
Approvedrimpubicrelease;
distributionisunlimited

Author(s):

Submlted to:

A HierarchicalStatisticMethodology for Advanced Memory
System Evaluation -

Xian-Je Sun, Louisiana StateUniversity’
Dongmei He, Louisiana StateUniversity
Kirk W. Cameron, CIC-19
Yong Luo, CIC-19

13thInternationalParallelProcessing Symposium
April 12-16, 1999
SanJuan,Puerto Rico

I

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative actiotiequal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (10/96)

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

A Hierarchical Statistic Methodology
for

Advanced Memory System Evaluation

Xian-He Sun+” Dongmei He+ Kirk W. Camerontl Yong Luo~

t Department of C’omputer Science tltfail Stop B256
Louisiana State University Los Alamos National Laboratory

Baton Rouge, LA 70803-4020 Los Alamos, New Mexico 87’545
{sun,dhe) (=lbit.csc.lsu.edu {kirk, yongl) @lanl.gov

Abstract

Advances in technology have resulted in a widening of the gap between computing

speed and memory access time. Data access time has become increasingly important

for computer system design. Various hierarchical memory architectures have been

developed. The performance of these advanced memory systems, however, varies with

applications and problem sizes. How to reach an optimal cost/performance design

eludes researchers still. In this study, we introduce an evaluation methodology for

advanced memory systems. This met hodology is based on statistical factorial analysis

and performance scalability y analysis. It is two fold: it first determines the impact of

memory systems and application programs toward overall performance; it also identifies

the bottleneck in a memory hierarchy and provides cost/performance comparisons via

scalability y analysis. Different memory systems can be compared in terms of mean per-

formance or scalability over a range of codes and problem sizes. Experimental testing

has been performed extensively on the Department of Energy’s Accelerated Strategic

Computing Initiative (ASCI) machines and benchmarks available at the Los Alamos

National Laboratory to validate this newly proposed methodology. Experimental and

analytical results show this methodology is simple and effective. It is a practical

tool for memory system evaluation and design. Its extension to general architectural

evaluation and parallel computer systems are possible and should be further explored.

Key Words:
Performance Evaluation, Advanced Memory System, Computer

Architecture, Statistical Method, Scalability, Benchmarking

*This author was supported in part by NSF under grant ASC-9720215, by LSU under 1998 COR award, and by

Louisiana Education Quality SupportFund.

&

1 Introduction

Memory speed improvement has not kept up with the pace of that of processor speeds. While

processor speeds have been increasing by at least 70 percent annually, the DRAM latency has

improved only 7 percent per year [1]. Various advanced memory syst ems have been developed

to manage the increasingly wide disparity between central processing unit (CPU) speed and data

access speed. An advanced, hierarchical memory system has become a necessity of high-performance

computers. Performance and scalability of these modern computers are more dependent on the

hierarchical memory systems than the peak CPU rate employed.

Performance evaluation of today’s hierarchical memory systems, however, is very challenging.

There are a variety of means by which the impact of memory latency on computer performance

can be diminished by the computer architecture, as described in [2]. For example, the archi-

tecture can tolerate long latencies, by increasing the memory hierarchy complexity (with more

cache units) or by increasing the level of concurrency available in memory operations. Computer

architectures can also reduce memory latency by using faster processor-memory interconnect ion

networks, supporting out-of-order execution, and allowing out standing memory accesses to overlap

comput at ion; this helps because DRAM speed is only one component of overall memory latency.

There are also a variety of techniques programmers can employ to diminish memory latency effects.

Programmer-related strategies require algorithmic innovation to tolerate memory latency by taking

advantage of data locality, and to reduce memory stall time by eliminating superfluous load and

store operations. These architect ural and programmatic techniques are both machine and applica-

tion dependent. How to apply them in practice is still state-of-the-art. In addition, the performance

and optimization requirements vary with problem sizes. Scalability needs to be considered.

Based on statistical factorial analysis and performance scalability y analysis, in this paper we pro-

pose a methodology for examining the effectiveness of both hardware and software memory latency

hiding techniques of a memory system. This methodology consists of four levels of evaluation. For a

set of codes and a set of machinesl we first determine the effect of code, machine, and code-machine

interaction on performance respectively. If a main or interaction effect exists, then, in the second

level of evaluation, the code and/or machine is classified based on certain criteria to determine the

cause of the effect. The first two levels of evaluation are designed to detect the characteristics of

codes and their influence on different memory systems. They are based on average performances

over the ranges of problem size interested in. The last two levels of evaluation determine the per-

formance variation when problem sizes scale up and are based on scalability analysis which is a new

approach for memory system evaluation. The concept of memory scalability y is formally introduced.

Level three evaluation is the scalability evaluation of the underlying memory system for a give code.

Level four evaluation conducts a more detailed examination on the component contribution oft he

memory system toward the final scalability. The combination of the four levels of evaluation makes

the proposed methodology adaptive, effective, and more appropriate for advance memory systems

r

<

than existing methodologies.

The Silicon Graphics Inc. (SGI) Origin2000 system and a previous SGI architecture, the Pow-

erChallenge system, have been used as the test-bed to illustrate the newly proposed methodology.

The single-processor performance (in terms of cycles per instruction, cpi) of the two machines are

compared and analyzed. Evaluation results given by this methodology are confirmed by measured

results and by a previously-reported performance model. The comparison of these two machines

is of particular interest because they both use the same compute node, a 200-MHz MIPS R1OOOO

processor [3] [4], but the memory subsystems of the two architectures are vastly different. Al-

though improvement in the Origin memory network has important consequences for system-wide,

multiprocessor performance, origin single-node performance benefits as well.

We use a benchmark set consisting of applications from the Los Alamos portion of the Acceler-

ated Strategic Computing Initiative (ASCI) workload. The intention of ASCI is to accelerate the

development of tera-scale numerical computing capabilities in order to allow effective achievement

of massively-parallel, 3-D coupled-physics simulations. However, the long hist ory of DOE program-

matic computing on computer architectures is vastly different from those envisioned as part of the

ASCI program. Significant algorithmic modification as described above may be required to reach

accept able performance. Thus, it is important that AS CI code developers have some advance in-

formation regarding the extent to which cache-based architectures and cache-friendly programming

styles will affect the performance of their applications. In order to provide this information in this

paper we use codes that incorporate both the legacy style of coding and a locality-improved style.

In some cases both styles are available for the same application.

This paper is organized as follows. In Section 2, we present the test environment. The machines

and codes used in our experimental testing are briefly described. In Section 3, we introduce the

scalability y concept and the statistical methods needed for the hierarchical methodology. Terminolo-

gies needed are also given in this section. The four level statistical methodology for memory system

evaluation is introduced in Section 4. Case study is conducted in Section 5 to apply the proposed

met hodology on the testing environment. All the four levels of evaluation are applied to examine

and compare the five codes on the two machines given in the testing environment. Measured results

and an existing analytical model are used to confirm the newly proposed methodology. Finally,

sect ion 6 summarizes the work.

2 Test Environment

Two machines and a set of five benchmarking codes are used throughout our study to illustrate

the method and to verify the correctness. These machines and benchmarks are described below.

While our discussion is focused on a particular environment, the factorial methodology proposed

in this study is general. It can be applied to any machine and set of applications.

2

2.1 Machine Description

The PowerChallenge is an SMP architecture that employs a central bus to interconnect memories

and processors [3]. The bus bandwidth (1.2 Gbytes/see) does not scale with more processors.

