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Abstract

Small Numbers in Supersymmetric Theories of

Nature
by

Michael Lawrence Graesser

" Doctor of Philosophy in Physics
University of California, Berkeley
Professor Mahiko Suzuki, Co-Chair
Dr. Ian Hinchliffe, Co-Chair

The Standard Model of particle interactions is a succéessful theory for describ-
ing the interactions of quarks, leptons and gauge bosons at microscopic distance
scales. Despite these successes, the theory contains many unsatisfactdry features.
The origin of particle masses is a central mystery that has eluded experimentaj
elucidation. In the Standard Model the known particles obtain their mass from
the condensate of the so—called Higgs particle. Quantum corrections to the Higgs
mass require an unnatural fine tuning in the Higgs masé of one part in 10732 to
obtain the correct mass scale of electroweak physics. In addition, the origin of the’
vast hierarchy between the mass scales of the electroweak :;md quantum gravity
physics is not explained in the current theory.

1




Supersymmetric extensions to the Standard Model are not plagued by this fine
tuning issue and may therefore be relevant in Nature. In the minimal supersym-
metric Standard Model there is also a natural explanation for electroweai{ sym-
metry breaking. Supersymmetric Grand Unified Theories also correctly predict a
parameter of the Standard Model. This provides non—trivial indirect evidence for
thése theories.

The most general supersymmetric extension to the Standard Model however,
is excluded by many physical processes, such as rare flavor changing processes,
and the non—observation of the instability of the proton. These processes provide
important informationlabout the possible structure such a theory. In particular,
certain parameters in this theory must be rather small. A physics explanation for
why this is the case would be desirable.

It is striking that the gauge couplings of the Standard Model unify if there is
supersymimetry close to the weak scale. This suggests that at high energies Nature
is described by a supersymmetric Grand Unified Theory. Buf the mass scale of
unification must be introduced into the theory since it does not coincide with the
probable mass scale of strong quantum gravity.

- The subject of this dissertation is both the phenomenology and model-building
opportunities that may lie behind the small numbers that appear in supersym-

metric extensions of the Standard Model.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics interactions [1, 2] is an extremely
successful theory of Naturé. It qualitatively accounts for many phenomena, such aé
the meson and baryon mass spectrum, the small measured value for the kaon mass
difference, “neutral” current interactions — neutrino—electron scattering, for exam-
ple — and phe weakly interacting nature of quarks at large momentum transfer, to
list a few. It also quantitatively agrees with all experimental measurements. The
measured anomalous magnetic moment of the electron agrees with the SM pre-
dictién to a few parts per billion, and the measured and theoretical values for the
anomalous magnetic moment of the muon are consistent to one part per million.
These experiments represent tremendous tests of quantum electrodynamics — the
part of the SM describing electrons, muons and photons. The SM theory of quarks
and gluons — quantum chromodynamics — has also been experimentally tested at
SLAC during the 1970’s, and at Fermilab in the 1980’s. Further, many precise
measuréments of the SM “weak” interactions performed at the LEP and SLAC
experiments in the late 1980°s and early 1990°s agree with the SM predictions to
within ‘their experimental uncertainties (a few pefcent).

While the SM has many descriptive successes, there are many issues that re-




main unexplained. The most outstanding issue is the origin of particle masses.

The SM is described by the non-abelian gauge symmetry SU(3). x SU(2), x
U(1)y. The representations of the SM particles under these gauge groups are given
in Table 1.1. Of these gauge groups, only the U (1)em subgroup that corresponds
to electromagnetism is observed to be a long-range force. The SU (3). force (or
quantum chromodynamics) is strong at large distances, so it confines quarks into
baryons and mesons (e.g. protons, neutrons and pions). The remaining “weak”
forces however, have an effective range of about 10716 cm. This is because the
Z and W gauge bosons that mediéte these “weak” forces are massive. On the
other hand, the non-abelian gauge symmetry ifnplies that all the gauge bosons
should be massless like the photon. In addition, the leptons and quarks should be
massless as well.

The physical mechanism that generates these masses is not known. The parti-
cle masses are obtained by either introducing into the theory interactions — such
as mass terms for the gauge bosons and fermions — that explicitly break the elec-
troweak symmetry, or by introducing some new interactions whose dynamics spon-
taneously break the electroweak gauge symmetry. In tue former case the theory
is non-renormalizable at the one-loop level, so that the Standard Model is only
an effective theory. Further, the preservation of the unitarity of the theory im-
plies that WWrinteractions should become strong at high energies. In any case,
phenomena in the form of new interactions and/or particles should be discovered.

In the second option there must exist some additional undiscovered dynamics




that is responsible for generating particle masses. There are additional unresolved
issues beyond this central mystery. The SM contains six quarks, three charged and
neutral neutrinos. The mass of these- particles is an input into the theory — the SM
does not predict these masses. Since the ratio of the lightest massive particle (the
electron) to the heaviest particle (the top quark) is ~ 1079, it is difficult to believe
that this small number is part of a fundamental theory of Nature. An explanation
for the hierarchies found in the other fermions masses, and the paiameters of the
. Kobayashi-Maskawa matrix V;;M [3], is also desired.

In the Standard Model electroweak symmetry breaking is achieved by intro-

ducing a scalar field H with Standard Model quantum numbers (1,2,1/2). The

scalar potential for H is assumed to be

V(H) = m?>H*'H + 2(H*H)2 ('1.1)

and is the most general potential that is also gauge invariant and renormalizable.
Here XA > 0 so that the potential is bounded from below. The ground state of the
vacuum is found by minimizing V. In this case the physics of the ground state
depends on the sign of m?. If m? > 0 the minimum is at H = 0. This ground
state is invariant under the full SM gauge transformations, so no symmetries are
broken at this vacuum. On the other hand, if m? < 0 there is a local maximum at
H =0, and the local minimum occurs at a non-zero value for H. Using SU(2),

and U(1)y rotations,




minimizes V with v = —4m? /). This vacuum is not left invariant by the action
of the SU(2), x U(1)y gauge transformations. Only the combination of SU(2) x
U(1l)y generators @ = VT‘g,—{-Y is left unbroken. Since this is none other than electric
charge, this vacuum breaks SU ('2) 1 X U(l)y = U(1)em. The Higgs mechanism
results in a mass of gv/2 ~80 GeV for the W gauge bosons, and /g2 + g"*v/2 ~90
GeV for the Z gauge boson, where ¢ and ¢’ are the SU(2); and U(l)y gauge
couplings, respectively. Numerically v = 247 GeV is determined from the Fermi
constant Gy obtained from the muon lifetime. Since U(1)ey, is left unbroken the
photon remains massless. So the symmetry breaking vacuum which corresponds
to m? < 0 correctly describes Nature.

This vacuum expectation value (vev) of the Higgs field can also be used to give

masses to the quarks and leptons. The interaction
/\ZQZ-HU; (1.3)

for example, where i, j are genefation labels, is gauge invariant but results in
masses for the up—quarks once the vev for H given by Eqn.(1.2) is inserted. In-
teractions of this type (so-called Yukawa interactions) can also be introduced to
give masses to the down—-quarks and ieptons.

So aside from the fact that the Higgs scalar particle has not been experimen-
tally observed this description of electroweak symmetry breaking is sound. This
description however, is theoretically unsatisfactory since the most important step

in the story, namely that the Higgs mass parameter m? must be negative, is left




unexplained. An explanation for why m? is negative, rather than positive, is de-
sired. There are even more distasteful features of this description once quantum
corrections to the scalar potential V' are considered. These are now described.

In addition to the particle representations and their interactions, a short—
distance cut—off is also required. The physical interpretation for this cut—off is
the following. The Standard Model is a good description of Nature at distances
above at least 10716 cm, or equivalently, at energies below 100 GeV. If the Standard
Model were a fundamental theory of Nature, then it would be a good description
at all energies. It is not expected for many reasons, however, that this is the
case. Firstly, the Standard Model{does not explain electroweak symmetry break-
ing with any satisfaction. It also contains qugdratic divergences (discussed in the
next paragraph) which are distasteful, and it would be incredibly surprising if
they were present in a fundamental theory. It also doesn’t explain why the mass
scale of electroweak interactions — IOQ GeV tQ a TeV - is so much smaller than
the probable mass scale of (strong) gravitational effects, the Planck scale which is
roﬁghly 10'® GeV. Further, the Compton wavelength and black hole event horizon
for a point particle with a mass of 10'® GeV coincide, so in describing physical
processes at Planck scale energies it is not possible to neglect either quantum
or gravitational effects. Both are equally important. But the Standard Model
does not include a quantum theory of gravity. For this reason it is expected that
at these energies the Standard Model (or any quantum field theory description

of Nature) will be replaced by a theory that includes a quantum description of
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Figure 1.1: Feynman diagrams contributing quadratic divergences to the Higgs
mass. Solid, dotted and wavy lines represent propagating fermions, scalars and

gauge bosons, respectively.

gravity. So the Standard Model is not a correct description of Nature at these
high energies. Thus above some unknown energy scale A (or below some distance
scale he/A), the Standard Model is replaced by a better description of Nature. In
this sense the Stahdard Model is only an effective theory of Nature, valid only for
energies ¥ < A.

So in e\%aluating any physical processes it is physically sensible to restrict the
energies of the particles to be below A. Of interest for electroweak symmetry
breaking are the quantum corrections to the Higgs potential V. The interactions

of the Higgs scalar with the gauge bosons and with itself correct the expression




for V given in Eqn..(l.l). In particular, the corrections to the m? parameter are
given by the Feynman diagrams in Figufe 1.1. As mentioned above, in evaluating
these corrections an energy cut—off A must be introduced. These diagrams give a
correction to m? that is

2 2

: C
m=1my + 167‘(’2A2. (14)

Here m2 is the “bare” parameter for the Higgs mass (what was called m? before),
and C is a function of the gauge and Yukawa couplings of the theory and is not
equal to zero in general. That Am? x A? means that this theory contains a
quadratic divergence.

This is distasteful for the following reason. Recall that the gauge boson mass is
m2, o v?, and v2 o —m? in turn. So —m? must be roughly (100GeV)? ~ (TeV)2.
Since this is the left-hand side of Eqn.(1.4), mg and the A? term must combine to
give the correct value for m2. But if the Standard Model is a correct description
of Nature up to Planckian energies, i.e. A = 10'® GeV, then in order to obtain the
correct order of magnitude for m?, m and the A? term in Eqn.(1.4) must cancel
each other at one part in 102! In other words, in the absence of this fine tuning
of the parameters the “natural ” value for m? is A2. Why the electroweak scale
of physics is so much smaller than the Planck scale, or any energy scale A of new
physics, is known as the hierarchy problem.

It is the presence of these quadratic divergences that suggest that the Standard
Model will be replaced by a more complete theory which will also provide a better

understanding of the origin of electroweak symmetry breaking. Since the resulting




m? is of the right size if A ~TeV, new physics in the form of new particles and
interactions should be discovered at energies in this range.

Since supersymmetric gauge theories [5], quite remarkably, contain no quadratic
divergences ! [6], particle physics models based on supersymmetry are promising
candidates for resolving the hierarchy problem. In this dissertation, the phe-
nomenology of supersymﬁetric theories is explored, with attention paid to phe-
nomenological problems with these models. These problems are of the “why
are some numbers in these models so small” sort. This is in coherence with
the philosophy that argues that the Standard Model is incomplete, e.g. - why is
Myw /Mpy, ~ 10718 5o small?

In supersymmetric field theories all the particles appear in irreducible repre-
sentations of the supersymmetry algebra, referred to as supermultiplets. Since a
supersymmetry generator has a spinorial index, and the members of a supermul-
tiplet are related to each other by supersymmetry transformations, the individual
components of a multiplet will not have the same spin. For example, a chiral

supermultiplet is

¢
F= (1.5)

Ya

and contains a complex scalar ¢ (spin 0) and a two—component fermion v, (spin

! Assuming TrQx = 0 if there is a U(1)x gauge group.




1/2). Similarly, a vector multiplet is

Vi
V= (1.6)
Xa
and contains a massless vector boson V. (spin 1) and a two—component fermion
X«- Note that in both cases the number of bosonic and fermionic physical degrees
of freedom are equal. Further, the supersymmetry generators commute with the
gauge symmetry generators, so that all the components of a supermultiplet have
the same gauge group quantum numbers. Finally, a very important point for
the cancellation of quadratic divergences is that the supersymmetry generators
commute with the spacetime generators. This implies that all the components of
a multiplet have the same energy, and in particular, that they all have the same
rest mass.

Since supersymmetry transformations interchange bosons and 'fermioné, a su-
persymmetry transformation does not commute with a Lorentz group transforma-
tion. Nonetheless supersymmetry is also a spacetime symmetry since it enlargens
the group of spacétime transformations. In fact, the largest possible symmetry of
the S matrix ? is the product of an internal global or gauge symmetry and a super-
symmetry {7]. So supersymmetric theories contain a larger spacetime symmetry

than their non—supersymmetric counterparts. This fa_ct suggests that supersym-

metry is in some way relevant to Nature.

2The S matrix gives the quantum mechanical amplitude A for scattering an initial state into

a final state. The probability for this process is then proportional to |A[%.




A heuristic explanation for why supersymmetric theories contain no quadratic

divergences is the following. First suppose that the bare mass for the scalar par-
ticle in a chiral multiplet is equal to zero. ’Then since allvthe components of a
supermultiplet have the same mass, the fermion partner 9 is also massless. But in
this case the theory contains the chiral symmetry 1 — e*#¢ for an arbitrary real
number #. This symmetry is sufficient to guaranteé that in perturbation theory
the fermion is ezactly massless. But since by supersymmetry the scalar partner
must also receive the same quantum corrections, it therefore remains massless. So
there are no quadratic contributions to the mass parameter of the scalar particle.

This is realized in the loop expansion by the cancellation of the quadratic di-
vergences between different Feynman diagrams. In Figure 1.2(a), the scalar boson
¢ receives a quadratic divergence from its ¢’{¢'1 ¢3¢ interaction with other scalars
¢ (this notation also allows ¢ = ¢;). There is also a quadratic divergence from
its coupling to the fermion superpartner 1, of ¢o. This contribution is shown in
Figure 1.2(b) and is numerically ezactly the opposite of the first contribution such
that the sum bf the two Feynman diagram cancels, and there are no quadratically
divergent contributions to the mass of ¢;.

The argument for the cancellation of the quadratic divergences when the scalar
particle is massive is very similar. Supersymmetry implies that the fermion super-
partner has the same mass. But the total quantum correction to the fermion mass
must be Am o my since in the limit that the bare fermion mass my — 0 the chiral

symmetry forbids the generation of a mass in perturbation theory. But this cor-
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Figure 1.2: Cancellation in supersymmetric theories of quadratic divergences to
the scalar masses. Solid and dotied lines represent propagating fermions and

bosons respectively.

rection must by supercymmetry be identical to the correction to the scalar mass.
Thus even if the scalar particle is massive it receives no quadratic corrections to
its mass.

The absence of quadratic divergences can also be generalized to include su-
persymmetric gauge theories. In this case, the quadratic divergence from the
Feynman diagram with an internal gauge boson is canceled by the quadratic di-
vergence from the Feynman diagram with an internal superpartner of the gauge
boson, the gaugino. So in supersymmetric theories there are no quadratic diver-
gences 3. To re—cap, the basic reason for this is that supersymmetry relates the
scalar particle to its fermion superpartner which does not receive any quadratic
divergerices. This relationship then protects the scalar particle from receiving any

quadratic divergences as well.

3See the previous footnote for the one restriction. Curiously, this condition is also the same

as requiring the cancellation of the gravitational-gravitational-U(1)¢g anomaly.
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So a ‘supersymmetrized version of the Standard Model does not contain any
quadratic divergences and the hierarchy problem is at least stabilised. That is, once
the huge disparate scales Mz and Mp, are initially established, supersymmetry
insures that quantum corrections do not push the vev of H (and hence the masses
of all the Standard Model particles) up to the Planck scale.

In fact, the Planck scale and the weak scale are probably not the only mass
scales in Nature. For example, the scale of Grand Unification (see later), or the
mass scale of some new flavor physics, probably exist and are most likely orders
of magnitude larger than the weak scale. .If scalar particles are in some way
involved in the physics at these other mass scales (just as the Higgs particle might
be involved in electroweak symmetry breaking), then in a non-supersymmetric
theory quantum corrections would tend to bring all these different mass scales
together. That is, the sepafation of mass scales could only be maintained at the
expense of an unnatural amount of fine tuning among the bare parameters of the
theory.

In supersymmetric theories, in contrast, there are non-renormalization theo-
rems which imply that no fine tuning is required to maintain these different mass
scales [6]. These generalize the cancellation of the quadratic divergences discussed
before. Similarly, non—perturbative non-renormalization theorems for the dimen-
sionless “Wilsonian” gauge-couplings and “superpotential” couplings exist and
are presented in Chapter 2. So in a supersymmetric theory of Nature it is possible

to envision a hierarchy of mass scales which are not destabilized by quantum cor-

12




rections. In these theories it is then sensible to address issues such as the physics
occurring at, and the possible origins of, these different mass scales.

So what does a supersymmetrized version of the Standard Model look like? The-
simplest solution is to promote each gauge and matter particle of the Standard
Model tc3 a complete supermultiplet. Thus the theory now includes some fermion
superpartners (the gauginos) to the gauge bosons, and scalar superpartners to
the quarks and leptons, referred to as squarks and sleptons, respectively. So a
supersymmetric version of the Standard Model contains at least twicé as many
particles.

What about the Higgs particléjH? An inspection of Table 1.1 indicates that the
leptons L have the same quantum numbers as the Higgs scalar H*. This suggests
the interesting possibilify that the Higg;s bosons could be the boson superpartners
of the leptons. In this case the Higgs field would have a lepton number, since it
would be in the same supermultiplet as the leptons. The breaking of electroweak
symmetry would also break lepton number and this has some pheﬁomenological
difficulties, such as generating neutrino masses that are too large. A more serious
problem though is that it turns out that such a theory (with 3 Higgs doublets)
cannot generate masses for the up—type quarks. For this reason this possibility is
not considered further in this dissertation.

So instead the Higgs sector is made supersymmetric by introducing fermion
superpartners, réferred to as ‘higgsinos’, thus promoting H to a supermultiplet.

The higgsinos contribute to the gauge anomalies since they carry charge, and
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in fact the introduction of only one Higgs supermultiplet results in non—vanishing
SU(2)r x SU(2), xY and Y3 gauge anomalies. These anomalies must be canceled
to preserve the unitarity of the theory. So an additional Higgs multiplet, H, with
the opposite hypercharge, is introduced to cancel the anomalies. Another difficulty
with introducing only one Higgs supermultiplet is that supersymmetry prevents
H from giving mass to the leptons and down—quarks. It is perhaps surprising that
this is not the case for H. For these two reasons two Higgs doublets are included
in the minimal supersymmetric extension to the Standard Model (the MSSM). In
this model then the mass for the up—quarks is obtained from the vev of H, and

that of the leptons and down—quarks from the vev of H. The matter content of

the MSSM is also given in Table 1.1, where now each field ¢ is interpreted as a

supermultiplet.

The previous arguments establishes the particle content of the MSSM. But
what about the interactions between all these particles? These are obtained by
including all interactions that are renormalizable and consistent with supersym-
metry and all the gauge symmetries.

The requirement that the theory is renormalizable is not necessary, and in fact
is not expected. This is because the MSSM, just like the SM, is probably only an
effective theory, rather than a fundamental theory of Nature. At energies above
some unknown physical mass scale M, such as the Grand Unified mass scale, the
mass scale of some new flavor physics, or the Planck scale, to suggest a few, the

MSSM is replaced by a more fundamental theory. The effect of this high—energy
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SU@B). | SUQR)L [UQL)y || ¥ || SUB)e | SU@2)L | ULy
Q 3 2 1/6 || L 1 2 -1/2
u’ 3 1 -2/3 | €° 1 1 1
de 3 1 1/3 | v° 1 1 0
H 1 2 1/2 | H 1 2 -1/2

Table 1.1: Quantum number charges of one generation of Standard Model particles
with a right-handed neutrino, and two Higgs fields, under the Standard Model
gauge group G = SU(3). x SU(2), x U(1)y. Here Q = (ur,dr), L : (VL,.GL),
H = (h*,h%),and H = (EO, h~). The electric charge of a particle is Qem, = Y +T31,
where here T3y, is the value of the diagonal generator of SU(2), aéting on ¥, e.g.

+1/2 for vy, and —1/2 for dy,.
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physics at low-energies, z.e. E << M, is to either generate interactions suppressed
by M, or to determine the parameters of the low-energy theory. These non—
renormalizable interactions are important if they violate some global symmetries of
the low—energy theory such as baryon number. Otherwise, their effect on physical
processes is smaller by roughly E/M compared to the effect of the renormalizable
interactions. So they are irrelevant and it is sufficient to study the renormalizable
interactions of the low—energy theory.

The most general supersymmetric Standard Model that is consistent with all

the gauge symmetries has some phenomenological problems though. These prob-

lems involve the stability of the proton, and the mass spectrum of the superpart-

ners. These are discussed in turn.

Recall that the Higgs supermultiplet H and the lepton supermulfsiplets L;
have the same gauge quantum numbers. See Table 1.1. This was the origin of
the rejected speculation that the Higgs bosons could be the superpartners of the
leptons. In this context, though, this means that from any particle interaction
that contains H, é new interaction consistent with all the gauge symmetries and
renormalizablity is obtained by replacing H — L;. Since the interactions with H

conserve lepton number %, the new interactions with the replacement must violate

4The lepton number L of a lepton and anti-lepton is defined to be +1 and —1 respectively.
The lepton number for the quarks and Higgs particles is 0. Similarly, the baryon number B for
quarks (anti-quarks) is defined to be +1/3 (~1/3) (so that for example, the proton has B = 1)

and zero for all other particles.
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Figure 1.3: R—parity violating proton decay p — n%*.

lepton number.

Further, baryon number violating interactions are also allowed. Trilinear inter-
actions of the form u°d°d® that contain two quarks and one squark are consistent
with SU(3). x SU(2)r x U(1l)y invariance. These clearly violate baryon number
since the interaction has B = —1. Consequently these interactions give rise to
processes that change baryon number by one uﬁit.

So the most general supersymmetric extension of the Standard Model, consis-
tent with the principles outlined above, violates lepton and baryon number. On
the other hand no lepton or baryon number violating processes, such as py — e7,
1 -+ eee or n — T oscillation, have been experimentally observed. Thus the
reaction rates for these processes must be small if present.

In fact, the presence of both the baryon violating and lepton violating interac-
tions is a disaster. Since both baryon and lepton numbers are no longer conserved
the proton is no longer stable. For example, the decay p — 7™ is allowed. If

the dimensionless B—violating couplings Ap and L—violating couplings Ay which
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characterize the strength of these interactions are numerically close to one, the
lifetime for the proton is 10713 — 1071° seconds. The Feynman diagram for one
possible decay mode is given in Figure 1.3. This lifetime is incompatible with the
measured lower bound to the proton lifetime of about 1032 years. It can be made
compatible only if the product of the B—violating couplings Ag and L—violating
couplings Ay are extremely tiny: AgAp < 1072,

Why these couplings are so small is a puzzle, and suggests that either B or
L is a good symmetry of the renormalizable interactions. These dangerous inter-
actions can be forbidden by imposing a discrete symmetry, called R—parity. It
is implemented by requiring that the particle intéractions are invariant under the
discrete symmetry M — —M for a matter supermultiplet, and H; — H; for each
Higgs supermulitplet. This symmetry allows the ‘rilinear interactions of the form
M;M; Hy, which give mass to the inatter particles,‘ but forbids interactions of the
type M;M; M. It is the latter interactions that make the protlon unstable, for ex-
arﬁple. An inspection of Figure 1.3 indicates that the troublesome vertices contain
3 matter fields, which would be forbidden if this R—parity is a good symmetry.

But since the proton decay requires both B number and L number violation,
the phenomenological difficulties are not nearly as serious if only one of these
numbers is conserved. Thus the impdsition of R—parity is perhaps too strong,
and maybe only B number or L number conservation is sufficient. What are the
phenomenological constraints in this case? Since the Yukawa couplings exhibit a

hierarchical structure there are good theoretical reasons to expect a hierarchical
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structure for the L number violating interactions if they exist. In Chapter 3 of
this dissertation rare processes such as K+ — ntv7, as well as top quarks decays,
are used to constrain these L number violating interactions.

The next difficulty with a naive supersymmetric extension of the Standard
Model occurs with the mass spectrum of the superpartners. As menticned before,
the supersymmetry generators commute with the spacetime translation generators.
This implies that all the components of a supermultiplet have the same mass. So
for example, if supersymmetry were an exact symmetry of Nature, the superpart-
ner of the electron, the slepton, would have the same mass as the electron. This is
incompatible with expéljimental observations, since no such selectrons have been
detected. In fact, the current lower bound on thé selectron mass from the LEP2
experiment is about 80 GeV, which is 10° times heavier than the électron.

These experimental facts imply that supersymmetry must be spontaneously or
“softly” broken. Since the motivation for supersymmetry was to solve the hier-
archy problem, the spontaneous breaking of supersymmetry must not reintroduce
quadratic divergences. Fortunately, the number of types of interactions that break
supersymmetry, but do not introduce quadratic divergences is small [8]. Masses for
the squarks, sleptons and gauginos may be added without introducing quadratic
divergences. These so—called “soft masses” are arbitrary and unrelated to the
masses of their superpartners. A very heuristic explanation for why no quadratic

divergences are introduced when these soft masses are introduced is the following.

First, since no quadratic divergences are present when the boson m and fermion
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mp masses are equal, the one-loop quantum correction to the scalar mass for

unequal masses is then
Am? = C(m® — m2) + Am%. (1.7)

Here C is a function of the gauge and Yukawa couplings of the theofy and log A2,
and Am% is the correction to the fermion mass. This is seen more clearly (at
one-loop) by evaluating the Feynman diagrams in Figure 1.2. The diagram in
Figure 1.2(a) depends on the scalar mass m, but not on the fermion mass mp,
whereas the opposite is true for Figure 1.2(b). This, togethér with the fact that
Am? = Am% in the supersymmetric limit m = mp, implies that the correction to
Am? when m # mp must be of the form as in Eqn.(1.7).

So it is possible to give large enough masses to the superpartners of the Stan-
dard Model fields so as to avoid experimental detection, while simultaneously not
introducing any quadratic divergences.

The existence of these soft masses for the squarks and sleptons also provides
a natural explanation for the origin of electroweak symmetry breaking. Recall
that in the Standard Model this Higgs mass parameter m% must be negative in
order for electroweak symmetry to be broken. This is introduced into the theory
without any explanation. In the MSSM by contrast, a negative m? for the Higgs
mass parameter occurs quite naturaliy, and is made possible by the large top
quark Yukawa coupling and for top squark masses heavier than about 100 GeV.

This is because the quantum corrections of the top squarks to m% (as in Figure
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1.2(a) with ¢o =top squark) are always negative. On the other hénd, the same
quantum corrections result in a less negative correction to the squarks masses.
The squarks also receive positive corrections from loops of gluinos, which do not -
contribute to Am?,. These tend to keep m? > 0 for the squarks. A m? < 0 for a
squark mass would be bad since this would break SU(3),, and result in a weakly
interacting short range force (like SU(2);) rather than the confining force that
is observed. Further, the color quantum numbers would not be conserved. This,
however, does not occur — only the Higgs mass parameter becomes negative and
the squark and slepton m?2s remain positive. Thus the perturbative dynamics of
the MSSM with a mass spectrur;; between 100 GeV and 1 TeV predicts that the
electrowéak symmetry should be broken, and that the color and electromagnetism
symmetries should be unbroken.

The introduction of completely arbitrary soft masses for the squarks and slep-
tons has some phenomenological problems though. In the Standard Model in-
dividual lepton number is conserved. There are no processes such as p — ey,
T — e, or u — eee which violate individual lepton number. This follows directly
from the symmetry I; — e®%1[; of the SM interactions, where here [; is a lepton
fermion. For generic soft masses in the MSSM this is not the case though. Since
there are 3 generations of X=0@), u¢, d° L and e° sparticles, there are in general
five 3 x 3 arbitrary mass matrices m%, one for each of the fields listed above.
To see t-hat these generically break the flavor quantum numbers, first rotate the

fermions and their superpartners by a common rotation so that the fermion mass
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matrices are diagonalised. In this basis all the supergauge interactions conserve
flavor. The matrices m%, however, will not in general be diagonal in this basis.
This means, for example, that separate rotations on € and f are not allowed if
mZ; # 0. Thus individual “smuon” and “selectron” numbers are not consérved.
But since the sleptons have the same global symmetries as the leptons because
they are in the same supermultiplet, individual electron and muon numbers are
also not conserved. Thus the presence of this mass mixing between smuons and
selectrons violates lepton number, and they result in many dangerous lepton vio-
lating processes. For example, the Feynman diagram resulting in the decay yu — ey
is given in Figure 1.4. Since the branching fraction BR(u — ey) < 107! is very

small, the mass mixing must be extremely small :

2 2
Me < .o (100 GeV)

—E ~ 10 ] . 1.
— — (1.8)

This mZ; is related to the mass difference Am? between the two slepton eigenstates
and the mixing angle sin# that diagonalises them (in the mass basis where the
leptons are diagonal):

m3; = (Am?) sinf cos 9. (1.9)

A similar mass mixing between the strange and down squarks leads to large
flavor changing processes, and in particular contributes to Amp, the mass differ-
ence of the neutral kaons. The Feynman diagram for a possible process is given in
Figure 1.5. Since Amg/mg ~ 1071 is measured to be very small, in order to be

consistent with this measurement the masses of the first two generations squarks
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Figure 1.4: A supersymmetric contribution to u — e7y. Here fi is a smuon, € is a

selectron, and N° is a neutralino. The “cross” indicates a fi — € transition.

must be even more degenerate:

2

500 GeV)2

sinfcos @ ~ few x 1073 (
m

— (1.10)

Thus two 500 GeV squarks must be degenerate to within a few hundred MeV! The
C P—violating parameter € in the neutral kaon system provides an even stronger
constraint: i.f Am? contains an order one phase the right-hand side of Eqn (1.10)
is a factor of 10 smaller.

Why thesé sleptons and squarkg of different flavors must be so closely degen-
erate in ma,ss,A when there is no good reason to expect them to be, is referred to in
the literature as the “supersymmetric flavor prcblem”. There are several physics
explanations for why the masses or mixing angles appearing in Egn.(1.9) and in
Eqn.(1.10) are “naturally” small :

1. The short-distance theory contains a flavor symmetry. In the limit of
unbroken flavor symmetry the squarks and sleptons are degenerate in mass so that

the flavor changing processes are completely suppressed [9]. This flavor syrﬁmetry
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S g

Figure 1.5: A supersymmetric contribution to K — K mixing. Here 3 is a strange
squark, d is a down squark, and § is a gluino. The crosses indicate § <+ d transi-

tions.

also forbids any of the small Yukawa couplings. For example, in a U(2) theory
[9, 16], the first and second generation particles form a 2; the soft scalar mass
interactions must respect this symmetry, so only a common mass m32 for § and
d is allowed. The spontaneous breaking of the flavor symmetry is responsible for
generating the small Yukawa couplings, and also leads to flavor changing processes
as described above which are consistent with the measured values. Since the flavor

symmetry is the same for a particle or its superparticle, the hierarchy appearing in

Vi ar for the quarks may also appear in the matrices for the squarks and sleptons.

So a large mixing angle between € and ji is conceivable. In Chapter 4 the prospect
for detecting the slepton mass mixing angles at the LHC is considered;

2. The spontaneous breaking of supersymmetry is communicated to the MSSM
by the SM gauge interactions at an energy scale below the mass scale responsible

for generating the fermion Yukawa interactions [11]. Since the gauge interactions
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do not distinguish between flavors, each slepton flavor receives the same soft mass,
and similarly the squark flavors are degenerate. So there are no dangerous flavor
changing processes. In Chapter 5 this framework is investigated, and it is found
that if the supersymmetry breaking sector is at low—energy, then this solution
introduces a large amount of fine tuning of the Higgs mass parameters in order
to obtain the correct Z mass. Some ideas for avoiding this difficulty are also
presented;

3. The first and second generation scalars are very heavy, 10 TeV or larger so
that the flavor changing processes are sufficiently suppressed. In Chapter 6 this
idea is investigated, and it is found that in order to avoid breaking color and charge,
a fine tuning comparable to that which was required to solve the sﬁpersymmetric
flavor problem is introduced into the Higgs mass parameters. Thus this solution
solves one fine tuning problem but introduces another;

4. The mixing angles are effectively zero. These so—called “alignment” models
[12] are not considered in this dissertation.

The next subject discussed here éoncerns the bi>zarre representation structure
of the Standard Model. Recall that the representations of the Standard Model par-
tiéles under the Standard Model gauge group are given in Table 1.1. One striking
feature of the representations is that they are so different from each other. Where
do these hypercharge assignments come from, and why do the particles appear in
those particular representations of SU(3).xSU(2),? Why even SU(3).x SU (2) L?

Why not SU(4) x SO(7)? Is there a hidden relationship connecting the elements
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of this structure, or is it completely arbitrary? This is reminiscent of Mendeleev’s
Periodic Table of the Elements and the atomic theory that followed which provided
a deeper “picture” of the organization of the elements. Perhaps a more unifying
structure is also beneath the Standard Model. As these questions address the
structure of the Standard Model, any progress must be found in physics beyond
the Standard Model.

To underscore the significance of any possible answers to these questions, a
“fake” Standard Model is presented in Table 1.2. In this “fake” Standard Model,
the “quarks” occur in the 6 representation of SU(3), rather than the 3. The
gauge anomalies are eanceled by having two “leptons” per generation. Note that
the SU(2) and hypercharge assignments of the “fake” SM particles are the same
as in the SM. So the “fake” SM particles have the same electric charge as their SM
counterparts. For one generation of fermions the low—energy physics of the “fake”
SM is qualitatively similar to that of the SM: here SU (3)07 probably confines, giving
“protons” and “neutrons”; there are also electrons, muons and neutrinos. As in
the SM, the Higgs field H can break electroweak symmetry down to U(1)e, and
give mass to all the particles. So this “féke” SM imitates many of the qualitative
features of the SM, and the difference between the two is in the (important) details.
Observers in a Universe with the “fake” SM may also wonder about any underlying
unity to their world.

In [13] Georgi and Glashow put forward the beautiful idea that the Stan-

dard Model is unified into the single simple gauge group SU(5). An aesthetic
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SU@B) | su@) Uy || v | SUEB) SU(zj UQl)y
Q 6 2 1/6 | E, 1 1 1
vell ® 1 |23 |B| 1 | 1 1
pell 8 | 1 s ] 1| 2 | 1z
Ll 1 2 | <12 | L | 1 2 | -1/2

Table 1.2: An anomaly—free “fake” Standard Model. Here H is the Higgs scalar,
and all other fields are fermions. The physics of this model (for one generation)
is qualitatively similar to that of the Standard Model. But to the author’s ability

this model cannot be urnified into a Grand Unified Theory.

strength of this proposal is that one generation of fermions fill complete SU(5)
representations without requiring any additional fermions. Just as remarkable,
one generation of fermions, together with a right-handed neutrino (v°), which is
independently hypothesized to generate small neutrino masses, together form a
complete representation of SO(10), the spinorial representation 16. The economy
of the fermion unification, and the elegance of the unification of the gauge groups
into a single gauge group is in itself very compelling.

It is next illustrated how these Grand Unified Theories [14] provide some insight
into the origin of the particle content of the Standard Model. In particular, a
key feature of these theories is that two unrelated particle groups of the Sitandard
Model, the leptons and quarks, are united into a single representation of the Grand

Unified Theory. In other words, the Grand Unified Theories do not distinguish
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between leptons and quarks.

To begin, add to the Standard Model a right-handed neutrino, and introduce
an extra U(1), call it U(1)g-r. The B — L charge of a quark (anti-quark) is 1/3
(—1/3), and the negatively (positively) charged leptons have B — L charge —1
(+1). The B — L charge of the Higgs field is 0 in order for the Yukawa couplings

to be U (1) p—r invariant. It is now possible to embed
SU(?))C X U(I)B_L € SU(4) (1.11)

Here U(1)p_y is the third diagonal generator of SU(4). Under this embedding

the fundamental of SU(4) decomposes as

4 (3,1/3) & (1,-1). (1.12)
Q 2
This is just a ¢ ® I of the Standard Model! So ~4and | | ~1
L L )
a° e’
Here a is the SU(3), index, and the doublets Q¢ = , L¢ = have
uC VC

been introduced. Note that Q¢ has the opposite baryon number to Q. Now what’s
happened to U(1)y? In fact, Y is a linear combination of the B—L in SU(4) and a
new U(1), call it U(1)g,. The relation between the chargesis Y = (B—L)/2+Tk.
It follows that the Tx charges of the SU(2);, doublets @, L are zero, and H and
H have charge 1/2 and —1/2. The SU(2), singlets Q¢ and L"‘ have charges
—Fl /2 (—1/2) for the upper (lower) components. That is, Tg is just the diagonal

generator of an SU (2)r, with Q°¢, L¢ ~ 2. It is then natural to extend the U(1)r,
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to the full SU(2)z. Thus the Standard Model particle content can be embedded
into the Pati-Salam group G = SU(4) x SU(2), x SU(2)g [15]. Other than the
right-handed neutrino and the extra Higgs doublet H, no new matter, i.e. non—
gauge, particles have been introduced. It is remarkable that the Standard Model

fields transform so simply under this new group :

one generation+right-handed neutrino = (4,2,1)® (4,1,2),

two Higgs fields = (2,2). (1.13)

Compare the economy of this particle content to that of the Standard Model given
in Table 1.1.

One interesting fact about this semi—unification is that the proton is stable.
To see this, first note that the SU(4) gauge bosons decompose as 15 = (3,4/3) &
(3,—4/3) @ (8,0) @ (1,0) under SU(3), x U(1)p-r. Only the X ~ (3,4/3) and
Y ~ (3,-4/3) states carry baryon number and can potentially mediate proton
decay. The point is that the Standard Model fields are contained in (4,2,1) or
(4,1,2), and each of these contains only one SU(3). representation, i.e. @Q or
¢, but not both. Consequently, the four-Fermi operator obtained by integrating
out the massive SU(4) gauge bosons X or Y always contains two leptons, and
never three quarks. So the four-Fermi operator conserves lepton number and the
proton is stable. As will be seen later, this is in contrast to the predictions of more
popular Grand Unified Theories.

The embedding of the Standard Model into the Pati-Salam gauge group re-
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sults in an economy of particle content, but not of the gauge groups since there

are still three gauge group factors. A further unification into SO(10) or SU(5) is

possible though. The isomorphisms SU(4) 2 SO(6) and SO(4) =2 SU(2) x SU(2)
imply that the Pati-Salam gauge group is isomorphic to SO(6) x S O(4) which is
a maximal subgroup of S0O(10). This line of thought suggests that it is natural to
embed the Pati-Salam gauge group into SO(10). This is in fact possible with an
even further increase of economy. The spinorial representation of SO(6) is 8 and is
reducible to 4@ 4’ due to chirality. Under the SO(6) = SU(4) isomorphism these
spinorial representations get mapped to the fundamental and anti-fundamental
representations of SU(4). Likewise, under the second isomorphism the spino-
rial representation of SO(4), 4 — (1,2) @ (2,1). Thus uéing this isomorphism
(4,2,1)9(4,1,2) > (4®2)® (4 ®2) under 50(6) x SO(4). But this is just the
decomposition of the 16 of SO(10) — SO(6) x SO(4). The conclusion is that a
single generation of the Staﬁdard Model, plus a right-handed neutrino, fits exactly
into the 16 representation of SO(10).

This unification is very nice, but is it a generic feature of low—energy particle
physics models, or is it more unique? That is, is it likely than an arbitrary low-
energy particle physics theory can be embedded into a Grand Unified Theory?
The answer is most likely “no”, but the author has no proof. Instead, the “fake”
SM is presented as an example of a low—energy physics theory that is qualitatively
similar to the SM, but most likely cannot be unified into a Grand Unified Theory.

While the unification of the Standard Model into SO(10), or similarly, SU(5),
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is aesthetically pleasing and probably difﬁcult to achieve in other “fake” Standard
Models, is there any other reason to believe that a Grand Unified Theory exists? In
fact, the simple Grand Unified Theories have some interesting phenomenological
implications, such‘ as the instability of the proton and the unification of the gauge
couplings. |

It was stated earlier that the Grand Unified Theories do not distinguish be-
tween quarks and leptons. Experimentally, however, this is clearly not the case:
quarks confine into protons and neutrons, leptons do not; quark masses are dif-
ferent from lepton masses; quark and lepton interactions are not the same, for
example, the cross-sections o(dgrdr — drdg)(E) and o(LL — LL)(E) (here E is
a typical energy scale appearing in the interaction) are different. How can this be
reconciled with a Grand Unified Theory that unites quarks and leptons?

In Grand Unified Theories there are many massless gauge bosons beyond those
of the Standard Model. For example, there are the X and Y bosons in the Pati-
Salam group, there are twelve extra gauge bosons in SU(5), and thirty-three in
SO(10). Since they have not been detected yet, these gauge bosons must be
massive, and this means that the Grand Unified Theory must be spontaneously
~ broken at some mass scale Mgy which is representative of the maéses of the
extra gauge bosons. There is a decoupling theorem [16] which states that since
these gauge bosoﬂs are heavy and their masses do not break any of the SM gauge
symmetries, they have no measurable effect on scattering experiments performed

at energies ¥ << Mgyt and their only effect is to renormalize the parameters of
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the low-energy theory ®. Thus, except for phenomena forbidden in the Standard
Model such as proton decay, the physics of a Grand Unified Theory does not

appear in any of the low—energy experiments. So at energies £ << Mgyr the

effective theory is the SM (or MSSM), rather than a Grand Unified Theory. This

is the origin of the differences between leptons and quarks listed earlier: they
are caused by physics in the low—energy théory. What this does mean, however,
is that only at energies E < MGUf are the symmetries of the Grand Unified
apparent. For example, in the minimal SU(5) theory both d° and L are unified
together into a single 5. Thus at these high energies, for example, the cross—section
o(drdp — dgdr)(E & Mgyr) = o(LL — LL)(E & Mgyr), and the quarks and
leptons are not distinguishable.

It is interesting to see how this last result comes about. At low enefgies the
cross—sections are different because the gauge couplings of the Standard Model, oy,
a2 and a3 are all different. These couplings are measured at LEP using electron
beams with energy £ ~ Mz =100 GeV. As the energy of a physical process
is increased, however, virtual quantum effects of order (log E/My) become large
and their effects can be summed up into an effective coupling «;(F). Since in a
simple Grand Unified Theory there is only one gauge coupling agyr, at energies

E R Mgy, the couplings «;(F) of the Standard Model should all become equal

3Unless the experiment is searching for a process that is forbidden by the symmetries of the
low—energy theory, but allowed by the interactions of the high—energy theory, e. g. proton decay.

Then the high—energy physics is the leading effect.




to the one gauge coupling agyr(E).

So the point is that a necessary condition for simple Grand Unified Theories
is that the Standard Model couplings should become equal (unify) at energies
E =~ Mgyr. Further, the energy-dependence of the gauge couplings depends
on the particle content of the effective théory. Thus the gauge couplings of the
Standard Model gauge groups may or may not unify with just the Standard Model
particle content, or the particle content of some simple extension. It depends on
both the particle content and, of course, the experimentally measured values of
the Standard Model gauge couplings.

So do the couplings of the Standard Model or its simple extensions unify at
high energies? In fact, as is evident from Figure 1.6, the unification is not very
good in the Standard Model. In contrast, the gauge couplings. in the MSSM do
unify at the few percent level, which is Well—within theoretical uncertainties such
as the sparticle and Grand Unified mass spectrum. This is presented in Figure
1.7. This is remarkable since the particle content of the MSSM is dictated by the
requirement of supersymmetry and the cancellation of gauge anomalies, and not
of uhiﬁcation. Since this unification is highly non-trivial, it is a strong piece of
indirect evidence for both low—energy supersymmetry and_supersymmetric Grand
Unified Theories.

Another nice consequence of a supersymmetric SO(10) GUT is that it provides
some theoretical explanation for why R—paﬁty is a good symmetry. Recall that

the dangerous R—parity violating interactions are of the form M;M; My, where i, j
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5 10 15 20 25 30 35

Log(E /M, )

Figure 1.6: Scaling of gauge couplings in the Standard Model. The band cor-
responds to the lo error (0.003) on a3(Mz). The couplings do not appear to

unify.
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Log(E/ M, )

Figure 1.7: Scaling of the gauge couplings in the Minimal Supersymmetric Stan-
dard Model. The band corresponds to the 1o error (0.003) on as(Mz). The

couplings do appear to unify.

and k are flavor labels. In SO(10) gauge theories these interactions are forbidden
at the renor;nalizable level. This is because the matter fields are in the 16, so the
dangerous operator must be Aof the form 16,-16]-16;9.‘ These interactions, however,
are not SO(10) gauge invariant and so they do not exist.

