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Abstract

Advances in technology have resulted in a widening of the gap between computing
speed and memory access time. Data access time has become increasingly important
for computer system design. Various hierarchical memory architectures have been
developed. The performance of these advanced memory systems, however, varies with
applications and problem sizes. How to reach an optimal cost/performance design
eludes researchers still. In this study, we introduce an evaluation methodology for
advanced memory systems. This methodology is based on statistical factorial analysis
and performance scalability analysis. It is two fold: it first determines the impact of
memory systems and application programs toward overall performance; it also identifies
the bottleneck in a memory hierarchy and provides cost/performance comparisons via
scalability analysis. Different memory systems can be compared in terms of mean per-
formance or scalability over a range of codes and problem sizes. Experimental testing
has been performed extensively on the Department of Energy’s Accelerated Strategic
Computing Initiative (ASCI) machines and benchmarks available at the Los Alamos
National Laboratory to validate this newly proposed methodology. Experimental and
analytical results show this methodology is simple and effective. It is a practical
tool for memory system evaluation and design. Its extension to general architectural
evaluation and parallel computer systems are possible and should be further explored.
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1 Introduction

Memory speed improvement has not kept up with the pace of that of processor speeds. While
processor speeds have been increasing by at least 70 percent annually, the DRAM latency has
improved only 7 percent per year [1]. Various advanced memory systems have been developed
to manage the increasingly wide disparity between central processing unit (CPU) speed and data
access speed. An advanced, hierarchical memory system has become a necessity of high-performance
computers. Performance and scalability of these modern computers are more dependent on the
hierarchical memory systems than the peak CPU rate employed.

Performance evaluation of today’s hierarchical memory systems, however, is very challenging.
There are a variety of means by which the impact of memory latency on computer performance
can be diminished by the computer architecture, as described in [2]. For example, the archi-
tecture can tolerate long latencies, by increasing the memory hierarchy complexity (with more
cache units) or by increasing the level of concurrency available in memory operations. Computer
architectures can also reduce memory latency by using faster processor-memory interconnection
networks, supporting out-of-order execution, and allowing outstanding memory accesses to overlap
computation; this helps because DRAM speed is only one component of overall memory latency.
There are also a variety of techniques programmers can employ to diminish memory latency effects.
Programmer-related strategies require algorithmic innovation to tolerate memory latency by taking
advantage of data locality, and to reduce memory stall time by eliminating superfluous load and
store operations. These architectural and programmatic techniques are both machine and applica-
tion dependent. How to apply them in practice is still state-of-the-art. In addition, the performance
and optimization requirements vary with problem sizes. Scalability needs to be considered.

Based on statistical factorial analysis and performance scalability analysis, in this paper we pro-
pose a methodolo;gy for examining the effectiveness of both hardware and software memory latency
hiding techniques of a memory system. This methodology consists of four levels of evaluation. For a
set of codes and a set of machines, we first determine the effect of code, machine, and code-machine
interaction on performance respectively. If a main or interaction effect exists, then, in the second
level of evaluation, the code and/or machine is classified based on certain criteria to determine the
cause of the effect. The first two levels of evaluation are designed to detect the characteristics of
codes and their influence on different memory systems. They are based on average performances
over the ranges of problem size interested in. The last two levels of evaluation determine the per-
formance variation when problem sizes scale up and are based on scalability analysis which is a new
approach for memory system evaluation. The concept of memory scalability is formally introduced.
Level three evaluation is the scalability evaluation of the underlying memory system for a give code.
Level four evaluation conducts a more detailed examination on the component contribution of the

memory system toward the final scalability. The combination of the four levels of evaluation makes

the proposed methodology adaptive, effective, and more appropriate for advance memory systems




than existing methodologies.

The Silicon Graphics Inc. (SGI) Origin2000 system and a previous SGI architecture, the Pow-
erChallenge system, have been used as the test-bed to illustrate the newly proposed methodology.
The single-processor performance (in terms of cycles per instruction,cpi) of the two machines are
compared and analyzed. Evaluation results given by this methodology are confirmed by measured
results and by a previously-reported performance model. The comparison of these two machines
is of particular interest because they both use the same compute node, a 200-MHz MIPS R10000
processor [3] [4], but the memory subsystems of the two architectures are vastly different. Al-
though improvement in the Origin memory network has important consequences for system-wide,
multiprocessor performance, Origin single-node performance benefits as well.

We use a benchmark set consisting of applications from the Los Alamos portion of the Acceler-
ated Strategic Computing Initiative (ASCI) workload. The intention of ASCI is to accelerate the
development of tera-scale numerical computing capabilities in order to allow effective achievement
of massively-parallel, 3-D coupled-physics simulations. However, the long history of DOE program-
matic computing on computer architectures is vastly different from those envisioned as part of the
ASCI program. Significant algorithmic modification as described above may be required to reach
acceptable performance. Thus, it is important that ASCI code developers have some advance in-
formation regarding the extent to which cache-based architectures and cache-friendly programming
styles will affect the performance of their applications. In order to provide this information in this
paper we use codes that incorporate both the legacy style of coding and a locality-improved style.
In some cases both styles are available for the same application.

This paper is organized as follows. In Section 2, we present the test environment. The machines
and codes used in our experimental testing are briefly described. In Section 3, we introduce the
scalability concept and the statistical methods needed for the hierarchical methodology. Terminolo-
gies needed are also given in this section. The four level statistical methodology for memory system
evaluation is introduced in Section 4. Case study is conducted in Section 5 to apply the proposed
methodology on the testing environment. All the four levels of evaluation are applied to examine
and compare the five codes on the two machines given in the testing environment. Measured results
and an existing analytical model are used to confirm the newly proposed methodology. Finally,

section 6 summarizes the work.

2 Test Environment

Two machines and a set of five benchmarking codes are used throughout our study to illustrate
the method and to verify the correctness. These machines and benchmarks are described below.
While our discussion is focused on a particular environment, the factorial methodology proposed

in this study is general. It can be applied to any machine and set of applications.




2.1 Machine Description

The PowerChallenge is an SMP architecture that employs a central bus to interconnect memories
and processors [3]. The bus bandwidth (1.2 Gbytes/sec) does not scale with more processors.
Cache coherence is maintained through a snoopy bus protocol which broadcasts cache information
to all processors connected to the bus. The Origin 2000, on the other hand, is a distributed
shared memory (DSM) architecture which uses a switch interconnect that improves scalability by
providing interconnect bandwidth proportional to the number of processors and memory modules
[4]. Coherence is maintained by a distributed directory-based scheme. Each router in the hypercube
topology connects two nodes to the network. Each node contains two processing elements and one
local memory unit. A 128-processor system, for example, consists of a fifth-degree hypercube with
4 processors per router.

