down to the SM gauge group, it is assumed that 1

H=z=vH

1

0

0

0

0

0

) Z(XN) ==v=(v~)

1

1

1

1

–2

–2

breaking

(7.16)

1H = ~ is required by SU(6)GUT D–flatness.
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The vevs A, a, Vx, .v~ and VH are the solutions to

o = (X3O+ 12gv~/M)vH,

o = (X50+ gv&/M – X4?JX)VN,

(7.i7)

(7.18)

and for A # O, det (2 + a/fi) = AG. The quantities a, b and K are defined to

be a-l s v= + cT/fi, b-l ~ –2v= + a/ti and K ~ det(~ + c/@ = a-4b-2. In

Appendix C it is demonstrated that a discrete solution exists with YI w (A/Al) A-3

and with all vevs non-zero and of O (A). Thus at this vacuum the vevs of the baryon

fields are forced to the origin.

This vacuum implements the Higgs as “pseudo-Goldstone bosons” solution

to the doublet-triplet splitting problem [113]. This mechanism is now briefly

described. Firstly, the scalar potential for H, ~ and E, ZN has a U(6) x SU(6)

global symmetry. The U(6) acts on H and ~, whereas the SU(6) symmetry acts

on E and EN. For the vacuum in Eqn. (7.16), the global U(6) x ‘X7(6) symmetry

is broken to [SU(5)] x [SU(4) x SU(2) x U(l)] by the vevs of H, Z and EN. The

unbroken gauge group is then SU (3)C x SU(2) x U (l)y. The breaking of the

gauge symmetry results in 23 Nambu-Goldstone boson multiples; the breaking of

the SU(6) x U(6) results in 27 Goldstone boson multiples. So all but 4 of the

Goldstone bosons acquire mass of O(MGUT) from the super-Higgs mechanism.
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To see that these four pseudo-Goldstone bosons carry the quantum number

charges of two electroweak doublets, first note that under S.?7(4) x SU(2), 35 =

(4, 2) + (~, 2) + (15, 1) + (1,3)+ (1, 1). Inspecting the vevs of Z and EN, the

combination ti~~ - v~E+vNEN of the fields (4, 2), and of the fields (3, 2), in Z and

EN are the Goldstone bosons of the breaking of one global SU(6) symmetry. Since

SU(3)C is embedded in SU(4), these Goldstone bosons contain two electroweak

doublets. The Goldstone bosons of the SU(6) + SU(5) breaking are 5 + S+ 1 of

SU(5), and also contain two electroweak doublets. The combination 3fiz~ + VHH

of electroweak Higgs doublets are the fields eaten by the super-Higgs mechanism.

The orthogonal combination remain massless and are the two Higgs doublets of

the SM. The non-renormalization theorems of supersymmetry guarantee that these

fields remain massless to all orders in perturbation theory.

The fields in the adjoint (15,1) and (1,3) of both E and ~N, as well as the

remaining combination of (4, 2), and of (~, 2), in E and EN orthogonal to ~, do

not correspond to any broken generators and must acquire their masses from the

superpotential interactions. It is conveinent to express the SU(5) or SM charge

assignments of this particle content: one complete 24 and 5+5 of SU(5); 4 singlets;

and one (8, 1, O) + (1, 3, O) + (3, 1, –1/3) + (~, 1, 1/3). A naive estimate for the

masses of the physical fields is obtained by computing the fermion mass matrix

assuming a canonical Kahler potential. The results are presented in Appendix C,

and are summarized here. All the fields have a mass

of the suppression of the superpotential couplings for

m w A2/M, a consequence

the confined theory.
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These light fields affect the unification of the gauge couplings and may in

principle also mediate proton decay. The corrections to sin26W are discussed

first. These corrections occur from two sources. There could be large threshold

corrections from the strong dynamics occuring at A. These are non–calculable

and will not be considered. The other is from the light states (8,1, O), (3,1, O),

(~, 1, 1/3) and (3,1, -1/3) which have a mass m N A2/Al . The correction to

sin2 Ow from these light states, using a naive one-loop running approximation

from ~G~~ to their masses is

Asin20w = –F in MGUT/m~ –0.003 x
h(kfG~T/T7Z) -

in 200 “
(7.21)

The reason2 for the small correction is that the shift in sin26W is dominated by

the light (~, 1, 1/3) and (3, 1, –1/3) states. This is because the shift from the

(8, 1) and (1,3) states almost cancel. Recall that a sufficient condition for the

prediction for sin2 Ow to be unchanged by the presence of some extra matter at a

scale m is that (db3 – db2)/(Jb2 – Abl) = (b3 – b2)/(b2 – bl), independent of m. For

an adjoint of SU(3) and SU(2) , Jb3 = 3, 6b2 = 2 and dbl = O. In this case the

LHS of this condition is 1 and the RHS is ~ x 2, which is close to 1. The other light

states form approximate complete SU(5) representations and do not significantly

affect the gauge-coupling unification. The theoretical prediction without the light

fields, sin2 @w~ .233+ 0(10-3) [116], is a little larger than the measured value of

0.231 [36]. The effect of these light states is to shift the prediction in the correct

direction. The uncertainty in the incalculable corrections to sin2 (3W,however, are

2The author thanks N. Arkani-Hamed for this observation.
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probably of the same order, with an unknown sign.

The problem of forbidding operators of the form 0. ~ ~(Q~)”H is discussed

next. These operators explicitly break the U(6) x SW(6) symmetry of the scalar

potential. Consequently, if these operators are present they could give too large of

a mass to the electroweak Higgs doublets. In this model, the term ~Htr~Q occurs

in the superpotential. Any symmetry that allows this term also allows the term

——
H(QQ)H in the superpotential. This operator ruins the doublet-triplet splitting,

so it must be assumed that this term is absent. Higher dimensional operators

must also be forbidden. Since the confinement introduces additional suppressions

..
of 0 (A”/A4’”), only a few of the first higher dimensional operators must be absent.

More concretely, requiring that On not result in a mass for the Higgs superfielcis

that is larger than a TeV and assuming that A/A4pL ~ 1/200, implies that only

the first three (n =1,2 and 3) higher dimensional operators must be forbidden.

Operators of the type ~(2~)”H are also dangerous and must be absent.

At this point it is probably not clear what role the extra adjoint plays in this

model. In fact, this field is not needed to obtain an acceptable spectrum for

the massive fields. It is introduced instead to obtain a large top quark Yukawa

coupling. In order for the top quark not to have an irrelevant Yukawa coupling,

it is necessary that the Yukawa interactions between the top quark and the Higgs

doublet explicitly break the global SU(6) x U(6) symmetry. The top quark must

therefore couple to both H and Z. If X is composite, then such a coupling cannot

be of order unity; rather, it will be suppressed by A/M. The top quark must
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therefore interact with a fundamental Z.

