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Abstract

We discuss what we believe are the three most important factors ef-
fecting the difficulty of a beam shaping problem scahng, smoothness, and
coherence.

1 Introduction

This paper is concerned with the question, “What makes a beam shaping prob-
lem difficult?” We believe this is the most fundamental question that needs to
be answered if one is to understand the beam shaping process. Although the
results summarized in this paper go a long way towards answering this question,
they are by no means the final word on the subject.

If one has no idea how to answer this question, one can easily be deceived
by the merits of an algorithm for designing a beam shaper. If a designer first
encounters a problem that is very easy, they might conclude that their algorithm
can successfully design any beam shaping system. On the other hand, if they
first encounter a hard problem, they might conclude that their algorithm doesn’t
work on any beam shaping system. Furthermore, if you don’t know what makes
a beam shaping problem difficult, you have no idea how to modify your system
so that the problem is easier.

In general terms, beam shaping is concerned with the problem of taking a
beam with an irradiance distribution Ii. (z, y) and passing it through an optical
system whose output gives us a beam with irradiance distribution 10Ut(z, g) at
some output plane. Ideally, we would like to have a lossless system where the
energy of the input and output beams are identical. Assuming that we can
apply the laws of geometrical optics, it is possible to design a Iossless optical
system that transforms any given irradknce dkitribution lin (z, y) into any de-
sired output 10Ut(z, y), provided only that the total energy of the input and
output beams are identical. However, when we take into account the full wave
nature of the beam, it is no longer possible to do this in general (see ch. 2 in
[1]).
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In [2] Dickey et al describe three basic approaches to designing beam shaping
systems: apertured beam shapers, beam integrators, and field mappers. In an
apertured beam shaping system one tries to achieve a uniform irradkmce distri-
bution for the output by blocking off all but a small portion of the input beam.
Here we are making the assumption that the input aperture is close enough to
the output plane that the field in the aperture is not significantly modified while
propagating from the input aperture to the output plane. Systems of this sort
have the significant disadvantage that they are nbt lossless.

In a beam integrator, one divides the input beam into a large number of
facets, and tries to spread the energy in each facet over the whole output region
so that it has the shape of the desired output irradiance distribution. The total
field of the output beam is the sum of the fields from each of the individual
facets, Systems of this kind exlibit undesirable interference effects when applied
to coherent laser beams. However, as we will see, they work well for incoherent
beams.

A field mapper is a system that takes into account the wave nature of the
problem, and attempts to transform the field at the input plane so that it has
the desired irradiance distribution at the output plane. In the geometrical optics
limit, a field mapper maps a small portion of the input beam into a small portion
of the output beam. Field mappers work well for coherent laser beams, but do
not work well for incoherent beams.

As pointed out in [2], there are numerous ways of implementing these ap-
proaches, but all approaches seem to fall into one of these categories.

In this paper we concentrate on three aspects that are critical for determiniig
if a beam shaping problem is hard.

●
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Scahg- How the wavelength, the size of the input and output beams, and
the focal length of the system effect the difficulty of the problem.

Smoothness- How discontinuities in the the input and the desired output
irradiance distributions effect the difficulty of the problem.

Coherence- How the coherence width of the laser effects the difficulty of
the problem.

Scaling ,

In order to understand the effects of scahng on beam shaping we consider a spe-
cific example of a beam shaping system (Fig 1). We suppose that a collimated,
coherent beam enters the input aperture, where it encounters a Fourier trans-
form lens, and a beam shaping lens. The Fourier transform lens modfies the
phase of the incoming beam by a quadratic phase factor, and the beam shaping
lens modifies the phase by a factor that we would like to determine. Depending
on the specific application it can be desirable to combine the two lenses into a
single lens, or keep them separate. We now evaluate the irradknce at the focal
plane of the transform lens.
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Figure 1: Schematic of a simple beam shaping system. A coherent collimated
beam first goes through a phase element, then a transform lens. We are inter-
ested in the irradiance distribution at the focal plane. (Figure from [1])

To be more specific, we will assume that the input irradiance can be written
as

Iin(z, y) = gqz/R, g/R)

and the desired output irradkmce can be written as

Note that we have used the notation g(z/R, y/R) and Q(z/D, y/D) rather than
g(z, y) and Q(z, y) for the irradiance distributions. This allows us to consider
families of beam shaping problems where the shape of the input and output stay
the same, but their characteristic length scales change. We can then analyze
the effect of changing the length scales in our problem.