A further inspection of Figure 1.7 indicates that the gauge couplings unify at

a mass scale Mgyr ~ 2 x 10'® GeV. This is somewhat puzzling for the follow-

ing reason. The only “fundamental” mass scale in Nature is the Planck scale,
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Mp;, =~ 10'® GeV obtained from Newton’s constant. It then seems unlikely that
the inferred unification scale Mgyt is a fundamental scale in Nature.

The philosophy assumed in this dissertation is that the small number
Megyr/Mp; ~ 1072 is not fundamental, but rather hints at some more under-
lying physics. This is explored in Chapter 7 where two candidate Grand Unifica-
tion models are proposed, with Grand Unified gauge groups SU(6) and SO(10),
which generate the Grand Unification from the Planck Scale, ¢.e., the unifica-
tion mass scale Mgyt is not introduced into the theory. This is roughly achieved
through the supersymmetric analog of dimensional transmutation, whereby the
small coupling of a gaﬁge group generates a mass scale at low—energies through
some non—perturbative dynamics.

In addition, the models presented in Chapter 7 — in particular, the SO(10)
model — also maintain the spirit of “unification and simplification”. In Grand
Unified models the gauge group must be broken down to the Standard Model gauge
group. This is achieved by the Higgs mechanism, just as in the Standard Model, by
introducing some scalar particles transforming under some representation of the
Grand Unified gauge group. For example, in minimal SU(5) a 24 is‘ introduced,
whereas in phenomenologically successful SO(10) models many 45s and 54s must
be introduced. In the end, many particles must be introduced and the symmetry
breaking must be introduced into the theory. This is clearly the ugly part of
these models. In contrast, in the SO(10) model of Chapter 6, the representation

structure is rather simple. Further, the symmetry breaking is not introduced into
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the theory. The correct vacuum is one of several discrete vacua, and the reason
why the correct vacuum was selected depends on the early history the Universe.

Finally, the SO(10) model also contains an unexpected result, and this has
to dolwith the lifetime of the proton. In simple Grand Unified Models, such as
SO(10) or SU(5), the heavy gauge bosons can mediate proton decay. It occurs in
these models since both @) and u° are unified into a single representation — the 10
in SU(5), and the 16 in SO(10). Thus there is an interaction ~ XQu® between
X and the 10, and also an interaction ~ X*Ld° between X and the 5. The
exchange of the X gauge boson causes the proton to decay. In supersymmetric
Grand Unified Theories the lifetime of the proton from this process is around
10%* — 10% years and is beyond the reach of existing experiments.

In supersymmetric theories there is also an analogous and more dangerous pro-
cess in the Higgs sector that causes the. proton to decay. In gauge theories with
the SU(5) subgroups, the particles must come in complete SU(5) representations.
This was automatically satisfied for the fermions and their supersymmetric part-
ners. Recall that in supersymmetric theories there are two Higgs doublets and they ’
do not form complete SU(5) (or of any larger gauge group) representations. If
H — 5 in the SU(5) theory, then there are some “missing SU(5) partners”, H(3),
with quantum numbers (3,1, —1/3). These particle together with the missing
partners of H may form a Dirac particle and have séme arbitrary mass My, .

Since these fields carry charge they affect the evolution of the gauge couplings.

Requiring that the gauge couplings still unify (as they appear to) implies that the
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H(3) H(3)

X

Figure 1.8: Superfield Feynman diagram from colored higgsino exchange leading

to proton decay. The “cross” indicates that there is some mass mixing between

the two colored higgsinos.

masses of these colored Higgs fields must be close to Mgyr. Why the masses of the
doublets and triplets in the 5 and 5 Higgs representation are so wildly different
is known in the literature as the “doublet—triplet” splitting problem. In fact, it
is possible to prove that the measured couplings unify in supersymmetric theories
only if there is a split SU(5) representation, as occurs in the MSSM. (If all the
matter (non-gauge) fields formed complete SU(5) representations — i.e. imagine
there were no Higgs fields — then a3(Mz) = 0.07 is predicted in disagreement with
its measured value 0.118 + 0.003.)

These colored Higgs fields can mediate proton decay in S 0(10) or SU(5) the-
ories. The Feynman diagram is given in Figure 1.8. The “cross” indicates that

there is some mass mixing between H(3) and H(3). The exchange of the H(3)
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gives a decay p — K*v, and n — K°p, with a lifetime that is roughly

7 ~ 10% _Mu, : ears (1.14)
0\ Gev/) T '

This is to be compared with the measured lifetime which is larger than 1032 years.
The theoretical and experimental results are naively consistent only if My, is
pushed up to 3 x 10'7 GeV. This solution is theoretically unattractive as it requires
the positing of yet another mass scale.

While there are several solutions to this problem, this dilemma has an unex-
pected and novel resolution in the SO(10) model of Chapter 7. Roughly speaking,
the particular mechanism that generates the Grand Unification scale also naturally
generates tiny couplings of the order Mgyr/Mp;. Thése tiny couplings naturally
appear in the mass mixing of the colored Higgs fields, and result in a suppression
of roughly Mgyr/Mp; in the “cross” appearing in the Feynman diagram in Figure
1.8. This was not introduced into the theory, but was a consequence of the non-
renormalizable operators used to split the doublets and triplets. The suppression
of the “cross” results in a suppression of roughly (Mgur/Mp)? ~ 10“3 in the
decay rate, or in a lifetime of the proton that is a factor of 103 larger than before.

The resulting lifetime is then consistent with its measured value.
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Chapter 2

Non—-renormalization Theorem for the Wilsonian

Gauge Couplings in Supersymmetric Theories

A direct proof that the holomorphic Wilsonian beta—function of a renormaliz-
able asymptotically—free supersymmetric gauge theory with an arbitrary semi-
simple gauge group, matter content, and renormalizable superpotential is ex-
hausted at 1-loop with no higher loops and no non—perturbative contributions
is presented. This is a non—perturbative extension of the well-known result of

Shifman and Vainshtein.

2.1 Introduction

In their 1986 paper [17] Shifman and Vainshtein solved the anomaly puzzle in
supersymmetric gauge theories. They argued that the supersymmetric extension
of the anomaly equation should be written in operator form and then showed that
the coefficient of the trace anomaly involves the Wilsonian gauge beta—function
rather than the exact Gell-Mann and Low function [18]. The puzzle is resolved
if it can be showed that the Wilsonian gauge beta—function is one-loop exact.

A perturbative proof of the above statement was presented in {17] where it was
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argued that all possible operators that could, in principle, contribute to the gauge
beta—function beyond one-loop are necessarily of infrared origin, and should not
appear in the Wilsonian effective action.

In this Chapter a direct proof that there are no further non-perturbative viola-
tions is presented. More speciﬁcally, it is proven that the holomorphic Wilsonian
beta—function of an arbitrary renormalizable asymptotically—free supersymmetric
gauge theory with matter is exhausted at 1-loop with no higher loops and no
non—perturbative contributions.

The technique used to employ the theorem was introduced by Seiberg [19] and
it is briefly reviewed here. To obtain the beta—function two versions of the theory
with different cutoffs and coupling constants and the same low enérgy physics are
compared. The couplings of the theory with the lower cutoff can be expresséd in
terms of the couplings of the theory with the higher cutoff and the ratio of the |
two cutoffs. Their functional dependence on the high cutoff coupl_ings is restricted
using holomorphy of the superpotential and gauge kinetic terms and selection
rules. Holomorphy is a consequence of supersymmetry. To see this, elevate the
couplings to background chiral superfields. They must appear holomorphically in
the sﬁperpotentia;l in order to preserve supersymmetry. Selection rules generalize
global symmetries in the sense that the couplings in the superpotential are allowed
to transform under these symmetries. Non-zero vacuum values of these couplings
then spontaneously break these symmetries. Here only consider U(1) and U (1) R

symmetries are considered. In the quantum theory they are generally anomalous,
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but the same technique used for the coupling in the superpotential can be used.
That is, it can be assumed that the #-angle is a background field that transforms -
non-linearly to make the full quantum effective action invariant.

Then, following a method used in {20}, these conditions on the functional rela-
tions between the couplings of the theories at different cutoffs are translated into
restrictions of the functional form of the gauge beta—function. It can be shown
that the gauge beta—function is a function of the holomorphic invariants allowed
by selection rules. Then the functional dependence of the beta—function is re-
stricted further by varying the couplings while keeping the invariants fixed. This
relates the beta—function of the original theory to the beta—function of a theory
with vanishing superpotential. In addition, a strong restriction of the functional
dependence of the beta—function on the gauge coupling is obtained. It has ex-
actly the form of a one-loop beta—function. The only ambiguity left is a numerical
coeflicient which can be calculated in perturbation theory.

Next a short detour is made to explain what is meant by the Wilsonian beta~
function [21]. The Wilsonian beta—function describes the renormalization group
flow of the bare couplings of the theory so that the low energy theory is cutoff
invariant. Additionally, the vector and chiral superfields are not renormalized,
i.e. canonical normalization of the kinetic terms [17] is not imposed. The usual
convention in particle physics is to canonically normalize the kinetic term. It is
obtained by using the covariant derivative 3 + igA. Instead, here non—canonical

normalization of the kinetic term is allowed. The normalization of the gauge fields
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is such that the covariant derivative has the form 9+ ¢A. The gauge coupling only
appears in front of the gauge kinetic term. In this case it is convenient to combine
the #-angle and gauge coupling constant g into the complex variable 7 = 6/27 +
4mi/g?. In supersymmetric gauge theories the beta—function is holomorphic in the
baré couplings only if the fields are not renormalized. Even if there is a canonical
normalization at a higher cutoff, the Kahler potential will not be canonical at
the lower cutoff. The rescaling of the chiral or gauge superfields is an anomalous
transformation [17] that destroys the holomorphy of the superpotential and the
beta—function®. The relation between the beta—functions in the two normalizations
was first discussed in [17] The beta—function for canonically normalized fields is
known exactly [18] and receives contributiong to all orders in perturbation theory.
For a recent discussion of these issues see also [20]. Again it is emphasized that
this Chapter is concerned only with the holomorphic Wilsonian beta—function.
It should also be clearly stated that the proof is not valid if any one of the
one-loop gauge beta—functions is not asymptotically—free. This includes the case
“when the one-loop beta—function vanishes. As will be seen, exactly in this case

the U(1)g symmetry is non-anomalous. This makes it difficult to control the

dependence of the beta—function on the gauge coupling.

1For some special theories like N = 2 SUSY Yang-Mills the rescaling anomaly of the chiral
superfields cancels the rescaling anomaly of the vector superfield [20]. For these theories the
statements made here are stronger since the canonical and holomorphic Wilsonian couplings

“coincide.
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Various partial versions of this result already existed. As already mentioned,
the perturbative non-renormalization theorem was proven in [17]. An analysis
of possible non—perturbative violations to this theorem in the case of a simple
gauge group with a vanishing superpotential could be found in [20]. It was also
known that in the case of a simple gauge group with only Yukawa interactions
present in the superpotential, possible non-perturbative corrections to the Wilso-
nian beta—function are independent of the gauge coupling {22]. It should also
be mentioned that for some supersymmetyic gauge theories it is possible to deter-
mine the exact beta—function for the canonically normalized fields, including all the
non-perturbative terms [23]. The exact Wilsonian beta—function for these theories
could then be obtained if the rescaling anomaly relating the different normaliza-
tions were known exactly, both perturbatively and non—perturbatively. While the

rescaling anomaly is used in various places in the literature [17, 23] to relate the

two gauge couplings, it was not clear to the author whether for these theories

the exact form of the anomaly, including non—perturbative terms is known. A
perturbative calculation of the anomaly was presented in [20].

Finally, it is noted that the theorem is valid in theories where no mass terms are
allowed by the symmetries of the theory. This is of phenomenological interest as

many supersymmetric extensions of the Standard Model share this characteristic.

2.2 Simple Gauge Group

‘The case of a simple gauge group G is considered first. Let the generalized
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superpotential W be defined to include the kinetic term for the gduge fields

—~ T

W =
647TitR

tr(W,We) + W, (2.1)

where

is the usual superpotential and trgT°T® = ¢tz6%. Here M is the cutoff mass and
was factored out so that all the couplings are dimensionless. The gauge coupling

g and f-angle are combined in the complex variable
r=lg i (2.3)

Note that unitarity requires 7 to be valued in the upper half plane. Since € is a
periodic variable it is convenient to introduce a new variable ¢ = e?**". It is valued
in the complex plane and i;ransforms linearly under the anomalous transformations
to be discussed below. Weak coupling is at ¢ = 0.

Consider now a theory with a different cutoff M’ and with the same low energy

physics. The Lagrangian at the new cutoff is

2j) i)

L= [ #00Z:3}e*a, + ( [ RO (' Ny i, M) + h.c.) (2.4)

where in particular, the fields ®; are not renormalized to canonical normalization.
The Z; depends non-holomorphically on the couplings, so renormalizing the chiral
superfields would destroy the holomorphic form of W. The new coupling 7’ is

a function of the old dimensionless couplings and the ratio M/M’. For later




convenience this is written as
T = 7',(7', /\,-]-k,m,-j,ci; ln(M/M')) (25)

Supersymmetry requires a holomorphic dependence of 7 on the first four argu-
ments. To see this, note that the couplings in the generalized superpotential can
be considered és vacuum values of background chiral superfields. Invariance of
the action under supersymmetry transformations requires holomorphy of the su-
perpotential.

To prove the non-renormalization theorem selection rules are used. These are
global symmetries of the superpotential with all couplings considered as chiral su-
perfields. The couplings are assigned non-trivial transformation properties under
the symmetry group.. These symmetﬁes will be spontaneously broken by non-zero
vacuum values of the couplings. In general the symmetries are also anomalous.
They are are made non-anomalous by assigning a charge to g, i.e. transforming 6
to compensate for the anomaly. Consider the U(1)g x U(1) global symmetry with

the following charge assignment:

Wo | ® | Aiji | My | ¢ q

UDr| 1 [2/3] 0 |2/3]4/3| 2bo/3

Uy || o] 1 | =3|-2|-1|2%5:tR)

The quantity by is given by by = 3tagj — s t(R;), where t(R;) is the normalization

of the generators for the representation of the chiral superfield ®;. For example,
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t = 1/2 for a fundamental of SU(N). Define the gauge ﬂ—functbion by

d

:627ri7' = dln(M/M’)

27T7:T’|MI=M = ,6(7’, )\ijk,mij,c,-). (26)

The holomorphy of 7 in (2.5) translates into holomorphy of the S—function.

Since 7 — 7+ 1 is a symmetry of the theory, 3 is a single valued function of ¢

Barir = F(@, Mijk, Mij, Ci)- (2.7)

First, consider the case when at least one mass term, call it m,, can bé non-zero.
If any c; could be non-zero, then there is a gauge singlet field which could be given
a Majorana mass, so this is the same case as above.

The gauge beta—function is U(1)g x U(1) invariant. This statement is non-
trivial and requires some explanation. Consider some arbitrary coupling A that
transforms linearly under some U(1) or U(1)g symmetry. Its beta—function ()

must also transform linearly with the same charge as A
eiQ*"‘ﬂ,\(/\, .o ) = ,BA(BiQ’\a/\, .. ) (28)

where )y is the charge of A. This is true in particular for the beta—function of g.

However in terms of the 7 variable

_ d ) d -/ e 1
Borir = dln(M/M’)2mT = dq27mT By =q"" By (2.9)

The additional ¢ factor makes the 7 beta—function invariant. In what follows
only the gauge beta—function is considered since the argument for the other su-

perpotential couplings is similar and known, i.e. there are no perturbative [6] or
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non-perturbative [19] corrections to the usual superpotential. The subscript is
dropped and it is denoted as §3.

First consider U(1)g invariance. It requires that

_F 9@ My G
B=1f (m’;O’;L:’ 'nl_z;/\ijk) - (2.10)
However, the variables of f are not U(1) invariant. They have charges

6%44i, 0,3, —3, respectively. Invariance under U(1)g x U(1) requires that 3 is a

yet another function

A??adj -2tad' ..
,5 =~ F (q ijk ’q—l C; L mz]) . (211)

bl
mbo mledtt’ m,

Next take the limit m% — 0 keeping ¢ and all the arguments of F' constant. If
by > 0, this corresponds to taking all couplings except 7 to zero. Assuming that
B is continuous it is found that B(g, Aijx, mij, ¢i) = B(g, Aijk = mij = ¢; = 0) and
thus it is independent of all the couplings in the superpotential. In fact when
the superpotential vanishes it is known [20] that there are no non—perturbative
corrections to the beta—function and the gauge coupling only runs at 1-loop?. This
just reflects the fact that no U(1) g xU(1) holomorphic invariant can be constructed
solely in terms of ¢. Note the importance of holomorphy in these arguments. For
example, if holomorphy is not required ¢4 is invariant under an arbitrary U(1) and

U(1)g symmetry. So no higher loops or non—perturbative corrections are present

2Note that this result can also be written as £g = — 125 ¢® which is just the standard 1-loop

beta-function.
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and it is concluded that

8 = bo, -» (2.12)

thus extending the perturbative result of Shifman and Vainshtein [17].
An exception to the previous argument occurs when the gauge and global
symmetries of the theory allow only Yukawa couplings to be present in the super-

potential. For these theories
B = f(q, Mijk)- . (2.13)

The beta—function must be U(1l)g invariant. This requires

F(e2%Bq, Xiji) = f(g, Miji)- (2.14)

Then by holomorphy g is independent of ¢. Further, invariance of § under the
U(1) symmetry requires that f is a function of ratios of \;;; only. Choose one of

the non-zero Aij,;, A« say, and divide through by A,. Then

B=f(\jx) =F (A/{]*k) ) (2.15)
Consider the limit A;;; — 0 While keeping the ratios A;jz/A. constant. In this limit
8 redﬁces to the one-loop result. So assuming that § is continuous, it follows that
B(Aijk) = B(Aijk = 0) = by, i.e. it is independent of the Yukawa couplings.

To conclude this section, it is noted that the discussion of the proof of the the-
orem was divided into two cases requiring separate proofs. Here a short argument

is presented which extends the proof of the theorem, valid when at least one mass

term is allowed, to theories which do not admit any bare mass terms. Consider
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a theory with Lagrangian L for which the symmetries of the theory forbid the
presence of any mass terms. To this theory, add a non-interacting gauge-singlet
field with mass m,. More concretely, the new theory defined at M is described by

the Lagrangian
Loew = L4 [ d68°02}20 + ( [ doMm, &%+ h.c.) . (2.16)

This new theory satisfies the conditions of the theorem proven when at least one
mass term is allowed, so the beta-function of the new theory, B¢y, is exhausted at
one-loop. But on physical grounds it can be concluded that 3,.,, is identical to 3,
the beta-function of the original theory, since in integrating over momentum modes
M to M’ the contribution from the gauge singllet- completely factors out since it is
non—interacting. So by this argument the proof of the theorem for theories with
mass terms can be extended to theories for which mass terms are forbidden by the
symmetries of the model.

The resuits of this section are also valid for a semi-simple gauge group. The

proof of this is sketched in the next section.

2.3 Extension to a semi-simple gauge group

Assume that the gauge group is G = [14G 4 with each G4 a simple group. Also
assume that the superpotential has the form given in Section 2.2. Then if all the
simple gauge groups are asymptotically-free the Wilsonian beta—functions of all

the gauge couplings are one-loop exact.
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For each simple gauge group G 4 define

] 471
22 (2.17)

AT o0 EZ—
and introduce g4 = €*™™ as in Section 2.2. The U(1)g x U(1) selection rules
of Section 2.2 are extended by assigning all gauge chiral multiplets W, 4 chai‘ge
(1,0). Then g4 has charge (254/3,23;ta(R;)). It will be convenient to define
Ka = (qA);cl’;f. Then 4 has charge (2/3,2%;t4(R;)/b3). Weak coupling is at
k4 = 0 since b is positive. h

The beta—functions for each simple gauge group are defined as in Section 2.2,
so that

Ba = falgs: Aijk, mij, i) | (2.18)

is a function of holomorphic invariants and invariant under the U(1)g x U(1)
symmetry.

The proof is done for two cases:

1. Only Yukawa couplings are allowed.

2. At least one m;; # 0 is allowed.

In the first case invariance of 84 under U(1)g requires that §4 is a function of

ratios of kp only. That is,

Pa= FA(KIB/K?B“ Aik)- | (2.19)

-

Here an arbitrarily chosen kp, is selected and divided into the other xgs, so that
each kp other than kp, appears in the argument of F' only once. Now consider
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the weak coupling limit xp — 0 for all the gauge couplings. The argument of the

beta—functions is

kp/kp, = exp2mi(tp/bf — 5. /bC"). (2.20)

Since by assumption the one-loop beta—functions all have the same sign it is pos-
sible to take this‘ limit while keeping the ratios xkp/kp, fixed. In this limit the
beta—function is a function of the Yukawa couplings only. So assuming that the‘
beta—functions are continuous in this limit, it is found that S4(xp, Aijk) = Ba(ks =
0, Aije) = Fa(Aijg). But U(1) symmetry may be used to conclude that 54 is a func-
tion of A;jx/A«. The argument of Section 2.2 may now be repeated to conclude
that 84(¢s, Aijr) = constant.

For the second case a straightforward generalization of the argument of Section

2.2 may be repeated with the conclusion that

Pa=Fa (K—B) : (2.21)

KB,
Then the argument used in the first case of this Section is used to conclude that

F4 is independent of all of the gg and superpotentiail couplings.

Note

The statement of this theorem for the case of a simple gauge group was also
made in the lecture notes [24]. In that proof the author considers a superpotential
containing no composite operators, i.e. only operators linear in the fundamental
fields. Of course such superpotential is not gauge invariant. It is however, only
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used in an intermediate step to simplify the study of the charge assignment for the
couplings in the physical gauge invariant superpotential. The U(1) charge of the
coupling of a composite operator equals the sum of the charges of the couplings of
the fundamental fields entering the composite. In [24] however, it is also assumed
that the U(1)r charge of the couplings of composite gauge invariant operators in
the superpotential equals the sum of the charges of the couplings of fundamental
fields forming the composite. While this is true for usual U(1) symmetries since the
superpotential has charge zero and the sum of charges of the coupljngs must equal
minué the sum of charges of the fields entering the composite, for U(1) g symmetries
the superpotential has charge two andﬁthe arithmetic is more complicated. Because
of this, the proof in [24] only works for a superpotential linear in matter fields,

i.e. when only gauge singlet chiral superfields are present. We also generalized the

theorem to a semi-simple gauge group.




Chapter 3

R—Parity Violation

In this chapter it is argued that supersymmetric R-parity breaking (R,) in-
teractions always result in Flavor Changing Neutral Current (FCNC) processes.
Within a single coupling scheme, these processes can be avoided in either the
charge +2/3 or the charge —1/3 quark sector, but not both. These processes are
used to place constraints on R, couplings.: The constraints on the first and the
second generations are better than those existing in the literature. The R, inter-
actions may result in new top quark decays. Some of these violate electron-muon
universality or produce a surplus of b quark events in ¢ decays. Results from the

CDF experiment are used to bound these }8, couplings.

3.1 Introduction

The Minimal Supersymmetric Standard Model (MSSM) with the gauge group
G = SU(3). x SU(2), x U(1)y contains the Standard Model particles and their

superpartners, and an additional Higgs doublet. In order to produce the observed




spectrum of particle masses, the superpotential is given by

NGLESH + AR HQ; D} + NJUfQ;H + pHH (3.1)
N U

where L = and @ = denote the chiral superfields containing the
E D

lepton and quark SU(2); doublets and E¢, U® and D¢ are the SU(2);, singlets,
all in the weak basis. H and H are the Higgs doublets with hypercharges 1/2
and —1/2 respectively. The SU(2); and SU(3). indices are suppressed, and .i, J
and k are generation indices. However, requiring the' Lagrangian to be gauge
invariant does not uniquely determine the form of the superpotential. In addition,

the following renormalizable terms
NijeLi L B + XijiLiQ; D§ + Ui D;Dg (3.2)

are allowed!. Unlike the interactions of the MSSM, these terms violate lepton
number and baryon number. They may be forbidden by imposing a discrete sym-

——1)3B+L+2S on a component field with baryon number

metry, R—parity, which is (
B, lepton number L and spin S. Wthher this symmetry is realized in nature must
be determined by experiment. If both lepton and baryon number violating interac-
tions are present, then limits on the proton lifetime place stringent constraints on
the products of most of these couplings. So, it is usually assumed that if R—parity is

violated, then either lepton or baryon number violating interactions, but not both,

are present. It is interesting that despite the large limits on the proton lifetime,

LA term p;L;H is also allowed. This may be rotated away through a redefinition of the L

and H fields [25].




some products of the R-parity violating couplings remain bounded only by the re-
quirement that the theory remain perturbative [26]. If either L;Q;Df or UfD;-D,‘;
terms are present, flavor changing neutral current (FCNC) processes are induced.
It has been assumed that if only one R-parity violating (R,) coupling with a
particular flavor structure is non—zero, then these flavor changing processes are
avoided. In this single coupling scheme [27] then, efforts at constraining R—parity
violation have concentrated on flavor conserving processes 28, 29, 30, 31, 32, 33].
It is surprising that, even though individual lepton or baryon number is violated
in this scheme, the constraints are rather weak.

In Section 3.2, it is deﬁonstrated that the single coupling scheme cannot be
realized in the quark mass basis. Despite the general values the couplings may
have in the weak basis, aftér electroweak symmetry breaking there is at least one
large R, coupling and many other R, couplings with different flavor structure.
Therefore, in the mass basis the R-parity breaking couplings cannot be diagonal
in generation space. Thus, flavor changing neutral current processes are always
present in either the charge 2/3 or the charge —1/3 quark sectors. These processes
are used to place constraints on R-parity breaking. Constrainss on the first and
the second generations that are much stronger than existing limits are obtained.

The recent discovery of the top quark [34, 35] with the large mass of 176 GeV
opens the possibility for the tree level decays t — l~;* +dr and t — 5]’ +dy, if R-parity
is broken. If the R, couplings are large enough, then these decay channels may

be competitive with the Standard Model decay t — b+ W. As no inconsistencies
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between the measured branching fractions and production cross—section of the top
quark and those predicted by the Standard Model (SM) have been reported, limits
on the branching fractions for the J, decay chanﬂels may be obtained. Since the
existing lower bound on the mass of the lightest slepton is ~ 45 GeV [36], while the
strong interactions of the squarks make it likely that the squarks are heavier than
the sleptons, the decay ¢t — l;*-}—dk is more probable. In this analysis, it is therefore
assumed that only the slepton decay channel is present. In Section 3.3 the R, top
decay channels are analyzed to place constraints on the ¢ — l;-+ + dy. coupling. For
this reason, in this chapter only the [ terms L;Q);Di are assumed to be present.
The conclusions of Section 3.2, however, are valid even if the L,L;Ef terms are
also present. Constraints on products of couplings when both [ interactions are
present may be found in reference [37]. Section 3.4 summarizes the results and

compares them with limits existing in the literature.

3.2 Flavor Changing Neutral Current Processes

Flavor changing neutral current processes are more clearly seen by examining
the structure of the interactions in the quark mass basis. In this basis, the ij
interactions are

Nige (N7 (Vien) 5 DI = U™ ) D™ (3.3)

where

’\;jk = 5\ianij ;an ' (3~4)
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The superfields in Eqn.(3.3) have their fermionic components in the mass basis so
that the Cabibbo-Kobayashi-Maskawa (CKM) matrix [3] Vk s appears explicitly.

The rotation matrices Uy, and Dg appearing in the previous equation are defined

by
Ur; = ULz'jU?j (3-5)
dri = Dpijdg; (3:6)

where ¢; (¢/™) are quark fields in the weak (mass) basis. Henceforth, all the fields
will be in the mass basis and the superscript m is dropped.
Unitérity of the rotation matrices implies that the couplings A{;, and j\ijk
satisfy
> V| = 3 [Rin] - (3.7)
ik mn
So any constraint on the £, couplings in the quark mass basis also places a bound
on the R, couplings in the weak basis.

In terms of component fields, the interactions are

Nl (Vien) (P diedy, +d dig, + (d)* (v )°dy) — € diud, — @ dyel, — (df)*(e1)u]]

(3.8)

where e denotes the electron and € its scalar partner and similarly for the other
particles.

The con‘gributions of the R—-parity violating interactions to low energy processes

involving no spar}ticles in the final state arise from using the R, interactions 'an

even number of times. If two A's or \”s with different flavor structure are non—zero,
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flavor changing low energy processes can occur. These processes are considered in
references [25] and [38], respectively. Therefore, it is usually assumed that either
only one X' with a particular flavor structure is non—zero, or that the R—parity
breaking couplings are diagonal in generation space. However, Eqn.(3.8) indicates
that this does not imply that there is only one set of interactions with a particular
flavor structure, or even that they are diagonal in flavor space. In fact, in this case
of one Aj;; # 0, the CKM matrix generates couplings involving each of the three
down-type quarks. Thus, flavor violation occurs in the down quark sector, though
suppressed by the small values of the off-diagonal CKM elements. Below, these
processes are used to obta.n constraints on R—parity breaking, assuming only one
X #0.

It would be more natural to assume that there is only one large £; coupling in
the weak basis, i.e., only one S\ijk # 0. As has been indicated, this generates many
couplings with different flavor structure in the mass basis, e.g., many A} s. It is
possible that |

;mn =~ j‘ijkVKMjm(skn- (39)

This will be the case if, for example, the rotation to the mass basis occurs only for
the charge _+2/3 quark sector. Then, in addition to the Feynman diagrams that
contribute to the flavor changing neutral current processes when only one A[; is
present, there are new contributioné involving the A,,..(m # j,n = k) vertices.

However, these new contributions interfere constructively with the operators that

are present in the effective Lagrangian that is generated when there is only one
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non-zero Aj;. So if these more natural assumptions are made, any constraint
found for Ay is slightly better than the constraint that is obtained when only one
Aijx 18 present.

It would seem that the flavor changing neutral current processes may be rotated

away by making a different physical assumption concerning which 2, coupling is

non—zero. For example, while leaving the quark fields in the mass basis, Eqn.(3.3)

gives
Wg, = ’\gjk(Ni(VKM)lel — EU;)D; (3.10)
= (Njr Vi) (NiDy = Ei(Vigan,)Up) D (3.11)
= Xje(NiD; — Ei(Vigar;p)Up) Df (3.12)
where
Mgk = N (Viat)mj (3.13)

With the assumption that the ;) coefficients have values such that only one :\,-jk
is non—zero, there is only one interaction of the form Ny Dy D¢ There is then no
longer any flavor violation in the down—quark sector. In particular, there are no
Ry, contributions to the processes discussed below. But now there are couplings
involving each of the three up type quarks. So these interactions contribute to
FCNC in the up sector; for example, D°—D°® mixing. We use D°~—D° mixing to
place constraints on R-parity "violation assuming only one :\ijk # 0. Thus, there
is no basis in which FCNC can be avoided in both sectors.

The conclusion that FCNC constraints always exist in either the charged —1/3
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Figure 3.1: R, contributions to K°-K° mixing with one A};, # 0. Arrows indicate

flow of propagating left handed fields.

or charged 2/3 quark sectors follows solely from requiring consistency with elec-
troweak symmetry breaking, and is not specific to R—parity violation. For exam-
ple, a similar conclusion about leptoquark interactions, which are similar to R,

interactions, is reached in reference [39]. 2

3.2.1 K°-K° Mixing

With one A}, # 0, the interactions of Eqn.(3.8) involve down and strange
quarks. So, there are contributions to K°—K?° mixing through the box diagrams
shown in Figure 3.1. A constraint on the 2, couplings is obtained by constraining
the sum of the R, and Standard Model contributions to the K; — Kg mass
difference to be less than the measured value.

Evaluating these diagrams at zero external momentum and neglecting the down

quark masses, the following effective Hamiltonian is generated

vi

= 1 4 1 1 e 23 .
H%s_z = 1287r2l)‘;'ikl ('_2 + ‘mT‘) ((VKM)jz(VK’M)J'1)2(OZL’)’”SL)2 (3.14)

ms
drk

where m;, is the sneutrino mass and m;_ is the right-handed down squark mass.

2The author thanks Y. Grossman for bringing this work to his attention.
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As this operator is suppressed by the CKM angles, it is largest when ,\;jk is non—
zero for j =1 or 3 = 2.

The Standard Model effective Hamiltonian is [40]
H?f/[:z = mmg((VKM)12(VKM);1)2(JL'Y“3L)2 (3.15)

where the CKM suppressed top quark contribution, the up quark mass, QCD
radiative corrections, and long distance effects have been ignored.

The AS = 2 effective Hamiltonian is then

AS=2 __ AS=2 AS=2
HASS2 = A= gh (3.16)

In the vacuum saturation approximation, this.effective Hamiltonian contributes

an amount
2 ~
(Am)th =My, —Mgg = gf?(mKBKReG(/\ijk7 m[i, m&Rk) (318)

to the K — Kg mass difference. With fx = 160 MeV [41], Bx ~ 0.6 [42],

mpy = 497 MeV [36], and |(Am)ezp| = 3.510 x 10712 MeV [36], and m, > 1.0 GeV,

the constraint is

N

, 1 1\
N <011 (; + w—kg) (3.19)

where 2; = my, /(100 GeV') and wy, = mg,, /(100 GeV'). This constraint applies for
j=1orj=2and for any ¢ or k. The constraint for j = 3 is not interesting as the

CKM angles suppress the /£, operator relative to the Standard Model operator.
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3.2.2. BQ—BO Mixing

The R, interactions also contribute to both B°—B° mixing and B%—B® mixing
through box diagrams similar to those given in the previous section. As B?—B?
mixing is expectedv to be nearly maximal, it is not possible at present to place
a constraint on any non-Standard Model effects that would add more mixing.
However, B&B® mixing has been observed [43] with a moderate z4 = Amp/Tg =~
0.7 [36].

The effective Hamiltonian generated by these J£, processes is

1

T = T3

/\ijr (',;112:‘ + Ei_) (Viean)js(Viea) 1) (dry"or)? (3.20)

i AR
This is largest when )., is non-zero.

The dominant contribution to B°~B° mixing in the Standard Model is [44]

2,2
AS=2 _ Gymy

Hsns P (Viar)ss(Viear)31) Glae) (dybr)? (3:21)

where z, = m?/m%,, and

— 11z + 22 B 32%2lnzx
4z—-1)2  2(1-2z)3

G(z) = 2 (3.22)

For a top mass of 176 GeV, G(z:) = 0.54.

A constraint for A);, is obtained by demanding that the sum of the Standard
Model and R, contributions to the B, — Bg mass difference not exceed the mea-
sured value. With fp = 200 MeV [41], Bp ~ 1.2 [45], mp = 5279 MeV [36],

|(AM)ezpl = 3.3 x 1071° MeV [36] and [Viana| > 0.004 [36], a conservative con-
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Figure 3.2: R, contribution to K* — 7*v& with one A, # 0.

straint is

1 1\7%
| Makl < 1.1(? + w_k?) (3.23)

with 2; and wy, as previously defined. In this case the JZ, couplings are only weakly
constrained.

In addition to inducing B%-B° mixing, these interactions also contribute to the
b — s+~ amplitude. However, with reasonable values for squark and sneutrino
masses, the constraint is significantly weaker than that found from the top quark

analysis.

3.2.3 Kt —>7ntvp

The tree-level Feynman diagram in Figure 3.2 generates an effective Hamil-
tonian which contributes to the branching ratio for K+ — ntvi. Using a Fierz

rearrangement, a straightforward evaluation of this diagram gives

2
1| Ak N _ _
My, =5 mz’. ‘ (Ve Viearjo) (Bey*dr) (Privuves)- (3.24)
dRk

There is also a Standard Model contribution to this decay [44]. This is an
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order of magnitude lower than the existing experimental limit. A bound on the
R, coupling is obtained by assuming that the J, effects dominate the decay rate.
As the matrix element for this semileptonic decay factors into a leptonic and

a hadronic element, the isospin relation
(7 (p)87,d[K* (k)) = v2(n® () [57,ulK7 (k) (3.29)

can be used to relate [[K+ — ntvp] to T[K+T — 7%e™]. The effective Hamil-
tonian for the neutral pion decay channel arises from the spectator decay of the

strange quark. It is

4G
Heff \/‘Z‘FVKMU(SL’Y uL)(VLz’YueLz) (326)

So in the limit where the lepton masses can be neglected,

DK+ — mtui] :( |,\”,cl )2 ([VKMjIV;’észlf_ | ,(3.27)

[[Kt — 70vet] 4GFdek [V aral

This ratio is valid for ¢ = 1,2 or 3, since in the massless neutrino and electron
approximation, the integrals over phase space in the numerator and denominator
cancel. So using BR[K+ — ntvp] < 5.2 x 107° [46] (90%CL) and BR[K+ —

move*| = 0.0482 [36], the constraint is

2]k

| < 0.012 (T{Tﬁ%ﬁ?) (90%CL) (3.28)

for j =1 or j = 2. Using |Vkans| > 0.004 [36] and |Vkaes| > 0.03 [36], a

conservative upper bound for X, is

Parl < 052 (IO—%W) (90%CL). (3.29)
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3.2.4 D’-DY Mixing

If there is only one ;\,-jk in the mass basis, then from Eqn.(3.12) it is clear
that flavor changing neutral current processes will occur in the charge +2/3 quark
sector. Rare processes such as D°-D° mixing, D° — ptp~ and Dt — 7t for
example, may be used to place tight constraints on S\ijk. For illustrative purposes,
in this section D°—D° mixing is considered.

The interactions in Eqn.(3.12) generate box diagrams identical fo those dis-
cussed in the previous sections if both the internal sneutrino (neutrino) propaga-
tors are replaced with slepton (lepton) propagators and the external quarks lines
are suitably corrected. Using the same appioximat;ions that were made earlier,

the f, effects generate the following effective Hamiltonian

1
He, = {ogpz

- 4 1 1
M| | =5+ = | ((Vka)2i(Vien)3,)* (Gov*ur)? (3.30)
M Mg,

With fp = 200 MeV [41], mp = 1864 MeV [36], and |(Am)esp| < 1.32 X

10719 MeV [36](90%CL), the constraint on Ay for j =1 or j =2 is

Rse < 0.16 ((M)Q + (M)2) —%(90%01:). (3.31)

my, Mgt
3.3 Top Quark Decay

In the Standard Model, the dominant decay mode for the top quark is

tsb+ W (3.32)
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with a real W gauge boson produced. This has a partial decay width

3
Vi (1 — 22,)(1 — 2z + 7%) (3.33)

where Ty = my /m;. The b quark mass has been neglected.

The R-parity violating interactions (see Eqn.(3.8) with j = 3) Xj.éidbt,
contribute to the decay ¢ L‘ — l~z+ + dgy at tree level [47], if kinematically allowed.
This is possible only if there exist sleptons lighter than the top quark. The partial

width for this process is

. Ao 2 s (1 — 42)2
Dt - I + dy] = sk ";;ST %) (3.34)

with y; = m; /m, [47). The mass of the down type quark has been neglected. If
this is the only non-zero R—parity coupling, the two top quark decay channels are
t—b+Wandt— dpr + l~,-+, with branching fractions 1 — z and z, respectively.

The Lightest Supersymmetric Particle (LSP), denoted by %°, is assumed to be
neutral and that the real slepton decays with 100% branching fraction to the ¥°
and a lepton. The presence of a non-zero R—parity breaking coupling implies that
the %° is no longer stable [5] The two dominant decays are [47] X° — v; + b+ dy

and ¥° — 7; + b+ di. The LSP decays inside the detector if [30]

: 2 2 5/2
Mol > 6 10~5ﬁ((1OOGeV) N (100G6V> ) (lOOGeV) (3.35)

M my. Mo
where v is the Lorentz boost factor of ¥°. For this decay chain to be kinematically
allowed, mgo > my for k = 1 or k = 2, and mgo > 2my for k = 3 are required.
Using the previous equation, the maximum lower bound on X3, such that the LSP
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decays inside the detector is 0.0003 x /¥ for k¥ = 3, and 0.002 x \/y for £k =1
or k = 2; all for 300 GeV squark masses. In the following X, is assumed to be
- larger than this value so that the LSP decays within the detector.

If a top quark decays through this R-parity violating process, the final state
will contain one lepton, at least one b quark and missing transverse eﬁérgy. The
two novel features of this decay channel are that it spoils lepton universality and,
when k& = 3, produces a surplus of b quark events. Both of these signatures can
be used to test the strength of R—parity violation.

The CDF collaboration reconstructs ¢t quark events from observing: (1) dilep-
ton (electron or muon) events coming from the leptonic decays of both the W's;
or (2) one lepton event arising from leptonic decay of one W and jets from the
hadronic decay of the remaining W boson. CDF also requires a b-tag in the lep-
ton+jets channel. If the lightest slepton has a mass between 50 and 100 GeV,
then the kinematics of the decay L, — %° +1; will be similar to that of the leptonic
decay of the W boson. A slepton of mass less than 45 GeV is ruled out by the
LEP limit on the Z decay width [36]. If the slepton mass is close to the top mass,
then the b quark produced in the top decay via this channel will have less energy
than the b quark from the top decay via the SM channel. Also, the lepton from
the slepton decay will have more energy than the lepton from the W decay. These
will affect the lepton and the b quark detection efficiencies. Althoﬁgh these decay
channels will be present for any slepton lighter than the top quark, for the pur-

pose of obtaining a constraint, it is assumed that there is a slepton with a mass in
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the range given above. The presence of the R-parity violating coupling will then
contribute signals to all of these channels.

It is assumed that the ¢ = 1 coupling is non-zero. However, all that is required
is that the slepton in the generation with the non—zero coupling have a mass in
the range quoted above, i.e., if Al3; # 0 then we require 50 GeV < m; < 100 GeV,
and if Aj;, # 0 then 50 GeV < ni,; < 100GeV is required. Assuming also that
the CDF data is consistent with lepton universality, the constraints we obtain for
Alsr and AL, are identical.

In the k£ = 1,2 cases, two b quarks are always produced in a # event. In the

= 3 case, the LSP decays into bby; or bby;. Thus, four or six b quarks may be
produced if one or both of the top quarks decay through the R-parity breaking

channel; this possibility must be treated separately.

3.3.1 N,k #3
The branching fraction for the di—electron event is
BR[tt s ee+ X] =22+ L*(1 — z)® + 2Lz(1 — z) (3.36)

with L = leptonic branching fraction of W, approximately 1/9. The first term
arises from both top quarks decaying via the R—parity violating interaction; the
second is the Standard Model contribution; and the third is the contribution from
one top quark decaying through the R-parity breaking channel and the other

top quark decaying through the Standard Model channel. The other branching
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fractions are

BR[tt — pp+ X] = L*(1-1z)? (3.37)
BR[tt —» pe+ X] = 2(1 —z)’L? +2z(1 —z)L (3.38)
BR[tf — p+jets] = 2(1—z)?L(1 - 3L) (3.39)

BR[tt — e +jets] = 2(1 —z)°L(1 —3L) +2z(1 —z)(1 —3L) (3.40)

The factor of 1 — 3L is the hadronic branching fraction of the W boson. Also, it
is that assumed that the branching fraction for [ — 1+ %° is close to one. Here
the leptonic events produced from the Standard Model decay of the W boson into
Ty, are ignored.

Two independent constraints on the /£, interactions may be obtained from the
top quark data. CDF has observed the #f cross section to be o(tf)e;, = 6.873%
pb [35]. - The QCD calculation [48] gives the value o(t)y = 5.5213% pb for
my = 176 GeV'.

The first method is to compare the ratio of theoretically predicted values for
the numbers of events found in two channels with the experimentally observed
ratio. For example, o(tt);, X BR[tt — p + jets] x [ Ldtx(detection efficiencies) is
the number of u +jets events that should have been obseryed where [ Ldt is the
integrated luminosity. This theoretical prediction contains uncertainties in both
the value for the #t production cross section and in the lepton and the b quark

detection efficiencies. In comparing the ratio

(o(tt)n, x BR[tt — e + jets]) / (o(t)u, X BR[tt — p + jets]) (3.41)
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the uncertair}ties in the #t cross section cancel. The b-detection efficiencies also
cancel. If the electron and the muon detection efficiencies in the lepton + jets
channel are equal, these uncertainties will also cancel. The only remaining errors
are statistical. The CDF collaboration reported observing 37 b-tagged events in
the lepton + 2.3 jets channel. In this set there were 50 b—tags,v with a background
of 22 b-tags. A conservative estimate for the background in the 37 events is 22.
This leaves 15 tf events in the lepton +jets channel. Since no inconsistencies with
electron-muon universality have been reported, a central value of 72 +jets and 7e
+jets events will be assumed. This leads to

BRtt — e+ jetsl, _ #(e + jets events) 1+ (3.42)
BRItt — p+jetsly  #(u + jets events) P )

A Inserting the theoretical predictions for the branching ratios leads to the constraint
r < La/(1+ La), where a is the uncertainty in the previous ratio. In this case,

a=b=1/+/7. This gives z < 0.077 at 95%C L which leads to
|Alse] £0.41(95%CL) (3.43)

fork=1ork=2anda slepton of mass 100 GeV'.