Cache coherence is maintained through a snoopy bus protocol which broadcasts cache information

to all processors connected to the bus. The Origin 2000, on the other hand, is a distributed

shared memory (DSM) architecture which uses a switch interconnect that improves scalability by

providing interconnect bandwidth proportional to the number of processors and memory modules

[4]. Coherence is maintained by a distributed directory-based scheme. Each router in the hypercube

topology connects two nodes to the network. Each node contains two processing elements and one

local memory unit. A 128-processor system, for example, consists of a fifth-degree hypercube with

4 processors per router.

The processing elements of both the Origin 2000 and PowerChallenge systems use a 200MHz

MIPS R1OOOOmicroprocessor. The processor is a 4-way super-scalar architecture which implements

a number of innovations to reduce pipeline stalls due to data starvation and control flow [4]. For

example, instruct ions are initially decoded in-order, but are executed out-of-order. Also, specula-

tive instruct ion fetch is employed after branches. Register renaming minimizes data dependencies

between floating-point and fixed-point unit instructions. Logical destination register numbers are

mapped to the 64 integer and 64 floating point physical registers during execution. The two pro-

grammable performance counters track a number of events [5] and were a necessity for this study.

The most common instructions typically have one- or two-clock latencies.

While the processing elements of the PowerChallenge and Origin 2000 systems are identical,

there are major differences in the memory architecture and corresponding performance of the two

systems. The PowerChallenge is an UMA architecture with a latency of 205 clocks (1025 ns).

Latencies to the memory modules of the Origin 2000 system, on the other hand, depend on the

network dist ante horn the issuing processor to the dest inat ion memory node. Accesses issued to

local memory take about 80 clocks (400 ns) while latencies to remote nodes are the local memory

time plus 33 clocks for an off-node reference plus 22 clock periods (CP; 110 ns) for each network

router traversed. In the case of a 32 processor machine, the maximum distance is 4 routers, so that

the longest memory access is about 201 clocks (1005 ns) which is close to the uniform latency of

the PowerChallenge.

In addition, improvements in the number of outstanding loads that can be queued by the

memory system were made. Even tbough the R1OOOOprocessor is able to sustain four outstanding

primary cache misses, external queues in the memory system of the PowerChallenge limited the

actual number to less than two. In the Origin 2000, the full capability of four outstanding misses is

possible. The L2 cache sizes of these two systems are also different. A processor of PowerChallenge

can be equipped up to 2MB L2 cache while a CPU of Origin 2000 system always has a L2 cache of

4MB.

As evident, these SGI machines provide a unique performance evaluation environment since the

3

c

4

architectures employ identical microprocessors but differ significantly in the design of the memory

subs ystems. The particular differences, namely L2 cache size, main memory Iatency, and number

of outstanding misses, allow this statistical factorial study to unveil the performance impact of the

memory subsystem. We intend to focus on single processor execution and use identical execut ables

across machines to eliminate software differences. All data collected and used was captured using

on chip performance counters provided for the MIPS R1OOOO microprocessor. This method of data

collection, as opposed to simulation or other similar methods, provides a realistic representation of

the actual processor performance in a real environment under real conditions.

2.2 Code Description

The following codes were used in the factorial experiment design.

SWEEP and DSWEEP are both three-dimensional discrete-ordinate transport solvers that dif-

fer in their implemental ions. In both versions, the main part of the computation consists of a

balance loop in which particle flux out of a cell in three Cartesian directions is updated based

on the fluxes into that cell and on other quantities such as local sources, cross-section data, and

geometric factors. The cell-to-cell flux dependence implies a recursive wavefront structure. In

the DSWEEP implementation, the mesh is swept using diagonal planes which enable the balance

loop to be vectorized. In this version, gather/scatter operations must be used to obtain local

source and cross-sect ional values. In the second implement at ion, namely SWEEP, a “line sweep”

is accomplished involving separately nested, quadrant, angle, and spatial-dimension loops. There

are no gather/scatter operations, all accesses are now unit-stride, and memory traffic is signifi-

cantly reduced through “scalarization” of some array quantities. However, with the balance loop

now proceeding along rows and columns instead of the diagonal, recursion now prohibits complete

vect orizat ion.

HYDRO is a two-dimensional explicit Lagrangian hydrodynamics code based on an algorithm

by W. D. Schulz. HYDRO is representative of a large class of codes in use at the Laboratory. The

code is 100’?ZOvectorizable. An important characteristic of the code is that most arrays are accessed

with a stride equal to the length of one dimension of the grid. HYDRO-T is a version of HYDRO in

which most of the arrays have been transposed so that access is now largely unit-stride. A problem

size of N implies N2 grid points.

HEAT solves the implicit diffusion PDE using a conjugate gradient solver for a single timestep.

The code was written originally for the CRAY T3D using SHMEM. The key aspect of HEAT is

that its grid structure and data access methods are designed to support one type of adaptive mesh

refinement (AMR) mechanism, alt bough the benchmark code as supplied does not currently handle

anything other than a single-level AMR grid (i.e. the coarse, regular level-1 grid only). A problem

size of N implies N3 grid points.

4

3 Background and Terminology

Some background knowledge of scalability and statistics is needed for understanding the proposal

factorial evaluation methodology. We introduce the memory scalability concept and three statistical

met hods in this section. These statistical methods are not new. The combination oft hese stat ist ical

methods with scalability analysis and its application in memory system evaluation are new.

3.1 Terminology

Except cpi, all the following terminologies are general terms used in statistics [6, 7].

1.

2.

3.

4.

cpi (Cycle Per Instruction)

cpi measures the average number of computing cycles used for executing one instruction.

Speed, a widely used performance metric, is defined as work divided by time. For scientific

computing, speed is often measured in terms of MFLOPS (Million of FLoating-point Oper-

ations Per Second). If work is given in terms of instructions and time is given in terms of

computing cycles, cpi is the reciprocal of speed. We choose cpi as the preferred measurement

in our study since nonfloat ing-point operations are an important concern in memory evalu-

ation, and the number of computing cycles consumed is a more accurate measurement than

execution time when memory system performance can be separated from that of computing

elements.

Multiple treatment factors

Many factors influence the performance of a computer system, however an experimental design

with a large number of factors may not be the best approach toward an understanding of

performance. A first step of modeling should be to find the factors with significant impact and

to reduce the number of factors to be examined. In our experimental design, we use two factor

factorial design. Problem size and machine are the two factors used for scalability study and

code and machine are the two factors used in data reference pattern study. Each factor has

multiple levels. For our design, for inst ante, the machine factor has two levels, PowerChallenge

and 0rigin2000; the code has five levels, HEAT, HYDRO, SWEEP, DSWEEP, and HYDROT.

Factorial experiment

An experiment that has each combination of all factor levels applied to experimental units is

called factorial experiment. An entity that is used for the experiment is called an experimental

unit. For example, Power Challenge and HEAT, one combination oft he different levels of the

code and machine factors, is an experimental unit.

Cell

Cell refers to the measurement made to an experimental unit. The value of cpi measured on

PowerChallenge and HEAT could be considered a cell. A cell may include an observation.