The processing elements of both the Origin 2000 and PowerChallenge systems use a 200MHz
MIPS R10000 microprocessor. The processor is a 4-way super-scalar architecture which implements
a number of innovations to reduce pipeline stalls due to data starvation and control flow [4]. For
example, instructions are initially decoded in-order, but are executed out-of-order. Also, specula-
tive instruction fetch is employed after branches. Register renaming minimizes data dependencies
between floating-point and fixed-point unit instructions. Logical destination register numbers are
mapped to the 64 integer and 64 floating point physical registers during execution. The two pro-
grammable performance counters track a number of events [5] and were a necessity for this study.
The most common instructions typically have one- or two-clock latencies.

While the processing elements of the PowerChallenge and Origin 2000 systems are identical,
there are major differences in the memory architecture and corresponding performance of the two
systems. The PowerChallenge is an UMA architecture with a latency of 205 clocks (1025 ns).
Latencies to the memory modules of the Origin 2000 system, on the other hand, depend on the
network distance from the issuing processor to the destination memory node. Accesses issued to
local memory take about 80 clocks (400 ns) while latencies to remote nodes are the local memory
time plus 33 clocks for an off-node reference plus 22 clock periods (CP; 110 ns) for each network
router traversed. In the case of a 32 processor machine, the maximum distance is 4 routers, so that
the longest memory access is about 201 clocks (1005 ns) which is close to the uniform latency of
the PowerChallenge.

In addition, improvements in the number of outstanding loads that can be queued by the
memory system were made. Even though the R10000 processor is able to sustain four outstanding
primary cache misses, external queues in the memory system of the PowerChallenge limited the
actual number to less than two. In the Origin 2000, the full capability of four outstanding misses is

possible. The L2 cache sizes of these two systems are also different. A processor of PowerChallenge

can be equipped up to 2MB L2 cache while a CPU of Origin 2000 system always has a L2 cache of
4MB.

As evident, these SGI machines provide a unique performance evaluation environment since the




architectures employ identical microprocessors but differ significantly in the design of the memory
subsystems. The particular differences, namely L2 cache size, main memory latency, and number
of outstanding misses, allow this statistical factorial study to unveil the performance impact of the
memory subsystem. We intend to focus on single processor execution and use identical executables
across machines to eliminate software differences. All data collected and used was captured using
on chip performance counters provided for the MIPS R10000 microprocessor. This method of data
collection, as opposed to simulation or other similar methods, provides a realistic representation of

the actual processor performance in a real environment under real conditions.

2.2 Code Description

The following codes were used in the factorial experiment design.

SWEEP and DSWEEP are both three-dimensional discrete-ordinate transport solvers that dif-
fer in their implementations. In both versions, the main part of the computation consists of a
balance loop in which particle flux out of a cell in three Cartesian directions is updated based
on the fluxes into that cell and on other quantities such as local sources, cross-section data, and
geometric factors. The cell-to-cell flux dependence implies a recursive wavefront structure. In
the DSWEEP implementation, the mesh is swept using diagonal planes which enable the balance
loop to be vectorized. In this version, gather/scatter operations must be used to obtain local
source and cross-sectional values. In the second implementation, namely SWEEP, a “line sweep”
is accomplished involving separately nested, quadrant, angle, and spatial-dimension loops. There
are no gather/scatter operations, all accesses are now unit-stride, and memory traffic is signifi-
cantly reduced through “scalarization” of some array quantities. However, with the balance loop
now proceeding along rows and columns instead of the diagonal, recursion now prohibits complete
vectorization.

HYDRO is a two-dimensional explicit Lagrangian hydrodynamics code based on an algorithm
by W.D.Schulz. HYDRO. is representative of a large class of codes in use at the Laboratory. The
code is 100% vectorizable. An important characteristic of the code is that most arrays are accessed
with a stride equal to the length of one dimension of the grid. HYDRO-T is a version of HYDRO in
which most of the arrays have been transposed so that access is now largely unit-stride. A problem
size of N implies N? grid points.

HEAT solves the implicit diffusion PDE using a conjugate gradient solver for a single timestep.
The code was written originally for the CRAY T3D using SHMEM. The key aspect of HEAT is
that its grid structure and data access methods are designed to support one type of adaptive mesh
refinement (AMR) mechanism, although the benchmark code as supplied does not currently handle
anything other than a single-level AMR grid (i.e. the coarse, regular level-1 grid only). A problem
size of N implies N3 grid points.



ar

3 Background and Terminology

Some background knowledge of scalability and statistics is needed for understanding the proposal
factorial evaluation methodology. We introduce the memory scalability concept and three statistical
methods in this section. These statistical methods are not new. The combination of these statistical

methods with scalability analysis and its application in memory system evaluation are new.

3.1 Terminology

Except cpi, all the following terminologies are general terms used in statistics [6, 7].

1. ¢pi (Cycle Per Instruction)
cpt measures the average number of computing cycles used for executing one instruction.
. Speed, a widely used performance metric, is defined as work divided by time. For scientific
computing, speed is often measured in terms of MFLOPS (Million of FLoating-point Oper-
ations Per Second). If work is given in terms of instructions and time is given in terms of
computing cycles, ¢pi is the reciprocal of speed. We choose cp? as the preferred measurement
in our study since nonfloating-point operations are an important concern in memory evalu-
ation, and the number of computing cycles consumed is a more accurate measurerent than
execution time when memory system performance can be separated from that of computing

elements.

2. Multiple treatment factors
Many factors influence the performance of a computer system, however an experimental design
with a large number of factors may not be the best approach toward an understanding of
performance. A first step of modeling should be to find the factors with significant impact and
to reduce the number of factors to be examined. In our experimental design, we use two factor
factorial design. Problem size and machine are the two factors used for scalability study and
‘code and machine are the two factors used in data reference pattern study. Each factor has
' multiple levels. For our design, for instance, the machine factor has two levels, PowerChallenge
and Origin2000; the code has five levels, HEAT, HYDRO, SWEEP, DSWEEP, and HYDROT.

3. Factorial experiment
An experiment that has each combination of all factor levels applied to experimental units is
called factorial experiment. An entity that is used for the experiment is called an experimental
unit. For example, PowerChallenge and HEAT, one combination of the different levels of the

code and machine factors, is an experimental unit.

4. Cell

Cell refers to the measurement made to an experimental unit. The value of ¢pi measured on

PowerChallenge and HEAT could be considered a cell. A cell may include an observation.




. Main effects
Main effects are the differences in the mean response across the levels of each factor when

viewed individually. For instance, code and machine are two main effects for our study,

6. Interactions effects
Interactions effects are differences or inconsistencies of the main effect responses for one factor
across levels of one or more of the other factors. In our experimental design, both code and
machine may have effects on the experimental units. If code influences the performance of a

machine, or, vice versa, then interaction effects exist.