A similar analysis may be performed for the dilepton channels. In principle
these channels should lead to a good constraint since a non—zero A}, coupling
will lead to an excess of electrons observed in the di-electron channél over the
number of muons observed in the di-muon channel. However at present only a
small number of dilepton events have been observed and an interesting constraint
cannot be obtained.
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In the other method the number of events produced in a given channel is
compared with the theoretical expectation. The number of produc‘ed events is
oltt]n x BR[t — | + jets]y, x [ Ldt. Here oltt]y, is the production cross section
calculated in perturbative QCD for the assumed top quark mass of 176 GeV. The
fact that the number of experimentally observed events in any given channel is
consistent with, within experimental errors, the number expected in the Standard
Model will also be used. The actual number of events detected depends upon the
detection efficiency. We will use the number of observed events in any channel to
determine the statistical accuracy with which the rate in that channel is measured,
and then constrain the strength of the Z, terms by requiring that the rate is not
changed by more than the error.

This leads to the constraint

BR[t{ — 1 +jets, Z’]th . U[tﬂea:p

L = .44
BR[tt — | +jets,z = 0]y, oltt]en (344)

within theoretical and experimental errors. Using the theoretical and experimental

values for the production cross sections [35, 48] leads to

2 o BRIttt — | + jets, )i

= <1 .
€= BR[tt — | + jets,z = 0]y, — +d (345)

with € = 0.89 and d = 1.05. The constraint on z is then

(3.46)

z < min (1-—6, L-2b- \/(1_21’)2 “4Ld(1—L))

2(1-1)
The first entry is the constraint from the p + jets channel and the second entry is

from the e + jets channel. For these values of ¢ and d, the constraint is z < 0.11.
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For a 100 GeV slepton this translates into the constraint
[Alz] < 0.48 (3.47)

fork=1lork=2.

3.3.2 A

For this coupling the analysis of the previous section must be modified in the
lepton + jets channel since the b—detection efficiencies no longer cancel. This is
because in the R—parity breaking decay channel three b quarks are produced. To
correct for this, introduce the function P(k,n) that gives the probability that,
given that n b quarks are produced, k& of them are detected. Then the number of

observed single b quark events expected in the e+jets channel is

#(e + jets events) = (2(1 —2)’L(1 —3L)P(1,2) + 2z(1 — 2)(1 — 3L)P(1,4))

XN (3.48)

where

N= f Ldt x o(th),, (3.49)

With P(1,2) < P(1,n) for n > 2, then

#(e + jets events) > (2(1 — 2)°L(1 — 3L) + 2z(1 — z)(1 — 3L)) P(1,2) x N/
(3.50)
These approximations will give a conservative limit fér Alss- The analysis of the
previous section may now be carried out with the following restrictions:
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(i) In comparing the ratio of the numbers of events detected in two channels with
the theoretical prediction, the inequality in Eqn.(3.50) indicates that only upper
limit in Eqn.(3.42) may used,;

(ii) In comparing the number of events detected in a channel with the theoretically
predicted value for that channel, only the upper bound in Eqn.(3.45) may be used
in the e+jets channel, and either limit may be used in the u+ jets channel. With

these caveats, a conservative limit on the branching fraction for ¢t — b+ ;" is then

1-2L —/(1-2L)2 — 4Ld(1 - L) |
=D ) (3.51)

z < min (La/(l +La), 1 —¢,
For the errors quoted in the previous section, the result is
[Als3] <0.41(95% CL). (3.52)

As the R-parity breaking decay channels produce three b quarks, then for mod-
erate values of Aj33 or A},;, semileptonic events containing four and six b quarks
should be observable at the Tevatron. The non—observance of these events should
provide the strongest test for the R—parity breaking couplings Aj3; or Ajss. If limits
on the branching fractions for the ¢f pair to decay into these excess b quark chan-

nels are known, then the R—parity branching fraction z is ccnstrained. Namely,

1. BRHf — X+ >3Vs]< B, = ¢ < (1 _ /1= Bl) (3.53)
_ VI*+By(1-2L) - L

9. BR[tf— X+ > 305 +2] < By = < o (3.54)

3. BR|ti — X+ > 66s+ 2] < By = 2 < /B (3.55)

4. BR[tt - X+ > 3b's+e] < By = xS—é—(l— /1—12B§L) (3.56)
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(3.57)

This constrains |A{5;]. To constrain |A,;;|, interchange e with u in the previous
equations.

The constraints on |Aj5;| and |Ajs;] found in this section are comparable to
those obtained from examining R, contributions either to Z — bb and Z -
1%~ decays [32] or to forward—backward asymmetry measurements (A%g) in ete”
collisions [28]. The point of this exercise has been to illustrate how comparable
R, constraints may be obtained from analyzing top quark decays even though the
experimental and theoretical errors are still large. These processes will provide

much better tests of R—parity violation once more top quark decays are seen.

3.4 Summary

In this chapter it has been argued that R—parity breaking interéctions always
lead to flavor changing neutral current processes. It is possible that there is a
single R, coupling in the charge +2/3 quark sector. But requiring consistency
with electroweak symmetry breaking demands that /£, couplings involving all the
charge —1/3 quarks exist. That is, a single coupling scheme may only be possible
in either the charge 2/3 or the charge —1/3 quark sector, but not both. As a result,
flavor changing neutral current processes always exist in one of these sectors. The
processes K+ — wtvp, K~ K° mixing, B°~ B® mixing and D°— D° mixing

have been used to constrain the R, couplings. If there is CKM-like mixing in
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the charged —1/3 quark sector, then the constraints are quite stringent; see Table

3.1. The tightest constraint is on

gjk\ for j = 1,2 and any i and k. This comes
from the rare decay K+ — mw+ui. The constraints we obtain for the first two
generations are more stfingent than those presently existing in the literature.

The R-parity breaking interactions lead to the top quark decay ¢ —)kl} + dy, if
the slepton is lighter than the top quark. Some of the new top quark decays spoil
electron-muon universality or result in # events with more than 2 b quarks. At»
present, the CDF collaboration has not reported any inconsistencies with lepton
universality or reported any events with more than 2 b quarks. These decays also
lower the branching fractions for Standard Model top quark decays. Both of these
observations are used to constrain some f£, coupiings.

A list of the known model independent constraints on the A};; couplings is
presented in Table 3.2. Although several of these couplings are constrained by
different low energy processes, only the smallest known upper limit is listed. With
the exception of Al,5, the éonstraints on the third quark generation couplings are
only of order e/ sinf,. Once more top quark decays are observed the signatures

discussed in this chapter will more tightly constrain these couplings.
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X el X

111 | 0.012* || 211 | 0.012* || 311 | 0.012¢°

112§ 0.012¢ |} 212 | 0.012* || 312 | 0.012°

113 | 0.012* || 213 | 0.012* || 313 | 0.012¢

121 | 0.012* || 221 | 0.012¢ || 321 | 0.012¢°

122 10.012% || 222 | 0.012% || 322 | 0.012°

123 | 0.012® § 223 | 0.012® || 323 | 0.012¢

131 | 0.19® | 231 |0.19® | 331 |0.19

132 | 0.19° {232 |0.19° | 332 |0.19°

133 | 0.001° [ 233 | 0.19° | 333 |0.19°

M| from:(a) K+ — 7tup (90%CL); (b) b — svp

15k

Table 3.1: Constraints on

(90%CL) [49]; (c) ve mass (90%CL) [29]. These constraints were obtained as-
suming C'K M-like mixing in the charged —1/3 quark sector. All limits are for

100 GeV sparticle masses.
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P P

111 | 0.03* | 211 |0.09° || 311 | 0.18¢

!
15k

112 | 0.03% | 212 |0.09® || 312 | 0.18¢4

113 | 0.03* || 213 |0.09° || 313 | 0.18¢4

121 | 0.267 || 221 |0.17¢ || 321 | 0.18¢

122 | 0.45¢ || 222 |0.17¢ | 322 |0.18¢

123 | 0.26° || 223 | 0.17° || 323 0.18¢

131 0.26/ | 231 0.229 || 331 0.26"

132 Q.4i 232 | 0.4° | 332 |0.26"

133 | 0.0017 {| 233 | 0.4° 333 | 0.26"

Table 3.2: Constraints on |\};;| from:(a) charged current universality (95%CL)

[28]; (b) T'(r — eve)/T(r — pv,) (1o) [28]; (c) A%p (o) [28]; (d) BR[r —
mvr] (95%CL) [31]; (e) BR[D® — K—p*v,|/BR[D® — K~etv] (95%CL) [31];
(f) atomic parity violation and eD asymmetry (lo) [28}; (g) v, deep-inelas‘tic
scattering (95%CL) [28]; (h) partial Z° decay width (95%CL) [32]; (i) top quark
decay (95%CL); (j) ve mass (90%CL) [29]. All limits are for 100 GeV sparticle

masses.
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Chapter 4

Signals of Supersymmetric Flavor Violation at

the LHC

In a generic supersymmetric extension of the Standard Model, there will be
lepton flavor violation at a neutral gaugino vertex due to misalignment between
the lepton Yukawa couplings and the slepton soft masses. Sleptons produced at
the LHC through the cascade decays of squarks and gluinos can give a sizable
number of events with 4 leptons. This channel could give a clean signature of

supersymmetric lepton flavor violation under conditions which are identified.

4.1 Introduction

In the supersymmetric Standard Model (SM), the quadratically divergent cor-
rections to the Higgs (mass)? caﬁcel due to supersymmetry (SUSY). The remain-
ing corrections are logarithmically divergent, proportional to the SUSY ureaking
masses of the sparticles (t'he superpartners of the SM particles) and result in a
negative Higgs (mass)? due to the large top quark Yukawa coupiing. Thus, the
superpartners of the SM particles must have masses ~ 1 TeV in order for SUSY

to solve the gauge hierarchy problem and lead to natural electroweak symmetry |
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breaking.

With the sparticle masses at the weak scale, these new particles (especially
gluinos and squarks) will be produced in significant amounts at the LHC. After
the initial discovery of the sparticles, the focus will be on precision measurements
of their masses and mixings just as, for example, the next step after the discovery of
the heavy quarks was the measurement of their detailed properties. In this chapter,
a. relatively clean signal at‘the LHC for detecting the mixing angle between the
scalar partners of the charged leptons (the sleptons) is presented.

A flavor-violating signal is obtained from the production of real sleptons, fol-
lowed by their oscillation into a different flavored slepton, and subsequent decay
to a lepton. Some formulae for these oscillations are given in section 4.1.1. At
a ee linear collider, the production of slepton pairs can then give ey events with
missing energy. This was studied in [50, 51]. Dilepton flavor and CP violating
signals at the LHC and NLC were studied in [52]. At a hadron collider (the
LHC), sleptons can be pair-produced by the Drell-Yan process giving the same
signal. This was studied in [53, 54], and is a promising signal for large flavor mix-
ing angles and when the SUSY background is known to be smell. Real sleptons
can also be produced at the LHC in the decays of the next-to-lightest neutralino
(x3), which are mainly produced in the cascade decays of gluinos and squarks.
In section 4.3.1, flavor violating dilepton events from X3 decays are briefly con-
sidered. The production of x3 pairs can give rise to events with 4 leptons, with

the dramatic flavor violating signal identified by a (3e + u) or (3u + €) lepton
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signature, hard jets, no b—jets, and of course missing energy. This is discussed
in section 4.3.2. Conditions on the supersymmetric spectrum that are favorable
for the suppression of the dominant supersymmetric background, occurring from
heavier neutralino/chargino and stop decays, are identified. Ideas for determining
the remaining dominant supersymmetric background occurring from 7 decays are
also presented. These are all conveniently summarized. in the end of the chapter.

In section 4.3.2, a brief estimate of the expected 4-lepton signal at a generic
point in SUSY parameter space is given. Next, in section 4.3.2, a particular point
in the “minimal supergravity” inspired parameter space is considered [55,. 56].
It is found that at this LHC Point, a 50 discovery (20 exclusion) is obtained
for a right-handed (RH) first and second generation mixing angle sinfp > 0.13
(sin @z > 0.08) with an integrated luminosity of 100 fb~! at low luminosity. The
discovery potential at high luminosity is still optimistic though less quantitative,
due to uncertainties in 7—jet detection efficiencies and larger b—jet mistagging
rates. In any case, the values for the mass splitting (between € and i) that are
favorable for the discovery of a signal satisfy the ;1 — ey bound even for a maximal
mixing angle. Thus the LHC has the opportunity of probing mixing angles that

are beyond the reach of the current y — ey limit.

4.1.1 Lepton Flavor Violation due to Slepton Mass Mixing

To begin consider the lepton-slepton-neutral gaugino vertex with the leptons
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and sleptons in the gauge basis:
Z; gauge lgauge 0’ (41)

where a = 1,2, 3 is a flavor index. Next perform a unitary transformation, V', on

both I, and I, to go to the mass eigenstate basis for the I’s:
X’ (4.2)

In this basis the coupling remains diagonal in flavor space (now denoted by ). In
general, however, the slepton and lepton mass matrices are not related so that the
same unitary matrix, V', may not diagonalize them both. In this general case, the
slepton (mass)? matrix in the basis I, is not diagonal. For example, even if the
slepton (mass)? matrix in the gauge basis [9%49¢ of Eqn.(4.1) is diagonal but not
x 1, it will have off-diagonal elements in the basis I, of Eqn.(4.2). So, a further
unitary transformation, W, is needed to rotate to the slepton mass basis. In this

basis the slepton-lepton-gaugino vertex is:
I 1, Wia X’ ' (4.3)

So, in the mass basis for leptons and sleptons (I, and [;) a mixing matrix W # 1
in general appears at the neutral gaugino-lepton-slepton veriex. This means that
there is a coupling between, for example, & (in the mass basis), 1 and x° — this
will be referred to as SUSY lepton flavor violation. The focus of this chapter is
the detection of this SUSY lepton flavor violation at the LHC.

The theoreticzﬂ expectations for W are varied. In models with broken flavor
~ symmetries, it is expected that W ~ Vi,s. In such cases a Cabibbo-like mixing
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angle for the first two generations and a Am/m close to the g.— ey bound is
expected [57]. In contrast, in models of gauge-mediated superéymmetry breaking
the dominant contribution to the soft masses is universal and it naively appears
that there is no interesting flavor physics. There is, however, a subdominant flavor
‘non-universal supergravity contribution. This likely results in large mixing angles
[52]. The magnitude of Am/m depends on the supersymmetry breaking scale and
while clearly model-dependent, could easily be ~ I'/m or larger, which is needed
to give an observable flavor—violating signal at the LHC (this is discussed later in
this section).

For simplicity, the case . 1 —2 mixing with mixing angle 6 is discussed. In this
case there are strong limits on the mixing angle and the € — 2 mass splitting from
lepton flavor changing processes. For example, p — ey gives an important con-
straint. For degenerate left-handed sleptons, and with the LSP (x?) approximately
bino-like (B?), the constraint on sin 20 and the mass splitting Am between the

right-handed sleptons is approximately

: _ |BR(p— ev)

(A more proper formula is given in section 4.3.2).
Suppose a real selectron is produced in the basis of Eqn.(4.2) (say in association
with an electron). Since é (@ = 1) is not a mass eigenstate, there is a probability

that as it propagates it will convert to a i (o = 2) and hence decay into a p
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P(E4=1 = px?) = 2sin’* G cos® § z, - (45)

where z = (Am)?/ ((Am)? + I'?) is the quantum interference factor and assuming

BR(I — Ix%) = 1. Here T is the decay width of the slepton. Note that for

Am R T the interference effect can be neglected so that z ~ 1. In this case the
oscillation probability can be large. Typically, I' ~ aegnm ~ 0.01m so that z ~ 1 if
(Am)/m X 0.01. This is close to the upper bound from the i — ey limit, so there
could be a suppression due to either z or sin# [61, 52]. It is possible, however,
that for a specific SUSY spectrum the decay width could be much smaller than
this naive estimate, allowing for a larger range of Am/m consistent with the rare
decay limit (even er large mixing angles) and © ~ 1 so that the oscillation signal
is not suppressed .

Similarly, a neutralino can decay into e* u~ or e u* through an intermediate
slepton: |

D Al i A o VS (4.6)
Using Eqn.(4.5) the rate for a flavor violating decay is
BR(x3 »etu™x]) = 2sin®fcos’0z x BR(x3 = € e, itpu”). (47)

Here to simplify notation BR(x3 — é~e™, itu~) = BR(x3 — € e*) + BR(x5 —
gt p”). This notation will be used throughout the chapter. Also, the BR on the

right-side of Eqn.(4.7) is in the absence of any mixing. In the case of interest here

'In fact, this occurs at the LHC Point discussed in section 4.3.2.
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of small mass splittings, Am < m, the neutralino decay rate into selectrons or

smuons are equal in the absence of any mixing. Next, in the absence of mixing,
BR(xS = ete X)) =2 BR(x5 — &*e™). (4.8)

The factor of two occurs since x3 may decay to €’s of both charges. This result

and Eqn.(4.7) relates the flavor-violating and flavor-conserving decays:
BR(x3 — et x)) = 2 sin?fcos? 6z x BR(x3 — It1™x), (4.9)

where the BR on the right-side of the above equation is in the absence of mixing.
- Here [ is either e or u. This result applies for x3 decays to real sleptons, i.e.,
for mye > my. For m,s < my, there is an additional suppression of (Am)/m in
the decay amplitude due to the supersymmetric analog of the Glashow-Iliopoulos-
Maiani (GIM) cancellation as in the case of 4 — ey, resulting in negligible ey

signal. So an observable ey signal requires the production of real sleptons 2.

4.2 Slepton Production by Drell-Yan Process

One way to produce sleptons at a hadron collider is through the Drell-Yan
process:

p p(or p) P 00, (4.10)

Thus the production of sleptons is identified by events with no jets, 2 hard isolated

leptons and pr, assuming that x? is stable or decays outside the detector. These

events will be referred to as “flavor conserving” dilepton events.

2 Alignment models with Am ~ m are not considered here since sinf ~ O(1072).
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There is a SM background to the signal from WW ™~ and # production. These
backgrounds are known, in principle. In [58] a set of kinematic cuts on the leptons,
as well as a jet—veto, are found which sufficiently reduce these backgrounds. These
cuts reduce the signal as well — of course, the reduction is much more for the
background.

There is also a SUSY background from pp — xtx~ — WWx3x?. This
background depends on the model-dependent x*x~ production cross section. But,
for supergravity motivated parameter choices with m; ~ m;, this background can
be sufficiently reduced by ﬁsing the same cuts used to remove the SM background
[58]. For example, from the analysis of [58] (see Table III of [58]) with 10 (fb)~!
and for a slepton mass ~ 100 GeV there are ~ 20 signal events with no background
events remaining after the cuts.

Actually, a clever method [54] for detecting the sleptons is to form the asymme-
try Ap = N(ete +u*p~)—N(etu~+e~ u*). The background does not contribute
to Ar, so a non-zero value would provide evidence for slepton production.

In the .lepton flavor mixing case the pair production of sleptons will produce
ep events with pgr — these events will be referred to as “flavor violating” dilepton
events. The backgrpund to this signal is from the same sources as for the flavor
conserving dilepton signal (with the same rate) as well as from 77* production
followed by leptonic decays of 7s. |

The detection of SUSY lepton flavor violation using the above flavor violating

dilepton events for the CMS detector at the LHC was studied in references [53, 54]
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for the case of maximal mixing (@ = n/4). With the mixing angle being maximal,
the flavor viol.ating dilepton signal rate is high; see Eqn.(4.5) (éssuming z ~ 1).
In fact, the number of flavor conserving and flavor violating events from slepton
production in this case are the same and each is equal to one half the signal in
the zero mixing case so that Ar ~ 0 (unlike the case of zero or non-maximal
mixing). In the case where the production cross—sections for staus (7) and the
lightest charginos are comparable to that of the sleptons, the production rate
for the SUSY background to eu events is ~ 4% of the total flavor conserving
signal (in the absence of mixing). 3 Thus, the chargino and stau backgrounds
are much smaller. The high signal and low SUSY background rate (compared to
the signal) for maximal mixing enables detection of a 50 flavor violating signal for
sleptons masses up to 250 GeV and LSP masses m,o < 0.4ng with an integrated
lurhinosity of 100 fb~1. |

There are some objections to the generality of this result, though. A more
general spectrum could result in a large; chargino or stau background. For ex-
ample, there is no reason to expect the chafgino production cross—section to be
related to the slepton production cross—section. However, as mentioned above, the
kinematics of slepton production and decay are different enough from that of the

chargino background that an appropriate set of kinematic cuts could distinguish

3Here, it is assumed that BR (x* — W"‘)E‘l’) ~ 100% so that the leptonic BRs of x* are the
same as for W. If the left-handed sleptons are lighter than x*, then the leptonic BRs of x* may

be enhanced substantially, in turn increasing the SUSY background.
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the two, at least for supergravity motivated parameter choices with comparable
squark and gluino masses [58]. Next, the stau background is sensitive to the stau
mass, which is likely to differ from the selectron and smuon masses 4. The sﬁau
background has softer leptons, so a cut on the pr of the leptons may help dis-
tinguish this background from the signal. The success of this may require large
statistics and knowledge of the stau production cross—section. Thus, in general,
the SUSY background may not be small.

Next, detection of flavor violation for smaller mixing angles is discussed. Since
the signal is oc sin? @, it is significantly smaller for say Cabibbo-like mixing an-
gles. In this case, it is crucial to know the SUSY background more precisely since
it is comparable to the signal (assuming similar crdss sections for sleptons and
charginos). While the quantity Ar (>0 fof non-maximal mixing) is, up to sta-
tistical fluctuations, background—free as far as slepton detection is concerned,. it
is not useful for providing evidence for slepton flavor violation since the chargino
background would need to be determined first. This is because the deviations
in the values of Ar and N(eu) from the SM for a non-zero mixing angle could
be reproduced, in the case of zero mixing angle, with a lower slepton production
cross—section and a higher chargino production cross—section.

Even if the SUSY background can be reduced sufficiently by an appropriate

set of cuts, since the signal is suppressed by the small mixing angle (there will

4The rare decays 7 — ey, 7 = py and p — ey allow for O(1) splitting between the third and

first two generation scalars for C K M —like mixing angles.
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also be a reduction of_ the signal due to these cuts), it may not possible to probe
Cabibbo-like mixing angles. For example, in the case of no mixing, Table 4 of
reference [54] gives 195 dilepton signal events for the set of cuts labeled 1 with
L = 10fb~! and a slepton mass of 100 GeV. The number of signal events in the
case of mixing for L = 100fb™! is then 1950 x 2 x sin® @ cos? @ (assuming = ~ 1).
The SM background from WW production is 9920 for the same set of cuts. Thus
a 50 signal (requiring S/v/B > 5) is possible only for sin@ < 0.4. Since this signal
was obtained for a 24 GeV LSP, only larger angles will be probed for larger LSP
masses (since the leptons will be softer in that case). For sleptons heavier than
100 GeV the prospects for detecting small mixing angles are clearly worse.

Thus, in the situation where the SUSY background is known to be small, e.g.
if an appropriate set of cuts for a more general spectrum can separate the chargino
background from the signal, then the flavor violating dilepton events from Drell-
Yan production of sleptons is a promisiﬁg signal for the detection of flavor violation
in the case of large mixing angles. Otherwise, it is important to look for other

discovery channels for slepton flavor violation.

4.3 Slepton Production in Cascade Decays

The other way to produce sleptons is through the cascade decays of gluinos
and squarks. At the .LHC,. the production cross sections of squarks and gluinos are
much larger than the Drell-Yan production »of sleptons, neutralinos, and charginos.
So, a larger production of sleptons (if they are ligilt) is expected in the cascade
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decays than from direct Drell-Yan production. In a generic SUSY event, the
production of two real (or virtual from gluino decay) squarks will be followed
by their cascade decays ultimately to the LSP through intermediate electroweak
sparticles (sleptons, éharginos, neutralinos). Assuming for simplicity that the
spectrum is gaugino-like, i.e., X3 ~ W3, x7 & W and x% ~ B, the following .

squark decays are obtained:

- 0 1
BR(qL — qXQ) = ga
- _ 2
BR(G, = ¢x7) =~ 3 (4.11)
Thus, a typical SUSY event is:
pp — §G9, 9§ — 4q
— XEWX,EW + X, (412)

with xgw, Xgw one of x?,, X1

4.3.1 Dilepton Events

If one of the squarks decays to xJ followed by the decay of X3 to a slepton (if
BR(xS — l~l) is significant) a large number of ey events in the presence of lepton
flavor mixing (see Eqns.(4.6) and (4.9)) is obtained. These events also have at
least 2 high pr jets and large gr.

There is no background from W*W ™ production since this background con-
tains no hard jets (assuming jet detection is good). There is a background from
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tt production followed by leptonic decays of the W’s from the top quarks. This
can be reduced by rejecting events with b-jets or using a high g cut.

There is a SUSY background from the decays of both squarks to charginos,
followed by chargino decays to W+, W~ or i, I*. This background is distinguishable
from the signal though. The invariant mass distribution of the 2 leptons from the
x5 decay has a sharp edge (which is a function of the neutralino and slepton
masses) [55, 56] unlike the case of the 2 leptons from x*x~ decays. Also, the
angle between the 2 leptonsk from the decay of xJ is likely to be smaller th;m in the
case of 2 leptons from x* and x~. Such kinematic cuts on the invariant mass of
the dileptons and the angle-" etween them easily reduce the number of background
events sufficiently if we are interested in detecting flavor conserving dileptons from
X3 decays.

But, in the case of the flavor violating dilepton events, (as in section 4.2)
since the signal is suppressed by the mixing angle (while the background is the
same), the number of background events that survive (relative to the signal) after
-cuts depends crucially on the model-dependent cross sections for producing x*x~

vs. X3 °. So in general it is difficult to be sure that the cuts have reduced the

5For example, the ratio of the ﬂumber of events with xTx ™ to those with (at least) one xJ is
larger for s-channel §§* production than for gluino pair production which is seen as follows. For
the §g case, the probability of getting two g, is 1/4 corhpared to a probability of 3/4 for getting
at least one §r whereas for s-channel lj(j* production the probabilities are the same. Same sign
chargino events are also obtained from §j production whereas s-channel §§* production can give

only opposite-sign chargino pairs. Thus, if the s-channel §§* production is larger, the number
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background sufficiently. ©

In the circumstance that x*x~ are dominantly produced from §g cascade de-
cays, the x*x~ flavor violating background can be estimated as follows. An equal
number of same-sign and opposite-sign chargino pairs are expected since g is a
Majorana particle. The same-sign chargino pairs produce same—sign diléptons S0
that the opposite—sign chargino ey background can be estimated from the number
of same-sign ee and puu events. Unfortunately, in the more general case the xtx™*
and x*x~ production cross sections are not related since the chargino péirs do not
always come from gluino pair decays. For example, pp — §r§} can lead to x*x~,
but not to x*tx*.

It might be possible to estimate the x™x~ background by analyzing the (ob-
served) (signal + background) distribution of the invariant mass of the flavor
violating dileptons [59]. As mentioned earlier, the dilepton invariant mass dis-
tribution for x5 decay has a sharp edge unlike the case of the background. The
position of this edge (denoted by My) can be easily found by looking at the dis-

tribution of the invariant mass of flavor conserving dileptons (where the x*x~

of x*tx~ events relative to x3 events increases.

8There is also a SUSY background from x9 decays to 77 followed by leptonic decays of the
7’s. A cut on the dilepton invariant mass can reduce this: the leptons from the 7 decays are
softer than those from the &/ji/x3 decays and so have a smaller invariant mass. But, since,
in general, BR (x3 — 77) is not related to BR (x3 — ée), as for the chargino background, we
cannot be sure that the ¥7 background has been sufficiently reduced (by the cuts) since this

background is unknown.
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background is very small) [565, 56]. In the case of flavor violating decays, the exis-
tence of an edge in the (observed) opposz'té—ﬂavor dilepton distribution ( e.g. eu)
at My would then be an indication of flavor violation. However, since the flavor
violating dilepton signal is suppressed by (small) mixing relative to the flavor con-
serving dilepton signal (whereas the x*x~ background is the same for both kinds
of dileptons), the edge at Mj; in the opposite flavor dilepton case might not be as
sharp as for the same flavor dilépton case — this depends on the model-dependent
“cross sections for producing x*x~ vs. X5
Next, in the distribution of the invariant mass of the flavor violating dileptons,
the events beyond My (this value can be obtained from the same flavor dilepton
distribution if the edge is not so sharp in the opposite-flavor dilepton distribution)
are mostly from the x*x~ background [59]. Extrapolating (assuming say a flat
distribution for the x*x~ background) from the data in this region, the x*x~
background in the region with invariant mass less than M} can be estimated. An
excess of ‘6/,6 events (With invariant mass between zero and M) over this estimate
will be a signal‘for flavor violation. 7 This extrapolation may not be reliable
for invariant masses much smaller than M; since the distribution of the x*Tx~
background in this region is not known. A detailed simulation is required to know
this distribution (it is known only that it does not have an edge at M};). Near Mu

the extrapolation should be more reliable and that is the region where the signal

"The invariant mass of the leptons from the 77 decays (from x3) is less than My and so this

background cannot be estimated this way.
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is peaked (since the flavor violating dileptons from xJ decay also have a sharp
edge at My). An excess in this region (rather than the whole region between
zero mass and M) might thus be a better signal for flavor violation [59] — as
mentioned earlier, the distribution will have a edge (or a “step”) at My;. Also, the
- 77 background in the region near M) is negligible since the leptons from these
decays are softer [59]. However, statistics are larger if the region from zero mass
to My is used.

The chargino background can also be eliminated in considering a flavor violat-
ing and C P violating dilepton signal [52] The presence of non—trivial phases in
the slepton mixing matrix W breaks C'P, and results in a non-vanishing asymme-
try: N(etu~ —e put) # 0. In this case, the x*x~ background is not important
since it is CP symmetric.

To summarize, if the number of ey events (that pass certain cuts) from either
Drell-Yan or cascade production is used to detect flavor violation, the SUSY
background from x*x~ pairs (which passes the same cuts) is difficult to estimate,
in general, and may be too large. The possibility of using the observed opposite—
flavor dilepton mass distribution (in the case of cascade decays) to estimate the

chargino background is interesting, though, and warrants further study [59].

4.3.2 Events with 4 leptons

A dramatic flavor violating signal is obtained through the pair production of

two x3s, followed by the decays of both x3s to slepton and lepton pairs. Such an
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event contains 4 leptons and occurs if both squarks in a SUSY event decay into
x39- If one of the xJs has a flavor violating decay: x§ — Il = ep, then events

containing 3e 1u, or 3u le will be produced. A typical decay chain is then:

@y, — X0+ X0
X3 = l—etey®

x5 = 1= ptex?. (4.13)

‘These events are identified by 4 isolated leptons (with the 3+1 flavor structure), at
least 2 high pr jets, #r, and concentrating on only those events produced from the
decays of first two generation squarks, no b—jets. These events will be referred
to as “flavor violating” 4 lepton events. The absence of b—jets is important in
distinguishing the signal from other SUSY and SM backgrounds (see below).

The backgrounds to these events arise from both SM and SUSY sources.

The dominant SM background occurs from ¢ production with semileptonic
decays of the bs (or ¢ty production with 2 leptons from ) and leptonic decays of
the Ws. In this case, deever, the leptons from b decays will not be isolated (or
the invariant mass of 2 of the leptons will be zero in the case of tty). Also, these
events have 2 b quarks and can be rejected using b-jet veto. Double gauge boson
production can give 4 lepton events, but none of these events have the 3+1 flavor
structure. Triple gauge boson production (WWZ or WW+) can give events with
4 leptons and the correct flavor asymmetry, but some initial state gluon radiation

is needed to give the 2 hard jets. The production cross—section for such events is
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-small. Also, events of this kind can also be rejected since the invariant mass of 2

of the leptons will either be zero or mz.

One important obstaclev in identifying ﬂavor—violatihg dilepton events was the
potentially large background from x*x~ production. Ih the 4 lepton signal, how-
ever, there is no x*x~ background from the squark decays since this gives only 2.
leptons.

The weak decay ¢ — W¢', if kinematically allowed, can lead to a possible

background. For example, the process

ad, — Wi +xia
W= — e
~1! o_n

G = xed =T+

o= outed (4.14)

-is a potential background. For the first two generation squarks, however, the

decay ¢ — W{¢ is kinematically forbidden. This is because the mass splitting
in an electroweak doublet occurs from the electroweak D—terms and is less than
m¥, /m; < my . This process is allowed for the top and bottom squarks, but such
an event contains 2 b-jets and this background can be reduced with a b-jet veto.
There is a SUSY background to the flavor violating 4 lepton events from pro-
duction of heavier neutralinos or chargino in the cascade decays of squarks. For

example,

aq = xe+
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s =Wty — eu+---,
X3 =1l — ee (or p)xd. (4.15)

This background is small in the so-called gaugino-like region. In this region there
is very little gaugino-Higgsino mixing. Then, the heavier chargino and the two
heaviest neutralinos are dominantly Higgsinos and the two lightest neutralinos
and the lighter chargino are mainly gauginos; this turﬁs out to be typical of the
SUSY parameter space still allowed by experimental data. Thus, the decays of
the first two. géneration squarks into the heavier neutralinos or chargino are highly
suppressed by the first two generation Yukawa couplings, small gaugino-Higgsino
mixing, and also by phase space.

Another potentially large background can also occur from the production of
the heavier sleptons (say, the left-handed) and/or sneutrinos. Sleptons can decay
to x5 and 7 to xil if kinematically allowed. If the neutralino and chargino decay
to leptons, then this decay chain can give 3 (or 2) leptons. With 1 (or 2) leptons
from another decay of this kind (or some other decay chain), this can mimic the
flavor violating 4-lepton signal. If the left-handed sleptons are paired produced
througix the Drell-Yan mechanism, then these events dé not contain any hard jets
and may be rejected. Thus, the only source for a background from heavier sleptons
is their production in the decays of gluinos and squarks. Such a ‘decay does not
occur directly, but only through the decays of gluinos and squarks to the heavier
neutralino and chargino. The hegvier neutralinos and chargino can then decay

to the left-handed sleptons. As argued in the previous paragraph though, in the
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gaugino-like region, the heavier neutralinos/chargino are dominantly Higgsinos so
that their decays to the sleptons are suppressed by the lepton Yukawa couplings
and smail gaugino/Higgsino mass mixing angles. So this background is negligible.

However, top squarks (and bottom squarks for large tan 3) will have signiﬁcant
decay branching fractions into heavier neutralinos or chargino even if they are
purely Higgsinos since the third generation Yukawa couplings (and hence couplings
of the squarks to Higgsinos) are large. Further, as mentioned earlier, W's may be
produced in the direct decay of stops or sbottoms. Also, top quarks from stop
or sbottom décays produce Ws. Both of these processes give additional isolated
leptons. This leads to a potential background even if stops or sbottoms decay only
to the lighter chargino and neutralinos. For examble, the following decay chain is

a possible background:

= b+,
t - Wrb—etb+---,
X — W_X?_>iu’—+7

x5 = etexd. (4.16)

These backgrounds to flavor violating 4 lepton events can be reduced by rejecting
any 4 lepton event that contains at least one 1 b-jet. Note that the top or bot-
tom squark background has at least 2 b quarks. The efficiency for rejecting this
background is discussed in a later section where a specific spectrum is considered.

There is also an important SUSY background from decays of taus and staus
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produced from the decays of two x3s. That is,

X = Fr—epxd+..,

0
2

X3 — Ul — ee (or pp)x’. (4.17)

This background can be estimated /measured as follows. In the above decay chain,
if one 7 decays hadronically instead of leptonicaliy, the result is 3e 17-jet events.
If a lower bound on the 7-jet detection efficiency is known, an upper bound on the
number of 3e 14 events coming from 7 decays is obtained by using the number of
3e 17-jet events. An excess of 3e 1u events over this backgr'ound is a signature of
lepton flavor violation.

Lastly, the following x> decay chains can also give flavor violating dileptons:

X3 = hior) Zx?

hor) Z — 77— ep. » (4.18)

In combination with another x3 decay to ee or uu, these decay chains can give
flavor violating 4-lepton events. In the gaugino region, the decay x5 — ZxJ is
suppressed since there is no vertex with Z and 2 neutral gauginos. In any case,
an effective BR (x5 — 77) can be defined to include these two decay chains in
addition to the x) — 77 decay. It will be shown in section 4.3.2 that this (in
general unknown) BR does not affect the estimate of the (effective) 7 background

obtained by using the 3e 17-jet events.

A quick estimate of number of 4 lepton events
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A typical value for the total SUSY production cross section (gluinos and

squarks) at the LHC is:

2
osusy ~ 10 % ~ 100 pb | (4.19)

with v/5 ~ 1 TeV, as ~ 0.1 and summed over colors and generations (the factor of
10). Assuming that the probability to get a gy, is 1/2 and BR(§;, — x5 q¢) = 1/3,
this gives

1\2 /1\?
Ox9x ™~ OSUSY (§> (g) ~ 3 pb. (4.20)

If BR(x3 — x%1*17) ~ 0.16 (for each of | = e, p) and for ~ one year of running at
low luminosity which gives an integrated luminosity of L ~ 10 (fb)~1, the expected

number of events is :

N(x3x3)  ~ 30,000,
N(4lwherel=¢e,p) = (2x0.16)N (x3x3) ~ 3300,

N@l+1) = 4sin’fcos®’8z N(4l) ~ 550, (4.21)
for sinf =~ 0.2 and =z ~ 1. To be clear,
Sev = N@I+1) = (N(etputu )+ (+ e =) + (uere), (4.22)
and
N(4l) = N(e*e ete™) + N(ete ptp™) + N(utu utp™) + Spv. (4.23)

In the next section this definition for N(4l) is trivially extended to include leptons

produced by the decay of 7s. Thus, typically, a large number of 4 lepton flavor
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violating events is expected from the cascade decays of squarks 8.

Detailed estimates at Point 5 (Point A) of LHC studies

One Point of the LHC supersymmetry studies [55, 56] contains a spectrum that
is favorable for the detection of a flavor-violating 4 lepton signal. The minimal

supergravity input paréméters for this point are:

my = 100 GeV, My, =300 GeV, Ay =300 GeV,

tanf =2.1, sgn () =+ , | Miop = 170 GeV. (4.24)

Renormalization group evolutiqn of these input parameters to the weak scale re-
sults in a mass spectrum which is given in Table 4.1. Note that myo 2 230 GeV >
m;, ~ 160 GeV so that the decay of X3 into real sleptons is allowed.

The production cross—section for SUSY particles is presented’ in Table 4.2, and
| 1S dominated by §¢ production. In total osygy = 16 pb. To estimate the number of
signal and background events, the branching fractions of the sparticles are needed.
These are given in Table 4.3. Note that at this Point BR(x3 — lil;) ~ 0.12 and

is reduced due to the large branching fraction BR(x3 — hxJ). This gives from

8 Both x3s decaying to flavor violating dileptons gives (e*p~)(e*u™) and (etp~)(ute™)
events. The latter cannot be distinguished from the events where one X3 decays to ete™ and
the other to utu~. The former events can also be used as a signal of flavor violation, but the

number of these events is expected to be very small since they require both x3s to decay into

flavor violating dileptons. For simplicity these events were not included in Eqn.(4.23).




g 770 ¢ 68 gr 660 A 100

& 500 4, 715 b, 635 b, 660

I 240 Ip 160 xi& 230 x§ 500

X% 120 x3 230 X2 480 x? 505

Table 4.1: Mass spectrum in GeV at LHC Point {55, 56]. Here ¢ = 4, (2, ¢, §, and

=6 j, 7.

gg 1750 gg, gg* 8300 ¢¢* 2380

G@ 2820  bb* 300 #* 700

Table 4.2: The production cross—sections in fb for different SUSY particles at the

LHC Point [55, 56]. Here all flavors ¢y = 1, d, ¢ 5and H = L, R are summed

over.
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g — qqr 30 g — qdr 30 §— 4t 14

§— brb 15 G—brb 10 & — Zoh 26

ty =Xt 21 ty— xib 18 iy(fy) = xIb 15 (63)

LE) =Xt 8(17) fH—xit 6 i(h)—x%t 6 (20

L—=axy 32 a-ai 64 G@-oad 1.5

oG 15 gl 1 Gmood 99
0 7 0 0 7 ]

X3 = lrl 36 Xo = hx; 63 Ilg—Ilqy 100

I, — xXle 90 xfo>WH? 98 h— 7T 5

Table 4.3: Branching fractions (in percent) for sparticles at LHC Point [56]. Here

G=1,d,¢ 3 and [ =&, f, 7.

decays of first two generation squarks the number of x3 pairs produced:

N (x3x3) = (0.32)* x (055 x (0.3)* + %agq x 0.3+ %aw + %O’(rq)L ~ 3400. (4.25)
(Thé factors of 1/2 and 1/4 are easy to understand: 1/2 of all §§* produced frbm s-
channel gluon and 4-point contact interaction °, and 1/4 of all §§'s produced (from
t-channel gluino exchange) are left-handed pairs.) This is for one year of running
at low luminosity (L = 10 fb~!) and for one detector. Hereafter estimates of event
numbers will use this integrated luminosity. A realistic detection efficiency of 90%

for single e, u, and 90% for the single-prong decay 7 — nv (BR = 0.11) will be

used. These are needed to determine the number of 4-lepton and 3-lepton +7—jet

%It is assumed that all of the §§* production is by this channel. This is reasonable since most

of the hard collisions at LHC energies are likely to be gluon-gluon.
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events that are detected. Later, a comment on a more realistic 7-jet detection will
be made.
Next the 4-lepton signal and background are estimated.

Due to the decay chain

x5 = hxd

h o= 7 (4.26)
the effective BR (X3 = 77X}) = R, is

R. = BR(x§— 7ar) + BR(x3 = hx}) x BR(h = 77)

= 0.15. (4.27)

Using the above BR and BR (Xg — iRl) = 0.12 for each of | = e, p and

BR(r —» ev) = BR (7 — pv) = 1/2 x 0.35,

BR (Xg - eex‘f,uux(f) = 2x0.12x (1 — 25in? # cos? Gx)

+R, x (0.35)% x %

BR (Xg — eux(l)) = 2x0.12 x 2sin’§ cos® Oz

R, x (0.35)% x =, (4.28)

N o

where the first terms in each equation are from decays of € and £ and the second
terms are from 7 decays.
Then, the total number of 4-lepton events expected from xJ pair decays (in-

cluding detection efficiencies, but parameterizing the acceptance cut as ecyr — see

104




later 1%) is

NE) = N(x) x (BR(Q — e, up,en))” (0.9)* x ecur
= 3400 x (0.24 + R, x (0.35)%)" x (0.9)* x ecur

~ 149 x EcUT- (4.29)

To get 3e 1u + 3p le events, one x5 has to decay into ee/uu and the other to ep.
Thus, the number of 3e 1u + 31 le events from flavor-mixing for sinf = 0.2 and

x ~ 1 (it is shown later that these values are consistent with the x4 — ey limit) is

Sev = N (X3x3) x BR (x5 — eex?, uuxf) x (0.9)* x ecur
x2 x 0.24 x 2sin? 0 cos® 0z
~ 20 Xecur. (430)
There is an extra factor of 2 since either xJ can decay to flavor violating dileptons.

Next, the number of 3e 1u + 3u le events from leptonic decays of 7s produced

from X3 is
— 0,0 o 1
Bpy = N (X2X2) X 2 X (Rr x (0.35)° x —2->
xBR (xg — eex?, uux?) x (0.9)* x ey X ecyr

~ 9Xecyr. v (431)

Here, 4 is the acceptance for 4 leptons with 2 of them coming from the decay

chain x3 — 77 relative to that for all 4 leptons coming from x5 — ée or pji. Since

10Detection efficiency refers to the probability that the lepton (or 7-jet in a later case) will be

detected given that it passes the acceptance cuts.
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the leptons from the 7 decay are softer, it is expected that ey ~ 1. 11 To get the
number in the last line above, £4 = 1 has been assumed.

Finally, the above 2 numbers are from the leptonic decays of 2 xJs from the
decays of first two generation squarks only. As mentioned before, stop/sbottom
decays to W, xJ etc. cén give a background to the flavor violating 4-lepton signal
(see Eqn.(4.16)). To reject these events, a b-jet veto is used. This implies that
events with 4 leptons coming from 2 xj decays with (at least) one x3 coming from
a stop/sbottom decvay will also be rejected; this is the reason for not including the
X3 pairs from stop/sbottom decays in the numbers above.

Measuring the background from x5 — 77 decays is discussed next.