The large top quark Yukawa coupling arises from considering the following

embedding of the SM chiral fields [1171 . The chiral matter content is one 20,

3 x 15 and 6 x ~. The SU(5) decomposition of these fields is, 20 = 10 + ~,

15 = 10 + 5 and ~ = ~ + 1. The three Es of the SM are contained in three of

the &, and the other 3, call them 6’, acquire mass at the GUT scale. The first

two generation 10s are contained in two of the 15s, and the third generation 10

is a linear combination of the 10 in the 20 and the 10 in the remaining 15 E 153.

This spectrum is obtained from the superpotential [117]

The vev of ~ gives GUT-sized Dirac masses to the 5 and 5 fields in the 3 15s

and 3 6’s. From the vevs of ZN and H, a linear combination of the 10 in the

20 and the 10 in 153 acquires a GUT-sized Dirac mass with the 10 in the 20.

The orthogonal combination is the third generation 10 and remains massless. In

sum, this superpotential leaves 3 (10+ ~)s massless. The large top quark Yukawa

coupling arises from the first two interactions.

The (3, 1, 1/3) and (~, 1, – 1/3) fields have a Dirac mass somewhat below the

GUT scale. Whether they may mediate proton decay at too large of a rate is

then a concern. Since the top quark couples to these fields through the 20EN20

interaction, it naively appears that a dangerous proton decay operator is generated

by integrating out these heavy fields, and then rotating the top quark to the mass
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basis. Forthis operator to degenerated, however, acoupling of~~or~toa~of

SU(5)(GofSU(6)) isrequired. Such acouplingisnot presentinthe superpotential

of Eqn.(7.22). So this issue depends crucially on the origin of the other fermion

masses. For example, ifallthe fermion masses arise from interactions with~ and

~, then a dangerous proton decay operator is not generated by the exchange of

these states [117].

An upper bound on Al is determined by the value of the Landau pole of the

SU(6)GU~ gauge coupling. The SU(6) coupling at the scale ill is then

(7.23)

The first logarithm is the contribution to the GUT gauge coupling at the GUT

scale from the particle content with mass m; the second logarithm is the contribu-

tion of the full SU(6) particle content to the running of the gauge coupling above

A. Inserting m N A2/M and requiring that cY~&~(M) ~ 1 implies in M/A <10.

7.4 Su(lo)x So(lo)

The gauge group is SU(lO)C x S0(10). The SU(lO)C group is the confining

gauge group, and the Grand Unified group is S0(10). The particle content is

QN (10, lo),

Q“ (m, 10) )

A ~ (1, 45),

16 N (1, 16),
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m~ (1, m),

TI N (1, lo),

Tz - (1, lo).

This particle content is rather economical as it requires only one higher dimensional

representation, an adjoint, and no gauge singlets 3. It is assumed that the SU(lO)C

group confines at a scale A ~ i14~u~ with a quantum modified constraint. In this

case the confined “meson” Ik?~ ~ ~~Q~ N 45+54+ 1 under the S0(10) GUT

symmetry. The

B w CQ6 and ~

fields are labeled S N 54, A“ R 45 and o w 1. The “baryons”

- e@ are singlets under the SO(lO)~u~ group.

The superpotential in the fundamental theory is chosen to be

where Xij = [I’j, I’z]/42 are the generators of SO (10) in the spinorial representation.

The subscript “AS” indicates that only the anti-symmetric contribution of Q~

is allowed to be present; the symmetric contribution spoils the doublet-triplet

splitting. It is technically natural for only the anti-symmetric contribution to be

present; the full theory above the Planck scale must be responsible for the absence

of the symmetric operator. The operators T1(~Q)~T1 must also be absent.

The renormalizable and Al-l suppressed operators appearing in W are all re-

3A1s0see Reference [118]for an economical model. In this model though, the origin of the

unification scale is not addressed.
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quired: (i) The operators H Al, AZ are required for the doublet-triplet splitting.

(ii) The operator cx ATarranges the vev of A to be in the “Dimopoulos-Wilzcek”

(DW) form [114], required to perform the doublet-triplet splitting. (iii) The oper-

ators w A3 and A4 are necessary to break the rank of the group. (iv) The operator

cc A5 is necessary to fix all the vevs. This point is made clear later. (v) The

operator cx All is required to give mass to some fields charged under the SM. This

point is also discussed later. Although this operator is linear in A, the DW for A

is not ruined because this operator does not contribute to the F flatness equations

4. The choice for this operator is not unique; other operators that are linear in

A2 are possible, but they are higher dimensional. It is non–trivial that with this

choice for W, the low-energy particle content only contains the SM fields and their

superpartners.

After confinement occurs the superpotential is

w = w~+ w~w+wm~z, (7.25)

wit h

4This interesting feature is ako used in Reference [120, 121] to give mass (in a different

context) to some charged particles. This is accomplished by a cubic term in the superpotential

that is a product of three different antisymmetric tensors.
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+~X7AA”2 +11601616+ 14A:~xij16

+Xll (AA’’) ijmx2j16/M. (7.28)

The naive expectation for the couplings is ~2,3 N A2A/Al, X4 - ~3A/ikf, ~lG N

s = S(l,l,l, –:, –;)8
10 )>A“ = ((z”,~“, a“, /)”,/)”)@

01)

( )o –1
A=(a, a,a, b,b)@

o –1 ), (7.29)

10

(7.30)

These vevs break S0(10) -+ SU(3) x SU(2) x U(l)Y x U(l)x. The spinor field 16

is assumed to acquire a vev x in the SU(5)-singlet direction. The unbroken gauge

group is then SU(3) x SW(2) x U(l)Y. It is argued below that the superpotential

guarantees that the vevs of A, a, A“, S, 16 and A are naturally of the order of

A w MGU~ and (A/M)A-7, respectively. Other vacua exist, but they are isolated

from the vacuum considered here.

The doublets and triplets in T’l are split using the DW mechanism [114]. The

~’ equations (~gs + ~lOa)a = O and (– ~~gs+ ~lOa)b = Owith s # Oforces either a

or b to vanish; it is a discrete choice. The DW mechanism for giving the triplets in

the 51,2 and 51,2 Higgs fields GUT-sized masses requires that b-= O. It is assumed

that this minimum was selected in. the early history of the universe. With this

5The D –flatness condition for SO(10) requires the vevs of 16 and ~ to be equal.
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choice, the mass matrix for the colored triplets in the 51,2 and 51,2 Higgs fields is

in the (Tl, T2) basis. Since the diagonal element

(7.31)

is suppressed by a factor of

O(A/lvf) relative to the off-diagonal element, the colored triplets form two Dirac

particles with masses kfHC N Ala N AIA ~ A. The mass matrix for the 4 elec-

troweak doublets in 771and T2 only has an entry for T2(2)T2 (~) since b = O. The

mass of the Dirac heavy doublet is ~2a – 3j3s/2

doublets in T1 are massless, and are identified as

N A2/ill. The two electroweak

the Higgs fields responsible for

giving mass to the up-type and down-type quarks of the SM.