3.2 Memory Scalability

A goal of high performance computing is to solve large problems fast. Considering both execution
time and problem size, what we seek from parallel processing is speed, which is defined as work
divided by time. The average unit speed is a good measure of parallel processing. It measures the

computation performed in each processor per second.

Definition 1 The average unit speed (or average speed, in short) is the achieved speed of the

given computing system divided by p, the number of processors.

The isospeed scalability has been formally defined in [8] as the ability to maintain the average

speed in parallel processing when the number of processors increases.

Definition 2 (isospeed scalability) A code-machine combination is scalable if the
achieved average speed of the code on the given machine can remain constant with increasing num-

bers of processors, provided the problem size can be increased with the system size.

By Definition 2, isospeed scalability maintains average speed via increases in problem size.
Intuitively, a more scalable code-machine combination should lead to an increased average speed
for a given problem size and vice versa. This intuition may not be generally true due to memory
or other hardware limitations. A definition of data (problem size) scalable is introduced in [9, 10]
for parallel processing. Following the same concept, Definition 3 gives a definition of data scalable

for memory systems of single node sequential computing.

Definition 3 (data scalable for single systen;) We say code-memory combination 1 is better
(data) scalable than code-memory combination 2, if code-memory combination 1 has a better initial
speed than that of code-memory combination 2 and their speed difference increase when problem
size scales up, or if code-memory combination 2 has a better initial speed than that of code-memory

combination 1 and their speed difference decrease when problem size scales up.

As we discussed in Section 3.1, c¢pi is a more appropriate measurement for memory system

evaluations. Definition 4 gives an equivalent definition of data scalable in terms of ¢pi.




Definition 4 (data scalable for single system) We say code-memory combination I is better
(data) scalable than code-memory combination 2, if code-memory combination 1 has a better initial
cpt than that of code-memory combination 2 and their cpi difference increase when problem size
scales up, or if code-memory combination 2 has a better initial speed than that of code-memory

combination 1 and their cpi difference decrease when problem size scales up.

Data scalable is a complement of isospeed scalability for parallel processing. It measures the
hardware/software constraints of serial computing when problem size scales up, where the most
likely constraint of sequential computing is the limitation of memory capacity. Evaluating and

characterizing the performance of a single memory system is the focus of this study.

3.3 The Two-Factor Factorial Experiment

We arbitrarily label A and C as the two factors used in the Two-Factor Factorial Experiment.
Assume factor A has a levels and factor C has ¢ levels, which is referred to as an a - ¢ factorial
experiment, and assume there are n independent samples replicated for each of the a - ¢ possible
factor-level combinations; we then have a randomized experimental design with a-c treatments and
a - ¢-n observed values of the response variable. The linear model for the corresponding two-factor
factorial experiment is

Yijk = 1+ o + 5 + (o 7)ij + € (1)

where

Yijk, B = 1,2,...,n, are k-th observed value

of the response variable Y for the cell defined by the definition of the i-th level of factor A and the
J-th level of factor C;

1 1s the reference value, which is usually called the “grand” or overall mean;

;3,1 =1,2,...,a, are main effects of factor A,

they are the difference in the mean response between the subpopulation comprising the i-th level

of factor A and the reference value y;
75,3 = 1,2, ...,¢, are main effects of factor C,

they are the difference in the mean response between the subpopulation comprising the j-th level

of factor C' and the reference value y;

a-v)it=1,2,...,a,5 =1,2,...,¢, are interaction effects of factor A and C,
¥] J




they are the difference between the mean response in the subpopulation defined by the combination
of the A; and Cj factor levels; and finally

€kt =1,2,..,a,5 = 1,2,...,¢c,k = 1,2,...,n, are random errors

representing the variation among observations that have been subjected to the same factor level
combinations. €;;; are the values of a random variable having an approximately normal distribu-
tion with mean zero and variance 2. Determining the main and interaction effects of a two-factor
factorial experiment involves four steps. First, the hypotheses of interested effects should be estab-
lished. For the memory system study, we are only concerned with the existence of the effects. We

have

Hy : a; = 0, main effect A (assume main effect A does not exist). (2)
Hj : v; = 0, main effect C (assume main effect C does not exist). (3)
Hy : (ay)ij = 0, for all i and j, interaction of factor A and factor C (4)
(assume interaction effect does not exist). (5)

Second, compute the main and interaction effects based on measured data and the linear model,
equation (1). Third, compare the computed main and interaction effects with the null hypotheses.
In our study, the comparison is to compare computed effects’ values with the zero value. Finally,
the probabilities of correctness of the null hypotheses are calculated by the F distribution function
[6, 7]. In statistical factorial analysis, less than 5% is usually used to reject a null hypotheses. For
instance, if the probability of main effect A is less than 5%, then the null hypothesis equation (2)
will be rejected. That means main A effect is not zero, and main effect A exists. Otherwise, the
value of main effect is zero and main effect A does not exist. Main effect C and the interaction
effect A - C are evaluated similarly.

The factorial analysis of a factorial experiment is the analysis of variance. For brevity, we
use a simple example to illustrate the analysis process. Assume that we have codes HEAT and
DSWEEP run on the two machines PowerChallenge and Origin2000. Therefore, there are 4 pos-
sible combinations in these two factor factorial experiment: HEAT on PowerChallenge; HEAT on
Origin2000; DSWEEP on PowerChallenge; DSWEEP on Origin2000. The measurements made on
these four combinations is cpi. Let HEAT and DSWEEP be the level 1 and level 2 code, and let
PowerChallenge and Origih2000 be the level 1 and level 2 machines, respectively. Table 1 shows a
hypothetical data set arrangement.

In Table 1, y is the dependent variable. The first two indices of 3's subscript represent the level
of code and machine respectively. For instance, as listed, y111 is 1.4014525 and y;12 is 3.12857184.
The average of these two cells, the cell mean, represented by ¥, , is 2.2649935. In general, 7;; is the




Table 1. A Sample Data Set

machine code code means
HEAT DSWEEP Ui

PowerChallenge  1.40141525  1.02674004
3.12857184  1.88990128 1.8616571

CellMeans ;, 2.2649935 1.4583207

Origin2000 0.847917292  0.90590811
1.352394111  1.409128055 1.1288369

CellMeans ¥, 1.1001557 1.1575181
Machine Means ¥ ; 1.6825746 1.3079194 7y = 1.495247

cell means for y;;1, k£ = 1,2,...,n. The same explanation applies to code DSWEEP and machine
Origin2000. The average of the cell means in the same column is the machine means represented
by ¥ ;. The average of the cell means in the same row is the code means represented by 7; . At
last, the overall mean is represented by 7 . Table 2 shows the components needed to be computed

for a two-factor factorial experiment.