As mentioned earlier, the idea is to measure the number of (3e 7 — jet) +
(2¢ 1 T — jet) + - - - events where 7-jet refers to the hadronic decay of 7. At this

LHC Point the number of these events (including detection efficiencies) is

N@l+7—jet) = N(x3x3) x 2% (R x2x0.35x &) X ecur X

BR (x3 — eex?, puxd, enxd) x (0.9)° x ez (4.32)

A factcr of 2 is due to either T decaying to a jet. Here, €, includes BR (7 — hadron)
and the efficiency for detecting a hadronic decay of 7. The variable g3 is the accep-
tance for (3+17—jet) relative to that for 4 leptons all of which come from the decay

chain x5 — €e, fip. It is expected that 1 R g4, X £4 since the lepton from the 7

1Strictly speaking, the factor e4; should be included in determining N(4l) and Spv as well.
But since the number of events in these samples from 7 decays is very small, it is a good

approximation to assume £4; = 1 in those numbers.
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decay is softer than the 7-jet and since the 7 decay products (both lepton and jet)
are softer than the leptons from the decay chain x3 — ée, fiu. From Eqns.(4.31)
and (4.32) and assuming BR (x3 — eex}, pux?) = BR (x5 — eexy, ppx?, epxy),

the following relation is obtained

0.9 x 238 x gy

Bry =~ N(3l+ 71— jet) x (4.33)

2Xey Xes

Note that R, cancelsin the ratio. Thus, using the (3! + 7 — jet) detection together
with an understanding of the 7 detection efficiency (&,), as well as the acceptance
for 4 leptons (with 2 of them from 7 decéys) versus (3 leptons +7-jet) (eq/e31),
the number of (3e 1p + 3p le) events from 7 decay (Eqn.(4.31)) contéined in the
full 4-lepton sample can be obtained from the above relation. This is important,
as it means that the xJ — 77 background to the flavor-violating signal can be
determined without knowing the relative branching fraction of x3 to A, I, or 77.

Assuming that the detection efficiency for the decay 7 — 7 (which has a BR

- of 0.11) is 0.9 so that £, = 0.9 x 0.11, and assuming €3 ~ 1 gives
N@l+ 71 —jet) = 11 X ecyr. (4.34)

Independent of this, it is worth remarking that with enough statistics it might
be possible to measure BR(X3 — hx?), BR(x} - ée,[l,,u)‘ and BR(xS — 77)
assuming that these are the dominant decay modes of xJ. The decay chain x3 —
hx? — bbx? (where x3 is from cascade decays of squarks as usual) gives bb events

with high p7 jets and #r. Comparing these to the number of dilepton events from
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X3 decays gives

N (bb) w _ BROG = hxj)
N(2l) = BR(x3 — éex), iuxi)’

(4.35)

Similarly, the number of 3/ + 17—jet events compared to 4-lepton events is

N34T —jet) R,
N(41) BR(x3 — eex?, iux?)

(4.36)

All the events in the above two equéjtions have in addition high pr jets and g7 to
make sure that these are from cascade decays of squarks. From these two mea-
surements and the assumption that 35 BRs = 1 the above-mentioned branching
ratios can be obtained. This could provide complementary information to the
flavor violating signal disc':3sed here.

Returning to the main subject of this section, an observation of an excess of
the ‘flavor violating’ 4-leptons events over those from 7 decay (Eqn.(4.31)) would
be a strong evidence for lepton flavor violation. But, before concluding that SUSY
lepton flavor violation has been detected, the background to the flavor violating
4 lepton events from stop/sbottom production (see Eqn.(4.37) below) must be
removed, and also the 7-jet detection efficiency ¢, must be known. These two
issues are discussed next.

The 7 hadronic decays from Z — 77 at the LHC were simulated for the ATLAS
detector in [60] . This study shows that a detection efficiency €, for a hadronic
7 decay (including the multi-prong decays, i.e, a total 7 decay BR of 0.65) of

~ 40 x 0.65% with a rejection factor of 15 for non-7 jets can be achieved. This is

12There is also a study of deteéting 7-jets from heavy SUSY Higgs decay for the CMS detector

[61].
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possible since 7-jets have lower particle multiplicity, narrower profile and smaller
invariant mass than the QCD jets [60]. A Similar detection efficiency (or even
better detection efficiency and rejection of non-7 jets if the strategy is optimized
for this case) for 7-jets from sparticle decays could be expected.

The important point about this though is that it suffices to know a lower
limit on the 7-jet detection efficiency to get an upper limit on the number
of (3e 1u) + (3u le) events from tau decays using the (3e 7 — jet) events (see
EQn.(4.33)). Similarly, since £4 ~ €3, an upper limit on Bpy can be obtained
even though these ¢’s may not be known precisely. Also, if the 7-jet detectio-n
(and QCD jet rejection) is good, there will be large number of events with 2 lep-
tons and 2 7-jets from 2 x5 decays. These can be used in addition to the 3 lepton
17-jet events to estimate the background to flavor violating 4 lepton events from
7 /7T decays.

To reduce the stop and sbottom backgrounds a b-jet veto can be used. Before
using this veto, the number of expected 3e 1+ 3u le events from decays of ¢ or b
to W, x3, xE etc. (in the absence of any flavor mixiﬂg) can be estimated using the
production cross-sections and branching fractions from Tables 4.2 and 4.3. The

result is, including lepton detection efficiencies:
N(i or (;) =~ b0 X ecyr- ] (437)

Each of these events has at least 2 b quarks. So with a b-detection efficiency of

60% (and rejection factor of 200 against non-b jets at low luminosity {62]), the
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number of 3e 1u + - - - events from stop/sbottom decays after the b-jet veto goes
down to 8. This can be further reduced by using a b-tagging efficiency of 90%
with a mistagging rate of 25% (i.e., rejection factor of 4 against non-b jets) at
low luminosity [56, 62]; this will reduce the signal by a bit. This strategy can be
optimized depending on the luminosity [62].

Lastly, to get actual number of events, the cuts used to select these events must
also be taken into account. The effect of these cuts on the signal and background
rates is buried in the fudge factor ecyr. For example, pr R 10 GeV and | n |r5 2.5
is required to be able to detect e or u. Also, to reduce any remaining small SM
background, i.e., to make sure that these are SUSY events, various cuts on gr, pr
of jets, a variable M.ss [55, 56] related to ph, pr of jets, can be imposed. Analysis
of the events simulated in [56] showed that there were ~ 40 events with 4 leptons
with no b-jets that pass all the cuts mentioned above compared to the estimate of
~ 149 from cross—sections and BRs, Eqn.(4.29): there is an acceptance factor of
ecur ~ 1/4 from the various kinematic cuts. We have also checked that almost all
of these (simulated) events have 2 xJs as expected. !* There are very few events in
this sample (from the simulation) with heavier neutralinos/chargino in agreement
with the expectation from the ve’ry small BRs of the first two generation squarks
to these sparticles at this point in the SUSY parameter space [56] (see Table 4.3).

The number of events (from the simulation) with at least 1 b quark and 4 leptons

13The information about whether an event in the simulation has x3s, fs, x3s etc. is from the

event generator.
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is also in rough agreement (up to the acceptance factor) with the number of 4
lepton events with at least 1 stop/sbottom expected from the cross—section and
branching fraction estimates. *

Including an acceptance factor of ecyr ~ 1/4 for both background and signal,
a b—jet detection efficiency of 60% (which was not included in Eqn.(4.37)) and
detection efficiency of 90% for the decay 7 — 7v, and a 66% 4-lepton detection
efficiency (the 7 and lepton detection efficiencies were included in the previous esti-

mates of Spy etc.), a summary of the expected number of events at low luminosity

is :

L
N@l) =~ _=
() 37x10fb*1
sin? 26 L
Srv N SX T X T
L
B ~ 2
Fv “T0m !
N@l+7—jet) ~ 3x —2
T
NEorh) ~ 2x—2 (4.38)
- 10 fb~ 1 ‘

While these numbers may be a little small for one detector and one year of running
at low luminosity (L = 10fb™!), there is cause for optimism. More integrated
luminosity L from > 1 year of running and/or 2 detectors can significantly increase
the statistics. Further, a larger BR(x3 — 1) would give more statistics. This could

occur at a point in the SUSY parameter space with a heavier Higgs boson, and

14We have also checked that these simulated events do have at least 1 stop/sbottom. There
are very few events in this sample with no stops/sbottoms but with b-jets from initial state gluon

radiation.
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thus a lower BR(x3 — hx3).

To illustrate the discovery or exclusion significance of these results, an inte-
grated luminosity of L = 100 fb~! is considered. This could occur for 5 years of
running at low luminosity for two detectors '°. For this integrated luminosity there
are 22 4-lepton flavor violating events from the 7/7 background, and 30 3-lepton
T—jet events. There will also be 125 4-lepton flavor violating events before the
b—jet veto from the t~/5 background. Next, the b—tagging efficiency is optimized
so that the £/b background is (less than or) equal to the 1o statistical error in 7/7
background while at the same time the reduction of the signal due to mistagging
is small. This is achieved with a b—tagging efficiency of 80%, rather than the 60%
of before. At this higher tagging efficiency there is a mistagging rate of 1 in 50,
so there is very little reduction of the signal. With an 80% b—tagging efficiency,
5 £/b background events remain since each event has at least 2 b—jets. Then the
background is dominated by the 7/7 decays.A A 50 (20) discovery (exclusion) re-
quires that S/v/B > 5 (S/vB > 2), and this requires >23 (> 9) signal events. So

a 50 discovery is obtained for

VT sin26g > 0.26 (50 discovery) or sinfg > 0.13 for z ~ 1. (4.39)

150ne year of running at high luminosity is also possible. In this case however, the b—jet
mistagging rate increases to 1 in 6 for a b—tagging efficiency of 80% [62]. Since most of the
signal events occur from §§ production and so contain at least three hard jets, approximately
40% of the signal could be rejected. In this case the discovery (and exclusion) limits on sinfg
increase by about 25%. In addition, the tau-jet detection efficiency at high luminosity is not

known since a low luminosity was used in the ATLAS study.
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If no signal is observed then the 20 exclusion limit is
VZsin 20g > 0.16 (20 exclusion) or sinfr > 0.08 for z ~ 1. (4.40)

To end this section, these values of sin20r and Am/m that may be probed
by the LHC are compar-ed to the constraints on these parameters obtained frc;m
p — e. The LHC signal is proportional to sin® 20y z, with z ~ 1 if Am R T and
z < 1if Am <« I'. The decay p — ey places an upper limit on sin 20pAm/m
(Eqgn.(4.4)) so that there is competition between the two probes of flavor violation.
Thus, in order for the signal at the LHC to be significant in the region of the
(sin 260g, Am/m) plane beyond the reach of the 1 — ey limit, there should be-a
range of Am/m where Am <& T' so that z ~ 1 and Am/m is small enough (for
a given value of sin 20g) so that u — ey is suppressed. It will be seen that for
Am/m ~ I'/m (so that z ~ 1), at this LHC Point, sin 20z is unconstrained by
the ;1 — ey limit, affording the LHC the opportunity to either detect a signal or
extend the limit.

~ At this Point x? ~ B°. A computation of the one-loop B° contribution gives

2
, Am% {100 GeV mp " [BR(p — ev)
sin 20R ﬁ’),%z ( Mz(l) ) 20F(O{L, aR,t) < 0.013 x W (441)
Here ay = ﬁﬁl/Mzg, (H=L,R),t=(A+ ptanf)/mpg,
oK
F(CYL,CYR,t) :H(aR)—i—ta}{?—(aL,aR), (442)
aOéR
with .
g(z) ~ g(y) 1+ 2zlogz — z? ‘
K — AN ey 4.43
R (443)




~z3 4+ 922 4+ 92 — 17— (6 + 18z) log x

H(z) = (4.44)

6(z —1)5
Two useful facts are H(1) = E%K (1,1) = —1/20; hence the factor of 20 on the
left side of Eqn.(4.41). At this LHC Point, m;, ~160 GeV, mys ~ 120 GeV, and

mj, ~ 240 GeV. Inputing these masses into the above formula simplifies it to:

sin20r Amg BR(p — e7y)
1404 . orip = ey),
030~ g < (1+0:48) < 0.08 x4/ o

(4.45)
At this Point ¢ = 5 — 10. However, a larger variation in t is allowed without
affecting the flavor violating signal, since both A and sgn{u) do not qualitatively

affect the 4-lepton event rate 6,

In any case, the values sin28p ~ 0.39 and
Ampg ~ I (so that © ~ 1) with a typical value of I' ~ aeym ~ 1072 x mp are
consistent with pu — ey — recall that sin20r =~ 0.39 and = ~ 1 was assumed to
obtain the estimate of Spy in Eqn.(4.30). In fact, at this LHC Point T' ~ 125
MeV [56], so that ['/m ~ 8 x 10™* which is smaller than og,,. So for Am/m <
2 T'/m ~ 1.6 x 1072, it follows that  ~ 1. From Eqn.(4.45) and for maximal
mixing (sin20r = 1), Am/m < 0.39 x 0.03/(1 + 0.48¢) ~ 4 x 1073 (for t = 5).
Thus for 1.6 x 1073 < Am/m S 4% 1073 and sin20g = 1, u — ey is satisfied and
z ~ 1. So at this Point even for maximal mixing there is a large range of Am/m
for which x ~ 1 and u — ey is safe. Of course, smaller mixing could be probed by
the LHC, in which case the upper bound on Am/m allowed by p — ey is larger.

In this case for a given sin g there is a larger range of Am/m for which z ~ 1 (so

that there is no suppression of the LHC signal) and p — e is safe.

'°It is important to maintain the relation m,s > me, though.
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4.4 Summary

The point of this Chapter is to demonstrate that it is possible to detect SUSY
lepton flavor violation at the LHC using events with 4 leptons from the cascade
decays of squarks provided the following conditions are satisfied:

0. Either R—parity is conserved or x9 (LSP) decays outside the detector,

1. x5 pair production in cascade decays of squarks is large and x3 has a large
decay branching fraction to I*! (to get enough statistics),

2. Hadronic decays of 7s can be detected with a known efficiency so that the
background from the xJ — 77 decay can be estimated,

3. The b-jet detection efficiency is good so that the background from events
with stop/sbottom can be rejected,

4. The stop/sbottom production rate, either direct or in gluino decays, is not
too much larger than the production of first two generation squarks,

| 5. The first two generation squarks decay largely to X3, xJ and xi, so that

the background to flavor violating 4 lepton events from decays of heavier neu-
tralinos/chargino to Ws, lighter chargino, heavier sleptons etc. is small. This
condition can be realized in the so-called gaugino-like region,

6. The mass splitting is Am ~ I' or larger, so there is no suppression of the
signal due to the quantum interference effect.

The arguments presented here are clearly semi-quantitative, and further study

requiring a detailed simulation of these processes is required.

115




Chapter 5

Finetuning in Low—Energy Gauge Mediation

The fine tuning in models of low energy gauge mediated supersymmetry break-
ing required to obtain the correct Z mass is quantified. To alleviate the fine tuning
problem, a model with split (5 + 5) messenger fields is presented. This model has
additional triplets in the low energy theory which get a mass of O(500) GeV from
a coupling to a singlet. The;impro‘vemen‘t in fine tuning is quantified and the spec-
trum in this model is discussed. The same model with the above singlet coupled
to the Higgs doublets to generate the y term is also discussed. A Grand Unified
version of the model is constructed and a known doublet—triplet splitting meché—
nism is used to split the messenger (5 + 5)’s. A complete model is presented and

some phenomenological constraints are discussed.

;

5.1 Introduction

One of the outstanding problems of particle physics is the origin of electroweak
symmetry breaking (EWSB). In the Standard Model (SM), this is achieved by
one Higgs doublet which acquires a vacuum expectation value (vev) due to a
negative mass squared which is put in by hand. The SM has the well known

gauge hierarchy problem [4]. It is known that supersymmetry (SUSY) stabilizes
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the hierarchy between the weak scale and some other high scale without any fine
tuning if the masses of the superpartners are less than few TeV [63, 64]. The
Minimal Supersymxﬁetric Standard Model (MSSM) is considered as a low energy
effective theory in which the soft SUSY breaking terms at the correct scale are
"put in by hand. rI.‘his raises the question : what is the origin of these soft mass
terms, i.e., how is SUSY broken ? If SUSY is broken spontaneously at tree level in
the MSSM, then there is a colored scalar lighter than the up or down quarks [65].
So, the superpartners have to acquire mass through either radiative corrections
or non-renormalizable operators. Thus there is a “hidden” sector where SUSY is
broken spontaneously at tree—level and then communicated to the MSSM by some
“messengers”.

There are two problems here: how is SUSY broken in the hidden sector at
the right scale and what are the messengers 7 There are models in which a
dynamical superpotential is generated by non—perturbative effects which breaks
SUSY [66]. The SUSY breaking scale is related to the Planck scale by dimensional
transmutation. Two possibilities have been discussed in the literature for thev
messengers. Oneis gravity which couples to both the sectors [67]. In a supergravity
theory, there are non-renormalizable coupiings between the two sectors which
generate soft SUSY breaking oberators in the MSSM once SUSY is broken in the
“hidden” sector. In the absence of a flavor symmetry, this theory has to bé fine
tuned to give almost degenerate squarks and sleptons of the first two generations

which is required by Flavor Changing Neutral Current (FCNC) phenomenology
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[65, 68]. The other messengers are the SM gauge interactions [11]. In these models,
the scalars of the first two generations are naturally degenerate since they have
the same gauge quantum numbers. This is an attractive feature of these models,
since the FCNC constraints are naturally avoided and no fine tuning between the
masses of the first two generation scalars is required. If this lack of fine tuning is a
compelling argument in favor of these models, then it is important to investigate
whether other sectors of these models are fine tuned. In fact, it will be argued
(and this is also discussed in [69, 70, 71]) that the minimal model (to be defined
in section 5.2) of low-energy gauge-mediated SUSY breaking requires a minimum
7% fine tuning to generate a correct vacuum (Z mass) if no superpartners are
discovered at LEP2. Further, if a gauge-singlet and extra vector-like quintets
are introduced to generate the “u” and “Bu” terms, then the minimal model of
low energy gauge-mediated SUSY breaking requires a few percent fine tuning to
correctly break the electroweak symmetry. These fine tunings makes it difficult
to understand, within the context of these models, how SUSY is to offer some
understanding of the origin of electroweak symmetry breaking and the scale of the
Z and W gauge boson masses.

This chapter is organized as follows. Section 5.2 reviews both the “messenger
sector” in low energy gauge-mediated SUSY breaking models that communicates
SUSY breaking to the Standard Model and the pattern of the sfermion and gaugino
masses that follow. Section 5.3 quantifies the fine tuning in the minimal model

using the Barbieri-Giudice criterion [63]. Section 5.4 describes a toy model with
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split (5+5) messenger representations that improves the fine tuning. To maintain
gauge coupling unification, additionél triplets are added to the low energy theory.
They acquire a mass of O(500) GeV by a coupling to a singlet. The fine tuning in
this model is improved to ~ 40%. The sparticle phenomenvology of these models
is also discussed. Section 5.5 discusses a version of the toy model where the above
mentioned singlet generates the p and p2 terms. This is identical to the Next-
to-Minimal Supersymmetric Standard Model (NMSSM) [72] with a particular
pattern for the soft SUSY breaking operators that follows from gauge~mediated
SUSY breaking and this particular solution to the fine tuning problem. Then this
model is shown to be tuned to ~ 20%, even if LEP does not discover SUSY /light
Higgs. It is also shown that.the NMSSM with one complete messenger (5 + 5) is
ﬁﬁe tuned to ~ 2%. Section 5.6 discusses how it is possible to make this toy model
compatible with a Grand Unified Theory (GUT) [13] based upon the gauge group
SU(5) x SU(5). The doublet—triplet splitting mechanism of Barbieri, Dvali and
Strumia [73] is used to split both the messenger representations and the Higgs
multiplets. Section 5.7 presents a model in which all operators consistent with
symmetries are present and for which the low energy theory is th: model of section
5.5. In this model R-parity (Rp) is the unbroken subgroup of a Z4 global discrete
symmetry that is required to solve the doublet—triplet splitting problem. This
model has some metastable particles which might cause a cosmoloegical problem.
Appendix A gives the expressions for the Barbieri-Giudice parameters (for the

fine tuning) for the MSSM and the NMSSM.
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5.2 Messenger Sector

In the models of low energy gauge-mediated SUSY breaking [69, 74] (hence-
forth called LEGM models), SUSY breaking occurs dynamically in a “hidden”
sector of the theory at a scale Agy, that is generated through dimensional trans-
mutation. SUSY breaking is communicated to the Standard Model fields in
two stagés. First, a non-anomalous U(1) global symmetry of the hidden sec-
tor is weakly gauged. This U(1)x gauge interaction commuﬁicates SUSY break-
ing from the original SUSY breaking sector to a messenger sector at a scale
Apmess ~ axAgyn/(47) as follows. The particle content in the messenger sector
consists of fields ¢, ¢ charged under this U(1)x, a gauge singlet field S, and
vector-like fields that carry Standard Model quantum numbers (henceforth called
messenger quarks and leptons). In the minimal LEGM model, there is one set
of vector-like fields, ¢, [, and ¢, [ that together form a (5 + 5) of SU(5). This
is a sufficient condition to maintain unification of the SM gauge couplings. The

superpotential in the minimal model is
Winees = Ao S + é/\ssé + A,Sqd+ NS (5.1)
The scalar potential is
V=S IRErmig e mllp (52)

In the models of [69, 74], the ¢, ¢_ fields communicate (at two—loops) with the

hidden sector fields through the U(1) gauge interactions. Then, SUSY breaking in
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the original sector generates a negative value ~ — (a X‘/\.dyn)2 /(47)? for the mass
parameters m?, m? of the ¢, and ¢_ fields. This drives vevs of O (Ayess) for the
scalar components of both ¢, and ¢_, and also for the scalar and F-component
of S if the couplings As, gx and A4 satisfy the inequalities derived in [70, 75].!
Generating a vev for both the scalar and F-component of S is crucial, since this
generates a non-supersymmetric spectrum,f‘ox_' the vector-like ﬁelds g and [. The
spectrum of each vector—like messenger field consists of two complex scalars with
masses M? + B and two Weyl fermions with mass M where M = \S, B = A\Fy
and A is the coupling of the vector-like fields to S. Since the breaking of the
SM at this stage is undesired, M? — B >0. In the second stage, the messenger
fields are integrated out. As these messenger fields have SM gauge interactions,
SM gauginos acquire masses at one loop and the sfermions and Higgs acquire soft
scalar masses at two—loops [11]. The gaugiho masses at the scale at which the
messenger fields are integrated out, Ay.ss & M are [74]

a Amess F
Mg = G_(erlASUSYZNg(m) f (/\—552) - (5.3)

The sum in Eqn.(5.3) is over messenger fields (m) with normalization
Tr(T°T*) = NS(m)é® where the T’s are the generators of tae gauge group G in
the representation R, fi(z) = 1+ O(z), and Agysy = B/M = Fs/S = TAnmess

with z = B/M?. ? Henceforth, the approximation Asysy & Apess is used. The

1This point in field space is a local minimum. There is a deeper minimum where SM is broken
[70, 75]. This problem is avoided by adding another singlet to the messenger sector [70]. This

does not change the conclusions found here about the fine tuning. .
2If all the dimensionless couplings in the superpotential are of O(1), then z cannot be much
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exact one-loop calculation [76] of the gaugino mass shows that f(z) < 1.3 for

z < 1. The soft scalar masses at Aess are [74]

a Amess 2 F
m;® = 203y gy Z NgG(m)CE(s:) (%_)) fo ()\mgz) : (5.4)

where C§(s;) is the Casimir of the representation of the scalar 7 in the gauge group
G and fa2(z) = 14 O(z). The exact two-loop calculation [76] which determines f;
shows that for z <0.8 (0.9), f» differs from one by less than 1%(5%). Henceforth

fi(z) =1 and fo(z) =1 are used. In the minimal LEGM model

87¢} (Amess)

MG (Amess) = An Amess; (55)

m?(Apess) = 2AZ,., % (5.6)

(03 (gg(_%_))z) Lo, (az(z;;nesg)? X (%(AZ:S)Y)Q) |

where Q = T37,+Y and «; is the SU(5) normalized hypercharge coupling. Further,
C3 = 4/3 and C; = 3/4 for colored triplets and electroweak doublets respectively.

The spectrum in the models is determined by only a few unknown parameters.
As Eqné.(5.3) and (5.4) indicate, the SUSY breaking mass parameters for the

Higgs, sfermions and gauginos are
Mg, Mg : M, My, My, - Meg, Mp ~ Q3 Q2 & Q. (5.7)

The scale of Aess is chosen to be ~ 100 TeV so that the lightest of these particles

escapes detection. It follows that the intrinsic scale of supersymmetry breaking,

smaller than 1.
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Agyn, is ~ 10000 TeV. The goldstino decay of the lightest Standard Model super-
partner then occurs outside the detector [77]. The phenomenology of the minimal

LEGM model is discussed in detail in [77].

5.3 Fine Tuning in the Minimal LEGM

A desirable feature of gauge mediated SUSY breaking is the natural suppression
of FCNC processes since the scalars with the same gauge quantum numbers are
degenerate [11]. But, the minimal LEGM model introduces a fine tuning in the
Higgs sector unless the messenger scale is low. This has been previously discussed
in [69, 70] and quantified more reéently in [71]. This discussion is outlined in order
to introduce some notation.

The superpotential for the MSSM is
W = pH, Hy + Wyukawa- (5.8)
The scalar potential is
V = p@2|H,|* + p2|Hy? - (u3H,Hy + h.c.)+D-terms + Vi_jo0p, (5.9)

where V}_00p is the one-loop effective potential. The vev of H, (H,), denoted by

vy (vq), is responsible for giving mass to the up (down)-type quarks, p3 = m% L+ 12,

p3 = m3 + p® and p3, * my , mj;, are the SUSY breaking mass terms for the

342 is often written as Bp.
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Higgs fields. * Extremizing this potential determines, with tan 8 = v, /vy,

1, p}—jp3tan®p

1 2_ 5.10

a2 tanZf —1 (5.10)
5

sin28 = 23 __ (5.11)
B3+ i3

where 12 = p? + 20Vi_100p/0v?. For large tan 3, m% /2 = —(m%, + p?). This
indicates that if |[m}_| is large relative to m%, the u? term must cancel this large
number to reproduce the correct value for m%. This iutroduces a fine tuning in
the Higgs potential, that is naively of the order m%/(2|m}%_[). It is demonstrated
below that this occurs in the minimal LEGM rhodel.

In the minimal LEGM iuodel, a specification of the messenger particle con-
tent and the messenger scale A,,.s, fixes the sfermion and gaugino spectrum
at that scale. For example, the soft scalar masses for the Higgs fields are
~ a2(Amess)Amess/(47). Renormalization Group (RG) evolution from A, to
the electroweak scale reduces m%,u due to the large top quark Yukawa coupling,
A¢, and the squark soft masses. The one loop Renormalization Group Equation
(RGE) for m%_ is (neglecting gaugino and the trilinear scalar term (H, Q1) con-

tributions )
dm?_ (t) N 3\2

ZTHW AT o 2T 2 2 2 )
I o Sl (8) + e (2) + 3 (1)) (512)
which gives
mg 3>‘2 | Amess
quu(tzln(A L)) & m%{u(O)—g}%(m%u(O)+m§c(O)+mé(O))ln( — ). (5.13)
TNESS T

4The scale dependence of the parameters appearing in the potential is implicit.
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On the right-hand side of Eqn.(5.13) the RG scaling of mg and m2. has been ne-
glected. Since the logarithm [t| ~In(Amess/mi) is small, it is naively expected that
m?%; will not be driven negative enough and will not trigger electroweak symmetry
breaking. But in this case the squarks are heavy. For example, the squarks are
a2 500 GeV (1 TeV) for a messenger scale Ajess = 50 TeV (100 TeV. Thus the
radiative corrections from virtual top squarks are large. A numerical solution of
the one-loop RGE (including gaugino and the trilinear scalar term (HuQﬂc) con-
tributions) determines —m3%;  =(275 GeV)? ((550 GeV)?) for Apess =50 TeV (100
TeV) and setting A, = 1. Therefore, m%/(2|m%,|) ~0.06 (0.01), an indication of
the fine tuning required.

To reduce the fine tuning in the Higgs sector, it is necessary to reduce |m} |;
ideally so that m} = —0.5m%. The large value of |m% | at the weak scale is a
consequence of the large hierarchy in the soft scalar masses at the messenger scale:
m%R < m%,u <K mé’ﬁc. Models of sections 5.4,5.5, and 5.7 attempt to reduce the
ratio m% / m%,u at the messenger scale and hence improve the fine tuning in the
Higgs sector.

The fine tuning may be quantified by applying one of the criteria of [63, 64].
The value O* of a physical observable O will depend on the fundamental param-
eters (A;) of the theory. The fundamental parameters of the theory are to be
distinguished‘from the free parameters of the theory which parameterize the so-
lutions to O(A;) = O*. If the value O* is unusually sensitive to the underlying

parameters ();) of the theory then a small change in ); produces a large change
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in the value of O. Th_e Barbieri-Giudice function

! 90

C(O, Az) = 58_/\,;-|O=O*

(5.14)

quantifies this sensitivity [63]. This particular value of O is fine tuned if the

sensitivity to A; is larger at O = O* than at other values of O [64]. If there are
values of O for which the sensitivity to A; is small, then it is probably sufficient
to use ¢(O, A;) as the measure of fine tuning.

The function ¢(m%, );) is determined by performing the following. The spar-
ticle spectrum in the minimal LEGM model is determined by the four parame-
ters Am;”, p3, p, and tan 3 ﬂ5 . The scale A, fixes the boundary condition for
the soft scalar masses, and an implicit dependence on tan 8 from X;, A, and A,
arises in RG scaling® from pgre = Apess to the weak scale, that is chosen to be
pre = mi + 3(m? + mk). The extremization conditions of the scalar potential
(Egns.(5.10) and (5.11)) together with mz and m; leave two free parameters that
are chosen to be A,,.;s and tan 3 (see Appendix A for the expressions for these
functions).

A numerical analysis yields the value of c(m%, u?) that is displayed in Figure
5.1 in the (tan 8, A,ess) plane. Note that c(m%, u?) is large throughout most of
the parameter space, except for the region where _tanﬁ = 5 and the messenger
scale is low. A strong constraint on a lower limit for Ay, is from the right-

handed selectron mass. Contours mg, = 75 GeV (~ the LEP limit from the

SHere an arbitrary p2 at A,,.ss is allowed for.
6The RG scaling of \; was neglected.




‘run at /s = 170 GeV [78]) and 85 GeV (~ the ultimate LEP2 limit [79]) are
also plotted. The (approximate) limit on the n,eufralino masses from the LEP
run at /s ~ 170 GeV, myo + m,g = 160 GeV and the ultimate LEP2 lirﬁit',
my0 + m,o ~ 180 GeV are also shown in Figures 5.1a and 5.1c for sgn(p) = —1
and Figures 5.1b and 5.1d for sgn(y) = +1. The constraints from the present and
the ultimate LEP2 limits on the chargino mass are weaker than or comparable to
those from the selectron and the neutralino masses and are therefore not shown.
If mz were much larger, then ¢ ~ 1. For example, with mz = 275 GeV (550 GeV)
‘and Apess= 50 (100) TeV, c(m%; u?) varies between 1 and 5 for 1.4 < tan 8 < 2,
and is =~ 1 for tan 8 > 2. This Sugéests that the interpretation that a large value
for ¢(m2; u2) implies that my is fine tuned is probably correct.

From Figure 5.1 it is concluded that in the minimal LEGM model a fine tuning
of approximately 7% in the Higgs potential is required to produce the correct value
for my if no sparticles are discovered at LEP2. Further, for this fine tuning the
parameters of the model are restricted to the region tan 8 = 5 and A,ess &~ 45

TeV, corresponding to ms, ~ 85 GeV. It has also been checked that adding more

complete (5 + 5)’s does not reduce the fine tuning.
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Figure 5.1: \Contours of c(m%; u?) =(10, 15, 20, 25, 40, 60) for a MSSM with a
messenger particle content of one (5+ 5). In figures (a) and (c) sgn(u) = —1 and
in figures (b) anAd‘ (d) sgn{u) = +1. The constraints considered are: (I) mz, =75
GeV , (IT) mge + Mg = 160 GeV, (III) me, =85 GeV, and (IV) mgo + mge = 180

GeV. 198




5.4 A Toy Model to Reduce Fine Tuning

5.4.1 Model

In this section the particle content and couplings in the messenger sector that
are sufficient to reduce |m%_ | is discussed. The aim is to reduce mé /m%_ at the
scale Amess.

The idea is to increase the number of messenger leptons (SU(2) doublets)
relative to the number of messenger quarks (SU(3) triplets). This reduces both
mé) /m%, and m% /mZ_ at the scale Apeys (see Eqn.(5.4)). This leads to a smaller
value of |m% | in the RG scaling (see Eqn.(5.13)) and the scale A, can be
lowered since m;,, is larger. For example, three doublets and one triplet at a scale

Amess = 30 TeV, so that mg, ~ 85 GeV gives |mj; (mi5)| = (100GeV)? for Ay = 1.

This may be achieved by the following superpotential in the messenger sector

- _ _ 1
W = X Said + My Shiy + N, Slaly + A, Slals + g/\553

1
+AsSP_by + g,\NN3 + A NGz + Mgy Ns G, (5.15)

where N is a gauge singlet. The two pairs of triplets ¢, > anc gs, s are required at
low energies to maintain gauge coupling unification. In this model the additional
leptons Iy, I; and I3, I3 couple to the singlet S, whereas the additional quarks couple
to a different singlet N that does not couple to the messenger fields ¢, ¢_.
This can be enforced by discrete symmetries (such a model is discussed in section

5.7). Further, discrete charges that forbid any couplings between N and S at the
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renormalizable level are assumed to exist (this is true of the model in section 5.7)
so that SUSY breaking is communicated first to S and to N only at a higher loop

level.

5.4.2 Mass Spectrum

Before quantifying the fine tuning inrthis model, the mass spectrum of the
additional states is briefly discussed. While these fields form complete represen-
tations of SU(5), they are not degenerate in mass. The vev and F-component
of the singlet S gives a mass A,,.ss to the messenger lepton multiplets if the
F-term splitting between the scalars is neglected. As the squarks in ¢; + ¢
(i=2,3) do not couple to S, they acquire a soft scalar mass from the same two—
loop diagrams that are responsible for the masses of the MSSM squarks, yielding
mg = 03(Amess) Asusy/ (v/67). The fermions in g+¢ also acquire mass at this scale
since, if either Ay, or Agy ~ O(1), a negative value for m%, (the soft scalar mass
squared of N) is generated from the A, N¢g coupling at one loop and thus a vev for
N ~ myj is generated. The result is m;/m, = V67 /3(Amess ) (Amess/ Dsusy) = 85.

The mass splitting in the extra fields introduces a threshold correction to
sin? @y, if it is assumed that the gauge couplings unify at some high scale
Mgy ~10'® GeV. This splitting shifts the prediction for sin? @y by an amount

~ —7x 107*In(my/m,)n, where n is the number of split (5+5).” In this case n =2

"The complete (5 + 5), i.e., l1,1; and g1,41, that couples to S is also split because \; # A,

at the messenger scale due to RG scaling from Mgyr to Apess. This splitting is small and
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and my/m, ~ 85, so Asin® 8y ~ —6 x 1073, If a3(Mz) and Qem(Mz) are used as
input, then using the two-loop RG equations sin® 6y (M S) = 0.233 + O(1073%)
is predicted in a minimal SUSY-GUT [80]. The error is a combination of
weak scale SUSY and GUT threshold corrections[80]. The central value of
the theoretical prediction is a few percent higher than the measured value of
sin? Oy (MS) = 0.231 £ 0.0003[36]. The split extra fields shift the prediction of
sin? Oy to ~ 0.227 £ O(10~%) which is a few percent lower than the experimental
value. In sections 5.6 and 5.7 it is shown that this spectrum is derivable from a
SU(5) x SU(5) GUT in which the GUT threshold corrections to sin® 8y, could be
~ O(107%)—0(107?) [81]. It is possible that the combination of these GUT thresh-
old corrections and the split extra field threshold corrections make the prediction

of sin? Ay, more consistent with the observed value.

5.4.3 Fine Tuning

- To quantify the fine tuning in these class of models the analysis of section
5.3 is applied. In the RG analysis the RG scaling of )\, the effect of the extra
vector-like triplets on the RG scaling of the gauge couplings, and weak scale SUSY

| threshold corrections were neglected. That this approximation is consistent has
been checked a postiori. As in section 5.3, the two free parameters are chosen
to be Apess and tan 8. Contours of constant c¢(m%, u?) are presented in Figure

-5.2. Shown are contours of m,o + m,o = 160 GeV, and mg, = 75 GeV in Figure

neglected.
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5.2a for sgn(u) = —1, and 5.2b for sgn{u) = +1. These are roughly the present
limits from LEP (including the run at /s &~ 170 GeV [78]). The (approximate)
ultimate LEP2 reaches [79] m,o +m,g = 180 GeV, and mg, = 85 GeV are shown
in figure 5.2c for.sgn(u) = —1 and figure 5.2d for sgn(u) = +1. Since p?(~ (100
GeV)?) is much émaller in these models than in the minimal LEGM model, the
neutralinos (x} and x3) are lighter so that the neutralino masses provide a stronger
constraint on A,,., than does the slepton mass limit. The chargino constraints
are comparable to the neutralino constraints and are thus not shown. It is clear
that there are areas of parameter space in which the fine tuning is improved to ~
40% (see figure 5.2). ~

While this model improves the fine tuning required of the y parameter, it would
be unsatisfactory if further fine tunings were required in other sectors of the model,
for example, the sensitivity of m% to p3, Aness and A; and the sensitivity of m;,
to p?, p3, Amess and ;. These are all found to be less than or comparable to
c(m%; ). The other fine tunings are now discussed in detail.

For large tan 8, the sensitivity of m% to u3, c(m%; p3) o 1/ tan® 3, and is there-
fore smaller than ¢(m%; 4). A numerical analysis shows that ¢(m%; u3) < c(m¥; pu?)

for all tan 3.

In the one-loop approximation m%]u and m%,d at the weak scale are pro-

2
mess

portional to A since all the soft masses scale with Ay,ess and there is only
a weak logarithmic dependence on A,,.ss through the gauge couplings. It is

found numerically that (AZ_,,/m% )(0m%, /OA2,,,) ~ 1. Then, c(m%; A2

) &
TNESS TMESS
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Figure 5.2: Contours of c(m%; u?) =(1, 2, 3, 5, 7, 10) for a MSSM with a messenger
particle content of three (I +{)’s and one (¢ + §). In figures (a) and (c) sgn(y) =
—1 and in figures (b) and (d) sgn(p) = +1. The constraints considered are:
(I) ms, =75 GeV , (II) mgo + mge = 160 GeV, (III) mg, =85 GeV, and (IV)

mgo + Mygo = 180 GeV.
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c(m%;my,) + c(m%; m%). It is also found that c(m%; AZ,,,) &~ c(m%; u?)+1 over

most of the parameter space.
In the one-loop approximation, m%_(t) is

32

my, (t) & mly, (0) + (m, (0) + m2 (0) + m, (0))(e 52" — 1). (5.16)

Then, using t =~ ln(Amess/mQa) ~ In(v67/as) = 4.5 and A, = 1, c(m%; \y) is (see
Appendix A)
4 am%u (t) m%:i

~~ 50

2 . [ — -
elmzi M) ~ )Y (600 GeV)2’

(5.17)

This result measures the Sens'itivityvof m% to the value of A, at the electroweak
scale. While this sensitivity is large, it does not reflect the fact that A(Mp)
is the fundamental parameter of the theory, rather than A;(Myeq). Using both
numerical and analytic computations it is found that, for this model with t_hree
(5 +5)’s in addition to the MSSM particle content, 6 A;(Muyear) = 0.1 X 6A:(My),
and therefore

2
m=
Q3

2 . ~
clmz; M(Mi)) ~ 5(600 GeV)2’

(5.18)

For a scale of Amess = 50 TeV (mg = 600 GeV), c(m%; A(My)) is comparable
to c(m2Z; p?) which is =~ 4 to 5. At a lower messenger scale, Apess &~ 35 TeV,
corresponding to squark masses of = 450 GeV, the sensitivity of m% to A\;(M,) is
~ 2.8. This is comparable to c(m%; u?) evaluated at the same scale.

The sensitivity of m, to the fundamental parameters is discussed next. Since,
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M1 s, me MiHy e

687 616 612 319 125

My,  Mag

656 546

Table 5.1: Soft scalar masses in GeV for messenger particle content of three (I+1()’s
and one ¢ + ¢ and a scale A,ess = 50 TeV.

2 _ 1,22 332
m; = 5v”sin® BA,

cos® 3 Otan B
sinff O\

1
c(ms; Ai) = Gan, + ic(mg; ;) + Ai (5.19)

is obtained. Numerical computations determine that the last term in ¢{m; ;) is
small compared to c(m%; \;) and thus over most of parameter space c(my; \;) =~
1c(mZ; Ai). As before, the sensitivity of m; to the value of \; at the GUT/Planck

scale is much smaller than the sensitivity to the value of A; at the weak scale.

5.4.4 Sparticle Spectrum

The sparticle spectrum is now briefly discussed to highlight deviations from
the mass relations predicted in the minimal LEGM model. For example, with
three doublets and one triplet at a scale of A = 50 TeV, the soft scalar masses
(in GeV) at a renormalization scale p%s = m? + %(sz3 +mie) = (630 GeV)?, for
A¢ = 1, are shown in Table 5.1.

Two observations that are generic to this type of model are: (i) By construc-
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tion, the spread in the soft scalar masses is less than in the minimal LEGM model.

(ii) The gaugino masses do not satisfy the one-loop SUSY-GUT relation M;/o; =
constant. In this case, for example, M3/as : Ma/as = 1:3 and M3/as : My/oy =~
5:11 to one-loop.

It is also found that for tan § & 3, the Next Lightest Supersymmetric Particle
(NLSP) is one of the neutralinos, whereas for tan § < 3, the NLSP is the right-
handed stau. Further, fof these small values of tan 3, the three right-handed

sleptons are degenerate to within =~ 200 MeV.

5.5 NMSSM

In section 5.3, the p term and the SUSY breaking mass u2 were put in by
hand. There it was found that these parameters had to be ﬁne tuned in order to
correctly reproduce the observed Z mass. The extent to which this is a “problem”
may only be evaluated within a specific model that generates both the u and p?
terms.

For this reason, in this section a possible way to generate both the u term and
p2 term in a manner that requires a minimal modification to the model of either
section 5.2 or section 5.4 is discussed. The easiest way to generate these mass terms
is to introduce a singlet N and add the interaction NH,H; to the superpotential
(the NMSSM)[72]. The vev of the scalar component of N generates p and the vev
of the F—compoﬁent of N generates p3.

Note that for the “toy model” solution to the fine tuning problem (section
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5.4), the introduction of the singlet occurs at no additional cost. Recall that in
that model it was necessary to introduce a singlet V, distinct from S, such that
~ the vev of N gives mass to the extra light vector-like triplets, ¢;,q (i = é,3)
(see equation 5.15). Further, discrete symmetries (see section 5.7) are imposed to
isolate N from SUSY breaking in the messenger sector. This last requirement is
necessary to solve the fine tuning problem: if both the scalar and F—component
of N acquired a vev at the same scale as S, then the extra triplets that couple to
N would also act as messenger fields. In this case the messenger fields would form
complete (5 + 5)’s and the fine tuning problem would be reintroduced. With N
isolated from the messenger sector at tree level, a vev for N at the electroweak
scale is naturally generated, as discussed in section 5.4.

Next, a comment on the necessity and origin of these extra triplets is made.
Recall that in the toy model of section 5.4 these triplets were required to maintain
the SUSY-GUT. prediction for sin?#y. Further, it will be seen that they are
required in order to generate a large enough —m3, (the soft scalar mass squared
of the singlet V). Finally, in the GUT model of section 5.7, the lightness of these
triplets (as compared to the missing doublets) is the consequence of a doublet-
triplet splitting mechanism.

The superpotential in the electroweak symmetry breaking sector is

A |
W = ?NN"‘ + X\ Ngg — \gNH,Hy, (5.20)

which is similar to an NMSSM except for the coupling of NV to the triplets. The
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superpotential in the messenger sector is given by Eqn.(5.15).

~ The scalar potential is &

Vv = Y |FP +mi NP + mi, |Ho|® + miy, | Hal? + D-terms

)

—(AgNH,Hy + h.c.) + Vi_ioop. (5.21)

The extremization conditions for the vevs of the real components of N, H, and

H,, denoted by vy, v, and v, respectively (with v = /v2 + v3 = 250 GeV), are

. v? 1
oy (i + /\%1’2— + A% — AgANVLVg) — ﬁAHvuvd =0, (5.22)
L fi} — ji5 tan® 8
—_ — ——— r-.23
2"z tan?8—1 ’ (a )
%
sin28 = 2-13 5.24
i3 + i3 (5:24)
with
X ;
W= N, (5.25)
> = —1/\21)11 +l/\)\v2 + A iv (5.26)
H3 5 M HVuVd T SAHANUN H\/§N> .
V— 00 .
me = m?+265 ; 2. 4= (u,d,N). (5.27)
Ui

The expected size of the Yukawa couplings Ay, Ay and Ay is now discussed.
The RGE’s must be used to evolve these couplings from their values at Mgy or

M, to the weak scale. The quarks and the Higgs doublets receive wavefunction

8In models of gauge mediated SUSY breaking, Ax=0 at tree-level and a non-zero value of
Ap is generated at one loop. The trilinear scalar term AxN? is generated at two-loops and is

neglected.
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renormalization from SU(3) and SU(2) gauge interactions respectively, whereas
the singlet NV doés not receive at one-loop any wavefunction renormalization from
gauge interactions. So, the couplings at the weak scale are in the order: A, ~
O(1) > Ay > Ay if they all are O(1) at the GUT/Planck scale.