It is interesting that the magnitude of the elements of M has a structure that is

favorable for the suppression of the proton decay rate. It in fact provides a natural

realization of the “weak suppression” of the decay rate that is advocated by Babu

and Barr [120]. This is seen as follows. First note that the diagonal element is

suppressed by a factor of 0 (A/l@ relative to the off-diagonal element, reflecting

the fact that the diagonal entry arises from a non-renormalizable operator in the

fundamental theory. If the SM fermions only couple to T’l, then the proton decay

amplitude from the exchange of the heavy colored Higgsinos is proportional to

M;}. In this case the matrix element is (~20 + ~as)/(Ala)2 w A2/M. This results

in a decay rate that is approximately (A/M)2 N 10-3 times the unsuppressed rate.

This is sufficient to suppress the dangerous Higgsino-exchange proton decay

operator to a level that may be observable at SuperKamiokande. To obtain the
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four-ferrnion operator responsible for the nucleon decay, the operator gotten by

integrating out the colored triplet Higgsinos must be dressed with a vertex function

involving either internal wino or gluino propagators. As emphasized in Reference

[119], the gluino-dressed amplitude is comparable to the wine-dressed amplitude

if vU/v~ = tan ~ is large. Since tan ~ N mt/mb w 40 is naturally predicted within

an S0 (10) GUT, the decay mode p -+ K“p+ may be competitive with the (wino-

dressed) neutrino decay modes [119].

The dominant decay modes for the wine-dressed operator are p + K+UUand

n + KOUU[122]. To obtain an estimate for the nucleon lifetime in this model,

their result for the lifetime of the nucleon is resealed by a factor of (kf/A)2.. The

result is

(M 0.0058GeV3 M~c TeV-l

)

2

T(n + KOfiU)-1032 x —
31A B 10 IGGeV f(ti, ~) + ~(ii, ~)

yrs. (7.32)

The function f is obtained by dressing the external squarks with wino propagators

to obtain a four-fermion operator. It is computed in Reference [123], and depends

on the sparticle spectrum. In the limit that the squark mass, mQ, and slepton

mass, mi, are much larger than the wino mass, mti, f N 7,1,w/m~, with m~ the

larger of mQ and mi. The hadronic matrix element ~ is defined in Reference [122].

Requiring that M not exceed the Landau pole of the SO(lO)Gu~ group implies

that M/AS 30 – 70. (This constraint is discussed below.) This requirement of

consistency also strongly constrains the presence of any additional matter content

(this is also discussed below). This suggests that the Yukawa couplings of the
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SM fermions to the Higgs doublets are generated close to the GUT scale, a crucial

assumption required to obtained the limit quoted in Eqn. (7.32). To obtain realistic

quark and lepton masses in an S0(10) model though, these Yukawa couplings

probably arise from higher-dimensional operators [124]. In this case the flavor

structure of the colored-triplet Higgs to matter may differ from the electroweak

doublet couplings to matter, thereby altering the predicted lifetime [119]. For

this reason, the result quoted in Eqn. (7.32) should be treated as an estimate.

This estimate is to be compared with the existing experimental limit of ~(n -+

K“fiu) >.86 x 1032 years [36]. So the nucleon lifetime is naturally suppressed to

a phenomenologically interesting level.

Next the expected size of the vevs and the mass spectrum are discussed. The

F–flatness equations are (setting b = O)

det(S + A“ + o/v@) – BE = AIO,

AB=O, A73=0,

O = F16 = (~16a+ ~4(3a” + 2b’’),) X,

O= F. = ;16X2 – 3~10a2+ ~5A0 + —AK (3U + 2V) ,
A

() = J’A,,, = 14X2– 2~TAa” + 2AKA,

o = FA,,2= i4x2– 2~TAb”+ 2AKB,

2 1-

( )
0 = FS = ~GAs – ~ ~.Aga2 –J4K(zL– v) ,
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(7.35)

(7.36)

(7.37)

(7.38)

(7.39)
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where K = det(S + A“ + a/~) = (U2+ A2)–3(w2 + B2)–2. The functions u, v,

A and B are

C@b+ s o/fl – 3s/2

u = (0/~+ s)2 + a“2 ‘ v = (o/m – 3s/2)2 + b“2‘
(7.41)

II &

A = (a/m ~ S)2 + a“2 ‘ B = (cT/~ – 3s/2)2 + b“2°
(7.42)

An inspection of these equations also indicates that without the operators AS2,

A02 and AA’’A”, the F–flatness equations would only constrain the values of A,

X2 and a2 in thecombination X2/A and a2/A. Thus oneofthesevevs would be

unconstrained. As a result, not all the particle masses would be fixed by the input

parameters. This problem is avoided by including the (Q~)2 operator, i.e. the

operator a A5, in the fundamental theory. In this case, a new solution cannot be

gotten by

the fields,

resealing A, with the xi and A fixed, and resealing the vevs of any of

thus indicating that a2, X2 and A are fixed by the input parameters.

Next it is argued that these equations fix the vevs of S, A, o and A“ to be

on the order of A, without any fine tuning of the couplings in the fundamental

theory. By redefining A = (A/l@~ the F~= O equations now contain an overall

factor of A/M if the expected relation between the superpotential couplings in

the fundamental and confined theories is valid. As a result the F~ equations no

longer contain any small dimensionless couplings. The expected solution to this

new set of equations is then X, a, a“, b“, a ~ s and ~ m A-7. The confinement

equation fixes s N A. Therefore all the vevs are v N A and A N (A/M)A-7.

This result is not obvious a priori, since the superpotential couplings appearing

247



in the f’ equations are suppressed by powers of A/Al. A slightly more rigorous

argument, also showing that A # O, is presented in Appendix D. This implies that

the baryons vevs are forced to zero at

which support these arguments are also

this minimum. Two numerical solutions

given in Appendix D. These expectations

for the size of the couplings, A, and vevs will be important below in estimating

the mass spectrum.

The superpotential for this model contains enough operators to give superheavy

masses to all the particles that should be heavy. The results of computing the mass

matrices assuming a canonical Kahler potential are given in Appendix D, and are

summarized here. The particles have masses at one of three scales: mL ~ A4/ikf3;

mz R A2/A4; and A. The naive expectation is that all the particles have a mass

m N mI. This is because all the vevs are Cl(A), and the mass matrices are linear

in the superpotential couplings which contain a factor A/Al, and in the parameter

A which also contains a factor of A/if.