5

,
●

.-

5

6,

3.2

Main effects

Main effects are the differences in the mean response across the levels of each factor when

viewed individually. For inst ante, code and machine are two main effects for our study,

Interactions effects

Interactions effects are differences or inconsistencies of the main effect responses for one factor

across levels of one or more of the other factors. In our experimental design, both code and

machine may have effects on the experimental units. If code influences the performance of a

machine, or, vice versa, then interaction effects exist.

Memory Scalability y

A goal of high performance computing is to solve large problems fast. Considering both execution

time and problem size, what we seek from parallel processing is speed, which is defined as work

divided by time. The average unit speed is a good measure of parallel processing. It measures the

computation performed in each processor per second.

Definition 1 The average unit speed (or average speed, in short) is the achieved speed of the

given computing system divided by p, the number of processors.

The isospeed scalability has been formally defined in [8] as the ability to maintain the average

speed in parallel processing when the number of processors increases.

Definition 2 (isospeed scalability) A code-machine combination is scalable if the

achieved average speed of the code on the given machine can remain constant with increasing num-

bers of processors, provided the problem size can be increased with the system size.

By Definition 2, isospeed scalability maintains average speed via increases in problem size.

Intuitively, a more scalable code-machine combination should lead to an increased average speed

for a given problem size and vice versa. This intuition may not be generally true due to memory

or other hardware limitations. A definition of data (problem size) scalable is introduced in [9, 10]

for parallel processing. Following the same concept, Definition 3 gives a definition of data scalable

for memory systems of single node sequential computing.

Definition 3 (data scalable for single system) We sag code-memory combination 1 is better

(data) scalable than code-memory combination .2, if code-memory combination 1 has a better initial

speed than that of code-memory combination 2 and their speed difference increase when problem

size scales up, or if code-memory combination 2 has a better initial speed than that of code-memory

combination 1 and their speed difference decrease when problem size scales up.

As we discussed in Section 3.1, cpi is a more appropriate measurement for memory system

evaluations. Definition 4 gives an equivalent definition of data scalable in terms of cpi.

6

.

*

Definition 4 (data scalable for single system) We say code-memory combination 1 is better

(data) scalable than code-memory combination 2, if code-memory combination 1 has a better initial

cpi than that of code-memory combination 2 and their cpi difference increase when problem size

scales up, or if code-memory combination 2 has a better initial speed than that of code-memory

combination 1 and their cpi difference decrease when problem size scales up.

Data scalable is a complement of isospeed scalability for parallel processing. It measures the

hardware/software constraints of serial computing when problem size scales up, where the most

likely constraint of sequential computing is the limitation of memory capacity. Evaluating and

characterizing the performance of a single memory system is the focus of this study.

3.3 The Two-Factor Factorial Experiment

We arbitrarily label A and C as the two factors used in the Two-Factor Factorial Experiment.

Assume factor A has a levels and factor C has c levels, which is referred to as an a . c factorial

experiment, and assume there are n independent samples replicated for each of the a - c possible

factor-level combinations; we then have a randomized experimental design with a. c treatments and

a. c. n observed values oft he response variable. The linear model for the corresponding two-factor

factorial experiment is

?/Zjk = P + @ +’Yj + (~ “ T)ij + ~ijk (1)

where

yzj~, k = 1,2, . . ., n, are k-th observed value

of the response variable Y for the cell defined by the definition of the i-th level of factor A and the

j-th level of factor C;

p is the reference value, which is usually called the “grand” or overall mean;

az, i = 1,2, ..., a, are main effects of factor A,

they are the difference in the mean response between the subpopulation comprising the i-th level

of factor A and the reference value p;

-)’j, j = 1,2, ..., c, are main effects of factor C,

they are the difference in the mean response between the subpopulation comprising the j-th level

of factor C’ and the reference value p;

(a .-f)~j,i = 1,2,..., a,j = 1,2,..., c, are interaction effects of factor A and C’,

7

.

they are the difference between the mean response in the subpopulation defined by the combination

of the Ai and C’j factor levels; and finally

eij~,i = 1,2,a. j = 1,2,c. k = 1,2, . . . ,n, are random errors

representing the variation among observations that have been subjected to the same factor level

combinations. q ~k are the values of a random variable having an approximately normal distribu-

tion with mean zero and variance a 2. Determining the main and interaction effects of a two-factor

factorial experiment involves four steps. First, the hypotheses of interested effects should be estab-

lished. For the memory system study, we are only concerned with the existence of the effects. We

have

170: az = O, main effect A (assume main effect A does not exist). (2)

If. : ~j = O, main effect C (assume main effect C does not exist). (3)

Ho: (cY’-y)zj= O, for all i and j, interaction of factor A and factor C (4)

(assume interaction effect does not exist). (5)

Second, compute the main and interaction effects based on measured data and the linear model,

equation (1). Third, compare the computed main and interaction effects with the null hypotheses.

In our study, the comparison is to compare computed effects’ values with the zero value. Finally,

the probabilities of correctness of the null hypotheses are calculated by the F distribution function

[6, 7]. In statistical factorial analysis, less than 5% is usually used to reject a null hypotheses. For

instance, if the probability of main effect A is less than 5’ZO,then the null hypothesis equation (2)

will be rejected. That means main A effect is not zero, and main effect A exists. Otherwise, the

value of main effect is zero and main effect A does not exist. Main effect C and the interaction

effect A . C’ are evaluated similarly.

The factorial analysis of a factorial experiment is the analysis of variance. For brevity, we

use a simple example to illustrate the analysis process. Assume that we have codes HEAT and

DSWEEP run on the two machines PowerChallenge and 0rigin2000. Therefore, there are 4 pos-

sible combinations in these two factor factorial experiment: HEAT on PowerChallenge; HEAT on

0rigin2000; DSWEEP on PowerChallenge; DSWEEP on 0rigin2000. The measurements made on

these four combinations is cpi. Let HEAT and DS WEEP be the level 1 and level 2 code, and let

PowerChallenge and 0rigin2000 be the level 1 and level 2 machines, respectively. Table 1 shows a

hypothetical data set arrangement.

In Table 1, y is the dependent variable. The first two indices of y’s subscript represent the level

of code and machine respectively. For instance, as listed, ylll is 1.4014525 and y112 is 3.12857184.

The average of these two cells, the cell mean, represented by VII,, is 2,2649935. In general, ljij. is the

8

—

.

.

Table 1. A Sample Data Set

machine code code means

HEAT DSWEEP %.
PowerChallenge 1.40141525 1.02674004

3.12857184 1.88990128 1.8616571

CellMeans Vii, 2.2649935 1.4583207

0rigin2000 0.847917292 0.90590811

1.352394111 1.409128055 1.1288369

CellMeans~ij 1.1001557 1.1575181

Machine Means Vi, 1.6825746 1.3079194 g,,= l.495247

cell means for yij~~ k = 1,2,... , n. The same explanation applies to code DS WEEP and machine

0rigin2000. The average of the cell means in the same column is the machine means represented

by v.j. . The average of the cell means in the same row is the code means represented by Vi,. At

last, the overall mean is represented by ~. Table

for a two-factor factorial experiment.