It is next shown that without the N¢g coupling it is difficult to drive a vev for.

N. The one loop RGE for m3 is

dm3, _ 6X 272, 3A2

T o o () + ok (i, (6) i, (£) 4 (1) + b (m

ma(t)+mi(t)). (5.28)

Since N is a gauge-singlet, m% = 0 at A,eq. Further, if A, = 0, an estimate for

m?2, at the weak scale is then

?2 (m2,, (0) + m2,(0)) In (A’"m) , (5.29)

m -
my,

i.e., Ay drives m% negative. The extremization condition for vy, Eqn.(5.22), and

using Eqns.(5.24) and (5.26) (neglecting Az) shows that

2 2 ’1)2 2 2 2 Amess
my + X~ Ny (5 = 25 (m, (0) + m, (0) In (5.30)

my,

has to be negative for N to acquire a vev. This implies that m%, and m%, at Amess
have to be greater than ~ (350 GeV)? which implies that a fine tuning of a few
percent is required in the electroweak symmetry breaking sector. With A, ~ O(1),
however, there is an additional negative contribution to m% given approximately
by

2

ot (0) + m0) o (222 (5.31)

mg
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This contribution dominates the one in Eqn.(5.29) since A, > Ay and the squarks

g, 4 have soft masses larger than the Higgs. Thus, with A, # 0, m% + A%v%/2 is
naturally negative.

Fixing mz and m, leaves the following parameters : Apess, Aq, Ar, An, tan g,
and vy. Three of the parameters are fixed by the three extremization conditions,
leaving three free parameters that for convenience are chosen to be A, 55, tan ﬁ >1,
and Ag. The signs of the vevs are fixed to be positive by requiring a stable vacuum
and no spontaneous CP violation. The three extremization equations determine

the following relations

2 = 1 i 1 '
AN = —/\—H—;}?;(/J,g-f-zA%{Sanﬁ’l]z—?:z'AHUN), (532)
oy = V£, (5.33)
Ag
72 g b sin 28 — 22 — 1aze? 4 L Ay sin2p (5.34)
m = — St v - VU — = v —— — .
N N H2 NYN 2 H 2\/§ H ’UN, \
where
1 m?, tan® B — m?
2 = H. Hy 5.35
H 2"z 1—tan?g ’ (5.35)
2u5 = sin2B(2u® +my, + my,). (5.36)

The superpotential term N H,H, couples the RGE’s for m}; , mj;, and mj%,. Thus
the values of these masses at the electroweak scale are, in general, complicated
functions of the Yukawa parameters A;, Ay, Ay and A,. In this case, two of these
Yukawa parameters (A, and Ay) are determined by the extremization equations
and a closed form expression for the derived quantities cannot be found. To
simplify the analysis, the dependence of m}_and mj;, on Ay induced in Ré scaling
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from A,ess to the weak scale is negleéted. Then m%{u and m%,d depend only on
Amess and tan 3 and thus closed form solutions for A N, Uy and M3 can be obtained
using the above equations. Once 3% at the weak scale is obtained, the value of
Aq is obtained by using an approximate analytic solution. An exact numerical

solution of the RGE’s then shows that the above approximation is consistent.

5.5.1 Fine Tuning and Phenomenology

The fine tuning functions considered below are c(O; Ag), ¢(O; An), ¢(O; Ay),
c(O; Ay) and ¢(O; Apess) where O is either m% or my. The expressions for the fine
tﬂning functions and other details are given in Appendix A. In the RG analysis the
approximations discussed in subsection 5.4.3 and above were used and found to be
consistent. Fine tuning contours of c(m%; Ag) are displayed in Figures 5.3a and
5.3bvfor Ag = 0.1 and Figures 5.3c and 5.3d for Ay = 0.5. Numerical computations
show that the other fine tuning functions are either smaller or comparable to
c(m%; Ag). °

The existing phenomenological constraints on this model and also the ultimate
constraints if LEP2 does not discover SUSY /light Higgs(h) are discussed. These

are shown in-Figures 5.3a, 5.3¢ and Figures 5.3b, 5.3d respectively. The processes

°In computing these functions the weak scale value of the couplings Ay and Ay has
been used. But since Ay and Ay do not have a fixed point behavior, it is found that
M (Mgur)/Au(mz) Au(mz)/0Aa(Meur) ~ 1 so that, for example, e(m%; Ag(MguT)) ~

c(m%; Ag(mz)).
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Figure 5.3: Contours of c¢(m%; Ag) for the NMSSM of Section 3.5 and a messen-
ger particle content of three (I + [)’s and one (¢ + ¢). In figures (a) and (b),
c(m%; A\g)=(4, 5, 6, 10, 15) and Ay =0.1. In figures (c) and (d), c(m%; ) =(3,
4,5, 10, 15, 20) and Ay=0.5. The constraints considered are: (I) my, +m, = mg,
(I1) me, =75 GeV, (1) mgp +myg = 160 GeV, (IV) my, = 92 GeV, (V) mg, =85
GeV, and (VI) mge + mge = 180 GeV. For Ay =0.5, the limit mp > 70 GeV

constrains tan 8 < 5 (independent of A,,.s,) and is thus not shown.
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ete™ — Zh, ete™— (h+pseudoscalar), ete™— x*x~, ete = x¥x3, and eTe™—

€r€y observable at LEP are considered. Since this model also has a light pseu-
doscalar, the upsilon decays T— (v + pseudoscalar) are‘ also considered. If is
found that the model is phenomenologically viable and requires a ~ 20% tuning
even if no new particles are discovered at LEP2.

The constraints on the scalar and pseudoscalar spectra of this model are first
considered. There are three neutral scalars, two neutral pseudoscalars and one
complex charged scalar. First consider the mass spectrum of the pseudoscalars.
At the boundary scale A pess, SUSY is softly broken in the visible sector ohly by
the soft scalar masses and the gaugino masses. Further, the superpotential of
Eqn.(5.20) has an R-symmetry. Therefore, at the tree level, i.e., with Ay =0, the
scalar potential of the visible sector (equation 5.21) has a global symmetry. This
symmetry is spontaneously broken by the vevs éf NE HE and HE (the superscript
R denotes the real component of fields), so that one physical pseudoscalar is

massless at tree level. It is

a

1
= : (’UNNI + vsin 28 cos BH! + vsin 28 sin ﬂHé) ,  (5.37)
\/v¥ + v?sin® 23

where the superscripts I denote the imaginary components of the fields. The

second pseudoscalar,

2 HI I
AN__NI+ ° Hd

UN vsin3 wcosf’

(5.38)

acquires a mass

1
m?, = iAHANUIZv(tan B + cot B) + AgAyv®sin 28 (5.39)

143




through the |Fyy|? term in the scalar potential.
The pseudoscalar a acquires a mass once an Ay—term is generated, at one-loop,
through interactions with the gauginos. Including only the wino contribution in

the one-loop RGE, Ay is given by

AH ~ '6a2(Amess)
4

MorgIn (

M,
280GeV

Amess)
M, )’

) GeV, (5.40)

where M, is the wino mass at the weak scale. Neglecting the mass mixing be-
tween the two pseudoscalars, the mass of the pseudo-Nambu—Goldstone boson is

computed to be

m: = iAvauvd/(v}"\f + v?sin? 23)

V2

~ (40)2 (%) %é%e—vsmzﬁ( — 250&32} 2) (GeV)2.(5.41)
| sin® 26 + 9550ty )

If the mass of a is less than 7.2 GeV, it could be detected in the decay T — a+[36].

Comparing the ratio of decay width for T —a+vyto T — p~ + u* [36, 82], the

limit
. in25t
smabtanl 43 (5.42)
\/( 2506(2‘ 7)2 + Sln2 2,6
is found.

Fﬁrther constraints on the spectra are obtained from collider searches. The
non—detection of Z — scalar + a at LEP implies that the combined Iﬁass of the
lightest Higgs sﬁalar and a must exceed ~ 92 GeV. Also, the process ee™ —Zh
may be observable at LEP2. For Ay = 0.1, the constraint m; + m, 2 92 GeV is
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stronger than my, 2, 70 GeV which is the limit from LEP at /s = 170 GeV [78].
The contour of my, +m, = 92 GeV is shown in Figure 5.3a. Shown in Figure 5.3b
is the contour of€ myp, = 92 GeV (~ the ultimate LEP2 reach [83]). For Ay = 0.5,
the constraint m, < 70 GeV is stronger than m; + m, < 92 GeV and restricts
tan 3 < 5 independent of A,,.ss. The contour my, = 92 GeV is shown in Figure
5.3d. Note that the allowed parameter space is not significantly constrained.
These limits make the constraint of Eqn.(5.42) redundant. The left-right mixing
between the two top squarks was neglected in computing the top squark radiative
corrections to the Higgs masses.

The pseudo-Nambu—Goldstone boson a might be produced along with the

lightest scalar & at LEP. The tree-level cross section in units of R = 87/s nb is
2

+po= s 2 m,% ’
O'(e e- = h 0,) =~ 015(?:—@ )\ vil, —8—, — 1, (543)

where g/ cos By is the Z(adh — hda) coupling, and

v(z,y,2) = \/(;: —y—2)2 —dyz. fh=cyNE+c,HE + c,HE, then

cos Bc, — sin fFecg
(5085w ) + sin” 26

A numerical check of the parameter space allowed by my < 70 GeV and Ay <0.5

A =sin 24

(5.44)

shows that the production cross—section for ha is less than both the current limit
set by DELPHI [84] and a (possible) exclusion limit of 30 fb [83] at /s &~ 192 GeV.
The production cross-section for hA is larger than for ha and A is therefore in
principle easier to detect. However, for the parameter space allowed by m; < 70

GeV, numerical calculations show that my & 125 GeV, so that this channel is

145.




not kinematically accessible.

The charged Higgs mass is

M =miy +my, +my, +24° (5.45)

which is greater than about 200 GeV in this model since m%, R (200GeV)? for
Amess 2 35 TeV and as p® ~ —m¥, .

The neutralinos and charginos may be observable at LEP2 at /s &~ 192 GeV if
my+ < 95 GeV and My =+ TMyo < 180 GeV. These two constraints are comparable,
and thus only one of these is displayed in Figures 5.3b and 5.3d, for Ay = 0.1
and Ay = 0.5 respectively. Also, contours of Myg + mye = 160 GeV (~ the LEP
kinematic limit af Vs = 170 GeV) are shown in Figures 5.3a and 5.3c. Contours of
85 GeV (~ the ultimate LEP2 limit) and 75 GeV (~ the LEP limit from /s = 170
GeV) for the right-handed selectron mass further constrain the parameter space.

The results presented in all the ﬁgures are for a central value of m;=175 GeV.
By varying the top quark mass by 10 GeV about the central value of m;= 175
GeV the fine tuning measures and the LEP2 constraints (the Higgs mass and the
neutralino masses) are foﬁnd to vary by =~ 30 %, but the qualitative features are
unchanged.

From Figure 5.3 it is seen that there is parameter space allowed by the present
limits in which the tuning is =~ 30 %. Even if no new particles are discoyered at
LEP2, the tuning required for some region is &~ 20%.

It is also interesting to compare the fine tuning measures with those found
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in the minimal LEGM model (one messenger (5 + 5)) with an extra singlet N to
generate the p and p3 terms.!® In Figure 5.4 the fine tuning contours for ¢(m%; Ag)
are presented for Ag=0.1. Contours of m;, = 75 GeV and mx‘f +mye = 160 GeV :
are also shown in Figure 5.4a. For Ay = 0.1, the constraint my, +m, < 92 GeV is
stronger than the limit m), < 70 GeV and is shown in the Figure 5.4a. In Figure
5.4b, the (approximate) ultimate LEP2 limits are shown, i.e., m; = 92 GeV,
myo +mye = 180 GeV and m;, = 85 GeV. Of these constraints, the bound on the
lightest Higgs mass (either my, +m, < 92 GeV or my, R 92 GeV) provides a strong
lower limit on the messenger scale. So in the parameter space allowed by present
limits the fine tuning is < 2% and if LEP2 does not discover new particles, the
fine tuning will be < 1%. The coupling Ay .is constrained to be not significantly
larger than 0.1 if the constraint, my +m, 2 92 GeV (or my, 2 92 GeV) is imposed

and if the fine tuning is required to be no worse than 1%.

5.6 Models Derived from a GUT

This section discusses how the toy model of section 5.4 could be derived from

a GUT model.
In the toy model of section 5.4, the singlets N and S do not separately couple
to complete SU(5) representations (see Eqn.(5.15)). If the extra fields introduced

to solve the fine tuning problcm were originally part of (5 + 5) multiplets, then

107t is assumed that the model contains some mechanism to generate —m3%, ~ (100GeV)? ~

(200GeV)?; for example, the singlet is coupled to an extra (5 + 5).
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Figure 5.4: Contours of c(m%; Ag) =(50, 80, 100, 150, 200) for the NMSSM of
Section 5 with Ay =0.1 and a messenger particle content of one (5 + 5). The
constraints considered are: (I) m.h +mg = mgz, (II) me, =75 GeV, (III) mygo +
mge = 160 GeV, (IV) m; =92 GeV, (V) me, =85 GeV, and (VI) mgo +mgg =

180 GeV. A central value of m; =175 GeV is assumed.
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the missing triplets (missing doublets) necessarily couple to the singlet S{(V). The
triplets must be heavy in order to suppress their contribution to the soft SUSY
breaking mass parameters. If the only other mass scale is Mgyr, then they must
acquire a mass at Mgyr. This is just the usual problem of splitting a (5 +5) [13].

For example, if the superpotential in the messenger sector contains four (5 + 5)’s,
W = )\155[1511 -+ /\25512512 + /\355;3513 + )\455q5q, (5.46)

then the SU(3) triplets in the (5, + 5;)’s and the SU(2) doublet in (5, + 5,)
must be heavy at Mgy so that in the low energy theory there are three doublets
and one triplet coupling to §. This problem can be solved using the method
of Barbieri, Dvali and Strumia [73] that solves the usual Higgs doublet—triplet
splitting problem. The mechanism in this model is attractive since it is possible
to make either the doublets or triplets of a quintet heavy at the GUT scale. Their
modél is now briefly described.
The gauge group is SU(5) x SU(5)’, with the particle content ¥(24, 1),

Y'(1,24), ®(5, 5) and ®(5,5) and the superpotential can be written as
W = &2 (Ml o5 +AT365 + NT'5.85)85 +

+%M2Tr(22) + %Mz,Tr(zﬂ) +

1 1
5/\ET@* + gx\ngrZB. (5.47)

A supersymmetric minimum of the scalar potential satisfies the F' - flatness con-

ditions

0 = Fp=(Msbg05+AT505 + NTg 65)87
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1 17, = , 1 - 1
0 = Fo= MsTl+3 (Acbﬁ,@g - Ag(ngr(@@)) +Ap(S? - STeE?),
— __1 i 1 1Fx 0 70 ,1 i T T ”2 1 12
0 = Fy=3sMpTl +5 (Y8307 - X200 TH(89) ) + s (57 - ZTiT?)
(5.48)
With the ansatz !
¥ =vgdiag(2,2,2,-3,-3),% = vy diag(2, 2,2, -3, —3), (5.49)
the Fg = 0 condition is
diag{Mg, M3, M3, Mz, MQ] . diag{vg, Vs, U3, Ug, ’UQ] = 0, (550)

where M; = My + 2)\vx + 2N vy and My = Mg — 3 vs — 3N vy and the second
matrix is the vev of ®. To satisfy this condition, there is a discrete choice for the
pattern of vev of ® : i) v3 # 0and M3 = 0 or ii) vy # Oénd M, = 0. Substituting
either i) or ii) in the Fx aﬁd Fsv conditions then determines vz (or vo). With two
sets of fields, ®;, ®; with v3 # 0 and ®,, &, with v, # 0, we have the following

pattern of symmetry breaking

SU(5) x SU(B) "% (SU(3) x SU(2) x U(1)) x (SU(3) x SU(2) x U(1))’

v3,V2
=

SM (the diagonal subgroup). (5.51)

If the scales of the two stages of symmetry breaking are about equal, ¢.e. vy, vs, ~

v3,vs ~ Mgy, then the SM gauge couplings unify at the scale Mgyp. 2

1 The two possible solutions to the F-flatness conditions are ¥ = vy diag(2,2,2, —3,-3) and

Y =vpdiag(1,1,1,1, —4).

12See [73] and [81] for models which give this structure of vevs for the & fields without using

the adjoints.
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The particular structure of the vevs of ®; and &, can be used to spliﬁ repre-
sentations as follows.
Consider the Higgs doublet—triplet splitting problem. With the particle content

5,(5,1), 54(5,1) and X (1,5), X(1,5) and the superpotential
W =5, X¥ P2, + 53X 0 ®,%, - (5.52)

the SU(3) triplets in 54, 5, and X, X acquire a mass of order MGUT whereas the
doublets in 54, 5, and X, X are massless. Now only one pair of doublets is wanted
in the low energy theory (in addition to the usual matter fields). Thé doublets in
X, X can be méde heavy by a bare mass term Mgy XX. Then the doublets in
54, by, are the standard Higgs doublets. But if all terms consis‘tent with symmetries
are allowed in the superpotential, then allowing MggTélél', Mevr XX, 5, X9,
and 5, X ®; implies that a bare mass term for 5,5, is allowed. Of course, a y term
ub5y, of the order of the weak scale can be put in by hand, as in section 5.4.
However, it is theoretically more desirable to relate all electroweak mass scales to
the original ‘SUSY breaking scale. So, the p term should be related to the size
of SUSY breaking.' Recall that in section 5.5 it was shown that the NMSSM is
phenomenologically viable and “unfine tuned” in these models.

The vev structure of.<I>2, ®, can be used to make the doublets in a 5+5 heavy.
Again, there are two pairs of light tripléts and one of these pairs can be given a
mass at the GUT scale.

This mechanism of making either doublets or triplets in a (5+5) heavy can be
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used to show how the model of section 5.4 is derivable from a GUT. The model
with three messenger doublets and one triplet is obtained from a GUT with the

following superpotential

W = 8§55+ 855 +SX,X; +
5:X:®1 + 5, X,® +
5,X,B0 + 5,X,P2 +
Meur X Xp + 55 X1 ®1 + 5, X5 ®1 + 4545

+N3 + N5,5, + NX, X,. (5.53)

Here, some of the “extra” triplets and doublets resulting from splitting (5 + 5)’s
are massless at the GUT scale. For example, the “extra” light doublets are used
as the additional messenger leptons. After inserting the vevs and integrating out
the heavy states, this corresponds to the superpotential in Eqn.(5.15) with the

transcription:

55 = q,@+h,h
5,50 = ly,la
X, X = sl
9¢,9¢ — G2, Q2

Xo Xg = 3,3 (5.54)

This section is concluded with a remark about light singlets in SUSY-GUT’s
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with low energy gauge mediated SUSY breaking.’® In a SUSY-GUT with a singlet
N coupled to the Higgs multiplets, there is a potential problem of destabilizing
the Muyeqr/Meyr hierarchy, if the singlet is light and if the Higgs triplets have
a SUSY invariant mass of O(Mgyr) [85]. In the LEGM models, a B-type mass
for the Higgs triplets and doublets is generated at one-loop with gauginos and
Higgsinos in the loop, ang with SUSY breaking coming from the gaugino mass.
Since SUSY breaking (the gaugino mass and the soft scalar masses) becomes soft
above the messenger'scale, Apmess ~ 100 TeV, the B-type mass term generated
for the Higgs tripleté is suppressed, i.e., it is O((a/ 4T MoA2 .. /Mgyr). Similarly
the soft mass squareds for the Higgs triplets are O(mfv;akAfness [/ MEur)- Since the
triplets couple to the singlet IV, the soft scalar mass and B-term generates at
'one—loop a linear term for the scalar and F—component of N respectively. These
tadpoles are harmless since the SUSY breaking masses for the triplets are so
small. This is to be contrasted with supergravity theories, where the B—term~
O(Muyeat MguT) and the soft mass ~ O(Myeqr) for the friplet Higgs generates a

mass for the Higgs doublet that is at least ~ O(v/Myear Mgur/(47)).

5.7 One complete Model

The model is based on the gauge group G = SU(5) x SU(5)" and the global
symmetry group Ggo = Z3 X Zj X Z4. The global symmetry acts universally

on the three generations of the SM. The particle content and their G, X Gy

13The author thanks H. Murayama, for bringing this to his attention.
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quantum numbers are given in Tables 5.2 and 5.3. The most general renormalizable

superpotential that is consistent with these symmetries is

where,

W,

Ws

Ws

We

Wy

W =W, + Wy + Wi + W, + W5 + Ws + Wy,

1 , 1
EMETI'E +'§

+®2(Ma, + Ao, = + X, Z) P,

/\)jTI‘E?’ + ';‘MEITI'EIZ + %/\EITI‘EIQ'

+®; (Mg, + Ag, = + )\11,12’)@1,

M X, X,

k Algh(Dth -+ /_\15h(i)1Xh + /\le@le + /—\25l§)1Xl,

M35, P2 X, + A35,P2 X,

A6 S515; 4+ A7S5.54 + AeSXn Xy + Ao SX X, + %/\553,
~Aub5pbaN + %)\NN3 + A NXX

AN XX, + AN X, X + —;;/\N:N’?’,v

AD5:10,5, + AJ10;10,5,.

(5.55)

(’5.56)
(5.57)
(5.58)
(5.59)

(5.60)

(5.61)

(5.62)

The origin of each of the W;’s appearing in the superpotential is easy to under-

stand. In computing the F'=0 equations at the GUT scale, the only non—-trivial

contributions come from fields appearing in W1, since all other W;s are bilinear in

fields that do not acquire vevs at the GUT scale. The function of W is to generate

the vevs &, Y ~ diag [2,2,2, -3, 3], &1 = &, ~ diag [0,0,0,1,1] and T = &, ~

diag [1,1,1,0,0]. These vevs are necessary to break G, —SU(3).xSU(2)xU(1)y
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(this was explained in section 5.6). The role of W3 and Wj is to generate the nec-
essary splitting within the many (5 + 5)’s of Gy, that is necessary to solve the
usual doublet~triplet splitting problem, as well as to solve the fine tuning problem
that is discussed in sections 5.3', 5.4 and 5.5. The messenger sector is given by
Ws. It will shortly be demonstrated that at low energies this sector contains three
vector-like doublets and one vector-like triplet. The couplings in Wy and W7 at
low energies contain the electroweak symmetry breaking sector of the NMSSM; the
Yukawa couplings of the SM fields, and the two light vector-like triplets necessary
to maintain the few percent prediction for sin? By as well as to generate a vev for
N.

Next it is shown that the low energy theory of fchis model is the model that is
discussed in section 5.5.

Insertiﬁg the vevs for ®; and ®, into W, the following mass matrix for the

colored triplet chiral multiplets is obtained:

)

dn
[ o Mve, O 0 0 )
Xh
Avs, O 0 0 0 ||
(5ry X, 51, X1) 5, (5.63)
0 0 0 Jws O
Xi

0 0 us, 0 M /

* )
and all other masses are zero. There are a total of four vector-like colored triplet

fields that are massive at Mgyr. These are the triplet components of (5h,X’h),

(5n, X1), (51, X)) and (X:, Ty), where Ty is that linear combination of triplets in
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5, and X that marries the triplet component of X;. The orthogonal combination
to Ty, 11, is massless at this scale. The massless triplets at Mgyt are (5q,5q),
(X, X,) and (X, Ty), for a total of three vector-like triplets. By inspection, the
only light triplets that couple to S at a renormalizable level are 5, and 54, which
‘was desirable in order to solve the fine tuning problem. Further, since X contains
a component of 77, the couplings of the other light triplets to the singlets N and
N’ are

Weff = AloNIXXq + XllNIXqTL -+ /\qNTLX, (564)

where A\, = /_\q coso/, Ay = Apcose and o is the mixing angle between the
triplets in 5; and X, 1.e., TL = cosa/X — sine/5;.. The \,NT; X coupling is also
desirable to generate acceptable u and uj terms (see section 5.5).

In section 5.4, 5.5 it was also demonstrated that with a total of three messen-
ger doublets the fine tuning required in electroweak symmetry breaking could be

alleviated. By inserting the vev for ®, into Wy, the doublet mass matrix is given

as
M, 0 0 X
(Xla 5117 XQ) 0 0 )\31)@2 5q - (565)
0 /_\3’Uq;.2 0 Xq

and all other masses are zero. At Mgyt the heavy doublets are (X;, X), (54, X,)
and (54, X,), leaving the four vector-like doublets in (54, 54), (5;,51), (X, X;) and
(X, X») massless at this scale. Of these four pairs, (55,55) are the usual Higgs

doublets and the other three pairs couple to S.
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The (renormalizable) superpotential at scales below Mgy is then

_ 1 _
W = MNN@g + 5/\NN3 + AoN'g3G2

1
+/\11qu2§3 -— /\HNHqu + g/\]\[f.z\/vl3
+/\65Z1l1 + /\7Sq—1Q1 + /\851_2l2

- 1
+XgSlsl3 + 5,\553 + Wy, (5.66)

where the fields have been relabeled to make, in an obvious notation, their SU (3) x
SU(2) x U(1) quantum numbers apparent.

This section concludes with comments about the choice of Z; as a discrete
symmetry and about non-renormalizable operators in our model.

The usual R-parity violating operators 105a5515sn are not allowed by the
discrete symmetries, even at the non-renormalizable level. In fact, R—parity is a
good symmetry of the effective theory below Mgyr. By insp‘ection, the fields that
acquire vevs at Mgy are either invariant under Z4 or have a Z4 charge of 2 (for
example, ®;), so that a Z, symmetry is left unbroken. Ih fact, the vevs of the ogher
fields S, N, N’ and the Higgs doublets do not break this Z, either. By inspecting
the Z, charges of the SM fields, we see that the unbroken Z; is none other than the
usual R-parity. So at Mgy, the discrete symmetry Zy is broken to R,. Also note
that the Z, symmetry is sufficient to maintain, to all orders in 1/Mp; operators,
the vev structure of ®; and @, i.e., to forbid unwanted couplings between ®; and
®, that might destabilize the vev structure [81]. This pattern of vevs was essential

to solve the doublet—triplet splitting problem. It is interesting that both R-parity
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invariance and requiring a viable solution to the doublet-triplet splitting problem
can be accommodated by the same Z; symmetry. |

The non—-SM matter fields (namely, the messenger 5’s and X’s and the light
triplets ) have the opposite charge to the SM matter fields under the unbroken Z,.
Thus, there is no mass mixing between the SM and the non-SM matter fields.

Dangerous proton decay operators are forbidden in this model by the discrete
symmetries. Some higher dimension operators that lead to proton decay are al-
lowed, but are sufficiently suppressed. These are discussed below.

Renormalizable operators such as 1053,10sap5, and 10525515, are forbidden
by the Z; symmetries. This is necessary to avoid a large proton decay rate. A
dimension—6 proton decay operator is obtained by integrating out the colored
triplet scalar components of 5, or 5,. Since the colored scalars in 5, and 5,
have a mass ~O(50 TeV), the presence of these operators would have led to an
unacceptably large proton decay rate.

The opérators 10531050105 /553¢/Mpy and 105310531050 5sps
(®®/ME,)"/Mp,;, which give dimension—5 proton decay operators, are also forbid-
den by the two Z; symmetries. The allowed non-renormalizable operators that
generate dimension—5 proton decay operators are suffucientfy suppressed. The
operator 10ga1052,1052552 N'/(Mp;)?, for example, is allowed by the discrete
symmetries, but the proton decay rate is safe since vy ~ 1 TeV.

The operators 10i5j¥i>1()? or X,)/Mp, could, in principle, also lead to a large

proton decay rate. Setting ®, to its vev, the superpotential couplings, for example,
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Xij(UfD§X (3)+Q;L; X (3)) are generated with \;; suppressed only by ve, /Mp;. In
this model the colored triplet (scalar) components of X and X, have a mass mg ~
500 GeV, giving a potentially large proton decay rate. But, in this model fhese
operators are forbidden by the discrete symmetries. The operator 10;5;®; X.S/M3,
is allowed giving a four SM fermion proton decay operator with coefficient ~
(ve, vs/M},)?/m% ~ 10734GeV~>. This is smaller than. the coefficient generated
by exchange of the heavy gauge bosons of mass Mgyr, which is ~ g2y /Méyr ~
1/2 10732GeV ™2 and so this operator leads to proton decay at a tolerable rate.
With our set of discrete symmetries, some of the messenger states and the
light color triplets are stable at the renormalizable level. Non-renormalizable op-
erators léad to decay lifetime for some of these particles of more than about 100
seconds. This is a problem from the viewpoint of cosmology, since these particles
decay after Big-Bang Nucleosynthesis (BBN). With a non—universal choice of dis-
crete symmetries, it might be possible to make th;ase particles decay before BBN
through either smaﬂ renormalizable couplings to the third generation (so that the
constraints from proton decay and FCNC are avoided) or non—renormalizable op-
erators. Alternatively, if the rebeat temperature is below the mass scale of these
particles they will not have a relic abundance today. These issues, however, are

beyond the scope of this chapter.

5.8 Summary

In this chapter the fine tuning required in models of low energy gauge-mediated
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)V 9 10; dn On

Groc | (5,1) (10,1)' G,1) | (5,1)

Zs Il a a a?

Z, b 1 1 b2

Zy |lc c c? c?
v |z )3 d D |B1 | D
Gre || (24,1) | (1,24) | (5,5) | (5,5) | (3,5) | (5,5)
Zy |1 1 1 1 1 1
Zy |1 1 1 1 1 1
Zy |1 1 1 1 2 &

¥ oS 51 X X |5 Be

Gloc (571) (5?1) (175) (175) (571) (5>1)

Zs || a® 1 1 a 1 a®
772 [ U R I T IR DI b
Z4 c? c? 1 1 1 1

Table 5.2: SU(5) x SU(5)' x Z3 x Z} x Z4 quantum numbers for the fields of
the model discussed in section 7. The generators of Z3 x Z§ x Z, are labeled by

(a,b,c). The three SM generations are labeled by the index i.
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Guoe || (1,5) | (1,B) | (1,5) | (1,5) | (1,5) | (1,5)

zZ e b b 1 1 B

Table 5.3: SU(5) x SU(5) x Zs x Z§ x Z, quantum numbers for the fields of
the model discussed in section 7. The generators of Z3 x Z} x Z, are labeled by

(a,b,c). The three SM generations are labeled by the index i.
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SUSY breaking to obtain the correct Z mass was quantified. It was demonstrated
that the minimal model requires a fine tuning of order ~ 7% if LEP2 does not
discover a right-handed slepton. Iﬁ was discussed how models with more messenger
doubiets than triplets can improve the fine tuﬁing. In particular, a model with a
messenger field particle content of three (I 4+ [)’s and only one (q + q) was tuned
to ~ 40%. It was found that it was necessary to introduce an extra singlet to give
mass to some color triplets (close to the weak scale) which are required to maintain
gauge coupling unification. It was also discussed how the vev and F-component of
this singlet could be used to generate the x4 and By terms. It was found that for
some region of the parameter space this model requires ~ 25% tuning and that
limits from LEP do not constrain the parameter space. This is in contrast to an
NMSSM with extra vector-like quintets and with one (5 + 5) messenger field, for
which it was found that a fine tuning of ~ 1% is required and that limits from
LEP do significantly constrain the parameter space.

It was further discussed how the model with split messenger field representa-
tions could be the low energy theory of a SU(5) x SU(5) GUT. A mechanism
similar to the one used to solve the usual Higgs doublet~triplet splitting problem
was used to split the messenger field representations. All operators consistent
with gauge and discrete symmetries were allowed. In this model R-parity is the

unbroken subgroup of one of the discrete symmetry groups. Non-renormalizable

operators involving non—-SM fields lead to proton decay, but at a safe level.
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Chapter 6

Non—decoupling of the First and Second

Generation Scalars

The supersymmetric contributions to the Flavor Changing Neutral Current
processes may be suppressed by decoupling the scalars of the first and second
generations. It is known, however, that the heavy scalars drive the stop masses
squared negative through the two—loop Renormalization Group evolution. This
tension is studied in detail. Two new items are included in this analysis: the effect
of the top quark Yukawa coupling and the QCD corrections to the supersymmetric
contributions to Amg. Even with Cabibbo-like mixing between the squarks of the
first two generations, these squarks must be heavier than ~ 40 TeV 'to suppress
Amp. This implies, in the case of a high scale of supersymmetry breaking, that the
boundary value of the stop mass has to be greater than ~ 7 TeV to keep the stop
mass squared positive at the weak scale. Low—energy supersymmefry breaking at |
a scale that is of the same order as the mass of the heavy scalars is also considered.
In this case the finite parts of the two-loop diagrams are computed to estimate
the contribution of the heavy scalar masses to the stop mass squared. It is found
that for Cabibbo-like mixjng between the squarks, the stop mass at the boundary

needs to be larger than ~ 2 TeV. Thus, for both cases, the large boundary value of
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the stop masses leads to an unnatural amount of fine tuning to obtain the correct

Z mass.

6.1 Introduction

The origin of electroweak symmetry breaking (EWSB) and the subsequent
gauge hierarchy problem are two large mysteries 6f the Standard Model (SM).
Supersymmetry (SUSY) provides a i)romising solution to these problems, by both
stabilizing the weak scale against radiative corrections|6], and by naturally break-
ing the electroweak symmetry through the quantum corrections of the superpart-
ner of the top quark to the Higgs boson mass [86]. It is known, however, that
generic weak scale values for the masses of the first two generation scalars give
rates for many flavor violating processes that are in disagreement with the experi-
mental observation. The measured value of Amg and detection limits for p — e,
and p — 3e, for example, require that the first two generation scalars be degener-
ate to within a few tenths of a percent if their masses are at the weak scale [65, 68].
Constraints from CP violation are generally even more severe. Understanding the
origin of this degeneracy is the supersymmetric flavor problem. Attempts to re-
solve this puzzle without introducing any fine tuning include: using approximate
non-abelian or abelian symmetries[87]; communicating supersymmetry breaking
to the visible sector by gauge interactions that do not distinguish between flavors
[11]; squark—quark mass matrix alignment [88]; and raising the soft masses of the

first two generation scalars to the tens of TeV range [89, 90, 91, 92, 93, 94, 95, 96].
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The phenomenological viability and naturalness of this last scenario is the sub-
ject of this chapter. To suppress flavor changing processes, the heavy scalars must
have masses between a few TeV and a hundred TeV. The actual value depends on
the degree of degeneracy and mixing between the masses of the first two genera-
tion scalars. As discussed in Reference [97], the masses of the heavy scalars cannot
be made arbitrarily large without breaking color and charge. This is because the
heavy scalar masses contribute to the two-loop Renormalization Group Equation
(RGE) for the soft masses of the light scalars, such that the stop soft mass squared
become more negative in RG scaling to smaller energy scales. This negative con-
tribution is large if the scale at which supersymmetry breaking is communicated
to the visible sector is close to the Grand Unification scale[97]. With the first two
generation soft scalar masses =~ 10 TeV, the initial value of the soft masses for
the light stops must be & (few TeV)? to cancel this negative contribution [97] to
obtain the correct vacuum. This requires, however, an unnatural amount of fine
tuning to correctly break the electroweak symmetry[63, 64].

In this chapter these issues are analyzed. Two new items not previously dis-
cussed v&ithin this context are included: the effect of the large top quark Yukawa
coupling, A, in the RG evolution, that drives the stop soft mass squared more neg-
ative; and QCD radiative corrections in the Amg constraint [98]. This modifies
the bound on the heavy scalar masses that is consistent with the measured value
of Amg. This, in turn, affects the minimum value of the initial scalar masses that

is required to keep the scalar masses positive at the weak scale.
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This severe constraint obtained for the initial stop masses assumes that su-

persymmetry breaking occurs at a high scale. This leaves open the possibility
that requiring positivity of the scalar masses is not a strong constraint if the scale
of supersymmetry breaking is not much larger than the mass scale of the heavy
scalars. In this chapter this possibility is investigated by computing the finite
parts of the same two-loop diagrams responsible for the negative contribution to

the light scalar RG equation, and using these results as an estimate of the two-

loop contribution in an actual model of low-energy supersymmetry breaking. It

is found that in certain classes of models, requiring positivity of the soft masses
may place strong necessary conditions that such models must satisfy in order to
be phenomenologically viable.

This chapter is organized as follows. In section 6.2 an overview of the ingre-
dients of the analysis is presented. Some philosophy and notation is discussed.
Section 6.2.1 discusses the constraints on the masses and mixings of the first two
generation scalars obtained from Ampg after including QCD corrections. It ié
found, in particular, that Cabibbo-like mixing among both the first two genera-
tion left-handed squarks and right—handed squarks requires them to be heavier
than 40 TeV. Section 6.2.2 discusses the logic of the RG analysis, and some for-
mulas are presented. This analysis is ind.ependent of the Amy analysis. Sections
6.3 and 6.4 apply this machinery to the cases of low—energy and high—energy su-
persymmetry breaking, respectively. Section 6.3 deals with the case in which the

scale at which SUSY breaking is communicated to the SM sparticles is close to the
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mass of the heavy scalars. The finite parts of the two—loop diagrams are used to
.estimate the negative contribution of the heavy scalars. For Cabibbo-like mixing
among the left-handed and right-handed squarks of the first two generationis the
boundary value of the stop masses has to greater than ~ 2 TeV to keep the stop
masses squared positive at the weak scale. This results in a fine tuning of naively
1% in electroweak symmetry breaking [63]. Also discussed are the cases where
there is O(1) mixing among only the right or left squarks of the first two genera-
tions, and requiring positivity of the slepton masses squared implies a constraint
on the stop masses of ~ 1 TeV if gauge-mediated boundary conditions are used
to relate the two masses. This is comparable to the direct constraint on the initial
stop masses. Section 6.4 considers the case where the SUSY breaking masses for
the SM sparticles are generated at a high scale (~ 106 GeV). In this case, the neg-
ative contribution of the heavy scalars is enhanced by a large logarithm. Various
boundary conditions for the stop and Higgs masses are considered and it is found
that for an order of 0.2 degeneracy between the first two generation squarks, the
boundary value of the stop mass needs to be larger than ~ 7 TeV. This gives a
fine tuning of naively 0.02%[63]. For O(1) mixing between the left (right) squarks
only, the minimum initial value of the stop is ~ 4(2) TeV. In section 6.5 the scale
of supersymmetry breaking is varied between 50 TeV and 2 x 10'® GeV. Uppers
bounds on the amount of degeneracy required between the first two generation
scalars, that is consistent with positivity of the light scalar masses, naturalnesé in

electroweak symmetry breaking, and the measured value of Amg, are obtained.
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These results are summarized in Figures 6.12 and 6.13. The results of this chap-
ter are summarized in section 6.6. Appendix B discusses the computation of the
two-loop diagrams which give the negative contribution of the heavy scalars to

the light scalar mass squareds.

6.2 Overview.

The chiral particle content of the Minimal Supersymmetric Standard Model

(MSSM) contains 3 generations of 5+10 representations of SU(5). The super-
symmetry must be softly broken to not be excluded by experiment. Thus the
theory must also be supplemented by some “bare” soft supersymmetry breaking
parameters, as well as a physical cutoff, Msysy. The “bare” soft supersymmetry
breaking parameters are then the coefficients appearing in thé Lagrangian, defined
with a cutoff Mgysy. It will be assumed for simplicity that the bare soft masses,
r”n?)o, the bare gaugino masses M4 o, and a bare trilinear term for the stops, A;A;,
are all generated close to this scale. The MSSM is then a good effective theory at
energies below the scale Msygy, but above the mass of the heaviest superpartner.

The physical observables at low—energies will depend on these parameters. If
an unnatural degree of cancellation is required between the bare parameters of
the theory to produce a measured observable, the theory may be considered to be
fine tuned. Of course, it is possible that a more fundamental theory may resolve
in a natural manner the apparent fine tuning. Solutions to the gauge-hierarchy

problem are well-known examples of this. The Higgs boson mass of the SM is fine
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tuned if the SM is valid at energies above a few TeV. This fine tuning is removed
if at energiés close to the weak scale the SM is replaced by a more fundamental
theory that is supersymmetric[6].

One quantification of the fine tuning of an observable O with respect to a bare

parameter ) is given by Barbieri-Giudice [63] to be

£(0330) = (50/0)/(BXo/%0) = -0, (6.1)

It is argued that this only measures the sensitivity of O to Ag, and care should
be taken when interpreting whether a large value of A necessarily implies that
O is fine tuned [64]. It is not the intent of this chapter to quantify fine tuning;
rather, an estimate of the fine tuning is sufficient and Eqn.(6.1) will be used. In
this chapter the value of O is considered extremely unnatural if A(O; Ap) > 100.

The theoretical prediction for Amg (Within the MSSM) and its measured value
are an example of such a fine tuning: Why should the masses of the first two gener-
ation scalars be degenerate to within 1 GeV, when their masses are O(500 GeV)?
Phrased differently, the first two generation scalars must be extremely degenerate
for the MSSM to not be excluded by the measured value of Amg. An important
direction in supersymmetry model building is aimed at attempting to explain the
origin of this degeneracy.

One proposed solution to avoid this fine tuning is to decouple the first two
generation scalars since their masses are the most stringently constrained by the

flavor violating processes [89, 90, 91, 92, 94, 95, 96]. In this scenario, some of the
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first two generation scalars have masses Mg > mz. To introduce some notation,
ns (ny) will denote the number of 5 (10) scalars of the MSSM particle content
that are very heavy 1. Thus at energy scales E < Mg the particle content is that
of the MSSM, minus the ns 5 and n;g 10 scalars. In the literature this is often
referred to as ‘“The More Minimal Supersymmetric Standard Model’[92].

There are, however, other possible and equally valid sources of fine tunings.
The measured value of the Z mass is such an example [63]. The minimum of the
renormalized Higgs potential determines the value of the Z mass which is already
known from experiment. The vacuum expectation value (vev) of the Higgs field is,
in turn, a function of the bare parameters of the theory. The relation used here,

valid at the tree-level, is

my, (Be) — miy, (ue) tan® B
tan® 8 —1

my = —pu? + (6.2)

NGB e

It is clear from this Equation that requiring correct electroweak symmetry breaking
relates the value of the soft Higgs masses at the weak scale, m% (pe) and m¥y (ue),
to the supersymmetric Higgs maés Y. A numerical computation determines the
dependence of m};, (ug) and m%, (1) on the bare parameters Ma o, mf , and Ms.
In the MSSM, the cancellation required between the bare parameters of the theory
for it not to be excluded by the Z mass increases as the scale of supersymmetry
breaking is increased. Typically, the bare mass of the gluino, stops, and the first

two generation squarks must be less than a few TeV and ten TeV, respectively,

11t is assumed that the heavy scalars form complete SU(5) multiplets to avoid a large Fayet—

Hliopoulus D— term at the one-loop level[96, 92].
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for successful electroweak symmetry breaking not to be fine tuned at more than
the one per cent level [63, 64, 96].

These two potential fine tuning problemsfn - the supersymmetric flavor prob-
lem and that of electroweak symmetry breaking ~ are not completely independent,
for they both relate to the size of supersymmetry breaking [96, 97]. Thus the coﬁ-
sistency of any theoretical framework that attempts to resolve one fine tuning issue
can be tested by requiring that it not reintroduce any comparable fine tunings in
other sectors of the theory. This is the situation for the case under consideration
here. Raising the masses of the first two generétion scalars can resolve the super-
symmetric flavor problem. As discussed in [96], this results in a fine tuning of m%
through the two-loop dependence of m%; (uq) on Mg. There is, however, another
source of fine tuning of mz due to the heavy scalars: these large masses require
that the bare masses of the stops, in particular, be typically larger than a few
TeV to keep the soft masses squared positive at the weak scale [97]. This large
value for the bare stop mass prefers a large value for the vev of the Higgs field,
thus introducing a fine tuning in the electroweak sector. Further, this fine tuning
is typically not less than the original fine tuning in the flavor sector. This is the

central issue of this chapter.