This expectation turns out to be correct except for a uL w (~, 1, -2/3)

and ~L N u~, which acquire a Dirac mass from the superpotential operator

(A’’A)2.jmz2j16. These fields are massless in the absence of this operator for

the following reason. The ST.J(5) decomposition of A = 24+ 10 + ~ + 1. This

clearly contains a u c 10 and ~ e ~. The only possible source for a mass term

for these fields is given by W~w. Further, since S does not contain a u and ~,

this mass term must occur from setting S and o to their vevs. The resulting mass

is proportional to ~gs + Aloo. The DW form for A and ~A = O, however, forces
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this quantity to vanish G. The addition of the operator trA4/Af does not change

the conclusion of this argument. The mass of these fields is gotten therefore from

the M–2 suppressed operator. The result of a computation of the mass spectrum,

presented in Appendix D, implies that the naive expectation for their mass is

m - mL.

The particle content of the fields with mass m N mI is now enumerated. The

SU(5) quantum numbers of the representations at this scale are: 1 x (10+ ~) +

1 x (~+ 5) + 2 x 24+ 1 x (15 +q. At the scale mr there is also a split 724,

with SM quantum numbers 8 a (8, 1, O) and 3 - (1, 3, O). There are also some

leftover fields, that together with uL and ~L which have a mass m w mL, form

a complete 10 + 10 of SU(5). These leftover fields have a mass m N mr. The

. .

representations in the S0( 10) 101+102 are split by the DW mechanism. One pair

of electroweak doublets is massless and are the Higgs fields responsible for giving

mass to the uptype quarks, down-type quarks, and Ieptons. The other doublet

fields, h - (1,2, –1/2) and k = (1,2, 1/2), acquire a Dirac mass mh w mz. There

are also a number of gauge singlets which acquire masses m N mz.

The triplets in the S0(10) 101+ 102, 2 x (~, 1, 1/3) +2x (3,1, –1/3), acquire

masses O(A). The 33 Nambu-Goldstone bosons multiples acquire a mass m ~ A

from the super-Higgs mechanism.

6The same argument also implies that the Majorana mass term for the 8 in A vanishes. These

fields, however, acquire a Dirac mass with the 8 e S.

7The missing partners are the Nambu-Goldstone

U(l)Y breaking.

249

bosons of the SU(5) ~ SZT(3)C x SU(2) x



The incomplete SU(5)

is discussed next. First it

representations affect

is approximated that

the prediction for sin2 Ow, which

all the charged particles at each

of the three scales mL, ml and NfGuT are degenerate. In this approximation the

contribution to Asin26W occurs from splitting between the scales. The result of

the usual one-loop computation implies that the light particles shift the prediction

for sin26W by an amount

(Asin20w=–% ln~–
4

)
–ln~ .
5 ml

(7.43)
mL

The first term is the contribution from uL and ~L; these fields only contribute

between mL and mz, since above the mass scale mI they fit into a complete

10 + ~ of SU(5). The second term is the sum of the contributions from 8,

3, h and fi. As is evident, for mL < mI there is an O(1) cancellation between

the two contributions. Since mL arises from a higher dimensional operator than

does mI, mL < mI applies for this model. It is then reasonable to expect that

the 0(1) cancellation

mr m A2/ikf, gives

occurs. Inserting the naive expectation mL - A4/M3 and

Asin20w N –5 x 10-3 x
in M/A

in 30 “

As is shown below, requiring

M restricts M/A% 30 – 70.

(7.44)

that the SO(lO)Gu~ not have a Landau pole below

With this constraint, the shift in sin2 Ow is consis-

tent with the measured value, once other theoretical uncertainties are considered.

The largest of these are incalculable threshold corrections from the light (approxi-

mately) complete S.?7(5) representations. Since
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gives a contribution that is naively a,~/27r x 0(l), the large size of the light

representations could result in a correction that is comparable or larger than the

correction given in Eqn.(7.44).

It is next argued that any “gravitationals mearing” [115] of the couplingsat

the GUT scale are small in this model. First, the only possible dimension–4

operator in the superpotential involving the SO(I(I)Gu~ chiral gauge multiplet

IVii is A~jWjkWk~/M. This, however, vanishes due to the anti-symmetryof A.

Next, the operators gSSWW/Af and g.aWW/Al are allowed. The vev of a does

not break SU(5), so it only results in a common shift of the gauge couplings. The

shift is tiny since gm N A/&f. The vev of S does break SU(5), so this operator

results in a tree–level correction to the unification of the couplings. An estimate

for the shift in sin219w that this incurs is

30s
Asin29W w +10-3g~=. (7.45)

It is expected that gs cv A/M since this operator occurs from a dimension–4

operator in the superpotential of the fundamental theory. So this results in a

tiny shift to sin2 O1t’. Finally, operators only involving 16,16 and WW are also

suppressed by an extra factor of A/IV?. The vev of 16 does not break SU(5), so

this operator only results in a tiny common shift to the gauge couplings.

An upper limit to ill is given by the value of the Landau pole of the SO(10)

GUT gauge coupling. This model is not asymptotically-free above the GUT scale

since it contains a large particle content. More problematic though, is the fact
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that most of the particle masses are a factor of A/&? below the GUT scale. While

this particle content does not result in a large shift to sin2 & since they mostly

form complete SU(5) representations, the matter content does increase the value

of @~~. The value of @SO{loJ(M), using naive one-loop running and with tree-level

matching, and including the contribution of 3 16s of the SM, is

The second term is the contribution from u~+~~, the third term is the contribution

from the particles with mass mr, and the last term is the contribution from the

S0(10) particle content above A. Inserting mL - A4/i’M3 and mz N A2/NI, the

limit is

(7.47)

This implies Ill N 0.6 – 1 x 1018 GeV. Note, however, that this limit is sensitive

to the actual spectrum. For example, if the naive expectation underestimates the

spectrum by a factor of 4, then the limit increases to M/A< 75. This corresponds

to M~l–2x1018GeV.

The Landau pole limit also strongly constrains any modifications to the model.

For example, adding to the model either an extra adjoint A’ which acquires a mass

at 2 x MGUT,or an extra 16’ + ~’ + 10’ + 10” which all acquire a mass MGUT

restricts lf/AS20. The presence of N5 additional SU(5) 5 + ~ multiples is also

strongly constrained by this requirement of consistency. These fields would be

required, for example, in any low-energy physics that is responsible for the origin
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of supersymmetry or flavor symmetry breaking,

the mass A15 of these multiples satisfies

Requiring Af/A >20 implies that

18. (7.48)

In particular: IV5+5 = 1 is marginally allowed if A45 = 1010 GeV; IV5+5 = 2 is

marginally allowed if Af5 = 1014 GeV. These constraints are weakened if the naive

estimate, A2/A4, for the chiral GUT spectrum underestimates the spectrum by a

factor of 4. In this case,

~~+~ in lf/fM5S 45, (7.49)

for kf/A >20. In particular: N5+3 = 2 is allowed for lkf~ = 1010 GeV; N5+R <5 is

required for M5 = 1014 GeV. Either direct or indirect evidence for additional chiral

content that does not satisfy Eqn. (7.48) or Eqn. (7.4S) would strongly disfavor this

model.