Table 2. Mean Effects Table

Source DF - S8S MS F
Between Cells a-c—1 SSCells MSCells MSCells/MSW
Factor A a-1 SSA MSA MSA/MSW
Factor C c-1 SSC MSC MSC/MSW

Interaction A-C  (a-1)(¢c-1) SSAC  MSAC  MSAC/MSW
Within Cells(Error) a-c¢(n—1) SSW MSW
Total a-c-n—1 TSS

In Table 2, DF' is the degree of freedom. Degree of freedom is the number of observations
minus the number of the equations (restrictions) in the experiment. 5§ is the Sum of Squares and
MS (Mean Square) is the sum of square divided by the degree of freedom associated with it. F
is the value judging the correctness of a null hypothesis. Between Cells refers computation made
at the factor levels. In our case, the SS and MS are computed in both code and machine level
accordingly. That means SS and M .S of Between Cells are computed by means over observations

with overall mean. Here are the equations:

SSCells =n> (7. — 7..)% (6)

if

MSCells = SSCells/(a-c—1). (7)




For factor A, the SS and M S are computed as
SSA=c-n) (3. -7.)% (8)
i

MSA=SS54/(a - 1). (9)

For factor C, the SS and M S are computed as

SSC=a-n3 (7, ~7.)"% (10)

MSC = S8C/(c - 1). (11)

For interaction A - C, the $S and M S are computed as
SSAC = 8S8Cells — SSA — SSC, (12)

MSAC = SSAC/(a — 1)(c — 1). (13)

Note that SSCells is the sum of SSAC, §5A, and SSC.
Within Cells (the Error term) ean be computed as

SSW =T8S — SSCells, (14)
MSW = ﬁW_ ' ' (15)
a-c-(n—1)

Total SS (7'SS) is computed in the following equation:
TSS =3 (yijk—7..)° (16)
ijk

F values are computed by MS’s divided by MSW accordingly. It is the mean square of Error.

3.4 Contrast and Post Hoc Comparisons

Many statistical methods exist for classification and grouping. We use two known classification
methods in our study. They are Contrast and Post Hoc Comparisons. A contrast is a linear
function of means whose coefficients add to zero. In contrast method, ¢ test is used to judge the
null hypotheses [6]. We use an example to explain the contrast method.

For the experimental environment described in Section 2, suppose we would like to compare
whether two machines have the same effect on these codes, with measured cpi over these codes on

these two machines. Then the null hypothesis is:

Hy:L=py—ps

10




where puy is the average of cpi over the codes on PowerChallenge and 3 is the average of cpi over
the codes on Origin2000. The ¢ test is defined as

N

where «;, ¢ = 1,2, are the coefficients of L. In the null hypothesis defined above,

oy=1-1=0 (18)

7;. is the sample value of p;. M.SW is the Error term in Table 2 and » is the number of observations.
The evaluation of ¢ test is similar to that of F' test in judging null hypotheses. If the probability
of ¢ value is less than 0.05 then the null hypothesis is rejected, otherwise you cannot reject the null
hypothesis.

When the factors and their levels are not defined in a manner that allows the use of preplanned
comparisons, a Post Hoc comparison procedure would be more appropriate. The Post Hoc Com-
parisons, namely the LSD, Tukey, Duncans, and Scheffe comparison [6], are similar to the above ¢
test Contrast method. The differences are that these methods have their own criteria to determine
the “significant difference” for ¢ test. LSD is the easiest one in rejecting a null hypothesis; Duncans
is less easy than LSD; Tukey is less easy than Duncans; and Scheffe is the most difficult one in

rejecting a null hypothesis. We have used LSD in our experiment.

3.5 Regression Method for Scalability Testing

A regression method has been used by Lyon et. al. to evaluate the scalability of parallel processing
[11]. With some modification, here we extend the regression method to data scalability of memory
systems. Again, we use a simple example to illustrate the regression method. In scalability study,
the two factors are problem size and machine, and the experiment is for a given code on different
machines. Assuming we are interested in testing the scalability of code HEAT which has a (problem)
size level 1 and 2 with problem size 25 and 50 respectively, we set the PowerChallenge as machine
level 1 and Origin2000 as machine level 2. Following the regression method, we need to assign
a value to each of the code and machine levels. Conventionally, these values are small integers.
Assign level 1 to -1 and level 2 to value 1 for both size and machine level accordingly, we have the
index table, Table 3.

In Table 3, X, is the indicator variable for code; X, is the indicator variable for machine; I,

is the indicator variable for interaction. If y is a constant term, then we have a regression model:

ept = po+ BeXe + BmXm + Bemlem (19)

11




Table 3. The Index Table of a Regression Experiment

X Xm I cpi cpiactual

-1 -1 41 a  1.233678
+1 -1 -1 b 0.900876
-1 +1 -1 c 1.112349
+1 +1 41 d 1.387690

Substitute the values in Table 3 into equation (19), we have

a=p— e~ Bm+ Pem (
b=p—Bc— Pm — Bem (
c=p =L+ Bn— Bem (22)
d=p+ Bc+ Bm + Bem (

. solving these equations, we have

_ a+b:c+d (24)
fo= 2E2—Ctd (25)
o= 22 E O (26)
fom = 202 (27)

The term 3. ,, is the interaction effect. It is tested by ¢ test to see whether the interaction effect

exists. The null hypothesis tested here is:
Hy : /BC,WL =0 (28)

If the probability of ¢ value is less than 0.05, then 3., < 0 leads to the conclusion that the code is
more scalable on the level 2 machine than on the level 1 machine; 8., = 0 leads to the conclusion
that the code has the same scalability on the level 1 and 2 machine; otherwise, 3., > 0 leads to
the conclusion that the code is more scalable on the level 1 machine than on the level 2 machine.
Comparing the data scalable concept given in Section 3, we can see that the regression method
provides a relative scalability comparison of a code on two different machines. As shown in the
example, the relative comparison is in terms of the size level used in the problem size factor. In
general, the relative scalability is a function of the size and the number of size levels of the problem

size factor. For an appropriate experimental design, the problem sizes tested should be chosen from

12




an appropriate range which represents the actual usage.
For simplicity, we have used a two-level experiment to illustrate the regression method for
scalability evaluation. However, the regression method is general. It can be applied to any number

of levels which is greater than one for each of the two factors.

4 A Methodology for Hierarchical Memory Systems

We have developed a hierarchical evaluation methodology for advanced memory systems based on
the knowledge introduced in Section 3. This methodology consists of four levels of evaluation. All
of the four levels of evaluation are based on two-factor factorial statistical methods. While the first
two levels of the methodology focus'on the mean performance over problem sizes, the last two level
evaluations show the performance variation when problem size increases. The combination of these
four levels of evaluations provides a feasible solution for predicting the performance when problem

size scales up and to suggest further memory system improvements.