Table 2. Mean

2 shows the components needed to be computed

Effects Table

Source DF Ss MS F
Between Cells a . c – 1 SSCells iMSCells MSCells/MSW

Factor A a-1 SSA MSA MSA/MSW
Factor G c-1 Ssc MSC MSC/MSW

Interaction A . C (a-l) (c-1) SSAC MSAC MSAC/MSW
Within Cells(Error) a . c(n – 1) Ssw MSW

Total a- en-l TSS

In Table 2, DF is the degree of freedom. Degree of freedom is the number of observations

minus the number of the equations (restrictions) in the experiment. SS is the Sum of Squares and

MS (Mean Square) is the sum of square divided by the degree of freedom associated with it. F’

is the value judging the correctness of a null hypothesis. Between Cells refers computation made

at the factor levels. In our case, the SS and MS are computed in both code and machine level

accordingly. That means SS and MS of Between Cells are computed by means over observations

with overall mean. Here are the equations:

SSCells = n ~(ji~j. – g...)2, (6)

~~

MSCells = SSCells/(a . c – 1). (7)

9

>
.

*

For factor A, the SS and MS are computed as

SSA = c ~n~(ija.. – 17...)2, (8)
i

MSA = SSA/(a – 1). (9)

For factor C, the SS and MS are computed as

SSC = a ~n~(g.j. – ?7...)2,
J’

(lo)

M-SC’= ssc/(c – 1). (11)

For interaction A - C, the SS and MS are computed as

SSAC = SSCelis – SSA – SSC, (12)

MSAC= SSAC/(a – 1)(c – 1). (13)

Note that SSCeils is the sum of SSAC, SSA, and SSC

Within Cells (the Error term) can be computed as

SSW = TSS – SSCells, (14)

MSW =
Ssw

(15)
a.c. (n– 1)”

Total SS (TSS) is computed in the following equation:

TSS = ~(gzj~ – ~.,.)2 (16)

ij k

F values are computed by MS’s divided by MSW accordingly. It is the mean square of Error.

3.4 Contrast and Post Hoc Comparisons

Many statistical methods exist for classification and grouping. We use two known classification

methods in our study. They are Contrast and Post Hoc Comparisons. A contrast is a linear

function of means whose coefficients add to zero. In contrast method, t test is used to judge the

null hypotheses [6]. We use an example to explain the contrast method.

For the experimental environment described in Section 2, suppose we would like to compare

whet her two machines have the same effect on these codes, with measured cpi over these codes on

these two machines. Then the null hypothesis is:

Ho: L=pl–p2

10

.

where p 1 is the average of cpi over tbe codes on PowerChallenge and p2 is the average of cpi over

the codes on Origin2000. The t test is defined

t=

where Qz, z = 1,2, are the coefficients of L. In

as

(17)

the null hypothesis defined above,

=1–1=0 (18)

~i.. is the sample value of pz. &fSW is the Em-or term in Table 2 and n is the number of observations.

The evaluation of t test is similar to that of F test in judging null hypotheses. If the probability

oft value is less than 0.05 then the null hypothesis is rejected, otherwise you cannot reject the null

hypothesis.

When the factors and their levels are not defined in a manner that allows the use of preplanned

comparisons, a Post Hoc comparison procedure would be more appropriate. The Post Hoc Com-

parisons, namely the LSD, Tukey, Duncans, and Scheffe comparison [6], are similar to the above t

test Contrast method. The differences are that these methods have their own criteria to determine

the “significant difference” for t test. LSD is the easiest one in rejecting a null hypothesis; Duncans

is less easy than LSD; Tukey is less easy than Duncans; and Scheffe is the most difficult one in

rejecting a null hypothesis. We have used LSD in our experiment.

3.5 Regression Method for Scalability Testing

A regression method has been used by Lyon et. al. to evaluate the scalability of parallel processing

[11]. With some modification, here we extend the regression method to data scalability of memory

systems. Again, we use a simple example to illustrate the regression method. In scalability y study,

the two factors are problem size and machine, and the experiment is for a given code on different

machines. Assuming we are interested in testing the scalability of code HEAT which has a (problem)

size level 1 and 2 with problem size 25 and 50 respectively, we set the PowerChallenge as machine

level 1 and 0rigin2000 as machine level 2. Following the regression method, we need to assign

a value to each of the code and machine levels. Conventionally, these values are small integers.

Assign level 1 to -1 and level 2 to value 1 for both size and machine level accordingly, we have the

index table, Table 3.

In Table 3, X. is the indicator variable for code; Xn is the indicator variable for machine; lC,n

is the indicator variable for interaction. If p is a constant term, then we have a regression model:

19)

.

$

Table 3. The Index Table of a Regression Experiment

Xc Xm I.,m cpi cpi actual

-1 -1 +1 a 1.233678

+1 -1 -1 b 0.900876

-1 +1 -1 1.112349

+1 +1 +1 : 1.387690

Substitute the values in Table 3 into equation (19), we have

CL==p-&-&+Pc,m

b=p–fiC-/3m -&m

C=/, -~c+/3m-/3c,m

d=~+/3c+flm+pc,m

(20)

(21)

(22)

(23)

solving these equations, we have

a+ b+c+d
p=

4
(24)

–a+b–c+d
Pc= 4 (25)

–a—b+c+d
Pm= 4 (26)

a–b–c+d
Dc,m = 4 (27)

The term ~c,m is the interaction effect. It is tested by t test to see whether the interaction effect

exists. The null hypothesis tested here is:

Ho : /3c,m= O (28)

If the probability oft value is less than 0.05, then ~c,m <0 leads to the conclusion that the code is

more scalable on the level 2 machine than on the level 1 machine; @C,m= O leads to the conclusion

that the code has the same scalability on the level 1 and 2 machine; otherwise, ~c,m >0 leads to

the conclusion that the code is more scalable on the level 1 machine than on the level 2 machine.

Comparing the data scalable concept given in Section 3, we can see that the regression method

provides a relative scalability comparison of a code on two different machines. As shown in the

example, the relative comparison is in terms of the size level used in the problem size factor. In

general, the relative scalability is a function of the size and the number of size levels of the problem

size fact or. For an appropriate e experiment al design, the problem sizes tested should be chosen from

12

,

an appropriate range which represents the actual usage.

For simplicity, we have used a two-level experiment to illustrate the regression method for

scalability evaluation. However, the regression method is general. It can be applied to any number

of levels which is greater than one for each of the two factors.

4 A Methodology for Hierarchical Memory Systems

We have developed a hierarchical evaluation methodology for advanced memory

the knowledge introduced in Section 3. This methodology consists of four levels

systems based on

of evaluation. All

of the four levels of evaluat ion are based on two-factor factorial statistical methods. While the first

two levels of the methodology focus ‘on the mean performance over problem sizes, the last two level

evaluations show the performance variation when problem size increases. The combination of these

four levels of evaluations provides a feasible solution for predicting the performance when problem

size scales up and to suggest further memory system improvements.

4.1 Level One Evaluation: Main Effect

Level one evaluation uses the two-factor factorial experiment (see Section 3.3) to find the effects

of code and machine. Using the two factors code and machine, it detects the overall effect of

code, machine, and their interact ion on the final performance. The dependent variable for the two-

factor factorial design is cpi. The random samples for each of the code-machine level combination

are chosen from different problem sizes wit hin the int crested problem size range. So, the effect

comparison is based on the mean performance over different problem sizes. If code effect exists,

we conclude that the codes have different memory reference patterns which diverge memory access

time. When machine effect exists the memory system difference on the machines does make a

difference in performance. Finally, when code-machine interaction effects exist the memory system

difference has a different impact on different memory reference patterns. Notice that all these effects

are overall effects of codes and machines. Any of the effects that exist deserve further investigation

to identify the source or sources.