This section concludes with a few comments about the consistency of neglecting

certain operators in the superpotential. The superpotential terms aA~j16Ezj 16

or s~kAkj~xij 16 must be absent to avoid ruining the DW form for A. These

operators would contribute to ~A (2), forcing a non-vanishing value for b. These

operators are present in the low-energy theory if the operators tr(~Q)A16Z16

or (~Q)sA~E16 are present in the superpotential of the fundamental theory.

Any symmetry which forbids these dangerous operators also forbids the operator

(A’’A)~j~Z~j16. This option is not viable since this cperator is required to give

mass to a (~, 1, –2/3) +h.c. fields. (The DW form for A, however, is unaffected
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by the presence of this operator since it does not contribute to the 17iequations.)

So it must be assumed that the dangerous operators are not present in the fun-

damental theory. The perturbative non-renormalization theorems then guarantee

that these operators will not be generated, at least in perturbation theory. This

argument does” not exclude the possibility that these dangerous operators could

be generated by the non-perturbative dynamics of the SU(lO)~or SO(lO)Gu~

groups. By combining the requirementof holomorphy of the superpot~ntial with

some anomalous fake U(1) symmetries [107] it is possible to exactly show, how-

ever, that if these operators are initially absent in the high–energy theory they
-.

will not be generated as the cutoff is lowered. In particular, it can be shown that

the coefficient of a dangerous operator at a lower cutoff is only proportional to

its initial value; i.e. it is independent of Asu(lo) /&f, Aso(lo) /Af and all the other

superpotential couplings. Then there is no reason for these dangerous operators

to be generated by the confining dynamics.

7.5 Summary

In this chapter two models are presented that generate the Grand Unifica-

tion scale from the strong dynamics of a confining group. The particle content

of the confining group is chosen so that this sector confines with chiral symmetry

breaking. The particles in this sector are also charged under the Grand Unified

group. It follows that the composite fields which arise from the confining dynam-

ics transform under the GUT group as either higher dimensional representations
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or singlets. Below the scale of confinement these composite fields acquire vevs.

In each of the models presented here, there is a locally isolated supersymmetric

vacuum in which the GUT group is broken to the SM group, and the resulting

spectrum provides an acceptable phenomenology. Two GUT models are consid-

ered: SU(6) and SO (10). Known solutions to the doublet-triplet splitting problem

are incorporated in each model. Proton decay in both models is at an acceptable

rate, and in particular, in the S0 (10) model the dangerous dimension-5 proton

decay operator is suppressed to an interesting level. This suppression is a natural

consequence of the confining dynamics. Each model requires no fine tuning of any

non-vanishing superpotential couplings. The fundamental theory in both models

also contains an economical particle content, requiring no gauge singlets and only

one higher dimensional representation.
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Appendix A

Fine tuning Expressions

‘ In this section the Barbieri-Giudice parameters for both the MSSM and

NMSSM in a gauge mediated SUSY breaking scenario are presented.

In an MSSM with gauge mediated SUSY breaking, the fundamental parameters

of the theory (in the visible sector) are: A~~~~; At; p; and p;. Once electroweak

symmetry breaking occurs, the extremization conditions determine both m~ and

tan @ as a function of these parameters. To measure the sensitivity of m~ to one

of the fundamental parameters Az, we compute the variation in m; induced by a

small change in one of the Az. The quantity

where

(Al)

(A.2)

measures this sensitivity [63]. In the case of gauge mediated SUSY breaking

models, there are four functions c(m~; Ai) to be computed. They are:

tan2/?+l ji~-ji~
c(m~; p?j)

= 4tan2B(tan2~ – 1)3 m~
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(A.4)

This measures the sensitivity of m; to the electroweak scale value of At, At(LfW..~).

The Yukawa coupling A~(lk?W..~)is not, however, a fundamental parameter of the

theory. The fundamental parameter is the value of the coupling at the cutoff

AO = ikfGuT or lfPl of the theory. We really should be computing the sensitivity

of m; to this value of At. The measure of sensitivity is then correctly given by

We remark that for the model discussed in, the text with three 1+ ~ and one q + ~

messenger fields, the numerical value of (At(AO)/At (lMW..h))~A~(A4We.~)/dAt (A”) is

typically N 0.1 because At(kfW,.~) is attracted to its infra-red fixed point. This

results in a smaller value for c(m~; At) than is obtained in the absence of these

considerate ions.

With the assumption that m~a and m~~ scale with A~e~~, we get

= 1+2~–
tan2 ~ + 1

m; (tan2~ - 1)2 x
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The Barbieri–Giudice functions for mt are similarly computed. They are

(A.8)

Since mz and mt are measured, two of the four fundamental parameters may

be eliminated. This leaves two free parameters, which for conveinence are chosen

to be A~.~~ and tan P.

In a NMSSM with gauge mediated SUSY breaking, the scalar potential for

N, Hu and Hd at the weak scale is specified by the following six parameters:

~i = m~, m$U, m&d, the NHUHd coupling AH, the scalar NHUHd coupling AH, and

the N3 coupling, AN. In minimal gauge mediated SUSY breaking, the trilinear soft

SUSY breaking term NHUHd is zero at tree level and is generated at one loop by

wino and bino exchange. In this case, AH (Az) = ~HA(A~). Since the trilinear scalar

term N3 is generated at two loops, it is small and is neglected. The extremization

conditions which determine mz = 9~v2/4 (v = ~v~ + v:), tan ~ = ~U/~d and vN

as a function of these parameters are given in Section 5.5. Eqn. (5 .22) can be

written, using p = AHVN/~ as
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Eqn.(5.23) is

1 tan2 ~
~9~v2 + p2 – m~u

1

1 – tan2 ~
+ mid o.

l–tan2 /?=
(A.13)

Substituting v; from Eqn.(5.22) in Eqn.(5.26) and then using this expression for

p; in Eqn. (5.24) gives

(A.14)

The quantity c = (A~/m~) (i3m~/i3Ai) measures the sensitivity of rnz to these

parameters. This can be computed by differentiating Eqns.(A.12), A.13 and A.14

with respect to these parameters to obtain, after some algebra, the following set

of linear equations:

where

A=

(A.15)

> (A.16)

(A.17)
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(A.18)

\.v’w

, (2 = u,d,lv),

with & = m%, rn&, m~~, AH, AN, and

tan28
l–tan’ ~

o

2 sin2
—v&,

1

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)
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f#N =

(A.24)

o

“+#

7 (A.25)

(A.26)

In deriving these equations AH (A~) = A~~(&) was assumed and ~~/dAH was

neglected. Inverting these set of equations gives the c functions. We note that

these expressions for the various c functions are valid for any NMSSM in which

the N3 scalar term is negligible and the NHUHd scalar term is proportional to

AH. In general, these 6 parameters might, in turn, depend on some fundamental

parameters, ii. Then, the sensitivity to these fundamental parameters is:

(A.27)

For example, in the NMSSM of section 5.5, the fundamental parameters are
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mt leaves 3 free parameters, which we choose to be Ane~~, AH and tan ~. As ex-

plained in that section, the effect of AH in the RG scaling of m~U and m~~ was

neglected, whereas the sensitivity of m; to AH could be non-negligible. Thus, we

have

(A.28)

We find, in our model, that c(m~; m~) is smaller than c(m~; AH) by a factor of

w 2. Also, using approximate analytic and also numerical solutions to the RG

equation for m;, we find that (~H/m~) (~m&/d~H) is ~ ().1. consequently, in

the analysis of section 5.5 the additional contribution to ?(m~; AH) due to the

dependence of m; on AH was neglected. A similar conclusion is true for AN. Also,

(A.29)

We find that (Aq/m~) (Om~/dJq) is x 1 so that ;(m~; Aq) is smaller than

~(~~; AH) by a factor of 2.
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Appendix B

Two–loop calculation

In this Section we discuss the two-loop contribution of the heavy scalar soft

masses to the light scalar soft masses. These contributions can be divided into two

classes. In the first class, a vev for the hypercharge D-term is generated at two–

loops. The Feynman diagrams for these contributions are given in Figure B.1 and

are clearly N cqoz. These diagrams are computed in a later portion of this Section.

In the other class, the two-loop diagrams are w ai2. These have been computed by

Poppitz and Trivedi[106]. So, we will not give details of this computation which can

be found in their paper. However, our result for the finite parts of these diagrams

differs slightly from theirs and we discuss the reason for the discrepancy. When

one regulates the theory using dimensional reduction [101, 102] (compactifying to

D <4 dimensions), the vector field decomposes into a D-dimensional vector and

4 – D scalars, called c-scalars, in the adjoint representation of the gauge group.

Thus the number of Bose and Fermi degrees of freedom in the vector multiplet

remain equal. The c-scalars receive, at one-loop, a divergent contribution to their

mass, proportional to the supertrace of the mass matrix of the matter fields.

Neglecting the fermion masses, this contribution is
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In our notation D = 4 – e. Poppitz and Trivedi choose the counterterm to can-

cel this divergence in the MS scheme, i.e., the counterterm consists only of the

divergent part, proportional to I/e. When this counterterm is inserted in a one-

loop c-scalar graph with SM fields (scalars) as the external Iines , one obtains a

divergent contribution to the SM scalar soft masses (the I/c of the counterterm is

cancelled after summing over the c adjoint scalars running in the loop). Poppitz

and Trivedi use a cut-off, Auv, to regulate this graph, giving a contribution from

this graph that is:

(B.2)

with no finite part. We, on the other hand, choose the e-scalar mass counterterm

in the MS scheme, i.e., proportional to 2/~ – ~ + ln4~ (where y x 0.58 is the Euler

constant) and use dimensional reduction to regulate the graph with the insertion

of the counterterm. This gives a contribution

In the first line the first factor of (2/c –y+ln4x) is from the counter-term insertion,

the second factor is the result of the loop integral, and the over-all factor of e

counts the number of c-scalars running in the loop. In the MS scheme, i.e., after

subtracting 2/e – ~+ ln4n, we are left with a finite part 1 proportional to –~ + ln4r.

The remaining diagrams together give a finite result and we agree with Poppitz

1The same finite part is obtained in the MS scheme, regulated with DR’ .
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Figure B. 1: Mixed two-loop corrections to the scalar mass. Wavy lines, wavy lines

with a straight line through them, solid lines, and dashed lines denote gauge boson,

gaugino, fermion and scalar propagators, respectively. The double-line denotes the

hypercharge D-term propagator.

and Trivedi on this computation. Our result for the finite part of the two-loop

diagrams (neglecting the fermion masses) is

( 7r2 ( ))‘f)fi~ite(P) = ‘~ ln(4~) -7 + ~ – 2 – in ~
P’

(B.4)

whereas the Poppitz-Trivedi result does not have the ln(4~) – ~ in the above result.

The computation of the two-loop hypercharge D-term, which gives contribution

to the soft scalar mass squareds proportional to al~~ and oqcz2 (i. e., the “mixed”

two-loop contribution) is discussed below in detail.

Two-loop hypercharge D-term
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The two-loop diagrams of Figure B. 1 are computed in the Feynman gauge and

all the fermion and gaugino masses are set to zero. It is convenient to calculate in

this gauge because both the scalar self–energy and the Dy–term vertex corrections

are finite at one-loop and thus require no counter-terms. We have also computed

the two-loop diagrams in the Landau gauge and have found that it agrees with the

calculation in the Feynman gauge. The calculation in the Landau gauge requires

counter–terms, is more involved, and hence the discussion is not included. Finally,

in the calculation a global SU(5) symmetry is assumed so that a hypercharge D–

term is not generated at one-loop [96, 92].
.

The sum of the four Feynman diagrams in Figure B.1 is given in the Feynman

gauge by

where the trace is over the gauge and fla,vour states of the particles in the loops.

If the particles in the loop form complete 5 and 10 representations with a common

mass Lfs, the sum simplifies to

‘~fiD,f = &Yf(n5 – ~10)(:~3 – :~2 – &)(4 Jl(@) – 4~2(Mj: + 13(M;)).

(B.6)

The functions 11, 12 and 13 are

d~p

/

dDk 1 (2p - k)2
11(m2) = ~ ~ (ZT)D (P2 _ ~2)2

~2 (p–k~2_m2’
(B.7)

(B.8)

(B.9)
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These functions are now computed.

Evaluating 11

After a Feynman parameterization and performing a change of variables, II =

J1 + J2, where

(B.1O)

(B.11)

After some algebra we find that

JI(m2) = ‘~~~) (m2)~-3D~2D_ ~B(2 - D/2, 3- D/2), (B.12)

.

J2(77Z2)= r:;:) (m’) D-’ x(4El(3-D/2, 2–D/2)–413(2-11/2, 2-11/2) +B(l-D/2, 2–D/2)),

(B.13)

where B (p, q) = 17(p)r (q) /X’(p+ q) is the usual Beta function.

Combining these two results gives

II (m2) = ‘f~~) (m2)”-3~13(3 - D/2,2 - D/2),

Evaluating 12

dDp J dDk 1 k2–k”p 1
Iz(m2) = ~ ~ (ZT)D (P2 – m2)2 k2

(p - k)2

(B.14)

—— fiI’(3 – D)(m2)D-3B(D/2, i – D/2).
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Evaluating 13

dDk 1 dDq 1
Is(m2) = f~(kz–mz)2 J (27r)D qz – rnz

(“ )(

r(z–~/z) 2 D/2-l
=

(4r~Dlz
r(2–~/2)(m2)~12-2 “

(47r;D/2 D/2-l (~) )

= -*(r(2 - D/2)) 2D,~_ ~ (m2)D-3.