4.1 Level One Evaluation: Main Effect

Level one evaluation uses the two-factor factorial experiment (see Section 3.3) to find the effects
of code and machine. Using the two factors code and machine, it detects the overall effect of
code, machine, and their interaction on the final performance. The dependent variable for the two-
factor factorial design is cpi. The random samples for each of the code-machine level combination
are chosen from different problem sizes within the interested problem size range. So, the effect
comparison is based on the mean performance over different problem sizes. If code effect exists,
we conclude that the codes have different memory reference patterns which diverge memory access
time. When machine effect exists the memory system difference on the machines does make a
difference in performance. Finally, when code-machine interaction effects exist the memory system
difference has a different impact on different memory reference patterns. Notice that all these effects
are overall effects of codes and machines. Any of the effects that exist deserve further investigation
to identify the source or sources.

Based on Section 3.3, the result of the two-factor factorial experiment can be given in the
format as shown in Table 2. This result table can be generated by SAS procedure PROC GLM

[12]. To be self-complete, the algorithm to compute these neededkpa.rameters is listed below.

Algorithm of Main Effects

0) Compute Cell Means 7;; , Machine Means 7 ; , Code Means ;= and Overall Mean g
1) Compute T'SS, SScells, SSW, SSA, SSC, and SSAC

2) Compute all the degrees of freedom, such asa—1,c— 1, a-¢— 1, and so on.
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3) Compute MSCells, MSA, MSC, MSAC, and MSW

4) Get F values by using 5SS divided by the degree of freedom

4.2 Level Two Evaluation: Code/Machine Classification

Level one evaluation detects the overall effect of code, machine, and their interaction on perfor-
mance. When these effects exist, we would like to know the contribution of each code/machine
toward the effects and to identify the outstanding code/machine for more detailed study. The
key technique to single out outstanding contributors is to find the relative performance of a
code/machine with that of others. Statistical classification methods provide a means to group
code/machine based on their relative performance.

The Contrast method and Post Hoc comparisons introduced in Section 3.4 are classical sta-
tistical methods for classification. We have used the contrast method and all the four Post Hoc
methods in our study. These methods have different classification criteria.

These comparison methods will be applied pairwisely. For instance, for code classification
under our experimental environment, HEAT has to be compared with all the other codes, namely
HYDROT, HYDRO, SWEEP, and DSWEEP; HYDROT is compared with the rest of the codes,
namely HYDRO, SWEEP, and DSWEEP; HYDRO is compared with SWEEP and DSWEEP;
and finally, SWEEP is compared with DSWEEP. In general, there are a! comparisons for a factor
with @ levels. If two machines belong to the same category, then statistically they are the same,
for the set of codes and under the interested range of problem sizes. If two codes belong to two
different categories, then they have different memory reference/computation patterns. A good

general purpose machine should not deliver a wide cpi distribution among codes.

Algorithm of Contrast Method

0) Repeat the same steps for constructing Table 2
1) Compute 3 «;5; and 3 a?

2) Compute
_ 2ol
MSW

nZa?

t

3) Judge the testing null hypothesis by using the probability of ¢ value.

4.3 Level Three Evaluation: Scalability Comparison

Both level one and level two evaluation evaluate the performance over a set of codes and machines.
The third step of our evaluation methodology is individual evaluation for outliers. It compares the

data scalabilities of a given code on different machines. As shown in [8], scalability itself is not a
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measurement of parallel processing gain. It is a factor that contributes to the ability of a system to
deliver the expected performance. Level two evaluation has grouped codes based on their average
performance over the range of problem sizes. Data scalability measures the performance variation
when problem size scales up. Memory scalability evaluation is a new approach. It evaluates the
ability of a memory system in handling large data sizes. The same or a better initial performance
combined with a better scalability guarantees a code will have a better performance when problem
size scales up. A code with a smaller initial cpz and a better scalability has the potential to become
superior as problem size scales up.

The basic statistical method for memory scalability evaluation is the regression method given
in Section 3.5. The two factors are problem size and machine. The regression method does
not measure data scalability directly, for which a formal quantitative definition of scalability is
required. Instead, it gives a statistical relative comparison of two or more machines for a given
code. Problem size increase may change the performance of a code-machine combination. This
change varies with code, machine, and code-machine kcombination. It forms the base of scalability
comparison. Using cpi as the measurement, with the same code on two different machines, if
the interaction of the two variations is negative then the second machine has a better scalability;
if the interaction of the two variations is zero then the two machines have the same scalability;
otherwise, the first machine has a better scalability. SAS procedure PROC REG [12] can be
used to determine results of the regression method. The algorithm for the statistical scalability

evaluation is given below.

Algorithm of Scalability Comparison

0) Assign a value for each of the factor levels and construct the index table

1) Substituting values in the index table to equation
Cp’i =u+ ﬁcXc + )Bme + ;Bc,mIc,m

2) Solve the linear system generated in Step 1.

3) Judge the term ., by the probability of ¢ value.

4.4 Level Four Evaluation: Memory Hierarchy

As discussed in the previous section, the performance of a code may vary with problem size and the
variation is different over different memory architectures. The last step of our evaluation method-
ology is designed to locate memory components which cause the variation. Level four evaluation
compares the performance variation of primary components of the underlying memory systems.

Combined with the level two evaluation, this evaluation determines the ability of each memory
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component in handling different memory reference patterns and suggests possible improvements at
the component level.

The basic statistical method used in level four evaluation is the same as that of level three
evaluation, except for the dependent variables. The actual design of level four evaluation varies
with the underlying memory structure. As discussed in Section 2, the memory hierarchy of SGI
PowerChallenge and Origin2000 has four primary components: L1 cache, L2 cache, outstanding
cache misses, and main memory. L1, L2 hit ratio can be derived using hardware counters provided
on-board the SGI microprocessor. For this reason we choose L1 and L2 as the dependent variables.

The same SAS procedure, PROC REG, can be used in level four evaluation as it is used in the
scalability evaluation. As shown by the algorithm given below, the inputs of the SAS procedure

are different for level three and four evaluations.

Algorithm for Memory Structure Evaluation

0) Assign a value to each of the factor levels and construct the index table

1) Substituting values in the index table into equations
Ll=p+ ﬁcXc + B X + ﬁc,mIc,ma

and
L2 = p+ BeXc+ BmXm + BemIe,m,

separately.
2) Solve the two linear system generated in Step 1 individually.
3) Judge the term S, ,, by the probability of ¢ value.

4) Determine the performance variation of each of the three primary components.

The two systems generated and solved in Step 1 and 2 are for our experimental environment.
In general, if there are m components that need to be compared, m systems will be generated and

solved in Step 1 and 2 respectively.