Based on Section 3.3, the result of the two-factor factorial experiment can be given in the

format as shown in Table 2. This result table can be generated by SAS procedure PROC GLM

[12]. To be self-complete, the algorithm to compute these needed parameters is listed below.

Algorithm of Main Effects

O) Compute Cell Means ~ij,, Machine Means ~j,, Code Means ~z.. and Overall Mean Z7...

1) Compute 7’SS, SScells, SSW, SSA, SSC, and SSAC

2) Compute all the degrees of freedom, such as a – 1, c – 1, a . c – 1, and so on.

13

.
.

3) Compute MSCelLs, MSA, MS(2, MSAC, and MSW

4) Get F’ values by using SS divided by the degree of freedom

4.2 Level Two Evaluation: Code/Machine Classification

Level one evaluation detects the overall effect of code, machine, and their interaction on perfor-

mance. When these effects exist, we would like to know the contribution of each code/machine

toward the effects and to identify the outstanding code/machine for more detailed study. The

key technique to single out outstanding contributors is to find the relative performance of a

code/machine wit h that of others. Statistical classification methods provide a means to group

code/machine based on their relative performance.

The Contrast method and Post Hoc comparisons introduced in Section 3.4 are classical sta-

tistical methods for classification. We have used the contrast method and all the four Post Hoc

methods in our study. These methods have different classification criteria.

These comparison methods will be applied pairwisely. For inst ante, for code classification

under our experiment al environment, HEAT has to be compared with all the other codes, namely

HYDROT, HYDRO, SWEEP, and DSWEEP; HYDROT is compared with the rest of the codes,

namely HYDRO, SWEEP, and DS WEEP; HYDRO is compared with SWEEP and DSWEEP;

and finally, SWEEP is compared with DS WEEP. In general, there are a! comparisons for a factor

with a levels. If two machines belong to the same category, then statistically they are the same,

for the set of codes and under the interested range of problem sizes. If two codes belong to two

different categories, then they have different memory reference/computation patterns. A good

general purpose machine should not deliver a wide cpi distribution among codes.

Algorithm of Contrast Method

O) Repeat the same steps for constructing Table 2

1) Compute ~ cq~z,. and z CY?

2) Compute

3) Judge the testing null hypothesis by using the probability oft value.

4.3 Level Three Evaluation: Scalability Comparison

Both level one and level two evaluation evaluate the performance over a set of codes and machines.

The third step of our evaluation methodology is individual evaluation for outliers. It compares the

data scalabilities of a given code on different machines. As shown in [8], scalability itself is not a

14

.

,

measurement of parallel processing gain. It is a factor that contributes to the ability of a system to

deliver the expected performance. Level two evaluation has grouped codes based on their average

performance over the range of problem sizes. Data scalability y measures the performance variation

when problem size scales up. Memory scalability evaluation is a new approach. It evaluates the

ability of a memory system in handling large data sizes. The same or a better initial performance

combined with a better scalability guarantees a code will have a better performance when problem

size scales up. A code with a smaller initial cpi and a better scalability has the potential to become

superior as problem size scales up.

The basic statistical method for memory scalability evaluation is the regression method given

in Section 3.5. The two factors are problem size and machine. The regression method does

not measure data scalability directly, for which a formal quantitative definition of scalability is

required. Instead, it gives a statistical relative comparison of two or more machines for a given

code. Problem size increase may change the performance of a code-machine combination. This

change varies wit h code, machine, and code-machine combination. It forms the base of scalability

comparison. Using cpi as the measurement, with the same code on two different machines, if

the interact ion of the two variations is negative then the second machine has a better scalability;

if the interaction of the two variations is zero then the two machines have the same scalability;

otherwise, the first machine has a better scalability. SAS procedure PROC REG [12] can be

used to determine results of the regression method. The algorithm for the statistical scalability y

evaluation is given below.

Algorithm of Scalability Comparison

o)

1)

2)

3)

4.4

Assign a value for each of the factor levels and construct the index table

Substituting values in the index table to equation

C@ = P + @exe + Pmxm + Pc,mIc,m

Solve the linear system generated in Step 1.

Judge the term ~C,m by the probability oft value.

Level Four Evaluation: Memory Hierarchy

As discussed in the previous section, the performance of a code may vary with problem size and the

variation is different over different memory architectures. The last step of our evaluation method-

ology is designed to locate memory components which cause the variation. Level four evaluation

compares the performance variation of primary components of the underlying memory systems.

Combined with the level two evaluation, this evaluation determines the ability of each memory

15

.

component in handling different memory reference patterns and suggests possible improvements at

the component level.

The basic statistical method used in level four evaluation is the same as that of level three

evaluation, except for the dependent variables. The act ual design of level four evaluation varies

with the underlying memory structure. As discussed in Section 2, the memory hierarchy of SGI

PowerChallenge and Origin2000 has four primary components: L1 cache, L2 cache, outstanding

cache misses, and main memory. L1,L2 hit ratio can be derived using hardware counters provided

on-board the SGI microprocessor. For this reason we choose L 1 and L2 as the dependent variables.

The same SAS procedure, PROC REG, can be used in level four evaluation as it is used in the

scalability evaluation. As shown by the algorithm given below, the inputs of the SAS procedure

are different for level three and four evaluations.

Algorithm for Memory Structure Evaluation

o)

1)

2)

3)

4)

Assign a value to each of the factor levels and construct the index table

Substituting values in the index table into equations

L1 = p + ~CXC + Pmxm + ~c,mIc,m>

and

L2 = p + ~CXC + @mxm + Pc,mIc,m>

separately.

Solve the two linear system generated in Step 1 individually.

Judge the term ~c,m by the probability oft value.

Determine the performance variation of each of the three primary components.

The two systems generated and solved in Step 1 and 2 are for our experimental environment.

In general, if there are m components that need to be compared, m systems will be generated and

solved in Step 1 and 2 respectively.

5 Evaluation of SGI PowerChallenge

To verify the feasibility and correctness, we have applied

the computing environment discussed in Section 2. All

and 0rigin2000

the four level evaluation methodology to

four levels of evaluation have been used

to evaluate these ASCI machines and benchmarks. Experiment al results show that this newly

proposed methodology is feasible and effective. To illustrate the implementation procedure and

to demonstrate the evaluation results, the experimental results are presented and discussed in

16

,

this section. In our experimental testing, the two machines, PowerChallenge and 0rigin2000, are

assigned machine level 1 and level 2, respectively. The five codes, HEAT, HYDRO, SWEEP,

DSWEEP, and HYDROT, are assigned a level value of 1, 2, 3, 4, 5, respectively. We have used the

SAS solving environment [12] through out the experimental evaluation.

The problem sizes used in the experiment range from N=50 to memory/time constraints. The

corresponding range for the codes are: HEAT = [50, 100], HYDRO = [50, 300], SWEEP = [50,

200], DSWEEP = [50, 200], HYDROT = [50, 300]. All the experimental data are measured from

\ single node sequent ial executions using SGI hardware performance counters.

5.1 Main and Interaction Effects

The relationship between code a~d machine is first investigated. To catch the mean relationship

over the interested range of problem sizes, replicate measurements have been taken for different

problem sizes for a given experimental unit. The two-factor factorial experiment introduced in

Section 3.3 is used to find the effects. The GLM procedure of SAS is used to carry the two-factor

factorial experiment for level one evaluation. Table 4 and 5 shows results from GLM.