6.2.1 Amyg Constraints

At the one-loop level the exchange of gluinos and squarks generates a AS =

2 operator. In the limit of interest here, M; << Mg, the AS = 2 effective

171




Lagrangian at the scale Ms obtained by integrating out the squarks is

o%(Ms)

——_216M§ (0101 + 6'1@1 + C1O4 + C505 + h.c.) . (6.3)

Legs =

Terms that are O(M2/M?2) are subdominant and neglected. Next, the exact result
is expanded in powers of 6p1,rr = SL.RCLRILR(TME — T3)LL RR/T v L Ry WheTe
Mm%y is the average mass of the scalars, and where 7z, g is the phaée and sy, g is the
1—2 element of the Wy, g matrix that appears at the gluino-squark—quark vertex?®.
Since this approximation underestimates the magnitude of the exact result this

analysis is conservative[97]. The coefficients C; to leading order in é;1, dgg, are
Cy = —226¢,
Cs = —400¢,6%,. (6.4)

The coefficient C is obtained from C; with the replacement 6%, — 0%,. The

operators O; are

O1 = diyusredi v sop
Oy = dusp.disry
05 = J%SL,[,CZ%SR’@ (65)

and O, is obtained from O with the replacement L — R. The Wilson coefficients,

C; — Cs, are RG scaled from the scale of the squarks, Ms , to 900 MeV using the

2In this chapter only 1-2 generation mixing is considered. Direct L — R mass mixing is also

neglected.

172




anomalous dimensions of the operators, O; — Os. The anomalous dimension of O,
is well-known [99] and is udCi/dy = asCy/m. The other anomalous dimensions
may be found in Ref. [98] and have been independently verified by the author

(also see Ref. [98] for a more general analysis of QCD corrections to the SUSY

contributions to K — K mixing). These authors, however, choose to RG scale
t0 ppad, defined by o,(prea)=1. The validity of the perturbation expansion is
questionable at this scale; here instead the RG scaling is stopped at 900 MeV,

where (900 MeV) ~ .4. The result is

Ci(phea) = r1C1(Ms)
él(uhad) = Hlél(Ms)
Ci(tthae) = raCs(Ms) + :1,)( K4 — ﬁs)Cs(Ms)

Cs(uhad) = Hscs(Ms) (6-6)

where

- e
« (a_@.ql) ( SMS)))

(67} (mt) ,UG’

Ky = K’].

ks = K2 (6.7)

The effective Lagrangian at the hadronic scale is then

_ o3 (Ms)
“f T 316M3

<—22(6§ 1)2Kk101 — 22(045) k1O + 62,68 R(§(4n4 + 5k5) Oy — 40k505) + h.c.) .

(6.8)
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The SUSY contribution to the K — K mass difference is
(AmK)SUSY = 2Re < Klﬁeffll_{ > (69)

The relevant matrix elements (with bag factors set to 1) are

1

< K‘01|K > = ngflz{
— _ 1 1 mK 2 2
<K|OJK > = (2_4 3 (———-—m ™ md) ) mic f2
<K|Os|K > = 1+-1—(—m—’f—)2 m f2 (6.10)
5 T o\8 T 12 \m, +my KJK ‘

in the vacuum insertion approximation. The values [36] mg = 497 MeV, fx = 160
MeV, my = 150 MeV , (Amg)esp = 3.5 x 10712 MeV, and a,(Mz) = 0.118 are
used. This gives ay(my) = 0.21, as(m.) = 0.29 and «,(900 MeV) = 0.38 using
the one-loop RG evolution. Once values for (ns,n9,06%,,0%5) are specified, a
minimum value for M is obtained by requiring that (Amx)susy = (AMk)eqp. In
the case that both dzr # 0 and ;1 # 0, both the left—-handed and right-handed
squarks are assumed to be heavy, so that (ns,n10) = (2,2). In this case only
the dominant contribution to Amg, which is ~ §¢,6%,, is required to equal the
- measured value of Amg. If dgg # 0 and 0.7 = 0, only the right-handed squarks
are assumed to be heavy, and thus (ns,n1) = (2,0). Similarly, if éz;, # 0 and
drr = 0 then (ns,m10) = (0,2). Limits are given in Tables 6.1 and 6.2 for some
choices of these parameters. These results agree with Ref. [98] for the same choice
of input parameters. For comparison, the limits gotteh by neglecting the QCD
corrections are alsb presented in Tables 6.1 and 6.2. Here 6¢; (0%z) = (4) 1, (4)
0.22, (47) 0.1, and (iv) 0.04 are considered. These correspond to: () no mixing
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Re(6f.0%8) | (n5,m10) = (2,2) | (n5,710) = (2,2)
QCD incl. no QCD
1 182 TeV 66 TeV
0.22 40 TeV 15 TeV
01 18 TeV 7.3 TeV
0.04 7.3 TeV 3.1 TeV

Table 6.1: Minimum values for heavy scalar masses Mg obtained from the mea-
sured value of Amy assuming M2/M% < 1. The limits labeled ‘QCD incl.’ include

QCD corrections as discussed in the text. Those labeled as ‘no QCD’ do not.

and no degeneracy; (i¢) Cabibbo-like mixing; (i43) Cabibbo-like mixing and ~ 0.5
degeneracy; and (iv) Cabibbo-like mixing and Cabibbo-like degeneracy. Only
cases (i), (i¢) and (4i¢) are expected to be relevant if the supersymmetric flavor
problem is resolved by decoupling the first two generation scalars. Note that for
(ns,m10) = (2,0), Table 6.2 implies that Ms must be larger than ~ 30 TeV if it is
assumed thére is no small mixing or degeneracy (6% = 1) between the first two
generation scalars.

The limits obtained from the measured rate of C'P violation are now briefly

discussed. Recall that the C'P violating parameter € is approximately

_Im < K|Lops|K > |

A==, (6.11)

le]

and its measured value is |e| ~ |7go| =2.3x1073 [36]. In this case, the small value
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Re(&}im) (‘%L =0)

(TL5, TL10) = (2, 0)

(n5, 77,10) = (2, 0)

QCD incl. no QCD
1 30 TeV 38 TeV
0.22 7.2 TeV 8.9 TeV
0.1 3.4 TeV 4.1 TeV
0.04 1.4 TeV 1.7 TeV

Table 6.2: Minimum values for heavy scalar masses Mg obtained from the mea-
sured value of Amg assuming MZ/M32 < 1. The limits labeled as ‘QCD incl.’
include QCD corrections as discussed in the text. Those labeled as ‘no QCD’ do
not. The limits for (ns,n19) = (0,2) obtained by ¢, <> 6%, are similar and not

shown.
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of € implies either that the phases appearing in the soft scalar mass matrix are
extremely tiny, or that the masses of the heavy scalars are larger than the limits
given in Tables 6.1 and 6.2. In the case where the phases are O(1),

Im < K|L.5f|K >~ Re < K|L.s;]K > and thus the stronger constraint on Ms
is obtained from € and not Amg, for the same choice of input parameters. In
particular, the constraint from CP violation increases the minimum allowed value
of Mg by a factor of 1/ \/;\/?e ~12.5. This signiﬁcantly increases the minimum

value of the initial light scalar masses that is allowed by the positivity requirement.

6.2.2 RGE analysis

The values of the soft masses at the weak scale are determined by the RG
evolution. In the DR scheme [101, 102, 103], the RG equations for the light scalar
masses are, including the gaugino, A-term and A; contributions at the one-loop

level and the heavy scalar contribution at the two—loop level [104],

d 4 .
am?(t =lnp) = —— Z aa(t)CHMA(t) + T2 > Cihoi(8)(nsm3 + 3nagmi,)
A
8 3 4 3 1
+igas il ) (gaa(t) = 70(t) - ‘1'5041( )) (nsm3 — niomi,)
miA; (t
+ S;Q ) (my, (t) +mie (8) +m3_ (1) + A(t)?)
+§£-Ya1(t)Ter2(t) (6.12)

with n = (3,2,1) for f; = H,, &, , respectively, and zero otherwise. For simplicity
it is assumed that M40/ 4 are all equal at Mgygy. The initial value of the gluino

mass, Msg, is then chosen to be the independent parameter. To avoid a large
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Fayet-Illiopoulus D-term at the one-loop level, the heavy scalars are assumed to
form complete SU(5) representations[96, 92]. SU(5) normalization for the U(1)
coupling constant is used and Q = T3 + Y. Finally, C% is the quadratic Casimir
for the gauge group G 4 that is 4/3 and 3/4 for the fundamental representations of
SU(3) and SU(2), and 3/5Y7 for the U(1) group. The cases (ns, n10)= (I) (2, 2),
(I) (2,0), (I1I) (0,2) are considered. The results for the case (3, 0) is obtained, to
a good approximation, from Case (II) by a simple scaling, and it is not discussed
any further.

Inspection of Eqn.(6.12) reveals that in RG scaling from a high scale to a
smaller scale the two—loop gauge contribution to the soft masses is negative, and
that of the gauginos is positive. The presence of the large X; Yukawa coupling
in the RGE drives the value of the stop soft mass squared even more negative.
This effect increases the bound on the initial value for the stop soft masses and
is included in this aﬁalysis. In this analysis the top quark mass in MS scheme is
fixed at 167 GeV.

In the MSSM there is an extra parameter, tan 3, which is the ratio of the
vacuum expectations values of the Higgs fields that couple to the up-type and
down-type quarks respectively. Electroweak symmetry breaking then determines
the top quark mass to be m; = \;/v/2vsin 8 with v ~ 247 GeV. In this analysis the
regime of small to moderate tan § is considered, so that all Yukawa couplings other
than A; are neglected in the RG evolution. In this approximation the numerical

results for f; # £ or & are independent of tan 3. In the numerical analysis of

178




sections 6.3 and 6.4 tan $=2.2 is considered. In section 6.5 tan 8 = 10 is also
considered. -

In the case of low—energy supersymmetry breaking, the scale Mgygy is not
much larger than the mass scale of the heavy scalars. Then the logarithm
~In(Mgsysy/Ms) that appear‘s in the solution to the previous RG equations is
only O(1). In this case the finite parts of thg two—loop diagrams may not be
negligible and should be included in the analysis. These finite parts are used to
estimate the size of the two—loop heavy scalar contribution in an actual model.

The full two-loop expression for the soft scalar mass at a renormalisation scale
pr 8 My (pr) = M (UR) + Msnise (1ir), Where m2— (ug) is the solution to the
RG equation in DR scheme, and mfcim-te(uR) is the finite part of the one-loop
and two-loop diagrams, also computed in DR scheme. The finite parts of the
two-loop diagrams that contain internal heavy scalars are computed in Appendix
B and the details are given therein. The answer for these two-loop finite parts is

(assuming all heavy scalars are degenerate with common mass M32)

1 n? M3
mz?,finite(/"'R) - 73 (ln(47r) T 3 2= (—l;%ﬁ))
' aalpr)\’ i ar2
X Z T (ns + 3”10)CAMS
A
3 1 - 2 4 Mg
—ET&r_?al(uR)(ns n10)Y; (6— 37 + 2(In(4m) — ) — 41In( 2 ))
x (Gastun) - Jan(un) - e (un)) M (6.13)
3013 UR 4C¥2 MR 12a1 HR S :

where the gaugino and fermion masses are neglected. Since the DR scheme is
used to compute the finite parts of the soft scalar masses, the limits obtained
on the initial masses are only valid, strictly speaking, in this scheme. This is
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especially relevant for the case of low scaie SUSY breaking. So while these finite
parts should be viewed as semi—quantitative, they should suffice for a discussion
of the fine tuning that results from the limit on the bare stop mass. For the case
of high scale SUSY breaking, the RG logarithm is large and so the finite parts are
not that important.

The numerical analysis for either low—energy or high—energy supersymmetry
breaking is described as follows.

The RG equations are evolved from the scale Mgysy to the scale at which the
heavy scalars are decoupled. This scale is deﬁoted by ps and should be O(Ms).
The RG scaling of the hé:ivy scalars is neglected. At this scale the finite parts of the
two—loop diagrams are added to mi (1s). Note that since the two—loop information
included in the RG analysis is the leading O(M32) effect, it is sufficient to only use
tree—level matching at the scale ug. Since the heavy scalars are not included in
the effective theory below Mg and do not contribute to the gauge coupling beta
functions, the numerical results contain an implicit dependence on the number of
heavy scalars. This results in a smaller value for a3(us) compared to its value if
instead all the scalars have a ~ 1TeV mass. This tends to weaken the constraint,
and so it is included in our analysis 3. The soft masses are then evolved using the
one-loop RGE to the masé scale at which the gluinos are decoupled. This scale is

fixed to be pg=1 TeV.

3This is the origin of a small numerical discrepancy of ~ 10% between these results and the

analysis of [97] in the approximation \; = 0.
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A constraint on the initial value of the soft masses is obtained by requiring that
at the weak scale the physical scalar masses are positive. The experimental limit is
~ 70 GeV for charged or colored scalars[100]. The physical mass of a scalar is equal
to the sum of the soft scalar mass, the electro-weak D-term, the supersymmetric
contribution, and some finite one-loop and two-loop contributions. As mentioned
in the previous paragraph, in the effective theory below My the finite two-loop
part from rthe heavy scalars is included in value of the soft scalar mass of the
light sparticles at the boundary, defined at ugp = ps ~ M. The finite one—
loop contributions are proportional to the gaugino and other light scalar masses,
and are smaller than the corresponding logarithm that is summed in mZ(ug).
So these finite one-loop parts are neglected. Further, the electroweak D—terms
are less than 70 GeV. For the scalars other than the stops, the supersymmetric
contribution is negligible. In what follows then, mZ(ug) > 0 is required for scalars
other than the stops. The discussion with the stops is complicated by both the
large supersymmetric contribution, m?, to the physical mass and by the L — R
mixing between the gauge eigenstates. This mixing results in a state with mass
squared less than min(m? 4+ m7,m% + m7), so it is a conservative assumption
to require that for both gauge eigenstates the value of mZ + m7 is larger than
the experimental limit. This implies that m? 2(70 GeV)?—(175 GeV)? = —(160
GeV)2. Instead, in what follows mf > 0 is required. This results in an error that
is (160GeV)?/2m;, , ~ 26 GeV if the constraint obtained by neglecting m, is ~ 1

TeV. For the parameter range of interest it will be shown that the limit on the
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initial squark masses is ~ 1 TeV, so this approximation is consistent.

Then the above two analyses are combined as follows. The Am k constraints of
section 6.2.1 determine a minimum value for M. s once some theoretical preference
for the ¢’s is given. Either a natural value for the §’s is predicted by some model,
or the d’s are arbitrary and chosen solely by naturalness considerations. Namely,
in the latter case the fine tuning to suppress Amyg is roughly 2/4. Further, a
model may also predict the ratio M;3/Ms. Otherwise, Eqns.(6.1) and (6.2) may
be used as a rough guide to determine an upper value for M3, based upon nat-
uralness considerations of the Z mass. Without such a limitation, the positivity
requirements are completely irrele{rant if the bare gluino mass is suffuciently large;
but then the Z mass is fine tuned. Using these values of M3 and Mg, the RGE
analysis gives a minimum value for the initial stop masses which is consistent with
Amk and positivity of the soft masses. This translates into some fine tuning of
the Z mass, which is then roughly quantified by Eqns.(6.1) and (6.2).

Finally, this analysis may also be extended to include models that contain a
Fayet-Illiopoulos hypercharge D—term, (p, at the tree-level. The effect of the
D—term is to shift the soft scalar masses, mZ, — m?, = mZ,+ ¥;(p. In this case,

the positivity analysis applies to mf,o, rathe. than m?,.

6.3 Low Energy Supersymmetry Breaking

This section investigates the positivity requirement within a framework that

satisifes both of the following: (i) supersymmetry breaking is communicated to
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the visible sector at low energies; and (ii) multi-TeV scale soft masses, Mg, are
generated for some of the first two generation scalars. This differs from the usual
low—energy supersymmetry breaking scenario in that hefe Mz > mtgi ’0' is assumed.-
In the absence of a specific model, however, it is difficult to obtain from the posi-
tivity criterion robust constraints on the scalar spectra for the following reasons.
At the scale Msysy it is expected that, in addition to the heavy scalars of the
MSSM, there are particles that may have SM quantum numbers and supersymme-
try breaking mass parameters. All these extra states contribute to the soft scalar
masses of the light particles. The sign of this contribution depends on, among
other things, whether the soft mass squared for these additional particles is posi-
tive or negative — clearly very model-dependent. The total two-loop contribution
to the light scalar masses is thus a sum of a model-dependent part and a model
independent part. By considering only the model-independent contribution only
isolated one particular contribution to the total value of the soft scalar masses
near the supersymmetry breaking scale has been isolated. However, these results
are used to estimate the typiéal size of the finite parts in an actual model. That
is, if in an actual model the sign of the finite parts is negative and its size is of
the same magnitude as in Eqn.(6.13), the constraint in that model is identical to
the constraint obtained here. The constraint for other values for the finite parfs
is then obtained by a simple rescaling.

Before discussing the numerical results, the size of the finite contributions are

estimated in order to illustrate the problem. Substituting Ms ~ 25 TeV, a3(25
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TeV) ~ 0.07 and a1 (25 TeV) ~ 0.018 into Eqn.(6.13) gives

Ms \?
omg ~ —(410 GeV)?(ns + 3n1o) ( 5 TeV) (6.14)

for squarks, and

| L
5mZ ~ — ((ns + 3ma0) (70 GeV)é + (5 — 1) (100 GeV)?) ( . TZV) (6.15)

for the right-handed selectron. The negative contribution is large if Mg ~ 25 TeV.
For example, if 75 = nyg = 2 then dmZ. ~ —(200 GeV)? and ém? ~ —(1.2 TeV)>.
If ns = 2, nyp = 0, then dmi =~ —(170 GeV)? and émZ =~ —(580 GeV)>.

In this low—energy supersymmetry breaking scenario, it is expected that
Msysy ~ Mg. In the numerical analysis Msysy = ps is assumed since the
actual messenger scale is not known. The scale pg is chosen to be 50 TeV. At
the scale us =50 TeV the ps—independent parts of Eqn. (6.13) are adiied to the
initial value of the soft scalar masses. The soft masses are then evolved using the

RG equations (not including the two—loop contribution) to the scale pg= 1TeV.

First, the constraints the positivity requirement imply for f; # t; or i are

2

%0 and the initial value

discussed. In this case m% is renormalized by M2, M2, m
7 3

of TrY'm? = Dyp. A numerical computation gives
m% (pg) = m%  +(0.243C5 +0.0168C5 + 0.00156Y;*) M3 + cp x 107°Y; Dyg
. ) 1
—(0.468C% + 0.095C% + 0.0173}/,-2)5(% + 3ng0) x 1073 M2
 —(ns — n1o) ((—0.00058 + 0.0016(ns + 3n10)) M§ — 0.925M3) ¥; x 1073

—0.0174(ns — n10)Y; x 1073 M2 (6.16)
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where the strongest dependence on (ns,n1) has been isolated. The coefficient
appearing‘in front of Dy is ¢cp = —6. The numerical coefficients in Eqn.(6.16) also
depend on (75, 710) and the numbers presented in Eqn.(6.16) are for (ns,n19) =
(2,0). This sensitivity is, however, only a few percent between the four cases
under consideration here . Requiring positivity of the soft scalar masses dilfectly
constrains mf;i’ﬂ/Mg and M3, /Mg
The value of Dy, depends on the spectrum at the supersymmetry break-
ing scale, and is therefore model-dependent. To obtain model-independent con-
straints from the positivity requirement, the combination fr’zzi’o = mf,-i’o + cp X
1073 xY; Dy is constrained. Only this combination appears in the weak-scale value

for the scalar mass of f;. The numerical effect is small, since with Dyg ~ O(mf;. o)

the coefficient of m2

% o is shifted from 1 to ~ (1 - 6) x 107°Y;.

The positivity requirement ﬁz% for f; # ¢ or {° is given in Figure 6.1 for different
values of ns5 and n,9. That is, in figure 6.1 the minimum value of Fi0 /Mg required
to keep the soft masses positive at the scale pg is plotted versus Mjo/Ms. From
these Figures it is seen that the positivity criterion is weakest for ns=2 and n,=0.
This is expected since in this case the heavy particle content is the smallest. Note
that even in this “most minimal” scenario the negative contribution to the masses
are rather large. In particular, Figure 6.1 implies that for (ns = 2,119 = 0) and
Mg ~ 25 TeV, dmZ. ~ —(190 GeV)? for M3, as large as 1 TeV. In this case it

is the two—loop contribution from the hypercharge D—-term that is responsible for

4This dependence is included in Figure 6.1.
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the large negative mass squared. In the case (ns, ni9)=(2,2), Figure 6.1 implies

that for Ms ~ 25 TeV, §mZ. ~ —(210 GeV)? and dm?, ~ —(1.1 TeV)? for Mz as
large as 1 TeV.

The positivity requirement for the stops is obtained next. In this case it is not
possible to directly constrain the boundary values of the stops for the following

simple reason. There are only two positivity constraints, whereas the values of

2

mi o and

m?(ng) and m.(ug) are functions of the three soft scalar masses mf,,
m3, o- To obtain a limit some theoretical assumptions must be made to relate the

three initial soft scalar masses.

The numerical solutions to the RG equations for tan §=2.2 and (ns,ny) =

(2,0) are
mi(pe) = —0.0303A7 + 0.00997A:Ms0 + 0.322M3 ¢ + cp X é x 107 Dy,
—0.0399(m3, o + mi o) + 0.960m? — 0.000645¢, M3
mZ(ug) = —0.0606A7 + 0.0199A4, M3, + 0.296 M, + cp X 132 x 107Dy,
+0.920m2 , — 0.0797(m2_ o + m?,) — 0.000492c, M3
my, (pa) = —0.0909A7 -+ 0.0299A4,M30 — 0.0289M2, + cp X -;— x 1072 Dyq

+0.880m3;, o — 0.119(m3  + mi. o) + 0.0000719¢cy M3. (6.17)

The numerical coefficients other than that of Mg do not vary more than a
few percent between the different values for (ns,n1p), and thus this dependence
is not shown. The values of the Mg coefficient are (cy,cr,cy) = (1,1,1),
(3.62,3.84,4.59), (2.78,3.04,3.92), for (ns,n10) = (2,0), (2,2) and (0, 2), respec-
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Figure 6.1: Limits for my, ;/Ms from the requirement that the masses squared are
positive at the weak scale, for low—energy supersymmetry breaking. The regions
below the curves are excluded. For the case (2,0), the limits for the other squarks

are very similar to that for Q and are therefore not shown.

187




tively. Also, cp = —6. Inspecting Eqns.(6.1) and (6.2) implies that to keep m%
fine tuned at less than 1% (A < 100) in each of the bare parameters, the following
must be satisfied : p< 460 GeV; M3052.3 TeV; m;(S1.7 TeV; ms<80 TeV and
myoSH0 TeV for (ns,mig) = (2,2). Finally, for other values of these parameters
the fine tuning increases as A = 100 x m?/m3, where 7y is the value of 7 that
gives A = 100.

It is possible to show, using the fact that Yy, + Y+ Y, = 0, that the solutions
in Eqn.(6.17) are unchanged if m?, is replaced with 7 = mZ+cp X 1073Y; Dy,
and set Dy = 0. In what follows then, the posivitity analysis is used to constrain
m?, for the stops. The difference between m?, and m?, is small, though, owing to
the small coefficient appearing in froﬁt of Dyg. In the remainder of this section
the tilde on 7, will be removed to simplify the notation.

To constrain the initial vvalues of the stop masses only gauge-mediated super-
symmetry breaking mass relations are considered. An inspection of Eqn.(6.17) re-
veals that to naturally break electroweak symmetry a small hierarchy mi,o > m%,u,o
is required. This is naturally provided by gauge-mediated boundary conditions
5. The relations between the soft scalar masses when supersymmetry breaking is

communicated to the visible sector by gauge messengers are [11]

o (Msysy)
= C A mZ .
4 ; Y3 (Msysy) + 3 (Msysy)/5 =

(6.18)

Substituting these relations into Eqn.(6.17) and assuming A;p =0 determines

5In fact, low-energy gauge-mediated supersymmetry breaking provides “too much” elec-

troweak symmetry breaking [105].
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2

%o+ Iigure 6.2 plots the min-

m?(pe) and mZ (ue) as a function of Mo, M3 and m
imum value of mz o/Mj required to maintain both m?(ug) > 0 and mZ, (ug) > 0.

Another interesting constraint on these class of models is found if it is assumed
that the initial masses of all the light fields arebrelated at the supersymmetry
breaking scale by some gauge-mediated supersymmetry breaking (GMSB) mass
relations, as in Eqn.(6.18). This ensures the degeneracy, as required by the flavor
changing constraints, of any light scalars of the first two generations. This is
required if, for example, one of n5 or n;y are zero. Then in the previous limits
of mg o for fi # £ or #°, constraints on the initial value of mz are obtained by
relating mj, o 10 M o using Eqn.(6.18). In this case the slepton masses provide
the strongest constraint and they are also shown in Figure 6.2. This resﬁlt may
be understood from the following considerations. The two—loop hypercharge D-
term contribution to the soft mass is ~ Y;(ns — nyg)aiazs M2 and this has two
interesting consequences. The first is that for ns # nyg, the resulting dm? is
always negative for one .of &° or L. Thus in this case there is always a constraint
on m%c once gauge-mediated boundary conditions are assumed. That this negative
contribution is large is seen as follows. The combined tree-level mass and.two—loop
contribution to the selectron mass is approximately mZ , — koyos M3 where k is
a numerical factor. Substituting the gauge-mediated relation ﬁgc,o ~ offasms, o,
the combined selectron mass is of /a3(mZ. | — k(as/ al)a??Mg). Since the combined

mass of the stop is ~ mZ, (—~k'ai MZ, the limit for m,

obtained from the positivity
2

requirement for m3. is comparable or larger than the constraint obtained from
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requiring that mffc remains positive. For example, with ns = 2, nyjp = 0 and
Mg ~ 25 TeV, the right-handed slepton constraint requires that mg o ~ 1.1 TeV.
For nyp=2, ns=0 and Mg ~ 25 TeV, Eg is driven negative and implies that Mie g ~
1 TeV. From Figure 6.2 it is seen that these results are comparable to the direct
constraint on mg o obtained by requiring that color is not broken.

The positivity analysis only constrains mg, ,/Ms for a fixed value of M3,/Ms.
To directly limit the initial scalar masses some additional information is needed.
This is provided by the measured value of Ampg. If some mixing and degeneracy
between the first two generation scalars is assumed, parameterized by (6.z,6 RR)’
a minimum value for My is obtained by requiring that the supersymmetric contri-
bution to Amy does not exceed the measured value. The results given in section
6.2 are used to calculate this minimum value. This result together with the posi-
tivity analysis then determines a minimum value for mg , for a given initial gluino
mass M3o. The RG analysis is repeated with s = Mg, rather than pus=>50 TeV.
Only the results found by assuming GMSB mass relations between the scalars
are presented. These results are shown in Figure 6.3. The mass limits for other
f; are easily obtained from the information provided in Figure 6.1 and Table 6.2
and are not shown. From Figure 6.3 we find that for (ns,n10) = (2,2) and Msp
less than 2 TeV, my ; must be larger than 8 TeV for \/0,.0rr = 1, and larger
than 1.8 TeV for v/3770zz = 0.22. This results in A(m%,mZ:) of 2000 and 120,
respecfively. In this case both the squark and selectron limits for mg , are com-

parable. The limits for other choices for \/d;.0zr are obtained from Figure 6.3
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by a simple scaling, since to a good approximation Amg ~ §..0rr/M § For the

cases (ns,n10) = (2,0) and (0,2), the corresponding limits are much weaker. In
the case (ns,n19) = (2,0), for example, only for dgr ~ 1 does the selectron mass
limit require thaf mge o ~1 TeV. The limits for a smaller value of ¢ are not shown.

This section concludes with some comments about how these results change if
CP violation is present in thesé theories with O(1) phases. Recall from section 6.2
that for the same choice of input parameters, the limits on the initial stop masses
increases by about a factor of 12. This may be interpreted in one of two ways.
Firstly, this constrains those models that were relatively unconstrained by the
Ampg limit. Concentrate only on thése models with ns = 2 and nyy = 0, since this
case is the most weakly constrained by the combined Amy and positivity analysis.
The conclusions for other models will be qualitatively the same. Inspecting Figure
6.3 implies that the limit mgz o >1 TeV © is only true if dgp ~ O(1). Smaller values
of drr do no;c require large initial stop masses. From the C'P violation constraint,
however, smaller values for dgp are now constrained. For example, if dggr ~0.1
and O(1) phases are present, then mg o >1 TeV is required. Secondly, the strong
constraint from e could partially or completely compensate a weakened constraint
from the positivity analysis. This could occur, for example, if in an actual model
the negative two-loop contribution to the stop mass squared for the same initial
input parameters is smaller than the estimate used here. For example, if the

estimate of the two—loop contribution in an actual model decreases by a factor of

6For GMSB relations only. The direct constraint on the stop masses is slightly weaker.




~ (12.5)? and O(1) phases are present, the limit in this case from ¢ for the same

d is identical to the values presented in Figure 6.3.

6.4 High Scale Supersymmetry Breaking

This section considers the case in which SUSY breaking is communicated to
the MSSM fields at a high energy scale, that is taken to be " Mgyr = 2 x 106
GeV. In this case, the negative contribution of the heavy scalar soft masses to
the soft mass squareds of the light scalars is enhanced by ~ In(Mgyr/50 TeV),
since the heavy scalar soft masses contribute to the RGE from Mgyt to mass of
the heavy scalars. ‘It is clear that as the scale of SUSY breaking is lowered the
negative contribution of the heayy scalar soft masses reduces.

This scenario was investigated in Ref.[97], and the difference between that
analysis and the results presented here is briefly discussed. In the analysis of
“Ref[97], the authors made the conservative choice of neglecting ), in the RG
evolution. The large value of ); can change the analysis, and it is included here.
Here it is found that for some pattern of initial stop and up-type Higgs scalar
masses, e.g. universal scalar masses, this effect increases the constraint on the
stop masses by almost a factor of two. This results in an increase of a factor of

3—4 in the amount of fine tuning required to obtain the correct Z mass. Further,

"This choice for the high scale is done to remain agnostic about any physics appearing between
the Grand Unification scale and the Planck scale. This also results in a conservative assumption,

since the negative two-loop contribution is smaller with Msysy = Mgyr.
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in combining the positivity analysis with the constraints from the Amg analysis,
‘the QCD corrections to the Flavor Changing Neutral Current (FCNC) operators
has been included, as discussed in secfion 6.2. In the case (ns,n10) = (2,2), this
effect alone increases the positivity limit by a factor of ~ 2 — 3. The combination
of these two elements imply that the positivity constraints can be quite severe.
This section proceed as follows. First, the RGEs are solved from Mgyr to
us where the heavy scalars are decoupled. At this scale, the finite parts of the
two-loop diagrams are added. Next, the RGES are evolved (without the heavy
scalar terms in the RGEs) from pg to ug using these new boundary conditions.
Except where stated otherwise, the scales us and pg are fixed to be 50 TeV and
1 TeV, respectively.
For f; # , ¢ the numerical computations give
m (ue) = m%)o + (2.840;; +0.639C% + 0.159Y;2) MZ, + cpY; Dy,
—(4.38C% + 1.9205 + 0.622}22)%(715 + 3n1g) X ;o—3M§
+(ns = nao) (17.2M3, + (0.226 — 0.011(ns + 3n10)) M3) ¥; x 1073

—0.829(ns — n10)Y; x 1073 M2, (6.19)

These results agree with Ref.[97] for the same choice of input parameters. The
term proportional to Dy, and the t;arms in the last line result from integrating
the one-loop hypercharge D—term. In this case cp = —0.051. As in the previous
section, the numerical coefficients in Eqn.(6.19) depend on (ns,ni9) through the

gauge coupling evolution, and the numbers in Eqn.(6.19) are for (ns, nyo) = (2,0) 8.

8The numerical results presented in Figure 6.4 include this dependence.
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Requiring the soft masses squared to be positive constrains mZ, = mi,+cp¥; Dy,p.
Figure 6.4 plots the values of m, o /Mg that determine ﬁ%r‘} (#e) = 0 as a function
of M3/Mg, for fi = L;, Q,, ag, Jf and €. It is emphasized that the results
presented in Figure 6.4 are independent of any further limits that FCNC or fine
tuning considerations may imply, and are thus useful constraints on any model
building attempts.

For the stops, the numerical solutions to the RGEs for tan 8 = 2.2 are

. 1
mi{ug) = —0.021A2 4 0.068A,Msp + 3.52M5, + cp ¥ & Dvo
—0.142(my, o + mi o) + 0.858m3, — cp, x 0.00613M3

-2
mi(pe) = —0.0424% + 0.137A M3 + 2.33M3 + cp X ?DwJ

—0.283(m3, o +m3,) + 0.716m3. o — cg x 0.00252M
1
m%ﬂ (Mg) = —'006314.? + O.206AtM370 - 172M§’0 -j— Cp X §Dy’0

—0.425(m3 + mZ. o) + 0.574m3;, o + cy x 0.00193M% (6.20)

where (cL,c,%,cH) = (i,l,l), (3.57,4.92,5.15), (2.7,4.16,4.27) for (ns,ny) =
(2,0), (2,2) and (0,2), respectively. Also, ¢cp = —0.051. The mixed two—loop
contribution to the RG evolution is o< (n5 — n19) and is not negligible. Thus there
is no simple relation between the ¢’s for different values of ns and n;y. From
Eqns. (6.2) and (6.1) it is clear that to keep m% fine tuned at less than 1%
(A < 100) in each of the bare parameters, then the following must hold : p<
460 GeV; M305300 GeV; my, ,5.87 TeV; ms ;516 TeV; and myg,; 510 TeV, for

(ns,n10) = (2,2). The fine tuning of the Z mass with respect to the heavy scalars
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is discussed in [96]. Finally, for other values of these parameters the fine tuning

increases as A = 100 x m?/m2, where 7y is the value of 7 that gives A = 100.
As in section 6.3, Eqns.(6.20) are rewritten in terms of m2, = m, + cpY¥; Dys.
This is equivalent to setting Dy, = 0 in Eqns.(6.20), and relabeling mf’o — m;{o.
In what follows, the positivity analysis is used to constrain Th?,o- Since ¢p is small
and Dy, ~ O(m?), the difference between 77, and mZ, is small. To simplify the

notation, in the remainder of this section the tilde is removed from 7.

2

m and

As was also discussed in section 6.3, some relations between m%,m
m3;, o are needed to obtain a constraint from Eqn.(6.20), using mZ(ug) > 0
and m%c (ug) > 0. Both model-dependent and model-independent constraints
on the initial values of the stop masses are discussed next. The outline of the rest
of this section is as follows. First, universal boundary conditioﬁs are assumed.
These results are presented in Figure 6.5. Model-independent constraints are ob-
tained by the following. Assume that m% , = 0 and choose A;¢ to maximize
the value of the stop masses at the weak scale. These results are presented in
Figure 6.6. It is further argued that these constraints represent minimum con-
straints as long as mi,u’o > 0. To obtain another set of model independent con-
straints, the electroweak symmetry breaking relation is used to eliminate m%,u’o in
favor of p. Then the positivity limits for different values of i/Mg are presented,
where 2 = p? + 1m%, and assume that m}, o = 0 to minimize the value of y

% These limits are model-independent and are presented in Figure 6.7, for the

9Strictly speaking, this last assumption is unnecessary. . Only the combination i% = % —




case ns = nyp = 2. These analyses are then combined with the limits on Mg
obtained from Amg. This section then concludes with some discussion about the
anomalous D—-term solutions to the flavor problem.

First universal boundary conditions are considered for the stop and Higgs

: 2 2 o2 =2
masses. That is, assume that Miy = Mgy = My, o = M. Figure 6.5 plots

for fan 8 = 2.2 the minimum value ‘of mo/Ms required to maintain mi(ug) > 0
and mtgc (ue) > 0. This value of tan 8 corresponds to A(Mgyr) = .88, in the
case that (n5;n10) = (2,0). For comparison, the results gotten assuming \; = 0
may be found in Ref.[97]. For ns = nyo = 2, note from figure 6.5 that if Mg =
20 TeV and the gaugino masses are small, the limit on the stop mass is mz g >
6.2 TeV. This limit is weakened to 6 TeV if M;3,< 300 GeV is allowed. Even in
this case, this large initial stop mass requires a fine tuning that in this case is
A ~ (6 TeV)?/m2 ~ 4200, i.e. a fine tuning of <1073 is needed to obtain the
correct Z mass. |

Next assume m}; o = 0 and choose the initial value of A to mazimize the
value of m (ug). The values of mf, and m ; are chosen such that m#(ug) > 0
and mZ(pg) > 0. Note that in this case the cons(traint is weaker because the ),
contribution to the RG evolution of the stop masses is less negative. These results
are plotted in Figure 6.6.

This case is discussed in some more detail to argue that the minimum value

m};, o/ tan® B appears in the analysis. Thus for m%, , # O the results are unchanged if the

replacement § — iy is made.
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of mg, o obtained in this way will be valid for all m}_ > 0 and all A;p. Eliminate

the A, term by choosing A,y = kM3 such that the A, contributions to mt?i (ug)
is maximized. Other choices for A;¢ require larger values for m%i o, o maintain
mZ {pg) = 0. The value of k is determined by the following. A general expression

for the value of the soft masses of the stops at the weak scale is
mtg(,ug) = —CI,A?,O + bAt,oM;;,o + CM:?’O +---, (621)

m (uc) = —2a A2y + 2bA1 oMo + dMzg + -+, (6.22)

with a, ¢ and d positive. The maximum value of mtgi (ug) is obtained by choosing

Aso = bM30/2a. The value of the stops masses at this choice of A, are

b2
mtg(ug) = (C + zl—a)Mngo + .-y (623)
2 b2 2
M () = (d+ 2E)M3’0 + - (6.24)

An inspection of Eqn.(6.20) gives b = 0.068 and a = 0.021 for tan § = 2.2. In this
case the “best” value for A,y is Afo ~ 1.6M34. It then follows that the quantity
b%/4a = 0.055 is a sméll correction to the coefficient of the gaugino contribution
in Eqn.(6.20). Thus the difference between the minimum initial stop masses for
App = 0 and A;o= Af, is small. Next assume that m}, , = 0. Requiring that

both m2(ug) = 0 and mZ(ue) = 0 determines a minimum value for m;{o and

mZ . Now since the mj_, contribution to both the stop soft masses is negative
(see Eqn.(6.20)), the minimum values for mtzi,0 found by the preceding procedure

are also minimum values if any m%;, ; > 0 is allowed.
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So for all A4 and all quu,o > 0, the limits presented in Figure 6.6 represent
lower limits on the initial stop masses if it is required that the soft masses remain
positive at the weak scale. Further, the limits in this case are quite strong. For
example, Figure 6.6 implies that if Mg ~ 20 TeV and M35 ~ 200 GeV (so that
M3 0/Mg ~1072), then the initial stop masses must be greater than 3.5 TeV in the
case that (ns,n10) = (2,2). The results are stronger in a more realistic scenario,
i.e. my, o > 0. If, for example, m¥, o ~ mZ /9 the constraints are larger by only
a few percent. In the case thét MYy, 0 = Mi o = mi,, presented in Figure 6.5,
however, the constraint on the initial £° mass increases by almost a factor of two.

So far relation between m%,  and mZ. ; has been assumed in order to obtain
constraints on the initial stop masses; e.g., m}, o = 0 or m¥, o = mi . Perhaps
a better approach is to use the EWSB relation, Eqn.(6.2), to eliminate m%_, in
favor of p2. This has the advantage of being model-independent. It is also a
useful reorganization of iﬁdependent parameters since the amount of fine tuning
required to obtain the correct Z mass increases as p is increased. To obtain some
limits %, , = 0 is chosen '° to minimize the value of y?, and m3}; , is required
to be positive. The minimum value of m; g /M s and m; o/Ms for different choices
of i/Ms are gotten by solving mZ (ug) = 0 and mtg(ug) = 0. These results are
presented in figure 6.7. In this figure the positivity constraints terminate at that

value of M3 which gives m}, ;= 0.

As discussed in the above, reducing the value of m?%_ o decreases the positivity

10This assumption is unnecessary. See the previous footnote.
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limit on m;, 5. Consequently the fine tuning of m2 with respect to mt?i o 1s also
reduced. But using Eqns.(6.20) and (6.2), it can be seen that decreasing mj; ,
while keeping mtgc (ug) = 0 and mtg(ug) = 0 results in a larger g, thus increasing

the fine tuning with respect to pu. This can also be seen from figure 6.7. It is

found, for example, that if Msq/Mg ~ 0.01, the small value ji/Mg = 0.01 requires

mg, o/Ms ~ 0.25. For Mg = 10 TeV, this corresponds to p ~ 100 GeV and
my, o > 2.5 TeV. A further inspection of figure 6.7 shows that for the same value
of Ms/Ms, a value of m;o/Mg = 0.17 is allowed (gotten by decreasing m; ;)
only if i/Mg is increased to 0.14. This corresponds to p = 1.4 TeV for Mg = 10
TeV; this implies that A(m%; u) ~ 930. Thus the limit on the initial stop masses
caﬁ only be decreased at the expense of increasing u.

Finally, the limits become weaker if quu,o < 0. This possibility is theoretically
unattractive on two accounts. Firstly, a nice feature of supersymmetric extensions
to the SM is that the dynamics of the model, through the presence of the large
top quark Yukawa coupling, naturally leads to the breaking of the electroweak
symmetry[86]. This is lost if electroweak symmetry breaking is already present at
the tree-level. Secondly, the fine tuning required to obtain the correct Z mass is
increased. Figure 6.7 implies that while reducing m%, , below zero does reduce
the limit on the initial stop masses, the value of u increases beyond the values
quoted in the previous paragraph, thus fufther increasing the fine tuning of the Z
mass. This scenario is not discussed any further.

Next the positivity analysis of this section is combined with the results of
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section 6.2 to place lower limits on the soft scalar masses. For given values of
011, OrR, @ minimum value of Mg, Mg nmin, is found using the results of section 6.2.
This is combined with the positivity analysis in Figure 6.6, to produce the results
shown in Figure 6.8. Also shown are other limits gotten by assuming m%u’o = mtgc’o.
These results are presented in Figure 6.9. Figure 6.10 also presents the stop mass
limits for different values of y, restricted to m%, o > 0 and for v/8;.0rg = 0.04.
In all cases the heavy scalars were decoupled at Mg, rather than 50 TeV, and
so the positivity analysis was repeated. The value of A, was chosen to maximize
the value of the stop masses at the weak scale. For completeness, the results
for the cases (ns,n10) = (2,0) and (0,2) and m3;, o = 0 are presented in Figure
6.11. To repeat: the minimﬁm allowable values for the stop masses consistent with
m3;, o > 0, gotten by setting m%, , = 0, are given in Figures 6.8 and 6.11.

Next some consequences of this numerical analysis are discussed. Only the
case ns = nyp = 2 is considered, since this is the relevant case to consider if
the supersymmetric flavor problem is efqplained by decoupling the heavy scalars.
Other choices‘ for ns and myo require additional physics to‘explain the required
dege.eracy or alignment of any light non-third generation scalars. From Figures
6.8 and 6.9 it is seen that for v/0..0rr = 0.22 and Mo < 1 TeV, mg, (7 TeV
is required. If instead both A(m%; M2) and A(m%; M3,) are restricted to be less
than 100, then Ms< 10 TeV and M3,< 300 GeV is required. To not be excluded

by Amg, further require that +/8;,0rr<0.06. For this value of /d;.0pr = 0.06,

a minimum value for m;, of ~1.5—2.5 TeV is gotten by rescaling the results in
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figures 6.8 and 6.9 for v/8.,6rr = 0.04 by an amount 0.06/0.04. The range depends
on the value of m},_;, with the lower (upper) limit corresponding to m} 4 = 0
(mi. 5). Thus A(m%;m ) ~ 400 — 800. This fine tuning can be reduced only by
either increasing M3, — which increases A(m%, M3 o) beyond 100 — or by reducing
Mg — which requires a smaller value for v/3,.0rg. So unless \/3zroLL is naturally
small, decoupling the heavy scalars does not provide a natural solution to the -
flavor problem.

This section concludes by discussing the constraint this analysis implies for
those models which generate a split mass spectrum between different generations
through the D—term contributions of the anomalous U(1) gauge symmetry[91, 95,
94]. In the model of set D of [94], there are two 5s at 7 TeV and 6.1 TeV and two
10s at 6.1 and 4.9 TeV, respectively, so that Amg is suppressed. These values
must be increased by a factor of 2.5 to correct for the QCD enhancement of the
SUSY confribution to Amg, as discussed in section 6.2. To obtain a conservative
bound on the initial stop masses from the positivity requirement, first assume
that all the heavy scalars have a common mass Ms = 2.5 x 5TeV= 12.5 TeV.
(It would have been 5 TeV without the QCD correction.) Then assuming a weak
scale value of the gluino mass that is less than 710 GeV and setting m¥ o = 0
(}n%cyo), Figure 6.6 (6.5) implies that m;, > 2.1 (3.6) TeV is required. This leads to
A(mZ; mi) > 580 (1700). To obtain a better bound, the analysis is repeated using
nsm+3nyom?, = ((7 TeV)?+(6.1 TeV)2+3x (6.1 TeV)?+3x (4.9 TeV)?) x (2.5)2.