Our approach to analyzing the scaling properties of beam shaping systems
is motivated by the commonly used practice in fluid dynamics of using dimen-
sionless equations and dimensionless numbers [6]. For example, when fluid flows
past a sphere, the behavior of the flow depends on the Reynolds number

where V. is the velocity far from the sphere, R is the radius of the sphere, p is
the dynamic viscosity, and p is the density. If two flow have the same Reynolds
number, the patterns of the flow fields will be identical, after rescahg our
coordinates. However, if the Reynolds numbers are different, the flow patterns
can look dramatically different. For example, in one case the flow could be
turbulent, and in the other case not.

A sidlar situation occurs when we apply llesnel diffraction theory to ana-
lyzing the beam shaping problem. We will write down the dimensionless beam
shaping equations for a separable beam shaping system, that is one where

9(<, q) = 91(~)9z(q)> and Ql(@, ~2) = QI (c11)Q2(c12). The problem of turning
a circular Gaussian into a square flat-top beam is an example of a separable
problem. A separable problem can be divided up into two one dimensional
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beam shaping problems. The dimensionless beam shaping problem can be writ-
ten as follows. For given shape functions g(~) and Q(a) (we have dropped the
subscripts), and for a given value of

21rRD_—
‘– Af

try to find a phase function #(&) and a constant ‘A such that

satisfies

I G(w ]2= A; Q(LJ/@) (2)

In our definition of the parameter ~, R is the characteristic length of the
input beam, D is the characteristic length of the output beam, j is focal length
of the Fourier transform lens, and A is the wavelength of light. In these equations
eqn. (1) is the dimensionless expression of the fact that the field distribution
at the focal plane is the Fourier transform (times a phase factor that is not
important if we are only interested in the irradiance) of the field at the aperture
modified by the phase function #(&) ([3]). The equation (2) is the dimensionless
statement of the fact that we would like the irradkmce at the focal plane to have
the desired distribution Q(a).

Note that once we are given the functions g(<) and Q(cI) , the dimensionless
beam shaping equations depend on only one parameter, ~. If we have two beam
shaping systems that have the same phase functions #J(~), and input fields g(~),
and the same value of ~ they will both exhibit identical irradiance distributions
at the focal plane after merely resealing our axes.

It is well known that the geometrical optics limit is a small wavelength
approximation. The parameter ~ is a measure of how well the geometrical
optics limits applies. If @ is large, a system designed using geometrical optics
will work well. However, if ~ is small such a system will not work well. In fact

suppose we could solve the beam shaping problem exactly. the uncertainty
~rinciple from signal analysis [4] shows that we must have

where

Since Ag and A~ are independent of ~, this shows that if P is too small, we
cannot do a good job of beam shaping.
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Figure 2: The effect of the parameter ~ on the problem of turning a Gaussian
into a flat-top. In this plot a = w/~, and )7= ~ I G(u) 12. (Figure from ([?]))

If the value of the parameter /3 is large, we can use the method of station-
ary phase [5] to approximate the integral in (1) . It can be shown that the
leading order term in the method of stationary phase is identical to the geo-
metrical optics approximation. We can use the stationary phase approximation,
or equivalently Fermat’s principle to show that the phase @(~) must satisfy the
following set of equations.

(3)

/

c

/

a(f)
g2(s)ds = A Q(s)ds (4)

—w —co

Here A is a constant chosen so that the total energy of the input and output
beams are the same.