Table 4. Class Level Information

Class Levels Values

MACHINE 2 1 2

CODE 5 12345

Number of observations in data set = 113

Table 5. Mean Effects Table

Dependent Variable: cpi

Sum of Mean

Source DF Sauares Sauare F Value Pr>F
Model 9 112.~410006 12.5b45556 27.44 0.0001

Error 103 46.9436516 0.4557636

Corrected Total 112 159.4846523

R-Square C.V. Root MSE CPI Mean

0.705654 34.64445 0.675103 1.948661

Source DF Type I SS Mean Square F Value Pr>F
MACHINE 1 14.39563307 14.39563307 31.59 0.0001

CODE 4 93.17895152 23.29473788 51.11 0.0001

MACHINE*CODE 4 4.96641604 1.24160401 2.72 0.0334

Table 4 lists the GLM model class level information. Table 5 is the mean effects table (see

17

6

5.5 -

cc-de 1 +
GA* 2 -+-
Ccde 3 -s-

5
Ccde4 .*
ckxle54-

0.5
t

0
1 2

Machine

Figure 1. Machine Mean Distribution

Table 2) of the factorial experiment. It consists of two sectors separated by the double-line. The

upper table is for overall effect and the lower table is for individual effects. Look at row four of

Table 5. The F value is 27.44 and the probability of F (1+ > J’) is 0.0001. The probability of F is

less than 0.05. The hypothesis of overall-effect does not exist is rejected. This means that code or

machine effects exist. The lower table is a continuation of the upper table to locate the potential

effects. Look at row two of the lower table. The probability of F is 0.0001 <0.05, which suggests

that machine main effect exists. The same conclusion can be drawn for code. For machine and

code interaction, the probability of F is 0.0334, which is again smaller than 0.05. Interaction effect

for code and machine also exists. Evaluation should be continued to understand these effects.

The mean effect analysis can be explained visually. As depicted in Figure 1, the code per-

formance crosses over the two machines between code 2 and code 3. This line crossing indicates

the existence of interaction effect of machine and code. R confirms the results given by Contrast

method (see Table 5). However, code 2 and 3 have very similar performances on the two machines.

If we can take code 2 and 3 as one code through classification, then there is no code performance

crossing over the two machines and, therefore, no interaction effect for machine and code. Classifi-

cat ion of code and machine is important for understanding measured performances. In fact, based

on our level 2 evaluation, statistically, code 2 and 3 are the same (see Table 7). The two lines

between code 2 and code 3, therefore, statistically are merged to one line.

Figure 2 plots the codes performance over the two machines. We can see that machine 2 always

outperforms machine 1. Machine effect exists. Based on two-factor factorial mechanisms the GLM

procedure systematically finds the main and interaction effects, which sometimes can be determined

easily through visual display, and other times cannot.

18

6

Mac@e 1 -$-

5.5 Machine 2 -+-.

‘t

0.5
t

OJ
1 2

Figure 2. Code

5.2 Code and Machine Classification

4 5
c:.

Mean Distribution

The codes and machines have been classified based on the Contrast and Post Hoc comparisons intro-

duced in Section 3.4 and 4.2. The Contrast procedure of SAS is used for the Contrast comparison.

The result of the pairwise code/machine Contrast comparison is given in Table 6 below.

Table 6. Contrast method for pairwise comparison

Contrast DF Contrast SS Mean Scmare F Value Pr > F’

Heat vs. Dsweep 1 18.73737434 18.73737434 41.11 0.0001

Heat vs. Sweep 1 6.48938939 6.48938939 14.24 0.0003

Heat vs. Hydro 1 8.44857266 8.44857266 18.54 0.0001

Heat vs. Hydrot 1 25.87993484 25.87993484 56.78 0.0001

Dsweep vs. Sweep 1 42.24375672 42.24375672 92.69 0.0001

Dsweep vs. Hydro 1 51.96661369 51.96661369 114.02 0.0001

Dsweep vs. Hydrot 1 84.81327756 84.81327756 186.09 0.0001

Sweep vs. Hydro 1 0.00268119 0.00268119 0.01 0.9390

Swee~ vs. Hvdrot 1 4.41163307 4.41163307 9.68 0.0024

Hydro vs. Hydrot 1- 5.40337655 5.40337655 11.86 0.0008

Machinel vs. Machine2 1 19.78987372 19.78987372 43.42 0.0001

In Table 6, except at row nine, all the probability of rejection is less than 0.05. Code HYDRO

and SWEEP are in the same group. They have similar performance variations caused possibly

by the computational pattern and/or the data reference pattern. All other codes, namely HEAT,

DSWEEP, and HYDROT, have their own signatures. They each belong to different groups. The

two machines are also in two different groups.

The LSD procedure of Post Hoc comparison is also applied to classify the sets of codes and

,

machines. Table 7 and 8 gives the result of the code and machine classification respectively. From

Table 7 we can see that HEAT belongs to group B; DSWEEP belongs to group A; HYDROT

belongs to group D; and HYDRO and SWEEP belong to group C. The result is the same as that

of Contrast comparison. In the Post Hoc comparison, the grouping dist ante used is 0.4072. The

groups are ordered according to their mean cpi values. The group with the highest cpi value (worst

in performance) is listed first, The group with the second highest cpi value is listed second, and

so on. It is interesting to note the implications of these simple results to code classification. We

observe that wit h the exception of HYDRO and SWEEP, each code has a unique performance

variation pattern that warrants further invest igat ion. As will be shown, these unique patt ems can

be further broken down into individual effects contributed by differences in the memory hierarchy

in this particular test environment. These patterns directly contribute to the inherent scalable

performance across machines for these particular codes.

Table 7. LSD Post Hoc Comparison for Code

T Grouping Mean N CODD

A 3.7324 17 4 (DSWEEP)

B 2.4568 22 1 (HEAT)

c 1.6287 28 2 (HYDRO)

c 1.6048 18 3 (SWEEP)

D 1.0074 28 5 (HYDROT)

As shown in Table 8, PowerChallenge and 0rigin2000 are classified into two different groups.

The distance between the two groups is larger than 0.2522 (least significant difference = 0.2522

cpi). The Origin2000 is always better than PowerChallenge for the set of codes under considerate ion.

This result again matches that of Contrast comparison well.

Table 8. LSD Post-Hoc Comparison for machines

T GrouDinK Mean N MACHINE

5.3 Scalability

A 2.3217 54 1 (PowerChallenge)

B 1.65552 59 2 (Origin2000)

Comparison

Using the regression method discussed in Section 3.5 and 4.3, we have conducted scalability compar-

isons on all oft he five codes over the two machines. Recall that this tbird step in our methodology

compares the data scalabilities of a given code on different machines whereas the level two evalu-

20

ation grouped codes based on their average performance over the range of problem sizes. As we

discussed in the previous section, a better memory system should lead to a smaller cpi, and a more

scalable memory system should have a smaller cpi increase, or no cpi increase at all as problem size

scales up. The procedure PROG REG of SAS is used for the scalability comparison. The response

variable is cpi. Table 9 is generated by PROG REG for the scalability y comparison of HEAT over

problem size range [50,100].