We may now combine 11, 12 and 13 to obtain

(m2)D-3
——

(4T)D x(4
( )
~B(3 – ~/2, 2 – ~12) – zI(~12,I – ~/2J r(3 – D)

1

‘D/2–l
r(2 – D/2)2). (B.15)

Writing D = 4 – c and expanding in e gives

T(m2) =
(((16:2)2 ,:

+ 6 – $T2 + 4(ln(4z) – ~) – 41nm2
) )

m2 + O(c) .

(B.16)

In the MS scheme the combination 2/c+ ln(4~) – ~ is subtracted out. The finite

piece that remains is

(16;2)2 ( )
6 – ~x-2 + 2(ln(4~) – y) – 41nm2 m2. (B.17)

Thus in the MS scheme

.3 1
‘ifiQf = ‘t–

5 (167r2)2
g~YfTriK~g~C~ (6 - ~m2 + 2(ln(4m) --y) -41nm~) m?

A

31

(

22 M:—— 5Fal(pR)(n5 – nlo)Yf 6 – ~T + 2(ln(4n) – 7) – 41n(—)‘i–
P: )

( )
(B.18)x ;~’(p~) – :~2(PR) – ~~@I?) ~i.

268



Appendix C

Spectrum of SCJ(6)x SU(6)GUT

First the existence of a solution to the ~ = O equations with all vevs of 0(A)

and A N (A/lf)A-3 is discussed. The second part of this Appendix contains the

results of calculating the mass spectrum, assuming a canonical Kahler potential.

Since the F~ = O equations are linear in v; and v;, it is straightforward to

solve for them in terms of o and Vx. The remai~ling two equations determine

A # O and x = o/v,x. In particular, z is the solution to

where a s –~1, ~ s –~3~4A1/(12gA), and ~ = –~2 – 24~5f?/~4. Note that

p~cl~~ N A/if. Since each term appearing in Eqn.(C.1) is linear in A/iM,

it follows that x N 0(1), i.e. o - Vx is expected. The quantum constraint then

fixes v= ~ A. It follows from F~ = O that vi = –~3illa/(12g) is 0(A2). Next,

vg = –(A4v=/g) (~,x – ~4) is also 0(A2). Finally, either F= = O or F. = O

determines A w (A/ll)A-3.

The non-Nambu-Goldstone multiplet fields charged under the SM, with the

exception of the SM Higgs doublets, are all contained in Z and EN. Since these

fields acquire their mass from the SU(4) x SU(2) preserving vevs of E, EN or (Hn),

it is convenient to classify the mass spectrum according to the SU(4) x SU(2),
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rather than the SU(3) x SU(2) x U( I)y, charge assignments.

The mass matrix for the Q N (4,2) and ~ N (~, 2) fields (after some algeb~-a

using the Fz = O equations) in the (Z, ZN) basis is

(C.2)

By using the Fz = O equations it can be verified that this matrix annihilates

the state (VE,vN), which is a Nambu–Goldstone boson of the gauge symmetry

breaking. The massive eigenvalue is non-zero and naively rn~ N A2/ikf.

The mass matrix for the (15, 1) fields (after some algebra using the F~ = O..

equations) in the (2, ,EN) basis is

(C.3)

It can be shown after some algebra that the determinant of this matrix is

–4~4~Kav=(a – b) . This is non-zero since Vz # O implies that a # b. The

expected masses for the two eigenvalues is then ml~ w A2/M.

The mass matrix for the (1, 3) fields (after some algebra using the F~ = O

equations) in the (Z, EN) basis is

(C.4)

It can be shown that the determinant of this matrix is –/6~4Abv~(3Dz2 –5D/6x+

/6a). A comparison of this result with Eqn. (C. 1) indicates that it is non-vanishing

270



for generic values of the ~is. The expected masses for the two eigenvalues is then

m3 - A2/kf.
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Appendix D

Spectrum of SU(10)x SO(lO)GuTModel

Arguing that all the vevs are of order A ; Numerical solution

In this the only concern is whether a discrete solution with all A, a, a“, b“,

a, s and x non-zero exists. This result is obtained by showing that if s # O,

then A # O and all other vevs are comparable to s. Then the non-vanishing of A

implies that 1? = ~ = O. The confinement condition then fixes s w A. To begin,

first note that ~A fixes o ~ s. The FIG equation implies that 3a” + 2b” ~ o N s.

Thus either a“ w b“ w s, or b“ << a“ m s (or a“ << b“ w s). Next it is argued that

the last two cases do not occur. In the first case, b“ << a“, so that B << A. Next,

the two ~A)l equations are inconsistent if either AKA << ~7a” or YUYA >> ~7a”.

So AKA * ~7a” and ~Tb” N X2 << ~Ta” is the only consistent solution to the two

~,..l,lequations. Thus if b“ < a“, FIGfixes a“ w s up to small corrections of O(b”).

Similarly, the first ~A1/fixes A up to small corrections. But now the two equations

F. and Fs each determine a ~ s; these two equations for a cannot in general

be simultaneously satisfied. Therefore, b“ << a“ is not a viable (supersymmetric)

solution. The argument against a“ << b“ is similar. Therefore a“ ~ b“. Next

suppose that d = O. Then ~AJJ fixes a“ = b“, and together with FIG and ~A,

determines x N s. But now there are two remaining equations, Fs and F., for one
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unknown, a. More concretely, a2 = 5(~6/~g)As and a2 = (~5– ~~7~~G/~~)Ao/3~lo.

In general, these two equations will not be satisfied; therefore A # O. The vev a

can be eliminated from Fs and F.; the remaining equation, together with ~& and

FIG may be used in principle to determine X, a“, b“ w s and also fix A. (X2 << Aa”

is not possible; ~A, Fs, ~’lf, F’lGand F. are 6 equations in only 5 unknowns: o,

a“, b“, a and ~.) The Fs equation will not in general be satisfied with a2 < As

or a2 >> As; since AK(u – v) is 0 (A2s/lkf) and # ~6As in general, Fs determines

a-s.

Two numerical solutions to the F~= Oequations supports these arguments. In

the first (I) solution, the input parameters are chosen to be : X4 = 0.01, ~5 = 0.02,

~G = 0.03, ~T = 0.04, ~g = 0.05, ~lo = 0.06 and ~lG = 0.045. The solution, in

units of A = 1, is

a = –().64, s = ().77, a“ = 0.50, b“ = 0.70, a = 1.2, x = 2.5, ~ = –0.01.

(D.1)

In the second (II) solution, the input parameters are chosen to be : X4 = 0.0134,

Xs = 0.0123, ~(j = –0.03, X7 = 0.0225, X9 = 0.045, ~lo = 0.0623 and ~lG =

0.03657. The solution, in units of A = 1, is

a = –().6>, s = 0.85, a“ = –0.14, b“ = 1.1, a = –0.87, x = 1.2, ~ = 0.04.