It is possible to do this since only this combination appears in the RG analysis
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Figure 6.8: Limits for m;y and mg 5, mee, and mjy from the requirement that the
masses squared are positive at the weak scale while suppressing Ampg. It was
assumed that Msysy = Mgyr, tan8 = 2.2 and that mj; o = 0. The value of
Ao was chosen to maximize the value of the stop soft masses at the weak scale.
The heavy scalars were decoupled at the minimum value allowed by Ampg. The

regions below the lines are excluded.
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Figure 6.9: Limits for m;, and mg  from the requirement that the stop masses
squared are positive at the weak scale while suppressing Amy. It was assumed
. that Mgysy = Mgyr, tan 8 = 2.2 and that m3 , = mtgc’o. The value of A;, was
chosen to maximize the valu_é of the stop soft masses at the weak scale. The heavy
‘ scaiars were decoupled at the minimum value allowed by Amg. The regions below

the lines are excluded.
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The heavy scalars were decoupled at the minimum value allowed by Ampg. The

regions below the lines are excluded.
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value allowed by Amy. The regions below the lines are excluded.
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for (ns,n10) = (2,2). It is found (assuming m3_ o, = 0 and the gluino mass at
the weak scale is less than 710 GeV) that m;, < 2.4 TeV. In the model of [95],
O0rr =~ O0r1, =~ 0.01. To obtain a limit on the initial stop masses, use the bound
obtained from either Figures 6.8 or 6.9 for dgrr = dr1 =~ 0.04, and divide the limit
by a factor of 4. By inspecting these Figures it is seen that this model is only
weakly constrained, even if m3; o ~ mfo Next the limits in this model when
O(1) CP violating phases are present is discussed. To obtain the minimum value
of My in this case, the minimum value of Mg obtained from the Amg constraint
for 6p;, = drr = 0.04 should be multiplied by 12.5/4; dividing by 4 gives the result
for é;;, = dgrr = 0.01, and multiplying by 12.5 gives the constraint on Mg from
€. The result is Mg 23 TeV. Next, assume that M3z, is less than 300 GeV, so
that the value of the gluino mass at the weak scale is less than 710 GeV. This
gives M3o/Mgs < 0.013. Using these values of M3, and Mg, an inspection of
Figures 6.5 and 6.6 implies that m;, must be larger than 3.9 TeV to 6.9 TeV,
depending on the value of m};_,. This gives A(m%; mfy) > 2000. In the model of
[91], M3,0/Ms ~ 0.01 and mj,/Ms ~ 0.1. Inspecting Figuies 6.5 and 6.6 implies
that these values are excluded for (ns,n10) = (2,2) and (0,2). The case (2,0) is
marginally allowed. The model of [91] with (ns,n19) = (2,2) and A; = 0 was also

excluded by the analysis of Ref.[97].

6.5 Using Finetuning to Constrain ¢

In this section, the messenger scale, Mgysy, is varied between the GUT scale
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and a low scale ~ 50 TeV, and the bound‘ary values of the stop and gluino masses
are restricted so that EWSB is not fine tuned. This gives us an upper limit to &
if both positivity of the stop mass squareds at the weak scale and suppression of
Ampg is imposed. In other words, values for (8, Msysy) are determined which sat-
isfy the following requirements: 1. Suppression of the SUSY contribﬁtion to Amg
by making the mass of the first two generation scalars, Mg, large. 2. Positivity
of the stop masses squared and 3. Fine tuning in electroweak symmetry breaking
does not exceed 1% or 10% (i.e., both A(m%, mi ) and A(m3, M3,) are smaller
than either 100 or 10).

An upper limit to ¢ satisfying the above requirements is obtained as follows.
For a given Mgysy compute, using Eqns.(6.1) and (6.2), the boundary values of
the stop mass, Mg ,q,, and the gluino mass, Mg,,,;az, such that both A(m%,m?)

and A(m%, M3,) are equal to some maximum value A,,,, which is chosen to be

100 or 10. ' Substituting these values of the bare stop'? and gluino masses into

In computing the A’s, tan 3, in addition to m}; (mz), should be regarded as a function of
the bare parameters. However, this additional contribution to the A’s is small for tan 3 22
and also makes the magnitude of A larger. This dependence which is a conservative choice is

neglected.

12G¢trictly speaking, we should translate the upper bound on mtgA o into an upper bound on rhtg o

using ﬁz% 0= mf o T ¢epY;, Dy + Y;,(p, i.e., to that combination appearing in the positivity
2

£ 0 This is reasonable,

constraint. Instead, we use the same bound for both m and ﬁz?

o
since ¢p is generally small (£0.05), and Dy, ~ O(m?). In any case, this effect is in the

opposite direction for ¢ and °. In the case that (p # 0, a slightly larger (O(30%)) value for

é may be allowed as compared to {(p = 0. This is because if {p < 0, the maximum value

213




the expression for the weak-scale value of the stop mass squared, determines the
maximum value of Mg, Mg mae, such that the stop masses squared at the weak
scale are positive. Using this value for Mg and the analysis described in section
6.2.1, an upper limit to é is obtained from the Amyg constraint. This value of
6 and Mgysy then satisfies the above—mentioned three requirements. This can
be seen as follows. For the given Mgygy, if 6 is larger than this limit, then to
suppress Amg, Mg has to be larger than Mg ... But, then to keep the stop
masses squared positive at the weak scale, the boundary value of either the stop
or the gluino mass has to increase beyond m; ., Or M3 mq. respectively, leading
‘to A(m%,mi) or A(mF, z/[g,o) larger than Ay, i.e., increasing the fine tuning
in EWSB.

In Figures 6.12 are shown the limits on \/d..,0rr as a function of Mgysy for

the case (ns = 2,10 = 2). In the top of figure 6.12, m%,_, = 0 is assumed. GMSB

relations between the stop and Higgs masses are assumed in the bottom of Figure

for mZ, , is larger than m? . This, in turn, allows for a larger value of Ms, and hence .

Naturalness considerations limit |(p|, though. The EWSB relation for m%, Eqn.(6.2), contains

a term linear in (p. Requiring that A(m%, (p) < 100 implies that |(p|<¢D,maz = (900 GeV)2.

2

Thus for a high scale of supersymmetry breaking, the upper bound on 7,

may be increased

to m2, , ~ m? while maintaining A(mzz,m;é’s o) = A(m, (p) = 100.

2 J 5?2
0 t,maz + 3CD,maz ~ i*lrnt_Y

max’

This roughly translates into an increase of ~ 1/5/3 = 1.3 in the limit to §. The actual limit will
be smaller, since with this choice of sign for (p, the positivity constraint for the left-handed stop

is now stronger. It is thus reasonable to require that the maximum value of ﬁz% o be comparable

2

to ms .
t;,maz
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6.12. For both cases, A,z = 100, tan 8 = 2.2 and 10 are considered. For.other
choices for Ayqz, the upper limit to ¢ roughly scales as \/m, since both
Mi mazs M3,mez and therefore Mg mq, scale as v/Apag.

In the case of GMSB mass relations, the boundary value of the Higgs mass and
the stop masses are comparable for high Mgysy. Since m"},mo results in a negative
contribution to the stop mass squared, this tends to reduce the stop mass squared
at the weak scale as compared to the case m% , = 0. Then, from the above
analysis, it is possible to see that Mg 4, and, in turn, the limit on ¢ is smaller
for the GMSB case as compared to the case m};, , = 0. This can be seen by
comparing the top and bottom of Figure 6.12.

In Figure 6.13 the limits on dgrg and dy; for (ns = 2,n9 = 0) and (ns =
0,n10 = 2) are shown, respectively. Here m%,u,o = 0 is assumed and tan 8 = 2.2
and 10 are considered. If A,,,; is chosen to be 100, then a constraint on § (& < 0.5)
is obtained only for high values of Msysy. So, instead A4 is chosen to be 10.

Further numerical computations for tan # = 10 determine that the limits on
the bounciary value of the stop mass from requiring positivity of the mass squared
at the weak scale do not differ by more than a few percent from the case tan § = 2.2
(for the same values of the gluino and heavy scalar masses). However, the fine
tuning of EWSB for the same gluino and stop mass is smaller for tan 3 = 10 as
chpared to tan 8 = 2.2. This is because, for tan 8 = 10, ); is smaller than in the
case tan 8 = 2.2. Hence the sensitivity of the weak scale value of m%;_ to m%o and

M3 is smaller. Also, the tan? 8/(tan? 8— 1) factor in Eqn.(6.2) is smaller, further
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reducing the sensitivity of mQZ to mtgO and M3g. In other words, for tan 8 = 10,
M oy 30d M3 o, are larger so that Mg .. and, in turn, the limit on ¢ is larger.

This can be seen in Figures 6.12 and 6.13.

6.6 Summary

This chapter has studied whether the SUSY flavor problem can be solved by
making the scalars of the first and second generations heavy, with masses Mg
(Rfew TeV), without destabilizing the weak scale. If the scale, Msysy, at which
SUSY breaking is mediated to the SM scalars is close to the GUT scale, then
the heavy scalars drive the light scalar (in particular the stop) mass squareds
negative through two-loop RG evolution. In order to keep the mass squareds at
the weak scale positi‘ve, the initial value of the stop (and other light scalar) soft
masses, M, o, must typically be R 1 TeV, leading to fine tuning in EWSB. Two
new effects are included in this analysis: the effect of A; in the RGEs which makes
the stop mass squareds at the weak scale more negative and hence makes the
constraint on the initial value stronger, and the QCD corrections to the SUSY
box diagrams which contribute to K — K mixing.

Some results of the analysis for Msysy = Mgyt can be summarized as follows.
The gluino mass (at the weak scale) is restricted to be less than about 710 GeV,
so that the fine tuning of m% with respect to the bare gluino mass, Ms,, is not
worse than 1%. This requires that Mz,<300 GeV. Also assume that m};, o = 0 to

maximize the value of the stop masses at the weak scale. Then for \/d;0grg = 0.22,
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Figure 6.12: Maximum value for (8;.,0rz)'/? that is consistent with A(m%, M3,) <

100, A(mzz,mtg,o) < 100 and (Amg)susy < (Amg)erp- Two boundary conditions
are considered: m}_, = 0 (top) and gauge-mediated relations (bottom). Two
values for tan 3 are consiciered. The value of A;y was chosen to maximize the

value of the stop masses at the weak scale.
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10, A(m%,m?,) < 10 and (Amg)sysy < (AMk)egp. It was assumed that m¥;, , =
0. Two values for tan § are considered. The value of Ay was chosen to maximize

the value of the stop masses at the weak scale.
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Mg > 40 TeV is required to be consistent with Amg. With these assumptions, this
implies that for M3 less than 1 TeV, mg, o > 6.5 TeV is needed to not break color
and charge at the weak scale. Even for v/8..0gr = 0.04, it is found that Mg < 7
TeV is needed. This implies that m;, > 1 TeV is required if M;p < 300 GeV.
This results in a fine tuning of ~ 1%. For é;; = 1 and dxg = 0, it is found that
Mg X 30 TeV and myo > 4.5 TeV. For 6L, = 0.22 and dgg = 0, M5 R 7 TeV and
mio > 1 TeV are found. For dr; = 0 and 6rr = 1, M5 R 30 TeV and Mie g > 2.5
TeV are found. The constraints are weaker for smaller values of 4. In a realistic
model, m¥, , might be comparable to mtg’ﬂ and the constraints on mg, in this case
are stronger. This is also discussed. It is noted that independent of the constraint
from K — K mixing, this analysis can be used to check the phenomenological
viability of any model that has heavy scalars. The phenomenological viability of
the anomalous D—term solution is also discussed, and is found to be problematic.

The possibility that Msysy = Mg was also considered. In this case, there is
no RG log enhancement of the negative contribution of the heavy scalar masses
to the light scalar masses. For this case, the finite parts of the two-loop diagrams
are computed and used as estimates of the two-loop contribution of the heavy
scalars to the light scalar soft mass squareds. These results are combined with the
constraints from K — K mixing to obtain lower limits on the boundary values of
the stops. As an example, gauge-mediated SUSY breaking boundary conditions
were assumed for the light scalars. If ns # nig ther one of the selectron masses,

rather than the stop masses, provides the stronger constraint on mg, ; once gauge-
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mediated boundary conditions are used to relate mg: o and mj , to mg, 5. Some of
the results can be summarized as follows. The gluino mass at the weak scale is
restricted to be less than about 2.3 TeV, again to avoid moré than 1% fine tuning
of m% with respect to the gluino mass. For v/8,.0gg = .22 it is found that mg, 4 >
1.4TeVis reqﬁired. The fine tuning of mZ with respect to the stop mass is ~ 1.5%
in this case. For the cases ;7 = 0 and 6grg = 1, and 677, = 1 and dgr = 0 it
is found that m;, R 1 TeV. As before, the constraints on my o for smaller values
of § are weaker than ~ 1 TeV. Again, the constraints in an actual model of this
low—energy supefsymmetry breaking scenario could be different, and the results
discussed here should be treated as estimates only. The CP violating constraints
from e are also discussed, and find that these limits increase by a factor of ~ 12 if
O(1) phases are present.

Finally, in section 6.5 the scale of supersymmetry breaking is varied between
50 TeV and 2 x 10'® GeV. Uppers bounds to J, that are consistent with positivity
of the light scalar masses, naturalness in electroweak symmetry breaking, and

(Am K)ezp,. are obtained. These results are summarized in Figures 6.12 and 6.13.
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Chapter 7

Dynamically Generating the Grand Unification

Scale

Two models which generate the supersymmetric Grand Unification Scale from
the strong dynamics of an additional gauge group are pre_sénted. The particle
content is chosen such that this group confines with chiral symmetry breaking.
Fields that are usually introduced to break the Grand Unified group appear in-
stead as composite degrees of freedom and can acquire vacuum expectation values
due to the confining dynamics. The models impiement known solutions to the
doublet-triplet splitting problem. The SO(10) model only requires one higher di-
mensional representation, an adjoint. The dangerous colored Higgsino-mediated
proton decay operator is naturally suppressed in this model to a phenomenologi-
cally interesting level. Neither model requires the presence of gauge singlets. Both

models are only technically natural.

7.1 Introduction

One of the most beautiful ideas for physics beyond the Standard Model (SM) is

the idea [13] that the gaﬁge groups of the Standard Model (SM) unify into a single
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gauge group, the Grand Unified Theory (GUT). This would provide some common
understanding for the diversity of particle content and parameters that constitute
the Standard Model. That one generation of fermions can be accommodated
by a single 16 of SO(10) is too remarkable to be a coincidence! More indirect
evidence for this framework is provided by the precision electroweak data. These
suggest that the gauge couplings of the Standard Model unify at a high energy
scale. In fact, a very good agreement with the data is obtained if softly—broken
supersymmetry is realized close to the weak scale.

This naturally leads to a consideration of supersymmetric GUTs [65]. The scale
of supersymmetric unification inferred from the data is Meoyr ~ 2 x 1016 GeV.
Above this scale Nature may be described by a supersymmetric GUT. The value of
this scale given by the data does not appear to be directly related to any other mass
scale in Nature. The closest scale is the reduced Planck mass, M = 1/ V871G,
which is about a factor of 100 larger than the GUT scale. Most attempts at
supersymmetric model building remain agnostic about the origin of the GUT
scale, and simply put into the theory by hand both the scale and pattern of
symmu.try breaking. While this is technically natural in supersymmetric theories,
it completely avoids the issues of the origin of the GUT symmetry breaking and
the small value of Mgyr/M. This issue is particularly relevant if the scale M
is representative of a fundamental scale of new physics. If this is the case, then
the small value of the supersymmetric Grand Unification scale compared to the

Planck scale is perplexing.
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Some of these issues can be addressed by applying some of the recent de-
velopments in the strong dynamics of supersymmetric gauge theories [107]. In
particular, the strong dynamics of an additional gauge group that confines with
chiral symmetry breaking at a scale close to the GUT scale is considered. The
idea of using strong dynamics to generate the supersymmetric GUT scale has only
recently been explored [108, 109, 110]. This was first explored in Reference [108],
where a dynamically generated superpotential with a runaway behavior is used
to generate Mgyr/M. In Reference [110] the confining dynamics without chiral
symmetry breaking is used in a novel manner to solve the doublet-triplet splitting
problem. I.n that model though, a large top quark Yukawa coupling is only possi-
ble if the unification scale is uncomfortably close to the Planck scale. In Reference
[109] the quantum confinement with chiral symmetry breaking is used to generate
the GUT scale.

The idea of using strong supersymmetric dynamics to generate ratios of sym-
metry breaking scales has also been applied to flavor symmetries [111, 112]. The
ﬁrst.phenomenological application of quantum confinement with chiral symmetry
breaking in this context is given in Reference [112].

The Qutline of this chapter is as follows. Section 6.2 describes some features
that are common to the models presented in section 6.3 and 6.4. Section 6.3 in-
troduces a model with an SU(6) GUT group. Section 6.4 introduces the preferred

model which has an SO(10) GUT group.
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7.2 Overview .

In the models presented in this chapter an extra gauge group G is introduced
and assumed to become strong at a scale A ~ Mgyr. The particle content of G is
chosen so that it confines with chiral symmetry breaking. This sector of the theory
Will be called the ‘confining sector’. By identifying the GUT group, Ggyr, with
a global symmetry of the confining sector, the composite fields of the confining
sector are charged under the GUT group. For example, in the first model presented
below, an adjoint of SU(6)gyr is composite. In the second model, a symmetric and
antisymmetric tensor of SO(10)gyr is composite. This differs from the model of
Reference [109], where the confining sector in that model does not contain particles
charged under the GUT group. Below the scale of confinement, some of the
composite fields will acquire vacuum expectation values (vevs) as a consequence
of the dynamics of confinement. In the models presented here there is a discrete
set of supersymmetric vacua. In one of these vacua the vevs of the composite fields
break the GUT group; this together with some superpotential interactions lead to
a phenomenologically acceptable vacuum. The small value of Mgyr/Mpy, is then
understood as naturally arising from the dimensional transmutation of the small
gauge coupling of G¢ at the Planck scale.

The simplest example of a supersymmetric gauge theory that exhibits con-
finement with chiral symmetry breaking is SU(N) with N flavors Q + @ and no

superpotential [107]. This will be the model for the confining sector. It is con-
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jectured that below the scale of strong dynamics, A, of the SU(N) group, the
appropriate degrees of freedom are the confined “baryons” B, B, and “mesons”

M of the SU(N) group, where

M ~QlQ¢ ~ @0, 0) (7.1)
B~ egay@ - Q8 ~ (1,1, 1) (7.2)
—Bweal...aN—ill...Q‘ifv ~ (1,1, —1). (7.3)

The charges of the baryons and mesons under the global SU{N)x SU(N)xU(1) g
are indicated in parentheses. The space of supersymmetric vacua for the baryons

and mesons is described by {107]
det M — BB = A*. - (7.4)

The left-hand side of this equation vanishes at the classical level as a consequence
of the Bose statistics of the superfields @ and . Quantum corrections result
in a non-vanishing value for the right-hand side. The important point is that
along the supersymmetric vacua, some of the confined fields necessarily acquire
vevs, breaking the global symmetry down to a subgroup. This conjecture satisfies
two nontrivial consistency tests [107]: holomorphic decoupling of one flavor; and
t"Hooft anoma.ly matching of the unbroken global symmetries.

In this chapter a diagénal subgroup of the global symmetry of the confining
sector is gauged and identified with the GUT group. The mesons of the confining

sector therefore transform under the GUT group. It will be assumed that the
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weakly gauging of a global symmetry of the confining sector does not affect the
confining dynamics of G¢, anc\i does not ruin the quantum modification with chiral
symmetry breaking. This is a reasonable assumption since the GUT group is
weakly gauged at the scale A ~ Mgyr ~2x10'® GeV.

Perhaps the most difficult problem in GUT model building is the origin of the
doublet—triplét mass splitting. The excellent agreement between the measured and
theoretically predicted value of sin? § assumes that the particle content below
the unification scale contains the (supersymmetric) SM chiral matter content plus
two electroweak Higgs doublets. In a minimal SU(5) GUT, the Higgs fields fit
into a 5 and 5 of SU (5) The presence of the remaining particle content of these
representations-the two colored Higgs triplets— much further than a few decades
below the GUT scale completely ruins this agreement. More generally, requiring
that there exists one large split SU(5) representation is a strong constraint on
model building. The models presented in this chapter implement two known
solutions to this problem: the Higgs as “pseudo-Goldstone bosons” {113] and
the “Dimopoulos-Wilzcek” [114] missing vevs mechanism. The latter solution is
implemented in an SO(10) GUT gauge group, whereas the former is based upon
an SU(6) GUT group.

In the models presented here the quantum confinement is therefore not directly
responsible for the doublet-triplet splitting. The structure outlined above must
be supplemented with a non-vanishing superpotential in order to implement the

doublet-triplet splitting. A non-vanishing superpotential must be added in any
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case: a generic point on the quantum modified constraint breaks SU(N) x U(1) pr
down to U(1)N~1. This provides too much symmetry breaking. A point that only
breaks to a larger subgroup is therefore an enhanced symmetry point, correspénd-
ing to a particular choice of the vevs of M and B. At the enhanced symmetry
point, there are many massless particles in addition to the Nambu-Goldstone Vmul—
tiplets. These correspond to the would-be Goldstone bosons of the more generic
symmetry breaking pattern, and at the enhanced symmetry point, transform as ad-
joints under the unbroken gauge group. These particles must acquire rma,sses from
additional superpotential interactions. These superpotential interactions then ex-
plicitly break the global symmetry of the confining sector down to Geyr x U(1) 5.

It is then a concern whether the presence of this superpotential might destabi-
lize the confinement and chiral symmetry breaking. The form of the superpotential
for the fundamental fields of the group G¢, @, @, and any fields 15; not charged

under G, in the two models presented here is

W =We(Q,Q, ¥ar) + War(¥ur)- (7.5)

The superpotential W¢ involving the confining fields will by fiat contain only
non-renormalizable operators, suppressed by a scale assumed to be either the
Planck mass or reduced Planck mass. If confinement occurs, the coefficient ¢ of
an operator with mass dimension d in the low-energy theory that arose from an

operator with N (QQ)s in the high energy theory is expected to be

c~Ax AN/ MV (7.6)
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where A is a constant that is expected to be of order unity. For the models
considered below, d = —1,0 or 1, N is 1 or 2, and N — d is positive. Since
these coefficients are suppressed by powers of A/M, the presence of these terms in
the superpotential is a small perturbation to the quantum confinement. It is then
reasonable to expect that these operators do not destroy the quantum conﬁnemént
with chiral symmetry breaking. This assumption will be made for the remainder
of the chapter.

In the usual GUT model building framework, the unification of the gauge cou-
plings can be significantly affected by the presence of M~! suppressed operators
[115]. In an SU(5) model, for example, the gauge field-strength tensor F' can
have non-renormalizable interactions with an adjoint X. The operator ¢ FF/4M
results in a tree-level relative shift of the gauge couplings 1/g¢? that is approxi-
mately cMgyr/M. This translates into a shift in the low-energy value of sin 6%,
that for M/Mgyr = 20 is Asin63,(Mz) ~ tfew x ¢ x 107%. In the GUT mod-
els presented in this chapter, some of the higher dimensional‘representations are
composite. For the composite fields, the gravitational smearing operator arises
from a higher dimension operator in the fundamental theory. The coefficient of
this operator below the confinement scale then contains an additional suppres-
sion of A/M. This extra factor completely suppresses the smearing effect unless
the coefficient of the operator in the fundamental theory is unnaturally large—of
O(M/Mgyr)-and Mgyr/M is ~ 1/20. Non-composite higher dimensional fields

can contribute to the gravitational smearing. In the SO(10) model, it turns out
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that these contributions are completely negligible.

This section concludes with a discussion of some technical issues that occur
throughout the chapter. Implicit in the discussion that follows will be the assump-
tions that (global) supersymmetry is unbroken, and vthat the non-trivial Kihler
potential has a strictly positive definite Kahler metric [112].

Supersymmetric minima are found by looking for solutions to the F'—flatness
equations 0 = F; = 04, W for the confined and ), fields. This is rather naive,
since the vevs of the fields will typically be O(A) and the Kahler potential is
non-calculable for these field values. It is not clear then that the “baryons” and
“mesons” are the correct degrees of freedom. For the purposes of determining
the existence of supersymmetric vacua with a particular pattern of symmetry
breaking, however, the last assumption of the prévious paragraph is sufficient
[112]. With these assumptions, a supersymmetric vacuum found using a trivial
Kahler potential will rémain supersymmefric for the non-trivial K&hler potential.

The spectrum of the particle masses is also important for phenomenology. For
~ this, knowledge of the Kahler potential is required. Despite the absence of this
information, a few important points about the mass spectrum can be extracted
from the superpotent‘ial [112]. F;)r example, a particle that is massless (zéro eigen-
vector of F; ) in the case of a canonical Kéhler potential for the confined fields will
refnain massless in the case of a non—trivial Kahler pbtential. S_imilarly, a massive
particle in the trivial Kéhler potential will remain massive for a non—trivial Kahler

potential. So the mass spectrum computed by assuming a trivial Kahler potential
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will be used to check that the superpotential with a non-trivial Kahler poten-
tial results in superheavy masses to all the particles that should have superheavy
masses.

In the models presented here, the superpotential interactions that involve the
confining fields occur from higher dimension operators, so that after confinement
the superpotential coupling of those operators is A ~ A(A/M)" < A, with X ~
O(1). Particles that acquire their mass from these operators will then have masses
somewhat below the GUT scale. These masses remain uncalculable though, since
they should be computed at a scale that is comparable to the vev that is generating
the mass, which in this case is O(A).

The one-loop prediction for sin? @y, is modified by the presence of these light
states below the GUT scale since they do not in general form complete SU(5) rep-
resentations. An attempt at quantifying this correction is made by assuming that
the naive calculation—i.e. assuming a caLnonical Kéahler potential-of the spectrum
gives the correct mass spectrum to within a factor of a few (times unity), and
further, that the correction to sin?fy, from particles with masses much smaller
than tle confinement scale is well-approximated by the usual one-loop computa-
tion. The corrections from particles with masses near the confinement scale are
not calculable and not discussed.

Finally, in the two models presented here certain operators allowed by the
gauge symmetries of the theory must be absent from the superpotential in order

not to ruin the doublet-triplet splitting mechanisms. All the dangerous operators
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cannot be forbidden by any global symmetries, since some of them will have the
same quantum numbers as other operators that are required to be present in
the superpotential. If these models were only the effective theory of some more
fundamental field theory, then the dangerous operators could perhaps be generated
at the tree-level by integrating out some heavy particles at the scale M. In this
case however, the full theory above the Planck scale is not known and probably
not a field theory. It is then possible that the full theory could be responsible for
the absence of these dangerous operators, even though from the low-energy theory

they cannot be forbidden by any symmetries.

7.3 SU(6) x SU(6)

The gauge group is SU(6)c x SU(6)gyr where one factor of SU(6) is the
confining group G¢, and the other factor is the SM unified gauge group. Consider
six flavors, Q + Q of SU(6) that are also charged under the SU(6)gyr. Further,
introduce two Higgs fields H, H, and an adjoint ¥y that are charged under only

the SU(6)gyr. The particle content under SU(6)¢ x SU(6)gyr is then

Q ~ (6> 6)7
Q@ ~ (6, 6),

S
2
=
o

Sy~ (1, 35).
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The SU(6)c group is assumed to confine at a scale A ~ Mgyr with a quantum
modified constraint. In this case the confined “meson” MY ~ Q{QJ ~ 35+ 1 un-
der the SU(6) GUT symmetry. The “baryons” B ~ eQ® and B ~ 6@6 are singlets
under the SU(6)gyr group. No gauge singlets are fequired in the fundamental
theory.

The superpotential in terms of the fundamental fields is chosen to be

Wy = %Altr(Q@)z/M + MHHt(QQ)/M + Mr(2%QQ) /M + g(HH)trx% /M.

(7.7)
The scale M is assumed to be the reduced Planck mass ~2x10'® GeV. The trace
sumé over the SU(6)gyr indices. All the dimensionless parameters are assumed to
be of order unity. This superpotential contains the minimum number of interac-
tions necessary (as shown below) to successfully implement in the phenomenolog-
ically preferred vacuum the doublet—triplet splitting and give GUT scale masses
to all the other particles. A more general superpotential is allowed provided that:
(1) Only non-renormalizable operators involving @, @ are allowed. (2) To keep
the Higgs doublets light, the superpotential that only involves the 35s and the H,
H fields must preserve a SU(6) x SU(6) global symmetry [113]. The operators
H(QQ)"H and H(Xy)"H, for example, must be absent. (3) Supersymmetry is
not spontaneously broken.

After confinement occurs, the superpotential written in terms of the confined
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fields & ~ 35 and 0 ~ 1 , i.e. Qi QI ~ AX! + A6l /V/6, is

Wo = A(det(S+0/v6)— BB - AG) + %Z\lmrz? + %XQAJZ

FAMTELE + AsotrSy + (HH) (A0 + gtrS /M).
It is expected that
:\1,2 ~ MA/M, A3 ~ AsA/M, ;\4,5 ~ A/M (7.8)

as an estimate of the size of the couplinés in the confined description. The quan-
tuni modified constraint has been added using a Lagrange multiplier .A. This su-
perpotential contains all the non—perturbative (superpotential) information from
the strong SU(6)¢ dynamics. It is interesting that in this case a term in the
superpotential for QQ that generates a cubic term trE?® is not required. In most
supersymmetric GUT models, the cubic term is required to obtain a non-trivial
vacuum. In this case, it is the interaction A det(X+-0) from the quantum modified
constraint that balances the mass terms to obtain a non-trivial sﬁpersymmetric
vacuum.

The F—flatness equations are

det(Z + 0/V6) — BB = A°, (7.9)

0= Fz=AB, 0= Fg = AB, (7.10)
0 = Fz = (A30 + gtrX% /M) H, (7.11)
0= Fy = (\s0 + gtr2%, /M)H, (7.12)
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0=F,=XHH+ Ao + -% det(Z + 0/V6)tr(E + o/V6) "t + AstrE%,  (7.13)

- < 1
0=Fs = MAL+M(E% - gtrZ?V)

+Adet(T + o/ VE)(Z + o/VE) ™t - %tr(E +o/V6)Th), (7.14)

~ 1 ~ —
0= F):N = /\4(21\{2 — gtrENZ) + /\50’21\] + g(HH)EN/M (715)

In addition to the phenomenologically preferred vacuﬁm, these equations include
other discrete solutions. In some of these solutions SU(6)gyr is unbroken. For
example, a solution With o and A non-zero, and all other vevs equal to zero, exists.
So although the preferred vacuum is discrete, it is assumed that it was selected in
the early history of the universe. This could occur if, for example, the preferred
vacuum is a global minimum of the scalar potential after supersymmetry breaking
effects are included.

To break SU(6) down to the SM gauge group, it is assumed that *

() g \

0 ‘ 1
_ 0 1
H=H-= Vg s E(EN) = ’UE(UN) . (716)
0 1
0 -2
0 —

/ ?)

1H = H is required by SU(6)gur D—flatness.
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The vevs A, o, vg, vy and vy are the solutions to

0 = (Ao + 12gv% /M) vy, (7.17)
0 = (Aso + gv4 /M — dvs)un, - (7.18)
0= %AK(G - b) + :\lA’Ug - ;\4’012\,, (719)
AK e S 125
0= 2——%(2(1 +b) + A2Ao + Asvy + 122505, (7.20)

and for A # 0, det(E + 0/v6) = A®. The quantities a, b and K are defined to
bea! = vg+0/V6, b~ = —2vux +0/V6 and K = det(Z + 0/v6) =a~*b72 In
Appendix C it is demonstrated that a discrete solution exists with A ~ (A/M)A~3
and with all vevs non-zero and of O(A). Thus at this vacuum .the vevs of the baryon
fields are forced to the origin.

This vacuum implements the Higgs as “pseudo-Goldstone bosons” solution
to the doublet-triplet splitting problem [113]. This mechanism is now briefly
described. Firstly, the scalar potential for H, H and ¥, X has a U(6) x SU(6)
global symmetry. The U(6) acts on H and H, wheréas the SU(6) symmetry acts
on ¥ and Xy. For the vacuum in Eqn.(7.16), the global U(6) x SU(6) symmetry
 is broken Vto [SU(5)] x [SU(4) x SU(2) x U(1)] by the vevs of H, = and Sy. The
unbroken gauge group is then SU(3)¢ x SU(2) x U(1)y. The breaking of the
gauge symmetry results in 23 Nambu-Goldstone boson multiplets; the breaking of
the SU(6) x U(6) results in 27 Goldstone boson multiplets. So all but 4 of the

Goldstone bosons acquire mass of O(Mgyr) from the super-Higgs mechanism.
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To see that these four pseudo-Goldstone bosons carry the quantum number
chérges of two electroweak doublets, first note that under SU(4) x SU(2), 35 =
(4,2) + (4,2) + (15,1) + (1,3) + (1,1). Inspecting the vevs of ¥ and Zy, the
combination 953 = vgE+vxEy of the fields (4, 2), and of the fields (4,2),in X and
Y.n are the Goldstone bosons of the breaking of one global SU(6) symmetry. Since
SU(3)¢ is embedded in SU‘(4), these Goldstone bosons contain two electroweak
doublets. The Goldstone bosons of the SU(6) — SU(5) breaking are 5+5+1 of
SU(5), and also cont-ain two electroweak doublets. The combination 395 + vy H
of electroweak Higgs doublets are the fields eaten by the super-Higgs mechanism.
The orthogonal combination remain massless and are the two Higgs doublets of
the SM. The non-renormalization theorems of supersymmetry guarantee that these
fields remain massless to all orders in perturbation theory.

The fields in the adjoint (15,1) and (1,3) of both ¥ and Xy, as well as the
remaining combination of (4, 2), and of (4,2), in & and Xy orthogonal to £, do
not correspond to any broken generators and must acquire their masses from the
superpotential interactions. It is conveinent to express the SU(5) or SM charge
assignments of this particle content: one complete 24 and 5+5 of SU(5); 4 singlets;
and one (8,1,0) + (1,3,0) + (3,1,—1/3) + (3,1,1/3). A naive estimate for the
masses of the physical fields is obtained by computing the fermion mass matrix
assuming a canonical Kahler potential. The results are presented in Appendix C,
and are summarized here. All the fields have a mass m ~ A%?/M, a consequence

of the suppression of the superpotential couplings for the confined theory.
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These light fields affect the unification of the gauge couplings and may in
principle also mediate proton decay. The corrections to sin?fy are discussed
first. These corrections occur from two sources. There could be large threshold
corrections from the strong dynamics occuring at A. These are non—calculable
and will not be considered. The other is from the light states (8,1,0), (3,1,0),
(3,1,1/3) and (3,1, -1/3) which have a mass m ~ A%2/M . The correction to
sin? @y from these light states, using a naive one-loop running approximation
from Mgyt to their masses is

ln(MGUT/m)
In 200 ’

Asin? 8y = — = In Mgyr/m ~ —0.003 x ©(7.21)

om
The reason? for the small correction is that the shift in sin’ 6y is dominated by
the light (3,1,1/3) and (3,1,—1/3) states. This is because the shift from the
(8,1) and (1, 3) states almost cancel. Recall that a sufficient condition for the
prediction for sin?fy, to be unchanged by the presence of some extra matter at a
- scale m is that (6b; — dbs)/(0bs — 6b1) = (bs — b2)/(ba — b1), independent of m. For
an adjoint of SU(3) and SU(2) , ébs = 3, by = 2 and éb; = 0. In this case the
LHS of this condition is 1 and the RHS is 2 x 2, which is close to 1. The other light
states form approximate complete SU(5) representaﬁons and do not significantly
affect the gauge-coupling unification. The theoretical prediction without the light
| fields, sin® By ~ 233+ O(1073) [116], is a little larger than the measured value of
0.231[36]. The effect of these light states is to shift the prediction in the correct

direction. The uncertainty in the uncalculable corrections to sin® 8y, however, are

2The author thanks N. Arkani-Hamed for this observation.
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probably of the same order, with an unknown sign.
The problem of forbidding operators of the form O, ~ H(QQ)"H is discussed
next. These operators explicitly break the U(6) x SU(6) symmetry of the scalar

potential. Consequently, if these operators are present they could give too large of

a mass to the electroweak Higgs doublets. In this model, the term H HtrQQ occurs

in the superpotential. Any symmetry that allows this term also allows the term
H(QQ)H in the superpotential. This operator ruins the doublet-triplet splitting,
so it must be assumed that this term is absent. Higher dimensional operators
must also be forbidden. Since the confinement introduces additional suppressions
of O(A™/M"), only a few 0tj ;fhe first higher dimensional operators must be absent.
More concretely, requiring that O, not result in a mass for the Higgs superfields
that is larger than a TeV and assuming that A/Mpy ~ 1/200, implies that only
the first three (n =1,2 and 3) higher dimensional operators must be forbidden.
Operators of the type H(XZy)"H are also dangerous and must be absent.

At this point it is probably not clear what role the extra adjoint plays in this
model. In fact, this field is not needed to obtain an acceptable spectrum for
the massive fields. It is introduced instead to obtain a large top quark Yukawa
coupling. In order for the top quark not to have an irrelevant Yukawa coupling,
it is necessary that the Yukawa interactions between the top quark and the Higgs
doublet expliciﬂy break the global SU(6) x U(6) symmetry. The top quark must
therefore couple to both H and ¥. If X is composite, then such a coupling cannot

be of order unity; rather, it will be suppressed by A/M. The top quark must
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therefore interact with a fundamental x.

The large top quark Yukawa coupling arises from considering the following
embedding of the SM chiral fields [117] . The chiral matter content is one 20,
3 x 15 and 6 x 6. The SU(5) decomposition of these fields is, 20 = 10 + 10,
15 =10 + 5 and 6 = 5 + 1. The three 5s of the SM are contained in three of
the Bs, and the other 3, call them &, acquire mass at the GUT scale. The first
two generation 10s are contained in two of the 15s, and the third generation 10
is a linear combination of the 10 in the 20 and the 10 in the remaining 15 = 15;.

This spectrum is obtained from the superpotential [117]
Wiop = A205y20 + X'20H155 + A, H156;. (7.22)

The vev of H gives GUT-sized Dirac masses to the 5 and 5 fields in the 3 15s
and 3 6's. From the vevs of ¥ and H, a linear combination of the 10 in the
20 and the 10 in 153 acquires a GUT-sized Dirac mass with the 10 in the 20.
The orthogonal combination is the third generation 10 and remains masslesé. In
sum, this superpotential leaves 3 (10 + 5)s massless. The large top quark Yukawa
coupling arises froiﬁ the first two interactions.

The (3,1,1 /3) and (3,1,-1/3) ﬁeldsAhave a Dirac mass somewhat below the
GUT scale. Whether they may mediate proton decay at too large of a rate is
then a concern. Since the top guark couples to these fields through the 20X 520
interaction, it naively appears that a dangerous proton decay operator is generated

by integrating out these heavy fields, and then rotating the top quark to the mass
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basis. For this operator to be generated, however, a coupling of Xy or ¥ to a 5 of
SU(5) (6 of SU(6)) is required. Such a coupling is not present in the superpotential
of Eqn.(7.22). So this issue depends crucially on the origin of the other fermion
masses. For example, if all the fermion masses arise from interactions with H and
H, then a dangerous proton decay operator is not generated by the exchange of
these states [117].

An upper bound on M is determined by the value of the Landau pole of the
SU(6)cur gauge coupling. The SU(6) coupling at the scale M is then

43 7 :
-1 N
Usr(6)eur (M) = 24— Tr InA/m; — 5 In M/A. (7.23)

The first logarithm is the contribution to the GUT gauge coupling at the GUT
scale from the particle content with mass m; the second logarithm is the contribu-
tion of the full SU(6) particle content to the running of the gauge coupling above

A. Inserting m ~ A%/M and requiring that agy-(M) > 1 implies In M/A < 10.

7.4 SU(10) x SO(10)

The gauge group is SU(10)¢ x SO(10). The SU(10)¢ group is the confining
gauge group, and the Grand Unified group is SO(10). The particle vcontent is
Q ~ (10, 10),
Q ~ (70, 10),
A ~ (1, 45),

16 ~ (1, 16),




16 ~ (1, 16),
T, ~ (1, 10),

T, ~ (1, 10).

This particle content is rather economical as it requires only one higher dimensional
representation, an adjoint, and no gauge singlets ® . It is assumed that the SU(10)¢
group confines at a écale A ~ Mgyr with a quantum modified constraint. In this
case the confined “meson” M! ~ Q@) ~ 45+ 54 + 1 under the SO(10) GUT
symmetry. The fields are labeled S ~ 54, A” ~ 45 and 0 ~ 1. The “baryons”
B~ eQ® and B ~ 6@6 are singlets under the SO(10)gyr group.

The superpotential in the fundamental theory is chosen to be

W = MDA + MT(QQ)Te/M + Agiﬁ(@Q)Zlﬁ/M + \1616tr(QQ)/M

At (QQ)2/M + A AQQ)/M + A TB(QQ) 4sAT16/M?,  (7.24)

where X;; = [[';, I';]/44 are the generators of SO(10) in the spinorial representation.
The subscript “AS” indicates that only the anti-symmetrié contribution of QQ
is allowed to be present; the symmetric contribution spoils the doublet-triplet
splitting. It is technically natural for only the anti-symmetric contribution to be
present; the full theory above the Planck scale must be responsible for the absence
of the symmetric operator. The operators 73 (QQ)"T; must also be absent.

The renormalizable and M ! suppressed operators appearing in W are all re-

3 Also see Reference [118] for an economical model. In this model though, the origin of the

unification scale is not addressed.
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quired: (i) The operators & A;, Ay are required for the doublet-triplet splitting.
(ii) The operator oc A7 arranges the vev of A to be in the “Dimopoulos-Wilzcek”
(DW) form [114], required to perform the doublet~triplet splitting. (iii) The oper-
ators oc A3 and A4 are necessary to break the rank of the group. (iv) The operator
& 'As is necessary to fix all the vevs. This point is made clear later. (v) The
operator < Aj; is required to give méss to some fields charged under the SM. This
point is also discussed later. Although this operator is linear in A, the DW for A
is not ruined because this operator does not contribute to the F' flatness equations
4. The choice for this operator is not unidue; other operators that are linear in
A? are possible, but they are higher dimensional. It is non—trivial that with this
choice for W, the low-energy particle content only contains the SM fields and their
superpartners.

- After confinement occurs the superpotential is

W = Wyg+ Wpw + Whig, (7.25)
with
WH = /\1T1AT2 + 5\2T25T2 -+ 5\30’T2T2, (726)
15 2 1< 2
WDW = 5/\914 S+ 5/\100'44 y (727)

Winie = A(det(S+ A" +0/V10) - BB - A") + %5\5/\02 + %ms?

“This interesting feature is also used in Reference {120, 121] to give mass (in a different
context) to some charged particles. This is accomplished by a cubic term in the superpotential

that is a product of three different antisymmetric tensors.
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1- . < —
+5MAA"™ + Ai60T616 + 4, A T6T,;16

+M11(AA");; 16516/ M. (7.28)
The naive expectation for the couplings is ;\2,3 ~ AA/M, Ay~ AsA /M, :\16 ~

)\4A/M, 5‘5,6,7 ~ /\5A/M, XQ,m ~ /\7A/M, and :\11 ~ )\nA/M

It is assumed that S, A”, and A acquire the vevs

10 0 -1

s=3(1,1,1,~g,—g)® A= (a"d"d" VL H)® . (7.29)
01 10
60 -1
A= (a,a,a,b,0) ® . (7.30)
10

These vevs break SO(10) — SU(3) x SU(2) x U(1)y x U(1)x. The spinor field 16
is assumed to acquire a vev x in the SU(5)-singlet direction®. The unbroken gauge
group is then SU(3) x SU(2) x U(1)y. It is argued below that the superpotential
guarantees that the vevs of A, o, A”, S, 16 and A are naturally of the order of
A ~ Mgyr and (A/M)A~7, respectively. Other vacua exist, but they are isolated
from the vacuum considered here.

The doublets and triplets in 7} are split using the DW mechanism [114]. The
F4 equations (:\gs+/~\100)a = 0 and (—%:\98+:\100)b = 0 with s # 0 forces either a
or b to vanish; it is a discrete choice. The DW mechanism for giving the triplets in
the 512 and 51,2 Higgs fields GUT-sized masses requires that b= O It is assumed

that this minimum was selected in.the early history of the universe. With this

5The D—flatness condition for SO(10) requires the vevs of 16 and 16 to be equal.
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choice, the mass matrix for the colored triplets in the 5, 5 and 5, » Higgs fields is

0 —iA\ia
M= ) i (7.31)
A1 A0 + Azs

in the (T1,T5) basis. Since the diagonal element is suppressed by a factor of
O(A/M) relative to the off-diagonal element, the colored triplets form two Dirac
particles with masses My, ~ Aija ~ \A ~ A. The mass matrix for the 4 elec-
troweak doublets in T} and 75 only has an entry for T5(2)7%(2) since b = 0. The
mass of the Dirac heavy doublet is Ayo — 3A35/2 ~ A2/M. The two electroweak
doublets in 77 are massless, and are identified as the Higgs fields responsible for

giving mass to the up-type and down-type quarks of the SM.
It is interesting that the magnitude of the elements of M has a structure that is

favorable for the suppression of the proton decay rate. It in fact provides a natural

realization of the “weak suppression” of the decay rate that is advocated by Babu

and Barr [120]. This is seen as follows. First note that the diagonal element is

suppressed by a factor of O(A/M) relative to the off-diagonal element, reflecting
the fact that the diagonal entry arises from a non-renormalizable operator in the
fundamental theory. If the SM fermions only couple to 77, then the proton decay
amplitude from the exchange of the heavy colored Higgsinos is proportional to
M. In this case the matrix element is (Ao + A3s)/(\1a)? ~ A2/M. This results
in a decay rate that is approximately (A/M)? ~ 1073 times the unsuppressed rate.