Table 9. Scalability Comparison of HEAT

Parameter Standard T for HO:

Variable DF Estimate Error Parameter=O Prob > IT]
INTERCEP 1 2.453200 0.05065942 48.425 0.0001

CODE 1 0.077618 0.01601992 4.845 0.0001

MEMORY 1 -0.468297 0.05065942 -9.244 0.0001

INTAC 1 0.079500 0.01601992 4.963 0.0001

In Table 9, the “INTAC” stands for INTerACtion effect. Recall that the probability to test

whether an interaction is zero is 0.05. At the 0.0001 level (see last column of Table 9), the hypothesis

of zero effect has been rejected. The interaction effect exists. The parameter estimate of “INTAC”

is 0.0795, which means that the term ,&-m is positive (see equation (19)) and the performance

difference of the two machines decreases with problem size. PowerChallenge is more scalable than

0rigin2000 over the range of problem sizes. This reduction in difference is very reasonable. When

problem size increases into main memory, the advantage of having a larger L2 cache fades away.

The performances of the two machines, therefore, become closer. Different codes have different

memory access/computing ratio and have different memory reference patterns. Some codes have

good locality, some do not. Some memory reference patterns can take advantage of the underlying

memory support, some cannot. These factors and others give codes different scalability ies on different

memory systems. While the result ing table is not shown, HYDRO has an INTAC probability level

of 0.0111 indicating interaction effects exist for HYDRO. Unlike HEAT, for HYDRO, the parameter

estimate is —0.050885 < 0, which means that the performance difference between the two machines

increases with problem size. 0rigin2000 has a better scalability than PowerChallenge for HYDRO.

The scalability improvement may be due to 0rigin2000’s larger L2 cache or hardware support

in handling cache misses or faster memory access time. The results of code SWEEP, DSWEEP

and HYDROT are different. The probabilities for rejecting zero interaction effects for these codes

are larger than 0.05. Our no-effect hypotheses stands. The more advanced memory system of

0rigin2000 does not improve the performance difference of these three codes when problem sizes

scale up. The relative performances over the two machines remain unchanged.

Table 10 lists results generated by PROG REG for scalability analysis of SWEEP. From Table

10, the probability level of interaction effect is 0.2216, which is greater than 0.05. Therefore,

21

&,m = O and SWEEP has the same scalability on the two machines. For DSWEEP and HYDROT,

the probability level of interaction effect is 0.3002 and 0.2799 respectively.

Table 10. Scalability Comparison of SWEEP

Parameter Standard T for HO:

Variable DF Estimate Error F’m-ameter = O Prob > IT]
INTERCEP 1 1.613494 0.02647227 60.950 0.0001

CODE 1 0.049352 0.00966631 5.106 0.0003

MEMORY 1 -0.390073 0.02647227 -14.735 0.0001

INTAC 1 0.012463 0.00966631 1.289 0.2216

5.4 Evaluation of Memory Components

As discussed in Section 2, the memory systems of the SGI machines consist of four primary compo-

nents: L1 cache, L2 cache, outstanding cache misses, and main memor y. In the level four evaluation

we examine the role of the four components in scalability variation. The same regression method

used in scalability y study is used here. We use SAS procedure PROC REG to evaluate the relative

performance of L1 and L2 cache independently. The response variable is the cache hit ratio of L1

and L2 accordingly. The cache hit ratios of L 1 and L2 are independent of each other and can be

used as independent variables. Outstanding cache misses cannot be measured. However, based on

the scalability comparison given in the previous section, its role in performance variation can be

estimated when the variations of L1 and L2 hit ratio are known.

Table 11 and 12 show the analysis table for L1 and L2 hit-ratio variation of HEAT. We can

see from Table 11, the probability level of “INTAC” is 0.3156 > 0.05. Zero effect hypothesis is

true for L1 hit ratio of HEAT. HEAT has a constant L1 hit-ratio difference over the two machines.

By Table 12, code-machine interaction effect exists (a = 0.001 < 0.05) and the effect is negative

(~c,~ = –0.005011 < O). In practice, we prefer a smaller cpi and a larger hit ratio. The nega-

tive effect means that the L2 hit ratio difference of HEAT on 0rigin2000 goes down relative to

PowerChallenge, when problem size scales up. As we know from Section 5.3, HEAT has a better

scalability y on PowerChallenge than on 0rigin2000. The relative L2 hit-ratio decrease explains the

smaller scalability of 0rigin2000.

Recall that the underlying SGI PowerChallenge and 0rigin2000 machine have the same CPU

and the same L1 cache. It is no surprise that the relative L 1 hit ratio does not change for all oft he

five codes under study. HEAT has demonstrated how the regression method can be used repeatedly

for

for

different components of a memory system. For the rest of the codes, we will not list the results

L1 cache since it does not contribute to performance variations.

Table 13 is the L2 hit-ratio analysis table for HYDRO. As given in Table 13, the hypothesis

22

Table 11. L1 Hit-Ratio Comparison for HEAT

Parameter Standard T for HO:

Variable DF Estimate Error .Parameter = O Prob > I!l’1
INTERCEP 1 0.818304 0.00039150 2090.171 0.0001

CODE 1 0.000086900 0.00012380 0.702 0.4917

MEMORY 1 -0.000289 0.00039150 -0.738 0.4699

INTAC 1 0.000128 0.00012380 1.032 0.3156

Table 12. L2 Hit-Ratio Comparison for HEAT

Parameter Standard T for HO:

Variable DF Estimate Error Pamrneter = O Prob > Iz’I
INTERCEP 1 0.766496 0.00267152 286.914 0.0001

CODE 1 -0.004971 0.00084481 -5.884 0.0001

MEMORY 1 0.015196 0.00267152 5.688 0.0001

INTAC 1 -0.005011 0.00084481 -5.931 0.0001

of interaction is accepted. The hit ratio differences of HYDRO remain the same for the SGI

machines when problem size scales up. As analyzed in Section 5.3, HYDR0.-Origin2000 has a

better scalability than HYDRO-PowerChallenge. This scalability increase is not due to the larger

L2 cache of 0rigin2000 as shown by the cache hit rat ios across machines. It is due to the outstanding

cache misses ability and faster main memory access time supported by 0rigin2000. Combined with

an existing empirical model [13], a detailed analysis is given in [14] to understand the performance.

Table 13. L2 Hit-Ratio Comparison for HYDRO

Parameter Standard T for HO:

Variable DF Estimate Error Parameter = O Prob >]TI
INTERCEP 1 0.911569 0.00944229 96.541 0.0001

CODE 1 -0.011458 0.00211136 -5.427 0.0001

MEMORY 1 0.046284 0.00944229 4.902 0.0001

INTAC 1 0.003901 0.00211136 1.847 0.0771

Table 14 and 15 are the analysis table for L2 cache comparison for SWEEP and DSWEEP

respectively. By Table 14, interaction effect exists for SWEEP and the effect is negative. The L2 hit

ratio of SWEEP on 0rigin2000 becomes relatively smaller compared with that of PowerChallenge

when problem size scales up. Since SWEEP has the same scalability y on these two machines, the

23

main memory contribution and/or the outstanding cache miss ratio must be improved on 0rigin2000

when problem size scales up. The outstanding cache-miss principle and faster main memory access

also work well for SWEEP when problem size is large [14].

Table 14. L2 Hit-Ratio Comparison for SWEEP

Parameter Standard T for HO:

Variable DF Estimate Error Parameter = O Prob > IT]
INTERCEP 1 0.826199 0.00302764 272.886 0.0001

CODE 1 -0.013206 0.00110554 -11.945 0.0001

MEMORY 1 0.042485 0.00302764 14.032 0.0001

INTAC 1 -0.003833 0.00110554 -3.467 0.0047

Like HYDRO1 DSWEEP maintains a constant L2 hit-ratio difference on the two machines.