5 Evaluation of SGI PowerChallenge and Origin2000

To verify the feasibility and correctness, we have applied the four level evaluation methodology to
the computing environment discussed in Section 2. All four levels of evaluation have been used
to evaluate these ASCI machines and benchmarks. Experimental results show that this newly
proposed methodology is feasible and effective. To illustrate the implementation procedure and

to demonstrate the evaluation results, the experimental results are presented and discussed in
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this section. In our experimental testing, the two machines, PowerChallenge and Origin2000, are
assigned machine level 1 and level 2, respectively. The five codes, HEAT, HYDRO, SWEEP,
DSWEEP, and HYDROT, are assigned a level value of 1, 2, 3, 4, 5, respectively. We have used the
SAS solving environment [12] through out the experimental evaluation.

The problem sizes used in the experiment range from N=50 to memory/time constraints. The
corresponding range for the codes are: HEAT = [50, 100], HYDRO = [50, 300], SWEEP = [50,
200], DSWEEP = [50, 200], HYDROT = [50, 300]. All the experimental data are measured from

single node sequential executions using SGI hardware performance counters.

5.1 Main and Interaction Effects

The relationship between code and machine is first investigated. To catch the mean relationship
over the interested range of problem sizes, replicate measurements have been taken for different
problem sizes for a given experimental unit. The two-factor factorial experiment introduced in
Section 3.3 is used to find the effects. The GLM procedure of SAS is used to carry the two-factor

factorial experiment for level one evaluation. Table 4 and 5 shows results from GLM.

Table 4. Class Level Information

Class Levels Values
MACHINE 2 1 2
CODE 5 1 2 3 4 5

Number of observations in data set = 113

Table 5. Mean Effects Table

Dependent Variable: cpi
Sum of Mean
Source DF Squares Square F Value Pr>F
Model 9 112.5410006  12.5045556 27.44 0.0001
Error 103 46.9436516 0.4557636
Corrected Total 112 159.4846523
R-Square C.V. Root MSE  CPI Mean
0.705654 34.64445 0.675103 1.948661
Source DF TypeISS Mean Square F Value Pr>F
MACHINE 1 14.39563307  14.39563307 31.59 0.0001
CODE 4 93.17895152  23.29473788 51.11 0.0001
MACHINE*CODE 4 4.96641604 1.24160401 2.72 0.0334

Table 4 lists the GLM model class level information. Table 5 is the mean effects table (see

17




55 |- Code 2 -+- ]

Mean CPI
(%)
T

05 - B

Machine

Figure 1. Machine Mean Distribution

Table 2) of the factorial experiment. It consists of two sectors separated by the double-line. The
upper table is for overall effect and the lower table is for individual effects. Look at row four of
Table 5. The F value is 27.44 and the probability of F (Pr > F) is 0.0001. The probability of F is
less than 0.05. The hypothesis of overall-effect does not exist is rejected. This means that code or
machine effects exist. The lower table is a continuation of the upper table to locate the potential
effects. Look at row two of the lower table. The probability of F is 0.0001 < 0.05, which suggests
that machine main effect exists. The same conclusion can be drawn for code. For machine and
code interaction, the probability of F is 0.0334, which is again smaller than 0.05. Interaction effect
for code and machine also exists. Evaluation should be continued to understand these effects.

The mean effect analysis can be explained visually. As depicted in Figure 1, the code per-
formance crosses over the two machines between code 2 and code 3. This line crossing indicates
the existence of interaction effect of machine and code. It confirms the results given by Contrast
method (see Table 5). However, code 2 and 3 have very similar performances on the two machines.
If we can take code 2 and 3 as one code through classification, then there is no code performance
crossing over the two machines and, therefore, no interaction effect for machine and code. Classifi-
cation of code and machine is important for understanding measured performances. In fact, based
on our level 2 evaluation, statistically, code 2 and 3 are the same (see Table 7). The two lines
between code 2 and code 3, therefore, statistically are merged to one line.

Figure 2 plots the codes performance over the two machines. We can see that machine 2 always
outperforms machine 1. Machine effect exists. Based on two-factor factorial mechanisms the GLM
procedure systematically finds the main and interaction effects, which sometiines can be determined

easily through visual display, and other times cannot.
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5.2 Code and Machine Classification

The codes and machines have been classified based on the Contrast and Post Hoc comparisons intro-

duced in Section 3.4 and 4.2. The Contrast procedure of SAS is used for the Contrast comparison.

The result of the pairwise code/machine Contrast comparison is given in Table 6 below.

Table 6. Contrast method for pairwise comparison

Contrast DF Contrast SS Mean Square F Value Pr > F
Heat vs. Dsweep 1 18.73737434  18.73737434 41.11 0.0001
Heat vs. Sweep 1 6.48938939 6.48938939 14.24 0.0003
Heat vs. Hydro 1 8.44857266 8.44857266 18.54 0.0001
Heat vs. Hydrot 1 25.87993484  25.87993484 56.78 0.0001

Dsweep vs. Sweep 1 42.24375672  42.24375672 92.69 0.0001
Dsweep vs. Hydro 1 51.96661369 51.96661369  114.02  0.0001
Dsweep vs. Hydrot 1 84.81327756 84.81327756  186.09  0.0001
Sweep vs. Hydro 1 0.00268119 0.00268119 0.01 0.9390
Sweep vs. Hydrot 1 4.41163307 4.41163307 9.68 0.0024
Hydro vs. Hydrot 1 5.40337655 5.40337655 11.86 0.0008
Machinel vs. Machine2 1  19.78987372  19.78987372 43.42 0.0001

In Table 6, except at row nine, all the probability of rejection is less than 0.05. Code HYDRO
and SWEEP are in the same group. They have similar performance variations caused possibly
by the computational pattern and/or the data reference pattern. All other codes, namely HEAT,
DSWEEP, and HYDROT, have their own signatures. They each belong to different groups. The
two machines are also in two different groups.

The LSD procedure of Post Hoc comparison is also applied to classify the sets of codes and
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machines. Table 7 and 8 gives the result of the code and machine classification respectively. From
Table 7 we can see that HEAT belongs to group B; DSWEEP belongs to group A; HYDROT
belongs to group D; and HYDRO and SWEEP belong to group C. The result is the same as that
of Contrast comparison. In the Post Hoc comparison, the grouping distance used is 0.4072. The
groups are ordered according to their mean ¢pi values. The group with the highest ¢pi value (worst
in performance) is listed first, The group with the second highest cpi value is listed second, and
so on. It is interesting to note the implications of these simple results to code classification. We
observe that with the exception of HYDRO and SWEEP, each code has a unique performance
variation pattern that warrants further investigation. As will be shown, these unique patterns can
be further broken down into individual effects contributed by differences in the memory hierarchy
in this particular test environment. These patterns directly contribute to the inherent scalable

performance across machines for these particular codes.

Table 7. LSD Post Hoc Comparison for Code

T Grouping Mean N CODD
A 3.7324 17 4 (DSWEEP)
B 2.4568 22 1 (HEAT)
C 1.6287 28 2 (HYDRO)
C 1.6048 18 3 (SWEEP)
D 1.0074 28 5 (HYDROT)

As shown in Table 8, PowerChallenge and Origin2000 are classified into two different groups.
The distance between the two groups is larger than 0.2522 (least significant difference = 0.2522
¢pt). The Origin2000 is always better than PowerChallenge for the set of codes under consideration.