/“g2(s)ds = A
[

w Q(s)ds (5)
—m —co

and
u

~=—
P

Taking the derivative of this equation we find that

92(()= ~Q(dO)~
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F@ure 3: The phase function
Note that even though Q(a)
differentiable.

xi

4(() for turning a Gaussian into a flat-top beam.
is discontinuous, the phase function is infinitely

Once we have determined the constant A, the equations (3) and (6) are a
system of differential equations that allow us to determine the functions a(~)
and #(&). These equations determine the phase functions 4($) in the geometrical
optics limit. This phase function will accomplish the desired beam shaping if
the parameter ~ is sufficiently large. F@re 2) shows how the phase function
designed using geometrical optics works for the problem of turning a Gaussian
into a flat-top. When ~ = 2, the output does not look much like a flat-top, but
by the time/3 =32 the output is looking quite sharp. In figure 3) we show the
phase function that we use for turning the Gaussian into the flat-top.

The designer of a beam shaping system can influence the parameter /3 in
several different ways. As one example, it is possible to expand the beam using
a telescope before putting it into our simplified beam shaping system. This
allows us to increase the value of the p&ameter R, snd hence increase ~. This
technique has been successfully employed by Dickey and Holswade (see ch 3
from [1])..

Although the results we have described were derived assuming that we had a
coherent beam, they can also be useful in the design of incoherent beam shaping
systems. Dickey and Holswade (ch 7 [1]) have shown that these results apply
for multi-faceted beam shaping systems for incoherent beams. In particular, if “
the facets are smaller than the coherence width of the laser, then we can assume
that the beam is coherent over each facet. We can now apply the results for
coherent beams, where the characteristic dimension R is not the dimension of
the fill aperture, but of each individual facet.
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Figure 4: The effect of/3 on the problem of turning a Gaussian into the profile
Q(a) = (l+3a2)(l –a2)5 for I a [< 1, and Q =0 for [ a]> 1.

3 Smoothness

Although the size of the parameter/3 mentioned in the last section is a crucial
element in determining the difficulty of a beam shaping problem, it is by no
means the only factor. If we once again restrict ourselves to problems where
the incoming beam is coherent, the next most important factor influencing the
difficulty of a beam shaping problem is the smoothness of the input and output
beams.

In this section we show that some beam shaping problems require a much
larger value of ~ in order for a lens designed using geometrical optics to work
well. In order to see why this is so we need to examine the errors obtained
in making the geometrical optics approximation. Thk is equivalent to finding
the higher order terms in the stationary phase approximation. We will see
that discontinuities can slow down the convergence of the method of stationary
phase.

The effect of discontinuities on the convergence of the method of stationary
phase is similar to the effect of discontinuities on the convergence of Fourier
series. If a periodic function has a dkcontinuity , the coefficients in the Fourier
series dle down like l/lV, where IV is the number of Fourier components. If
the function is continuous, but has a discontinuity in its first derivative, the
coefficients die down like l/lV2; and in general if the first k – 1 derivatives are
continuous but it has a discontinuity in its kth derivative, the coefficients will
dle like l/IV~+l. If all of the derivatives are continuous, the coefficients will
die down exponentially fast. It follows that the smoother a function is, the less
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Figure 5: The effect of ~ on the problem of turning a Gaussian into the profile
Q(cr) = (1– I a 1)(1 – a2)5 for ] a [< 1, ad Q = O for I a ]> 1. Note that we
get much slower convergence near the discontinuity in the derivative of Q.

Fourier components we need in order to approximate it well.
We have a somewhat similar situation for the beam shaping problem. How-

ever, there are some significant differences that can be misleading if one carries
thk analogy too far. When making thk analogy, it is best to concentrate on the
continuity of the phase function ~(~) of the beam shaping lens rather than on
the continuity of the desired output. Once we understand how the continuity
of # effects the convergence with ~, we can then understand how the continuity
of Q(cr) effects the continuity ’of ~(~).