(D.2)

These parameters are chosen to be small since ~ N AA/Al N 0.03A for A/kf N

1/30. Aside from this feature, there is nothing special about this choice of super-

273



potential couplings. Asexpected, al}thevevs are O(A) and A~(A/Al)A-7.

Detailed Mass Spectrum

The mass matrices presented here were computed assuming a canonical Kahler

potential; this is sufficient to determine the rank of the matrix.

For future purposes it will be useful to note that the Fi equations are invariant

under the following resealing of couplings and fields:

(~4, ~9, ~lo, k3) + (g-2h, g-’h> g-2~10, g-2~16),

(x, a) + (gx, ga) , (a”, b“,s, a, K) a (a”, b“, S,O,K

(D.3)

(D.4)

Any coupling not listed is left invariant. This mapping relates the solutions to

l?i = O equations in two theories with

related by this scale transformation.

The u’ N (~, 1, –2/3)+h.c. mass

different superpotential couplings which

the

are

matrix in the (A”, 16(16), A) basis is, with

2AK(u2 + A2) – 2~TA 2i~4X – 2~aX i~x’

–2Z~4X – 2~a~ –4i4a” –2Xa”X

\
–i)ix2 –2Ja”x o

(D.5)

Using the Fz = O equations the reader can verify that this matrix has only one zero

eigenvalue. The product of the two non-zero eigenvalues is given by the coefficient

of O(e) in the expansion of det (A4U– el). This coefficient is X2X2(4a2 + 4a{’2+ x’).

Therefore, this matrix contains an

~ # O, the naive expectation for

extra massless particle in the limit ~ + O. With

this product of eigenvalues is (A/M)4A2. The
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larger eigenvalueism.~ =~4(4a’’ +X2/a”), andisapproximately A2/lt4. So the

smaller eigenvalue is mU~ =~2X2(4a2+4a’’2+X2)/mw~. The naive expectation

for this quantity is (A/lf)3A.

The mass matrix for13c~(l, l,l) +h.c., inthe (A’’, l6(~),A) basisis

Using the Fi = O equations it can be verified that this mass matrix has one zero

eigenvalue. The masses of the other two states are 5~gs and –~4 (4b” + X2/b”), to

lowest order in IA.

The mass matrix for the Y N (3,2, –5/6) and X N (3,2, 5/6) fields is given

in the (A”, S, A) basis by

I
–2~K(uv – AB) + 2~7A –2iAK(uB + vA) o

Myx = –2i~K(uB + vA) –2~K(zw – AB) + 2~6A -iA9a

o i~ga —$&

. (D.7)

It can be verified, after some tedious algebra, that this matrix has one zero eigen-

value. This matrix is therefore rank 2. The masses of the other two states are

0(A2/M).

The Q w (3,2, 1/6) and~ N (3,2, –1/6) mass matrix, in the (A”, S, 16(~), A)

basis, is
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[

\

2AK(w + Al?) – 2~TA –2iAK(Av – Bu) 2&x – Jax ixxz

2ZAK(AV – Bu) –2dK(uv + AB) + 2~fjA o —iiga

–2iiAx – Xajy o –2~4(a” + b“) –i(a” + b“)x

—iixz zigs –~(a” + b“)x :igs

(D.8j

It can be verified that this matrix has at least one zero eigenvalue. To verify that it

has only one zero eigenvalue, it is sufficient to verify that the coefficient of O(e) in

the expansion of det(kf~~ – el) is ntm-vanishing. Since the entries proportional to

~ result in a tiny perturbation to the spectrum of ~~o, it is sufficient to compute

the O(e) coefficient, call it p, while setting ~ = O. In this case it is

(I?u - Au)
p = 4~~(u2 + A2)(V2 + B2) ‘- z~4~6(U~2 – (U – V)UV – A2V)A (D.9)

–i7i@(u2 + A2) + A(v2 + 132))A

–~4~g((A + B)2 + (U – V)2)

+AK(~9(A + B) – 2X4(U– V))(U2 + A2)(v2 + ~2)).

If this vanishes at generic values for the couplings constants, then it must, in

particular, vanish for two solutions and sets of couplings constants that are related

by Eqns. (D.3) and (D.4). Under this scaling, however, p m C x (clg-2 + c2g-4),

with C, c1 and C2 functions of the initial vevs and couplings. This vanishes only

if either G = O or c1 = O and C2 = O. The first condition, C’ = O, implies

Av = Bu, whereas the second C2 = O implies that A + B = O and u – v = O.

Either of these conditions over-constrain the vevs, so they will not be satisfied at
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a generic solution. In particular, p = (0.07)3 for the numerical solution (I) given

by Eqn. (D. 1). The expected mass for the three massive eigenvalues is therefore

0(A2/Jl).

The mass matrix for the coloured adjoints (8,1, O) in the (A”, S, A) basis is

[

–AK(u2 – A2) + ~7A –2aAKuA o

M88 = –2iAKuA –AK(u2 – A2) + ~GA i~ga

1

(D.1O)

o- i~ga 0

The determinant is (~ga)2(~TA – AK(u2 – A2)) and is non-vanishing. The size of

the three masses is expected to be m~ w A2/M. For the numerical solution (I) in

Eqn.(D.1), this determinant is (0.05)3.

The mass matrix for the SU(2) adjoints (1,3, O) in the (A”, S, A) basis is

M33 =

–w4K(v2 – B2) + ~TA –2iAKvB o

–2iAKvB –.,4K(v2 – B2) + ~GA O

( o 0 +9S

The determinant is

(D.11)

–3XSS (.A~ (~qv2 + B2)2 = (X6+ XT)(V2– B2)A) + X6XTA2)/2 (D.12)

and is non-vanishing. The size of the three masses is expected to be m3 N A2/Jf.

For the numerical solution (1) in Eqn.(D.1), this determinant is – (0.04)3.

The S field contains (6, 1, 2/3)+h.c. and (1,3, –l)+h.c.. These fields acquire

Dirac masses –AK(u2+A2) and –AK(v2+B2), respectively. The (~, 1, l/3) +h.c.

and (1, 2, –1/2)+h.c. fields in the 16 + ~ acquire Dirac masses –4~4(a” + b“)

and – 2X4(3a” + b“) , respectively.
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Finally, there are 8 gauge singlets in this model. The quantum modified con-

straint implies that only 7 of these are independent. The quantum modified con-

straint can be used to solve for one of the gauge singlets. Of the remaining 7,

one of these is the Nambu-Goldstone boson multiplet of the S0(10) + SU(5)

symmetry breaking. The mass matrix for the remaining 6 gauge singlets is rather

cumbersome and is not presented here. For the numerical solution (I) presented at

the start of this Appendix, it can be checked that the determinant of this matrix

is –6 x 10–7 (in units of A = l.); the typical mass of each singlet is then N 0.09A.
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