This result again matches that of Contrast comparison well.

Table 8. LSD Post-Hoc Comparison for machines

T Grouping Mean N MACHINE
A 2.3217 54 1 (PowerChallenge)
B 1.655652 59 2 (Origin2000)

5.3 Scalability Comparison

Using the regression method discussed in Section 3.5 and 4.3, we have conducted scalability compar-
isons on all of the five codes over the two machines. Recall that this third step in our methodology

compares the data scalabilities of a given code on different machines whereas the level two evalu-
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ation grouped codes based on their average performance over the range of problem sizes. As we
discussed in the previous section, a better memory system should lead to a smaller cpz, and a more
scalable memory system should have a smaller ¢pi increase, or no cpi increase at all as problem size
scales up. The procedure PROG REG of SAS is used for the scalability comparison. The response
variable is ¢pi. Table 9 is generated by PROG REG for the scalability comparison of HEAT over
problem size range [50,100].

Table 9. Scalability Comparison of HEAT

Parameter = Standard T for HO:

Variable  DF  Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 2.453200  0.05065942 48.425 0.0001
CODE 1 0.077618  0.01601992 4.845 0.0001
MEMORY 1 -0.468297  0.05065942 -9.244 0.0001
INTAC 1 0.079500  0.01601992 4.963 0.6001

In Table 9, the “INTAC” stands for INTerACtion effect. Recall that the probability to test
whether an interaction is zero is 0.05. At the 0.0001 level (see last column of Table 9), the hypothesis
of zero effect has been rejected. The interaction effect exists. The parameter estimate of “INTAC”
is 0.0795, which means that the term [, is positive (see equation (19)) and the performance
difference of the two machines decreases with problem size. PowerChallenge is more scalable than
Origin2000 over the range of problem sizes. This reduction in difference is very reasonable. When
problem size increases into main memory, the advantage of having a larger L2 cache fades away.
The performances of the two machines, therefore, become closer. Different codes have different
memory access/computing ratio and have different memory reference patterns. Some codes have
good locality, some do not. Some memory reference patterns can take advantage of the underlying
memory support, some cannot. These factors and others give codes different scalabilities on different
memory systems. While the resulting table is not shown, HYDRO has an INTAC probability level
of 0.0111 indicating interaction effects exist for HYDRO. Unlike HEAT, for HYDRO, the parameter
estimate is —0.050885 < 0, which means that the performance difference between the two machines
increases with problem size. Origin2000 has a better scalability than PowerChallenge for HYDRO.
The scalability improvement may be due to Origin2000’s larger 1.2 cache or hardware support
in handling cache misses or faster memory access time. The results of code SWEEP, DSWEEP
and HYDROT are different. The probabilities for rejecting zero interaction effects for these codes
are larger than 0.05. Our no-effect hypotheses stands. The more advanced memory system of
Origin2000 does not improve the performance difference of these three codes when problem sizes
scale up. The relative performances over the two machines remain unchanged.

Table 10 lists results generated by PROG REG for scalability analysis of SWEEP. From Table
10, the probability level of interaction effect is 0.2216, which is greater than 0.05. Therefore,
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Be,m = 0 and SWEEP has the same scalability on the two machines. For DSWEEP and HYDROT,
the probability level of interaction effect is 0.3002 and 0.2799 respectively.

Table 10. Scalability Comparison of SWEEP

Parameter  Standard T for HO:
Variable DF Estimate Error Parameter =0 Prob > |T|
INTERCEP 1 1.613494  0.02647227 60.950 0.0001
CODE 1 0.049352  0.00966631 5.106 0.0003
MEMORY 1 -0.390073 0.02647227 -14.735 0.0001
INTAC 1 0.012463  0.00966631 1.289 0.2216

5.4 Evaluation of Memory Components

As discussed in Section 2, the memory systems of the SGI machines consist of four primary compo-
nents: L1 cache, L2 cache, outstanding cache misses, and main memory. In the level four evaluation
we examine the role of the four components in scalability variation. The same regression method
used in scalability study is used here. We use SAS procedure PROC REG to evaluate the relative
performance of L1 and L2 cache independently. The response variable is the cache hit ratio of L1
and L2 accordingly. The cache hit ratios of L1 and L2 are independent of each other and can be
used as independent variables. Outstanding cache misses cannot be measured. However, based on
the scalability comparison given in the previous section, its role in performance variation can be
estimated when the variations of L1 and L2 hit ratio are known.

Table 11 and 12 show the analysis table for L1 and L2 hit-ratio variation of HEAT. We can
see from Table 11, the probability level of “INTAC” is 0.3156 > 0.05. Zero effect hypothesis is
true for L1 hit ratio of HEAT. HEAT has a constant L1 hit-ratio difference over the two machines.
By Table 12, code-machine interaction effect exists (o = 0.001 < 0.05) and the effect is negative
(Be;m = —0.005011 < 0). In practice, we prefer a smaller cpi and a larger hit ratio. The nega-
tive effect means that the L2 hit ratio difference of HEAT on Origin2000 goes down relative to
PowerChallenge, when problem size scales up. As we know from Section 5.3, HEAT has a better
scalability on PowerChallenge than on Origin2000. The relative L2 hit-ratio decrease explains the
smaller scalability of Origin2000.

" Recall that the underlying SGI PowerChallenge and Origin2000 machine have the same CPU
and the same L1 cache. It is no surprise that the relative L1 hit ratio does not change for all of the
five codes under study. HEAT has demonstrated how the regression method can be used repeatedly
for different components of a memory system. For the rest of the codes, we will not list the results
for L1 cache since it does not contribute to performance variations.

Table 13 is the L2 hit-ratio analysis table for HYDRO. As given in Table 13, the hypothesis
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Table 11. L1 Hit-Ratio Comparison for HEAT

Parameter Standard T for HO:
Variable DF  Estimate Error Parameter =0 Prob > |T|
INTERCEP 1 0.818304  0.00039150 2090.171 0.0001
CODE 1 0.000086900 0.00012380 0.702 0.4917
MEMORY 1 -0.000289  0.00039150 -0.738 0.4699
INTAC 1 0.000128 0.00012380 1.032 0.3156
Table 12. L2 Hit-Ratio Comparison for HEAT
. Parameter  Standard T for HO:
Variable DF Estimate Error Parameter =0 Prob > |T)|
INTERCEP 1 0.766496  0.00267152 286.914 0.0001
CODE 1 -0.004971 0.00084481 -5.884 0.0001
MEMORY 1 0.015196  0.00267152 5.688 0.0001
INTAC 1 -0.005011  0.00084481 -5.931 0.0001

of interaction is accepted. The hit ratio differences of HYDRO remain the same for the SGI
machines when problem size scales up. As analyzed in Section 5.3, HYDRO-Origin2000 has a
better scalability than HYDRO-PowerChallenge. This scalability increase is not due to the larger
L2 cache of Origin2000 as shown by the cache hit ratios across machines. It is due to the outstanding
cache misses ability and faster main memory access timevsupported by Origin2000. Combined with

an existing empirical model [13], a detailed analysis is given in [14] to understand the performance.