We begin by supposing we have a beam shaping lens that has a shape #J(~),
and that the field at the aperture has the distribution g(g). In our discussion
we will assume that g(~) is sufficiently smooth. Suppose that geometrical optics
predicts that this lens transforms the ipitial irradiance g2(~) into Q(a) at the
output plane. How does the actual irradlance distribution created by thk lens
differ from the distribution predicted by geometrical optics? We can answer
this question by considering the next order term in the method of stationary
phase. If the lens has continuous derivatives up to third order, the two results
will have a relative error of order 1/~2. If the lens has discontinuity in the third
derivative, the relative error will only dle down like l/~. If the phase function
haa a discontinuity in its second derivative, we end up with a situation that
is similar to dfiaction by a straight edge. In this case the convergence will
depend on how close we are to the point of discontinuity. As we approach the
discontinuity, the convergence is extremely slow. The convergence is even worse
if the phase function has a discontinuity in its first derivative.
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We see that as # becomes less smooth, the convergence becomes slower.
There is one difference between this case and our example of the decay of the
terms in a Fourier series. In that case we kept getting better convergence as
more and more derivatives became continuous. However, for the beam shap-
ing problem, we do not get significantly better convergence when we have 4
continuous derivatives than when we have just three continuous derivatives.

Now that we know how the continuity of rj(~) effects the convergence towards
the geometrcial optics limit, we consider how the continuity of Q(cI) effects the
continuity of #(~). In order to understand thk we must examine the equations
governing one dimensional geometrical beam shaping (3),(6). The equation
3 shows that if a has a discontinuity in the kth derivative, then d(~) has a
discontinuity in the k + 1st derivative.

Suppose the function Q(a) has a discontinuity at CKo.Suppose we are solving
our differential equations for a(~) and #(~), and that at (O we have Q(<O) = cto.
If g(ifo) # O, the equation 6 implies that there will be a discontinuity in ~,
and hence a discontinuity in the second derivative of @ Thk sort of reasoning
shows that typically a discontinuity in the kth derivative of Q will lead to a
discontinuity in the k + 2 derivative of #. It appears that we can look at the
continuity of Q and determine how difficult the beam shaping problem is.

F@re 4) shows an example of the beam shaping problem where we attempt
to turn a Gaussian beam into the function Q(a) – (l+3cr2)(l –cr2)5 for I a [< 1,
and Q(a) = O for I a I> 1. This function has been chosen so that the first five
derivatives are continuous even at a = +1. We see that the convergence towards
the geometrical optics limit is very fast. When ~ = 16 we are already close to
the geometrical optics limit.

F@re 5) shows an example of the beam shaping problem where we attempt
to turn a Gaussian beam into the function Q(a) – (1– I a 1)(1–a2)5 for I a 1<1,
and Q(a) = O for I a I> 1. This function has been chosen so that there is a
discontinuity in the first derivative at a = O, but the function is dfierentiable
elsewhere. Note that we get slower convergence towards the geometrical optics
limit near the point of discontinuity.

Figures 6) and 7) are examples where we attempt to turn a Gaussian input
into a beam that has discontinuities in the output. In figure 6) Q(a) = 3/4
forlal< l/2, Q(cr)=lforl/2 <la ]<1, and Q= Oforlczl>l. In
figure 7) we have Q(cr) = O for I a 1< .1/2, Q(a) = 1 for 1/2 <1 a 1<1, and

Q = O for I CY1>1. The phase function d(~) for the profiles in figure 6) has
a discontinuity in the second derivative, whale the phase function for figure 7)
has a discontinuity in the first derivative. Clearly the convergence towards the
geometrical optics limit is bad in figure 6) and even worse in figure 7).

It is interesting to contrast figures 6) and 7) with figure 2). In all of these
figures the function Q(a) has a discontinuity. However, the continuity of the
phase function +(() used to generate these figures is much different. In figure
2) the phase function q5(<) is infinitely differentiable. This arises since as we
integrate out differential equations of cr(~) and @(~), we have g({) = O at the
point of discontinuity of Q (a({)). This situation arises when the dkcontinuity
in Q(a) is at the end of its interval of definition. We see that dlscontinuities at
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Figure 6: The effect of@ for the problem of turning a Gaussian into the profile
Q(a) = 3/4 for ] a 1< 1/2, Q(a) = 1 for 1/2 <1 a 1<1, and Q = Ofor I a 1>1.
(Figure from [1])

interior points are much more severe then dkcontinuities at the extremities.