This is sufficient to suppress the dar_lgerous Higgsino-exchange proton decay
operator to a level that may be observable at SuperKamiokande. To obtain the
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four-fermion operator responsible for the nucleon decay, the operator gotten by
integrating out the colored triplet Higgsinos must be dressed with a vertex function
involving either internal wino or gluino propagatbrs. As emphasized in Reference
[119], the gluino-dressed amplitude is comparable to the wino-dressed amplitude
if v, /vq = tan 3 is large. Since tan 3 ~ my/m, ~ 40 is naturally predicted within
an SO(10) GUT, the decay mode p — K°u* may be competitive with the (wino-
dressed) neutrino decay modes [119].

The dominant decay modes for the wino-dressed operator are p — K*, and
n — K°, [122]. To obtain an estimate for the nucleon lifetime in this model,
their result for the lifetime of the nucleon is rescaled by a factor of (M/A)2. The

result is

M 0.0058GeV? My, TeV~!
3IA B 10%GeV f(4,d) + f

7(n = K°7,) ~ 10% x ( G é))2yrs. (7.32)

The function f is obtained by dressing the external squarks with wino propagators
to obtain a four-fermion operator. It is computed in Reference [123], and depends
on the sparticle spectrum. In the limit that the squark mass, mg, and slepton
mass, mj, are much larger than the wino mass, my, f ~ g /m%, with m ¢ the
larger of mg and my. The hadronic matrix element 3 is defined in Reference [122].
Requiring that M not exceed the Landau pole of the SO(10)gyr group implies
that M/AS 30 — 70. (This constraint is discussed below.) This requirement of
consistency also strongly constrains the presence of any additional matter coﬁtent

(this is also discussed below). This suggests that the Yukawa couplings of the
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SM‘ fermions to the Higgs doublets are generated close to the GUT scale, a crucial
assumption required to obtained the limit quoted in Eqn.(7.32). To obtain realistic
quark and lepton masses in an SO(10) model though, these Yukawa couplings
probably arise from higher-dimensional operators [124]. In this case the flavor
structure of the colored-triplet Higgs to matter may differ from the electroweak
doublet couplings to matter, thereby altering the predicted lifetime [119]. For
this reason, the result quoted in Eqn.(7.32) should be treated as an estimate.
This estimate is to be compared with the existing experimental limit of 7(n —
K°%,) > .86 x 1032 years [36]. So the nucleon lifetime is naturally suppressed to
a phenomenologically interaésting level.

Next the expected size of the vevs and the mass spectrum are discussed. The

F—flatness equations are (setting b = 0)

det(S + A" + 0/v10) — BB = A, (7.33)
AB=0, AB=0, (7.34)
0= Fy = (Ags + Ag0)a, (7.35)
0= F]ﬁ == (;\150' -+ 5\4(3&” + 2b”)‘) X, (736)
0= Fc, = 5\16X2 — 35\10a2 + ;\5./\0' + \/%AK (3U + 2’1]) ; (737)
0= Far, = MX> — 2MAd" +2AK A, (7.38)
- 0= Fyn, = ;\4X2 - 2;\7/\()" +2AKB, : (739)
~ 271+ ,
0= FS = )\GAS — g (5)\90’ - AK(’U, - ’U)) 5 (740)
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where K = det(S + A" + 0/v/10) = (u? + A?)~3(v? + B?)~2. The functions u, v,

A and B are
= o/vV10+ s o o/v/10 — 35/2 (7.41)
C(o/V1I0+8)2+a"?’ T (0/V10 — 3s/2)% + b?’ ‘
" bl!
2 B= (7.42)

A= (0/v/10 + 5)2 +a"*’ (6/+/10 — 35/2)2 + b’

An inspection of these equations also indicates that without the operators AS2,
Ac? and AA” A", the F—flatness equations would only constrain the values of A,
x* and a® in the combination x*/.A and a®/.A. Thus one of these vevs would be
unconstrained. As a result, not all the particle masses would be fixed by the input
parameters. This problem is avoided by including the (QQ)? operator, i.e. the
operator «x s, in the fundamental theory. In this case, a new solution cannot be
gotten by rescaling A, with the X and A fixed, and rescaling the vevs of any of
the fields, thus indicating that a?, ¥ and A are fixed by the input parameters.
Next it is argued that these equations fix the vevs of S, A, o and A" to be
on the order of A, without any fine tuning of the couplings in the fundamental
theory. By redefining A = (A/M)A the F; = 0 equations now contain an ovérall
factor of A/M if the expected relation between the éuperpotential couplings in
the fundamental and confined theories is valid. As a result the F; equations no
longer contain any small dimensionless couplings. The expected solution to this
new set of equations is then x, o, a’, 4", a ~ s and A ~ A~7. The confinement
equation fixes s ~ A. Therefore all the vevs are v ~ A and A ~ (A/M)A™".

This result is not obvious a priori, since the superpotential couplings appearing
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in the F equations are suppressed by powers of A/M. A slightly more rigorous
argument, also showing that 4 # 0, is presented in Appendix D. This implies that
the baryons vevs are forced to zero at this miﬁimum. Two numerical solutions
which support these arguments are also given in Appendix D. These expectations
for the size of the couplings, A, and vevs will be important below in estimating
the mass spectrﬁm.

The superpotential for this model contains enough operators to give superheavy
masses to all the particles that should be heavy. The results of computing the mass
matrices assuming a canonical Kahler potential are given in Appendix D, and are
summarized here. The particles have masses at one of three scales: my = A*/M3;
m; = A?/M; and A. The naive expectation is that all the particles have a mass
m ~ my. This is because all the vevs are O(A), and the mass matrices are linear
in the superpotential couplings which contain a factor A/M, and in the parameter
A which also contains a factor of A/M.

This expectation turns out to be correct except for a u; ~ (3,1,-2/3)
and up ~ u}, which acquire a Dirac mass from the superpotential operator
(A"A);;16%;;16. These fields are massless in the absence of this operator for
the following reason. The SU(5) decomposition of A = 24—;— 10 + 10 + 1. This
clearly contains a u € 10 and 'zZ € 10. The only possible source for a mass term
for these fields is given by Wpy. Further, since S does not contain a u» and 7,
this mass term must occur from setting S and o to their vevs. The resulting mass

is proportional to Ags + Ajgo. The DW form for A and F4 = 0, however, forces

248




this quantity to vanish ¢. The addition of the operator trA*/M does not change
the conclusion of this argument. The mass of these fields is gotten therefore from
the M ~2 suppressed operator. The result of a computation of the mass spectrum,
presented in Appendix D, implies that the naive expectation for their mass is
m e~ mg.

The particle content of the fields with mass m ~ my is now enumerated. The
SU(5) quantum numbers of the representations at this scale are: 1 x (10 + 5) +
1x (10+5)+2x24+1x (15+15). At the scale m; there is also a split 7 24,
with SM quantum numbers 8 = (8,1,0) and 3 = (1,3,0). There are also some
leftover fields, that together with uy, and Ty, which have a mass m ~ mg, form
a complete 10 + 10 of SU(5). These leftover fields have a mass m ~ my. The
representations in the SO(10) 10; +10; are split by the DW ﬁlechanism. One pair
of electroweak doublets is massless and are the Higgs fields responsible for giving
mass to the up-type quarks, down-type quarks, and leptons. The other doublet
fields, h = (1,2,—1/2) and A = (1, 2,1/2), acquire a Dirac mass mj, ~ m;. There
are also a number of gauge singlets which acquirg masses m ~ mj.

The triplets in the SO(10) 10; + 102, 2x (3,1,1/3) +2 x (3,1, —1/3), acquire
masses O(A). The 33 Nambu-Goldstone bosons multiplets acquire a mass m ~ A

from the super-Higgs mechanism.

6The same argument also implies that the Majorana mass term for the 8 in A vanishes. These

fields, however, acquire a Dirac mass with the 8 ¢ S.
"The missing partners are the Nambu-Goldstone bosons of the SU(5) — SU{3)c x SU(2) x

U(1)y breaking.




The incomplete SU(5) representations affect the prediction for sin’ fy,, which
is diécussed next. First it is approximated that all the charged particles at each
of the three scales my, m; and Mgyr are degenerate. In this approximation the
contribution to Asin® @y occurs from splitting between the scales. The result of
the usual one-loop computation implies that the light particles shift the prediction

for sin? fy by an amount

Asin? Oy = _ Zem (ln — —=1In ———) i (7.43)

The first term is the contribution from u; and %y; these fields only contribute
between mj; and my, since above the mass scale m; they fit into a complete
10 + 10 of SU(5). The second term is the sum of the contributions from 8,
3, h and h. As is evident, for m; < my there is an O(1) cancellation between
the two contributions. Since my, arises from a higher dimensional operator than
does m;, my < my applies for this model. It is then reasonable to expect that
the O(1) cancellation occurs. Inserting the naive expectation my ~ A*/M? and

my ~ A?/M, gives

In M/A
In30 -

Asin® @y ~ —5 x 1073 x (7.44)

As is shown below, requiring that the SO(10)gyr not have a Landau pole below
M restricts M/AS 30 — 70. With this constraint, the shift in sin? 6y is consis-
tent with the measured value, once other theoretical uncertainties are considered.

The largest of these are uncalculable threshold corrections from the light (approxi-

mately) complete SU(5) representations. Since the splitting within each multiplet
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gives a contribution that is naively qen,/27 x O(1), thé large size of the light
representations could result in a correction that ig comparable or _larger' than the
correction given in Eqn.(7.44).

It is next argued that any “gravitational smearing” [115] of the couplings at
the GUT scale are small in this model. First, the only possible dimension—4
operator in the supérpotential involving the SO(10)gyr chiraI gauge multiplet
Wij; is AijW;sWi;/M. This, however, vanishes due to the anti-symmetry Qf A.
Next, the operators gsS WW/M and g,cWW/M are allowed. The vev of o does
not break SU(5), so it only results in a common shift of the gauge couplings. The
shift is tiny since g, ~ A/M. The vev of S does break SU(5), so this operator
results in a tree-level correction to the unification of the couplings. An estimate

for the shift in sin? @y that this incurs is

Asin® Oy ~ :1:10‘395%. (7.45)

It is expected that gs ~ A/M since this operator occurs from a dimension—4
operator in the superpotential of the fundamental theory. So this results in a
tiny shift to sin? 6. Finally, 6perators only involving 16,16 and WW are also
suppressed by an extra factor of A/M. The vev of 16 does not break SU(5), so
this operator only results in a tiny common shift to the gauge couplings.

An upper limit to M is given by the value of the Landau pole of the SO(10)
GUT gauge coupling. This model is not asymptotically—free above the GUT scale

since it contains a large particle content. More problematic though, is the fact
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that most of the particle masses are a factor of A/M below the GUT scale. While
this particle content does not result in a large shift to sin? @y since they mostly
form complete SU(5) representations, the matter content does increase the value
of agyr. The value of asoqo) (M), using naive one-loop running and with tree-level

matching, and including the contribution of 3 16s of the SM, is

3 ) A 5 A 16, M
-1 _ . el _ = _
5010 (M) = 24 ,m227f ((2 + 3)ln — + (93 3) In —1) 5 In T (7.46)

The second term is the c.ontribution from u;+7%uy, the third term is the contribution
from the particles with mass m;, and the last term is the contribution from the
SO(10) particle content above A. inserting mp ~ A/M? and m; ~ A?/M, the
limit is

M
—5 31, .
A 3 (7.47)

This implies M ~ 0.6 — 1 x 10'® GeV. Note, however, that this limit is sensitive
to the actual spectrum. For example, if the naive expectation underestimates the
spectrum by a factor of 4, then the limit increases to M /A< 75. This corresponds
to M ~1—2x 10" GeV.

The Landau pole limit also strongly constrains any modifications to the model.
For example, adding to the model either an extra adjoint A’ which acquires a mass
at 2 X Mgyr, or an extra 16’ + 16 + 10’ 4+ 10" which all acquire a mass Mgyt
restricts M/AS20. The presence of N; additional SU(5) 5 + 5 multiplets is also
strongly constrained by this requirement of consistency. These fields would be

required, for example, in any low-energy physics that is responsible for the origin
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of supersymmetry or flavor symmetry breaking. Requiring M/A > 20 implies that

" the mass M; of these multiplets satisfies
Ng,sln M/M;< 18. (7.48)

In particular: Ny g = 1 is marginally allowed if Ms = 10'° GeV; Ny .z = 2 is
marginally allowed if M5 = 10'* GeV. These constraints are weakened if the' naive
estimate, A? /M , for the chiral GUT spectrum underestimates the spectrum by a
factor of 4. In this case,

Ny, 5In M/My< 45, . (7.49)

for M/A > 20. In particular: Ny 5 = 2is allowed for M5 = 10'° GeV; Ny 5 < 5 is |
required for M5 = 10 GeV. Either direct or indirect evidence for additional chiral
content that does not satisfy Eqn.(7.48) or Eqn.(7.49) would strongly disfavor this
model.

This section concludes with a few comments about the consistenqy of neglecting
certain operators in the superpotential. The superpotential terms 0A;;16%;;16
or SikAkjiEZijlﬁ must be absent to avoid ruining the DW form for A. These
operators would contribute to F4(2), forcing a non-vanishing value for . These
operators are present in the low-energy theory if the operators tr(QQ)AI16X16
or (QQ) sA16X16 are present in the superpotential of the fundamental theory.
Any symmetry which forbids these dangerous operators also forbids the operator
(A"A);;16%;;16. This option is not viable since this operator is required to give

mass to a (3,1,—2/3)+h.c. fields. (The DW form for A, however, is unaffected
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by the presence of this operator since it does not contribute to the F; equations.)
‘So it must be assumed that the dangerous operatofs are not presgnt in the fun-
damental theory. The perturbative non-renormalization theorems then guarantee
that these operators will not be generated, at least in perturbation theory. This
argument does not exclude the possibility that these dangerous operators could
be generated by the non—perturbative dynamics of the SU(10)s or SO(10)gur
groups. By combininé the requirement of holomorphy of the superpotential with
some anomalous fake U(1) symmetries [107] it is possible to exactly show, how-
ever, that if these operators are initially absent in the high—energy theory they
will not be generated as t};é cutoff is lowered. In particular, it can be shown that
the coeflicient of a dangerous operator at a lower cutoff is only proportional to
its initial value; i.e. it is independent of Asy(0y/M, Asoqe)y/M ahd all the other

superpotential couplings. Then there is no reason for these dangerous operators

to be generated by the confining dynamics.

7.5 Summary

In this chapter two models are presented that generate the Grand Unifica-
tion scale from the strong dynamics of a confining group. The particle content
of the confining group is chosen so that this sector conﬁneé with chiral symmetry
breaking. The particles in this sector are also chargéd under the Grand Unified
group. It follows that the composite fields which arise from the confining dynam-

ics transform under the GUT group as either higher dimensional representations
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or singlets. Below the scale of confinement these composite fields acquire vevs.
In each of the models presented here, there is a locally isolated supersymmetric
vacuum in which the GUT group is broken to the SM group, and the resulting
spectrum provides an acceptable phenomenology. Two GUT models are consid-
ered: SU(6) and SO(10). Known solutions to the doublet-triplet splitting problem
are incorporated in each model. Proton decay in both models is at an acceptable
rate, and in particular, in the SO(10) model the dangerous dimension-5 proton
decay operator is suppressed to an interesting level. This suppression is a natural
consequence of the confining dynamics. Each model requires no fine tuning of any
non-vanishing superpotential couplings. The fundamental theory in both models
also contains an economical particle content, requiring no gauge singlets and only

one higher dimensional representation.
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Appendix A

Fine tuning Expressions

In this section the Barbieri-Giudice parameters for both the MSSM and
NMSSM in a gauge mediated SUSY breaking scenario are presented.

In an MSSM with gauge mediated SUSY breaking, the fundamental parameters
of the theory (in the visible sector) are: Apess; Ae; 5 and p2. Once electroweak
symmetry breaking occurs, the extremization conditions determine both m% and
tan 8 as a function of these parameters. To measure the sensitivity of m% to one
of the fundamental parameters A;, we compute the variation in m% induced by a

small change in one of the A;. The quantity

(S’I’I'I,2 5/\1
mQZZ = c(mzz;/\,-)T, (A.1)
where
A; Om2 '
2. /\, = 4 A2
c(mZ7 ) m2Z 6)\1 ? ( )

measures this sensitivity [63]. In the case of gauge mediated SUSY breaking

models, there are four functions c¢(m%; ;) to be computed. They are:

e(m%;

2) = g—,tf ] tan? 8+ 1 4tan? B(i? — i3)
HI= (tan? B — 1)2 (@F — i) (tan? B+ 1) — m%(tan? § — 1))

) , (A.3)

2
z

tan® B+ 1 af — ji3

2. 2 2
c(m%;ps) = 4tang
- (tan?B—1)2 m%
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4 B-i
tan? 8 m%

, for large tan g, (A.4)

A} omy omy,
m% Omy; 0N
_ 4 A tan? 8 am%u (1 +2ﬁ,% —ji3 tan’B+1 )
m% ttan2B—1 0A7 B3 + B3 (tan? 8 —1)2
4 om?

——=%, forl t . A.
mZ e gr arge tan g3 (A.5)

C(mZZ§ At)

Q

This measures the sensitivity of m% to the electroweak scale value of Ay, A(Mypear)-
The Yukawa coupling A\¢(Myeqr) is not, however, a fundamental parameter of the
theory. The fundamental parameter is the value of the coupling at the cutoff
A% = Mgyt or My of the theory. We really should be computing the sensitivity

of m% to this value of \;. The measure of sensitivity is then correctly given by

A(A°)

a/\t(Mweak)
/\t(Mwealc)

c(m; M(A%)) OA:(A°)

c(mQZ; /\t(Mweak)) (AG)

We remark that for the model discussed in the text with three { +1 and one ¢ + ¢
messenger fields, the numerical value of (A(A%)/As(Myear)) 0N (Myear) /ON(A®) is
typically ~ 0.1 because A;(Myear) is attracted to its infra-red fixed point. This
results in a smaller value for c(m%; \;) than is obtained in the absence of these

considerations.

With the assumption that m}, and mj, scale with A2 .., we get
o(Mz Mness) = c(mz;miy,) + c(mz; mi,)
2 2
tan® G + 1
m% (tan®*fg — 1)
4 tan? f(mpy, +mp, ) (A — B3)/m5

(4} — /3)(tan® B + 1) — m%(tan® § — 1)
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The Barbieri-Giudice functions for m; are similarly computed. They are

clm; ) = 5e(m ) + T (A9)

ol ) = el ) + 2t (49
c(my Ae) =1+ %c(mzz; At) + tan;\ﬂt i3 _::_ = 8;n/\%:u’ (A.10)
e ) = 3ol N) = BB

Since mz and m; are measured, two of the four fundamental parameters may
be eliminated. This leaves two free parameters, which for conveinence are chosen
to be Aess and tan 3.

In a NMSSM with gauge mediated SUSY breaking, the scalar potential for
N, H, and H, at the weak scale is specified by the following six parameters:
Ai = miy, myy,, my,, the NH,H,y coupling Ag, the scalar NH, H, coupling A, and
the N3 cbupling, An. In minimal gauge mediated SUSY breaking, the trilinear soft
SUSY breaking term NH,H; is zero at tree level and is generated at one loop by
wino and bino exchange. In this case, Ag()\;) = A Hfi(/\z) Since the trilinear scalar
term N3 is generated at two loops, it is small and is neglected. The extremization
conditions which determine mz = g7v?/4 (v = \/v] + v}),tan 8 = vy /v4 and vy
as a function of these parameters are given in Section 5.5. Eqn.(5.22) can be

written, using 4 = Aguy/v2 as

bY: 1 1 1
N2 )\H)\N§U2 sin20 + —2-)\%,1)2 — @AH’U?/\H sin 283 = 0. (A.12)

2
mi + 2
TN
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Eqn.(5.23) is

1 , tan®f 0 1

2.2, 2
— —— ————————— m —_—
gzv mH“l—tanzﬁ Hil _ tan? g

. =0. (A.13)

Substituting v% from Eqn.(5.22) in Eqn.(5.26) and then using this expression for
p3 in Eqn.(5.24) gives

1 2 1 v2)% sin 2
—/\%{v2)+AH(——“——U——M) — 0.

A

2 2 2y s H, 2

m -+ My, + 2,& n 2,3 + —(my +
( H, Hy )Sl A ( N 9 Y 4 A

(A.14)
The quantity ¢ = (\;/m%)(dm%/d)\;) measures the} sensitivity of myz to these
parameters. This can be computed by differentiating Eqns.(A.12), A.13 and A.14
with respect to these parameters to obtain, after some algebra, the following set

of linear equations:

(A+A4,)X' = Bi + B, | (A.15)
where
1 p2-uZ  2tanp
v2  (1—tan? g)?
A = A%(AH—AN sin26) 7 _1Xy 1-tan’8 || (A.16)
2 An (1+tan? 8)2
v2 sin 28v2 1—tan? g
Oz(ﬂl +I‘2) ’\N H?"‘Hg (1+tan? §)?
Ag
A, = 2H (A.17)
1w
0 0 0
A3 sin28 A% sin28 42 tan2 g-1 A8
T T2920% 1633, u? (1+tan? §)2 4/\z ’
AL »2%sin23 v2  ARsin284.2 g ) tan2 -1 Ay 42
292/\1\: pitpl pIrpZN 16dy p? T 2hg/  (1+tan? B)? Ady pitpd
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X AHAN

Xm? — ou?

,(i:U,d,N),

with \; = m?\r,m%{u,m%,d,)\g,/\N, and

2
B™ + BN

2
m?—l Mty
B™H« + By}

2
m2 m

H Hy
B™Ha + B, "

BM

( 0

1 A2
BV )

N

DY i
\ v 2(p3 +u3)

( tan? 8
1-tan? 8

- 0 ;

__.,2_sin2f8
v /

2(u3+u3)

[ 1)

tan? —1

= 0 ’

\ —’1]22 sin 20 )

(u3+p3

0
= _iiL_'_ﬁM_ﬁg_ij_
)‘i’ 4 AN A% v2
2 2
-—-ﬁl 1My 3 2&&
\ (B +n3) (2 AN + i AN
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(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)




(A.24)

; 4
_Z_H?__;_#T_M_:‘_%%g_ , (A.25)
1 dg(m2 4 1,2
ST A (M + 507 AR)

0

Ar X3 sin2p
s 4 N

_ Azg 2sin 28
8Ay Bi+H3

(A.26)

In deriving these equations Agx(\;) = )\Hﬁ(/\i) was assumed and dA/d\y was

neglected. Inverting these set of equations gives the ¢ functions. We note that

these expressions for the various ¢ functions are valid for any NMSSM in which

the N3 scalar term is negligible and the NH,Hj, scalar term is proportional to

Ag. In general, these 6 parameters might, in turn, depend on some fundamental

parameters, J\;. Then, the sensitivity to these fundamental parameters is:

1l

For example,

m} 3;\1'
:\i 8)\_7 8m2Z
m% 2 N O

J
5 )

|

c(mZ; \;) ===

_ )55 (A.27)
7 N i

>

in the NMSSM of section 5.5, the fundamental parameters are

Amess, Am, AN, A and Ag (Ag is a function of Ay and Apess). Fixing mz and
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m, leaves 3 free parameters, which we choose to be Ajess, A and tan 3. As ex-
plained in that section, the effect of Ay in the RG scaling of m} and m}; was
neglected, whereas the sensitivity of m% to Ay could be non-negligible. Thus, we

have

Ax Oy

E(mZZ; Ag) = c(mQZ; Ag) + c(mzz; mfv) (A.28)

We find, in our model, that c¢(m%;m%) is smaller than c¢(m%; A\g) by a factor of
~ 2. Also, using approximate analytic and also numerical solutions to the RG
equation for m%, we find that (Ag/m?%)(0m%/0\g) is £ 0.1. Consequently, in
the analysis of section 5.? the additional contribution to &(m%; A\y) due to the

dependence of m% on Ay was neglected. A similar conclusion is true for Ay. Also,

. . A, OM3
e ) = el ) 21 S8 (429

We find that (\,/m%)(0m%/0),) is ~ 1 so that &(m%;),) is smaller than

é(m%; Ag) by a factor of 2.
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Appendix B

Two—loop calculation

In this Section we discuss the two-loop contribution of the heavy scalar soft
masses to the light scalar soft masses. These contributions can be divided into two
classes. In the first class, a vev for the hypercharge D-term is generated at two—
loops. The Feynman diagrams for these contributions are given in Figure B.1 and
are clearly ~ aj0;. These diagrams are computed in a later portion of this Section.
In the other class, the two-loop diagrams are ~ o?. These have been computed by
Poppitz and Trivedi[106]. So, we will not give details of this computation which can
bez found in their paper. However, our result for the finite parts of these diagrams
differs slightly from theirs and we discuss the reason for the discrepancy. When
one regulates the theory using dimensional reduction [101, 102] (compactifying to
D < 4 dimensions), the vector field decomposes into a D-dimensional vector and
4 — D scalars, called e-scalars, in the adjoint representation of the gauge group.
Thus the number of Bose and Fermi degrees of freedom in the vector multiplet
remain equal. The e-scalars receive, ét one-loop, a divergent contribution to their
mass, proportional to the supertrace of the mass matrix of the matter fields.

Neglecting the fermion masses, this contribution is

2 .
6m? = = (= +Indm — 7)(ns + 3mao) M. (B.1)

263




In our notation D = 4 — €. Poppitz and Trivedi choose the counterterm to can-
cel this divergence in the M S scheme, i.e., the counterterm consists only of the
divergent part, proportional to 1/e. When this counterterm is inserted in a one-
loop e-scalar graph with SM fields (scalars) as the external lines , one obtains a
divergent contribution to the SM scalar soft masses (the 1/e of the counterterm is
cancelled after summing over the € adjoint scalars running in the loop). Poppitz
and Trivedi use a cut-off, Ayy, to regulate this graph, giving a contribution from
this graph that is: |

1 o
mi=—3 (ns+ 3”10)CQE(7A)2M§IHA?JV (B.2)
A

with no finite part. We, on the other hand, choose the e-scalar mass counterterm
in the M'S scheme, i.e., proportional to 2/€ —~+Indn (where v ~ 0.58 is the Euler
constant) and use dimensional reduction to regulate the graph with the insertion
of the counterterm. This gives a contribution |

.1 (o9} 2 2
= i (ZA) M2(Z - v+ Indr)?
A(n5+3n10)CA16(7r) S(e ’)/+II7T)€
1

8 )

— Z(’I’L5 + 3TL10)C‘2—8‘ (——
A

)2 M2(2/¢ — 2y +2ndr)  (B.3)

s
In the first line the first factor of (2/¢—y+1n4x) is from the counter-term insertion,
the second factor is the result of the loop integral, and the over-all factor of €
counts the number of e-scalars running in the loop. In the MS scheme, i.e., after
subtracting 2/e —y+Indn, we are left with a finite part! proportional to —v+1ndn.

The remaining diagrams together give a finite result and we agree with Poppitz

! The same finite part is obtained in the M S scheme,regulated with DR’ .
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Figure B.1: Mixed two-loop corrections to the scalar mass. Wavy lines, wavy lines
with a straight line through them, solid lines, and dashed lines denote gauge boson,
gaugino, fermion and scalar propagators, respectively. The double-line denotes the

hypercharge D-term propagator.

and Trivedi on this computation. Our result for the finite part of the two-loop

diagrams (neglecting the fermion masses) is

1 72 | M?2
mpe) = g (1nam) =7+ =2 -m (32))
aa(w)\” :
X (—%T“‘) (ns + 3n10)Cly M3 (B.4)
A

whereas the Poppitz-Trivedi result does not have the In(47)—+ in the above result.
The computation of the two-loop hypercharge D-term, which gives contribution
to the soft scalar mass squareds proportional to ayo; and g (i.e., the "mixed”

two-loop contributon) is discussed below in detail.

Two-loop hypercharge D-term

265




The two-loop diagrams of Figure B.1 are computed in the Feynman gauge and
all the fermion and gaugino masses are set to zero. It is convenient to calculate in
this gauge because both the scalar self-energy and the Dy~term vertex corrections
are finite at one-loop and thus require no counter-terms. We have also computed
the two-loop diagrams in the Landau gauge and have found that it agrees with the
calculation in the Feynman gauge. The calculation in the Landau gauge requires
counter-terms, is more involved, and hence the discussion is not included. Finally,
in the calculation a global SU(5) symmetry is assumed so that a hypercharge D-
term is not generated at one—looP [96, 92].

The sum of the four Feynman diagrams in Figure B.1 is given in the Feynman

gauge by

= .3 ;
—illp ;= 2gg%YfTrYi S~ ACH (AL (m]) — 4Lx(m]) + Is(m])) (B.5)
A

where the trace is over the gauge and flavour states of the particles in the loops.
If the particles in the loop form complete 5 and 10 representations with a common

mass Mg, the sum simplifies to

—illp s = igalyf(”s - nlo)éas - %052 - "1'150‘1)(411(—7‘/—’3) — 41(M3) + I;(M3)).
(B.6)
The functions 1, I, and I3 are
D D 2
R e e A e
Lm?) = /((21:§7D / (Z:;gp (»? —1m2)2 c —kf-p(p_lk)z, (B.8)
B(m’) = [ (;l:)kD (%2 —1m2)2 / (;ij:)qb ¢ - m?’ (8:9)
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These functions are now computed.
| FEvaluating I
After a Feynman parameterization and performing a change of variables, I; =

Ji1 + Jo, where

Hm?) =T(3) [ de(1 - 2) [ 5 2y " Zz R T

(B.10)
and
oy i 3 e dPp dPk 1 '
Jo(m?) = F(3)/0 dz(1 - z)(2z — 1) /(%)D L P e e
(B.11)
After some algebra we find that
o _L(B3-D) , 2D B B
Ji(m*) = (@n)D ——l(m?)P~ D/2 — 1B(2 D/2,3—-D/2), (B.12)
2 F(?’ - D) 2yD-3
Ja(m?) = s " yP~3%(4B(3—D/2,2—D/2)~4B(2—-D/2,2-D/2)+B(1-D/2,2—D/2)),
(B.13)
where B(p, q) = ['(p)T'(¢)/T(p + g) is the usual Beta function.
Combining these two results gives
oy _IB=D) ,5p3l—D _ —
L(m*) = -————(47r) (m*) o 2B(3 D/2,2—-D/2). (B.14)

Evaluating I,

o [ dPp o dPk 1 _K-kp 1
I(m*) / 2m)D ) @m)D (p? — m2)? k2 (p— k)2
T« 1)01‘(3 D)(m*)"=*B(D/2,1 - D/2).
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Fuvaluating I

’ dPk 1 dPq 1
2 —
L(m ) = / (2m)P (k2 _ mz)z (2m)D ¢ — m2

. D32 i T'(2-D/2), 5. pn
= (orrte -2 (G g ™)
= — (4;)1) (r2 - D/ﬂ?#(m?)m'

We may now combine I;, I; and I3 to obtain

T(m?) = 46L(m?) - 4L(m?) + I3(m?)
o 2YD—3 .
- (7&;)1) x (4 (% (3—D/2,2—D/2) - B(D/2,1 — D/Z)) (3 - D)
_D/21— 702~ D/2)%). (B.15)

Writing D = 4 — € and expanding in e gives

T(m?) = ﬁg}r—éj-i (f:- + (6 - §7r2 +4(ln(4n) — ) — 4lnm2> m? + O(e)) .

(B.16)
In the M S scheme the combination 2/e + In(47) — v is subtracted out. The finite

piece that remains is

m(lfijr?)? (6 - §7T2 +2(In(47) — v) — 41n m2) m2. (B.17)

Thus in the MS scheme

- 3 1
Il I L.
RS = Y aer2)2d

1

i 2
YY) g5Ch (6 - §7r2 + 2(In(47) —v) —41n mf) m2
A .

31 ' 2 2
= i3 (ur)(ns — mo)Yy (6 — 2% + 2(In(dm) ~ ) - 4111(14_2;))
 (Gastin) = Joalun) — g (um)) M2, (B.18)
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Appendix C

Spectrum of SU(6) x SU(6)gur

First the existence of a solution to the F; = 0 equations with all vevs of O(A)
and A ~ (A/M)A~3 is discussed. The second part of this Appendix contains the
results of calculating the mass spectrum, assuming a canonical Kéhler potential.

Since the F; = 0 equations are linear in v% and v%, it is straightforward to
solve for them in terms of ¢ and vs. The remaining two equations determine

A #0 and z = o/vs. In particular,  is the solution to
Bz — (V68 —a—v)r — vV6a +128 =0, (C.1)

where o = —X;, 8 = —A3A\M/(12gA), and v = —X; — 24)58/)s. Note that
B ~a~~~ A/M. Since each term appearing in Eqn.(C.1) is linear in A/M,
it follows that z ~ O(1), i.e. o ~ vy is expected. The quantum constraint then
fixes vg ~ A. It follows from Fy = 0 that v} = —AsMa/(12g) is O(A2). Next,
vy = —(Muvs/g)(Asz — )y) is also O(A?). Finally, either Fx = 0 or F, = 0
determines A ~ (A/M)A™3.

The non—-Nambu-Goldstone multiplet fields charged under the SM, with the
exception of the SM Higgs doublets, are all contained in ¥ and Xy. Sipce these
fields acquire their mass from the SU(4) X SU(2) preserving vevs of &, Ey or (HH),
it is convenient to classify the mass specfrum according to the SU(4) x SU(2),
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rather than the SU(3) x SU(2) x U(1)y, charge assignments.
The mass matrix for the Q@ ~ (4,2) and @ ~ (4,2) fields (after some algebra

using the F; = 0 equations) in the (X, Xy) basis is

—AKab+ MA —Mun

00 = (C.2)

— MUy Ayvs
By using the F; = 0 equations it can be verified that this matrix annihilates
the state (vs,vy), which is a Nambu;Goldstone boson of the gauge symmetry
breaking. The massive eigenvalue is non-zero and naively mg ~ A%2/M.
The mass matrix for the (15, 1)»ﬁe‘lds (after some algebra using the F; = 0

equations) in the (X, Zy) basis is

—.AKGQ + :\lA 25\42)1\[
M15 == B _ . (C3)
2/\4'UN 4/\4’[)2
It can be shown after some algebra that the determinant of this matrix is
—4)\ AKavs(a — b) . This is non-zero since vy # 0 implies that a = b. The
expected masses for the two eigenvalues is then my5 ~ A?2/M.

The mass matrix for the (1,3) fields (after some algebra using the F; _

equations) in the (X, X ) basis is

—.A.Kb2 + ;\1/\ —-45\41)1\[
M, = ] i . (C.4)
—4)\4’UN —2)\4’01\]

It can be shown that the determinant of this matrix is —v/6XAbvZ(382%—56v6z+

v/6a). A comparison of this result with Eqn.(C.1) indicates that it is non-vanishing
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for generic values of the Ais. The expected masses for the two eigenvalues is then

mg ~ A2/1W.
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Appendix D

Spectrum of SU(10) x SO(10)guyr Model

Arguing that all the vevs are of order A ; Numerical solution

In this the only concern is whether a discrete solution with all A, a, a”, b",
o, s and X. non-zero exists. This result is obtained by showing that if s # 0,
then A # 0 and all other vevs are comparable to s. Then the non-vanishing of A
implies that B = B = 0. The confinement condition then fixes s ~ A. To begin,
first note that F4 fixes o ~ s. The Fig equation implies that 3a” + 20" ~ o ~ s.
Thus gither a’ ~ b~ s, or b Ka’ ~ s (ora” <V ~s). Next it is argued that
the last two cases do not occur. In the first case, b < a”, so that B <« A. Next,
the two F4» equations are inconsistent if either AKA < Ma" or AKA > Aa”.
So AKA ~ Aa” and Mb" ~ x2 < Asa” is the only consistent solution to the two
F4» equations. Thus if ¥ <« a”, Fm fixes a” ~ s up to small corrections of O(b").
Similarly, the first F4» fixes A up to small corrections. But now the two equations
F, and Fg each determine a ~ s; thesé two eQuations for a cannot in general
be simultaneously satisfied. Therefore, b < a” is not a viable (supersymmetric)

solution. The argument against a” < b” is similar. Therefore a” ~ b”. Next

suppose that A = 0. Then Fy4» fixes a” = b”, and together with Fig and Fa,

determines x ~ s. But now there are two remaining equations, Fis and F,, for one




unknown, a. Mofe concretely, a® = 5(Xs/Mo)As and a® = (As—2M M35/ 23)Ac/3M0.
In géneral, these two equations will not be satisfied; therefore A # 0. The vev a
can be eliminated from Fs and F;; the remaining equation, together with Fa» and
Fi¢ may be used in principle to determine x,a",b" ~ s and also fix A. (x? < Ad"
is not possible; Fy, Fs, F4r, Fi¢ and F, are 6 equations in only 5 unknowns: o,
a”, b, a and A.) The Fs equation will not in general be satisfied with a®> < As
or a2 > As; since AK (u — v) is O(A%s/M) and # \gAs in general, Fg determines
a~s.

Two numerical solutions to the F; =0 eciuations supports these arguments. In
the first (I) solution, the input parameters are chosen to be : Ay = 0.01, A5 = 0.02,
Xe = 0.03, Ay = 0.04, Ay = 0.05, X\jp = 0.06 and A;s = 0.045. The solution, in

units of A =1, is

g =—064, s=0.77, a" = 0.50, b" =0.70, a = 1.2, x = 2.5, A= —0.01.
(D.1)
In the second (II) solution, the input parameters are chosen to be : A, = 0.0134,
Xs = 0.0123, Ng = —0.03, Ay = 0.0225, Ny = 0.045, Ao = 0.0623 and \is =

0.03657. The solution, in units of A = 1, is

o=—062, s=085 ' =-014, ¥ =1.1, a = —0.87, x = 1.2, A= 0.04.
(D.2)
These parameters are chosen to be small since A ~ AMA/M ~ 0.03) for A/M ~

1/30. Aside from this feature, there is nothing special about this choice of super-
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potential couplings. As expected, all the vevs are O(A) and A ~ (A/M)A™7.

Detailed Mass Spectrum

The mass matrices presented here were computed assuming a canonical Kéahler
potential; this is suffucient to determine the rank of the matrix.
For future purposes it will be useful to note that the F; equations are invariant

under the following rescaling of couplings and fields:

(:\4,;\9, Mo, :\16) — (9_2’\\4,9_2:\%9_2;\1039—2:\16): (D.3)

(x,a) = (gx,9a) ,(a",b",s,0,K) = (a",b", 5,0, K). (D.4)

Any coupling not listed isb ieft invariant. This mapping relates the solutions to the
F; = 0 equations in two theories with different superpotential couplings which are
related by this scale transformation.

The u® ~ (3,1, ~2/3)+h.c. mass matrix in the (A”,16(16), A) basis is, with

/—\ = :\11/M,

2AK (u? + A?) — 20;A 2idgx — 2Dax A2
—2idax — 2Dax —4)\a" —2Xa’"x
—idy? 2%’y 0
Using the F; = 0 equations the reader can verify that this matrix has only one zero
eigenvalue. The product of the two non-zero eigenvalues is given by the coefficient
of O(e) in the expansion of det(M, —e1). This coefficient is X x2(4a? +4a" +x2).
Therefore, this matrix contains an extra massless particle in the limit A — 0. With
X # 0, the naive expectation for this product of cigenvalues is (A/M)*A%. The
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larger eigenvalue is ™y, = As(4a” + x*/a"), and is approximately A2/M. So the
smaller eigenvalue is m,, = X2x2(4a? + 4" + x2)/my,,. The naive expectation

for this quantity is (A/M)3A.

The mass matrix for B¢ ~ (1,1,1) + h.c., in the (A", 16(16), A) basis is

QAK (12 + B2) = 20;A  2idgx A2
Mg ge = —2iAax —ANb =2X0"x |- (D.6)
—iAx2 —2N\"X  BAes
Using the F; = 0 equations it can be verified that this mass matrix has one zero
eigenvalue. The masses of the other two states are 5Ags and — (4" + x2/b"), to
lowest order in AA.
The mass matrix for the Y ~ (3,2,—5/6) and X ~ (3,2,5/6) fields is given

in the (A", S, A) basis by

~2AK (uv — AB) +20A  —2iAK(uB +vA) 0
Myx = ~2AK (uB +v4) —2AK(wv — AB) + 236A  idea |- (D7)
0 2.5\90' —-25-5\98

It can be verified, afterv some tedious algebra, that this matrix has one zero eigen-
value. This matrix is therefore rank 2. The masses of the other two states are
O(AZ/M).

The Q ~ (3,2,1/6) and Q ~ (3,2, —1/6) mass matrix, in the (47, S, 16(16), A)

basis, is
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2AK (wv + AB) — 2X7A —2iAK (Av — Bu) 2iXax — Aax idx?
2 AK (Av — Bu) —2AK (uv 4+ AB) + 2X6A 0 —idoa
—2i A4 — Aay 0 —24(a" + ") —Ma" +¥")x
—idx? iAga —Xa" + ")y -gs\gs )
(D.8)

It can be verified that this matrix has at least one zero eigenvalue. To verify that it
has only one zero eigenvalue, it is suffucient to verify that the coefficient of O(e) in
the expansion of det(MQa— el) is non-vanishing. Since the entries proportional to
X result in a tiny perturbation to the spectrum of Mg, it is suffucient to compute

the O(e) coefficient, call it p, while setting A = 0. In this case it is

(Bu — Av)
(u? + A?)(v? + B?)

—Aho(B(u? + A% + A(v® + BY)A

p = 4AK (—2XA6(uB? — (u — v)uv — A%)A  (D.9)

~MAo((A+ B)2 + (u —v)?)

+AK (Ao(A + B) — 2X4(u — v))(u® + A?)(v? + B?)).

If this vanishes at generic values for the couplings constants, then it must, in
particular, vanish for two solutions and sets of couplings constants that are related
by Eqns.(D.3) and (D.4). Under this scaling, however, p oc C X (¢;972 + co9™%),
with C, ¢; and ¢, functions of the initial vevs and couplings. This vanishes only
if either C = 0 or ¢; = 0 and ¢ = 0. The first condition, C = 0, implies
Av = Bu, whereas the second ¢ = 0 implies that A+ B =0 and u — v = 0.

Either of these conditions over-constrain the vevs, so they will not be satisfied at
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a generic solution. In particular, p = (0.07)3 for the numerical solution (I) given
by Eqn.(D.1). The expected mass for the three massive eigenvalues is therefore
O(A%/M).

The mass matrix for the coloured adjoints (8,1,0) in the (A", S, A) basis is

—AK (u? — A?) + XA —2iAKuA 0
Mgg = —2iAKuA ~AK (u? — A%) + MA idoa (D.10)
0 ; i;\ga 0

The determinant is (Aa)2(ArA — AK (u? — A?)) and is non-vanishing. The size of
the three masses is expected to be mg ~ A?/M. For the numerical solution (I) in
Eqn.(D.1), this determinant is (0.05)3.

The mass matrix for the SU(2) adjoints (1, 3,0) in the (A", S, A) basis is

~AK (v? — B?) + A —2iAKvB 0
Mss = —2iAKvB —AK(v? — B2 + XA 0 (D.11)
0 0 —35\93

The determinant is

—33gs (AK (AK(v® + B*)? = (As + M) (v? — BY)A) + AArA?) /2 (D.12)
and is non-vanishing. The size of the three masses is expected to be ms ~ A2/M.
For the numerical solution (I) in Eqn.(D.1), this determinant is —(0.04)3.

The S field contains (6,1,2/3)+h.c. and (1,3, —1)+h.c.. These fields acquire
Dirac masses —AK (u?+ A?%) and —AK (v?+ B?), respectively. The (3,1,1/3)+h.c.
and (1,2, —1/2)+h.c. fields in the 16 + 16 acquire Dirac masses —4y(a” + b")
and —2X4(3a” +b") , respectively.
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Finally, there are 8 gauge singlets in this model. The quantum modified con-
straint implies that only 7 of these are independent. The quantum modified con-
straint can be used to solve for one of the gauge singlets. Of the remaining 7,
one of these is the Nambu-Goldstone boson multiplet of the SO(10) — SU(5)
symmetry breaking. The mass matrix for the remaining 6 gauge singlets is rather
cumbersome and is not presented here. For the numerical solution (I) presented at
the start of this Appendix, it can be checked that the determinant of this matrix

is —6 x 1077 (in units of A = 1.); the typical mass of each singlet is then ~ 0.09A.
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