DSWEEP has the same scalability on the two machines. When L1, L2 hit-ratio difference remain

unchanged, the difference of main memory contribution toward the final performance is also un-

changed [14]. Therefore, we can conclude that DS WEEP’s outstanding cache-miss ratio does not

vary with problem size.

Table 15. L2 Hit-Ratio Comparison for DSWEEP

Parameter Standard T for HO:

Variable DF Estimate Error Parameter = O Prob > ITI
INTERCEP 1 0.810041 0.00804876 100.642 0.0001

CODE 1 -0.032839 0.00402438 -8.160 0.0001

MEMORY 1 0.077890 0.00804876 9.677 0.0001

INTAC 1 0.002200 0.00402438 0.547 0.5966

Finally, Table 16 lists the L2 hit-ratio comparison for HYDROT. HYDROT has the same effect

as SWEEP. Its L2 hit-ratio difference remains the same and has the same scalability on the two

machines, as given in the previous section. Like SWEEP, HYDROT’s outstanding cache-miss ratio

does not change with problem size.

The four-level evaluation methodology proposed in Section 4 has been applied to analyze the

performance of two ASCI machines and five benchmarks available at Los Alamos National Lab-

oratory. In the level one evaluation we have found that both code and machine effects exist.

Performance varies with codes and machines. Continued from the first level evaluation, in level

two evaluation, the codes and machines have been classified into four and two groups respectively

based on their performance. This classification shows that, while the codes have a wide distribution

in performance due to their inherented memory reference/computation patterns, the 0rigin2000

24

.

Table 16. L2 Hit-Ratio Comparison for HYDROT

Parameter Standard T for HO:

Variable DF Estimate Error Parameter=O Prob>lTl

INTERCEP 1 0.918992 0.00278790 329.636 0.0001

CODE 1 -0.006044 0.00062339 -9.695 0.0001

MEMORY 1 0.023656 0.00278790 8.485 0.0001

INTAC 1 -0.002718 0.00062339 -4.360 0.0002

definitely outperforms PowerChallenge on all the codes. It is interesting to note, that, despite

the fact that all the codes had a better performance on 0rigin2000, by level three evaluation

these codes have different relative performance variations over the two machines when problem size

scales up. When problem size becomes large, the performance difference of HEAT on these two

machines becomes smaller; the performance difference of HYDRO on these two machines becomes

larger; while the differences of the other three codes remain unchanged. Obtaining the variation

in relative performance is important for benchmarking and other performance comparisons. For

instance, the scalability y analysis shows that the relative performance of HEAT and HYDRO are

more likely to vary with problem size than the other three codes. A more detailed evaluation, the

level four evaluation, has found the causes of the scalability difference over the codes. In addition

to a larger L2 cache capacity, the four outstandings for cache misses and the faster main memory

access supported by Origin2000 have played an important role in performance improvement. This

is especially true for HYDRO and SWEEP.

6 Conclusions

We have proposed a hierarchical statistic methodology for memory system evaluation. This newly

proposed methodology is ‘developed based on three conventional statistical techniques and the

concept of scalability analysis. It is robust, general, systematic, and automatic. It is built upon

solid mathemat ic foundations, does not require detailed understanding of the underlying memory

systems, is equipped with multiple levels of evaluation for an adaptive study, and is supported by

practical algorithms such that the evaluation can be carried out automatically. This statistical

methodology is different with queuing theory based probability methods and curve-fitting based

regression met hods, where the former requires an appropriate modeling oft he memory system and

the latter is short on information for advance memory structures. This methodology consists of

four levels of evaluation. The first two levels find memory reference patterns and their influence

on different memory systems. The second two levels determine the performance variation when

problem sizes scale up. The last two levels of evaluation are based on scalability analysis which is

a new approach for memory system evaluation. The combination of the four levels of evaluation

25

<,,

makes the proposed methodology unique and more appropriate for advance memory systems than

existing methodologies.

Unlike many existing statistic and stochastic methods, the newly proposed methodology is not

designed to determine parameters of a pre-assumed performance model. Instead, it is built on

the approach of relative performance comparison, which is one of the most important concerns

in architectural design and algorithmic development, and is set to reach a balance of simplicity

and effectiveness. The methodology compares the relative impact of codes, machines, codes and

machines, and components of machines toward the final performance. It also compares the relative

performance variation when problem sizes scale up, in terms of scalability. It is a post evaluation

methodology. This newly proposed method can be used collectively with existing empirical and an-

alytical models for quantitatively assessing the contribution of low-level system components toward

the final performance.

We have focused on advanced memory systems for sequential processing in this study due to

our current research interests. The statist ical techniques and scalability y analysis mechanisms used

in this study, however, are general. With moderate modifications, they can be extended to other

machine architectural evaluations and to parallel computers. The applicability and extendibility of

the proposed statistical methodology needs to be further explored in future research.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

S. McKee, R. L;emle, K. L. Wright, W. Wulf, M. Salinas, J. Aylor, and A. Batson, “Smarter

memory: Improving bandwidth for strained references,” IEEE Computer, no. 7, pp. 54-63,

1998.

D. Burger, J. Goodman, and A. Kagi, “The declining effectiveness of dynamic caching for

general-purpose microprocessors.” Tech. Report CS-TR-95-1261, Jan. 1995.

MIPS Technologies, Inc., “R1OOOO microprocessor product overview.” MIPS Product Preview,

1995.

K. Yeager, “The MIPS R1OOOO superscalar microprocessor: IEEE Micro, pp. 28–40, Apr.

1996.

M. Zagha, B. Larson, S. Turner, and M. Itzkowitz, “Performance analysis using the mips

r10000 performance counters, “ in Proc. of Supercomputing ’96, Nov. 1996.

R. Freund and W. Wilson, Statistical Methodes. Academic Press, Inc, 1997.

R. Jain, The Art of Computer System Performance Anal@s. John Wiley & Sons, 1991.

X.-H. Sun and D. Rover, “Scalability of parallel algorithm-machine combinations,” IEEE
Transactions on Parallel and Distributed Systems, pp. 599-613, June 1994.

X.-H. Sun and L. Ni, “Scalable problems and memory-bounded speedup,” J. of Parallel and
Distributed Computing, vol. 19, pp. 27-37, Sept. 1993.

26

,.,

[10]

[11]

[12]

[13]

[14]

X.-H. Sun, “Scalability versus execution time in scalable systems.” Louisiana State Uiversity,

Computer Science TR-97-003, 1997.

G. Lyon, R. Kacker, and A. Linz, “A scalability test for parallel code,” SOFTWARE: Practice
and Experience, vol. 25, pp. 1299–1314, Dec. 1995.

SAS Institute Inc., SAS User’s Guide. SAS Institute Inc., 1996.

0. M. Lubeck, Y. Luo, H. Wasserman, and F. Bassetti, “An empirical hierarchical memory

model based on hardware performance counters,” in Proceeding o~ PDPTA ’98, July 1998.

X.-H. Sun, K. Cameron, D. He, and Y. Luo, l(A memory-centric characterization of ASCI

applications via a combined approach of statistical and empirical analysis. ” in preparation,

1998.

27