4 Coherence

We once again analyze the situation where we pass a beam through an aperture
that contains a Fourier transform lens, and a beam shaping lens; and we evaluate
the irradiance at the output plane. However, we now drop the assumption that
the laser is spatially coherent. Suppose we take a system that is designed using
geometrical optics, and we pass a partially coherent beam of light through it.
Unlike the coherent case, we cannot determine the irradiance at the output plane
given the irradiance at the input plane. In order to determine the irradiance
at the output, we must know the mutual intensity function J(z1, VI;X2,V2) at
the input. For a given plane z = const, this gives the correlation between the
field at (zl, yl) and at (Z2, y2). The function J(xI, VI;q, VI) is the irradiance
at (q, VI). It can be shown [7] that the mutual intensity at the output plane is
given by
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We would like to determine function ~(~, q) so that J(z, g; z, g) has the desired
irradkmce d~stribution. It is typical to assume that

J(fl, ql; &2,772) = / 1(<1, ?j’l)q62,712M(l –&Y ~1 – d

Here p is the complex coherent factor. The function p tells how well the fields
at (<1,ql ) and (&, q2) are correlated. If p is constant, the beam is coherent,
and if it is a delta function, the beam is totally incoherent.

In general this gives us a much more complicated beam shaping problem
than in the coherent case. The major complication arises from the fact that
we now need to evaluate a four dlmensiomd integral rather than a two dimen-
sional integral. When the function p is constsnt, the four dimensional integral
is separable, and we end up with an identical beam shaping problem as in the
coherent case. Even when p is not constant, we can apply the method of sta-
tionary phase to evaluate this integral. It is not much more difficult to apply
the method of stationary phase to thk 4 dimensional integral, than to the two
dimensional integral that appears in the coherent case. When we apply the
method of stationary phase to this integral we get exactly the same answer that
we get in the coherent case. However, the method of stationary phase assumes
that p as well as l’(~, q) can be approximated as being constant in the vicinity
of the stationary point. If the function p is varying rapidly enough, this will
not be a vahd assumption. A detailed analysis of this situation shows that the
geometrical optics approximation will be valid provided both the parameter@
and

p’= ~ (lR)’

are large. Here 1 is the coherence width of the incoming beam. This can be
written as

P*=Z 2xAfR

One might have guessed that in the partially coherent case we should replace
the size of the aperture R in ~ by the ,coherence width 1. However, we have a
more extreme result. We must replace R by 1(1/R). This result shows that not
only does it not do us any good to have an aperture that is significantly larger
than the coherence width of the beam, it actually hurts us. Intuitively this
result can be thought of as follows. In the partially coherent case, the lens can
be thought of as being broken up into many lenses whose characteristic lengths
are the coherence width of the laser beam. However, each of these small lenses
maps a small part of the input beam onto a small part of the output beam. For
this reason we are decreasing both R and D in the formula for ~. This is why
we get the factor 1(1/R) in the formula for P*.

When the incoming beam has a small coherence width relative to its width,
it is desirable to use multi-faceted beam integrators to do beam shaping. In
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Figure 7: The effect of ~ on the problem of turning a Gaussian into the profile
with Q(a) = O for ] a [< 1/2, Q(a) = 1 for 1/2 <1 a 1<1, and Q(a) = O for
[ a 1>1. (Figure from [1])

thk case we build a system of lenses so that each lens only sees a small portion
of the beam. We try to make each facet small enough so that the incoming
beam is nearly coherent over the whole area of the facet. We design each facet
so that it spreads the input beam coming into the facet over the whole output
plane. The resulting output will now be the sum of the output from each
facet. Assuming the beam is completely incoherent, we will be able to add
the irradiance distributions of each of the indlvidiual facets. Since the beam is
partially coherent, we will get some interference effects.

5 Conclusions

We have discussed the three factors that we believe are the most important in
determining the difficulty of a beam shaping problem: scaliig, smoothness, and
coherence. Our arguments have been ahnost completely based on considering
how these factors influence beam shaping lenses that were designed using ge-
ometrical optics. However, we believe that these factors control the difficulty
of beam shaping problems even if one does not base ones design strategy on
geometrical optics. For example, we have shown that a lens designed uisng geo-
metrical optics will not work well unless /3 is large, However, we have also shown
that if ~ is small the uncertainty principle shows that it is impossible to do a
good job of beam shaping no matter how one designs ones lens.
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