- Table 13. L2 Hit-Ratio Comparison for HYDRO

Parameter  Standard T for HO:
Variable =~ DF  Estimate Error Parameter =0 Prob > |T|
INTERCEP 1 0.911569  0.00944229 96.541 0.0001
CODE 1 -0.011458 0.00211136 -5.427 0.0001
MEMORY 1 0.046284  0.00944229 4.902 0.0001
INTAC 1 0.003901  0.00211136 1.847 0.0771

Table 14 and 15 are the analysis table for L2 cache comparison for SWEEP and DSWEEP

respectively. By Table 14, interaction effect exists for SWEEP and the effect is negative. The L2 hit
ratio of SWEEP on Origin2000 becomes relatively smaller compared with that of PowerChallenge

when problem size scales up. Since SWEEP has the same scalability on these two machines, the
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main memory contribution and/or the outstanding cache miss ratio must be improved on Origin2000
when problem size scales up. The outstanding cache-miss principle and faster main memory access

also work well for SWEEP when problem size is large [14].

Table 14. L2 Hit-Ratio Comparison for SWEEP

Parameter  Standard T for HO:
Variable = DF  Estimate Error Parameter =0 Prob > |T|
INTERCEP 1  0.826199 0.00302764 272.886 0.0001
CODE 1 -0.013206 0.00110554 -11.945 0.0001
MEMORY 1 0.042485  0.00302764 14.032 0.0001
INTAC 1 -0.003833 0.00110554 -3.467 0.0047

Like HYDRO, DSWEEP maintains a constant L2 hit-ratio difference on the two machines.
DSWEEP has the same scalability on the two machines. When L1, L2 hit-ratio difference remain
unchanged, the difference of main memory contribution toward the final performance is also un-
changed [14]. Therefore, we can conclude that DSWEEP’s outstanding cache-miss ratio does not

vary with problem size.

Table 15. L2 Hit-Ratio Comparison for DSWEEP

Parameter  Standard T for HO:
Variable =~ DF  Estimate Error Parameter =0 Prob > |T|
INTERCEP 1 0.810041  0.00804876 100.642 0.0001
CODE 1 -0.032839  0.00402438 -8.160 0.0001
MEMORY 1  0.077890 0.00804876 9.677 0.0001
INTAC 1 0.002200  0.00402438 0.547 0.5966

Finally, Table 16 lists the L2 hit-ratio comparison for HYDROT. HYDROT has the same effect
as SWEEP. Its L2 hit-ratio difference remains the same and has the same scalability on the two
machines, as given in the previous section. Like SWEEP, HYDROT’s outstanding cache-miss ratio
does not change with problem size.

The four-level evaluation methodology proposed in Section 4 has been applied to analyze the
performance of two ASCI machines and five benchmarks available at Los Alamos National Lab-
oratory. In the level one evaluation we have found that both code and machine effects exist.
Performance varies with codes and machines. Continued from the first level evaluation, in level
two evaluation, the codes and machines have been classified into four and two groups respectively
based on their performance. This classification shows that, while the codes have a wide distribution

in performance due to their inherented memory reference/computation patterns, the Origin2000
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Table 16. L2 Hit-Ratio Comparison for HYDROT

Parameter  Standard T for HO:
Variable DF  Estimate Error Parameter =0 Prob > |T)|
INTERCEP 1 0.918992  0.00278790 329.636 0.0001
CODE 1 -0.006044 0.00062339 -9.695 0.0001
MEMORY 1  0.023656  0.00278790 8.485 0.0001
INTAC 1 -0.002718 0.00062339 -4.360 0.0002

definitely outperforms PowerChallenge on all the codes. It is interesting to note, that, despite
the fact that all the codes had a better performance on Origin2000, by level three evaluation
these codes have different relative performance variations over the two machines when problem size
scales up. When problem size becomes large, the performance difference of HEAT on these two
machines becomes smaller; the performance difference of HYDRO on these two machines becomes
larger; while the differences of the other three codes remain unchanged. Obtaining the variation
in relative performance is important for benchmarking and other performance comparisons. For
instance, the scalability analysis shows that the relative performance of HEAT and HYDRO are
more likely to vary with problem size than the other three codes. A more detailed evaluation, the
level four evaluation, has found the causes of the scalability difference over the codes. In addition
to a larger L2 cache capacity, the four outstandings for cache misses and the faster main memory

access supported by Origin2000 have played an important role in performance improvement. This
is especially true for HYDRO and SWEEP.

6 Conclusions

We have proposed a hierarchical statistic methodology for memory system evaluation. This newly
proposed methodology is ‘developed based on three conventional statistical techniques and the
concept of scalability analysis. It is robust, general, systematic, and automatic. It is built upon
solid mathematic foundations, does not require detailed understanding of the underlying memory
systems, is equipped with multiple levels of evaluation for an adaptive study, and is supported by
practical algorithms such that the evaluation can be carried out automatically. This statistical
methodology is different with queuing theory based probability methods and curve-fitting based
regression methods, where the former requires an appropriate modeling of the memory system and
the latter is short on information for advance memory structures. This methodology consists of
four levels of evaluation. The first two levels find memory reference patterns and their influence
on different memory systems. The second two levels determine the performance variation when
problem sizes scale up. The last two levels of evaluation are based on scalability analysis which is

a new approach for memory system evaluation. The combination of the four levels of evaluation



makes the proposed methodology unique and more appropriate for advance memory systems than
existing methodologies.

Unlike many existing statistic and stochastic methods, the newly proposed methodology is not
designed to determine parameters of a pre-assumed performance model. Instead, it is built on
the approach of relative performance comparison, which is one of the most important concerns
in architectural design and algorithmic development, and is set to reach a balance of simplicity
and effectiveness. The methodology compares the relative impact of codes, machines, codes and
machines, and components of machines toward the final performance. It also compares the relative
performance variation when problem sizes scale up, in terms of scalability. It is a post evaluation
methodology. This newly proposed method can be used collectively with existing empirical and an-
alytical models for quantitatively assessing the contribution of low-level system components toward
the final performance.

We have focused on advanced memory systems for sequential processing in this study due to
our current research interests. The statistical techniques and scalability analysis mechanisms used
in this study, however, are general. With moderate modifications, they can be extended to other
machine architectural evaluations and to parallel computers. The applicability and extendibility of

the proposed statistical methodology needs to be further explored in future research.
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