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Abstract. The influenceof the substrateon the translationaland orientationalorderingin
sub-monolayerfilmsof passivatedmultiply-twinnedgold clustershas beeninvestigatedusing
highresolutionanddark fieldtransmissionelectronmicroscopy.Althoughcleardifferences
wereobservedin the degreeof translationalorderingon amorphouscarbonandetchedsilicon
substrates,therewasno correspondingvariationin the crystallographicorientationof the
nanocrystalcores. The results demonstrate that the orientation of passivated clusters with
multiply-twinned cores is effectively random with respect to both the superlattice and the
substrate,
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The novel properties of nanometre-scale metal and
semiconductor particles have stimulated intensive studies
of size-selected atomic clusters [1, 2] with the aim of
creating materials with unique electronic and optical traits
[3]. However, these novel properties are expected to depend
not only on the cluster size but also on other parameters,
such as surface passivation of the cluster and, in the case
of deposited clusters, the arrangement of the nanopalicles
on the substrate. Thus, the phenomenon of self-assembly of
surfactant-stabilized metal clusters on surfaces has received
considerable attention recently [4-15].

Since ordered arrays have been observed with
transmission electron microscopy [4,5], the influence of the
particle size [6,7], size distribution [7] and solvent [8,9] on the
self-assembly has been investigated. Also the ordered arrays
have been imaged and manipulated with the tip of a scanning
tunneling microscope [10, 11]. These investigations have
generally employed graphite or amorphous carbon as the
substrate, and they have concentrated on translational
ordering. Preferred crystallographic orientations of the metal
core with respect to the cluster superlattice, which were
predicted using molecular dynamics calculations [12], have

IIPresentirddresx Departmentof Metallurgyand MateriaJsEngineering,
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been reported by only one group [13, 14] who employed
clusters dominated by the truncated octahedral shape.
Harfenist et al [15] have investigated multiply-twinned
clusters on amorphous carbon substrates and suggested that
multiply-twinned clusters behave like spherical particles with
respect to the self-assembled superlattice.

Since these investigations have been carried out mainly
on amorphous carbon substrates, little is known about
the influence of the substrate on both translational and
onentationa.i ordering. In particular, possible applications of
passivated clusters will most likely require a silicon substrate.
Here we compare the degree of translational and onentational
ordering of passivated multiply-twinned gold clusters on
amorphous carbon and silicon surfaces.

The passivated gold clusters used here were produced
using the inverse micelle method [16] and consist of a
charge-neutral gold core (3-7 nm in diameter) surrounded
by C1ZH2SSligands (roughly 1.8 mn in length). The clusters
were dissolved in a toltrene solution which was diluted to an
appropriate level to produce sub-monolayer films after drop
deposition onto substrates, which had been pre-prepared as
specimens for TEM. The silicon substrates were produced
by cutting 3 mm discs from a (001) single crystal wafer
of silicon before chemical polishing to perforation using
a rotating beaker apparatus with a mixture of 11% HF in
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ABSTRACT

We consider the steady-state transport of normslly incident pencil beams of radiation in

slabs of material. A method has been developed for determiningg the exact radial moments”

of 3-D beams of radiation ss a function of depth into the slab, by solving systems of 1-

D transport equations.. We implement these radial moment equations in the ONEBFP

discrete ordinates code and simulate energy-dependent, coupled electron-photon beams using

CEPXS-generated cross sections. Modiiied PN synthetic acceleration is employed to speed

up the iterative convergence of the 1-D charged particIe calculations. For high-energy photon

beams, a hybrid Monte Carlo/discrete ordinates method is examined. We demonstrate the

efficiency of the calculations and make comparisons with 3-D Monte Carlo calculations.

Thus, by solving 1-D transport equations, we obtain realistic multidimensional information

concerning the broadening of electron-photon beams. This information is relevant to fields

such as industrial radiography, medical imaging, radiation oncology, particle accelerators,

and lasers.

.
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I. INTRODUCTION

On~dirnensional SN

trsmspoti problems.1-3

calculations have been shown to be accurate and efficient for electron

These calculations are made eapier by treating the most forwsrd-

peaked elastic scatters by a Fokker-Planck approximation.4 In addition, effective numerical

methods have been developed for dealing with Fokker-Planck scatterin~ and for accelerating

67 SN calculations can also be employed for multidimensionalelectron transport calculations. ‘

electron transport problems. ‘1° However, these codes are much less tenable for high-energy

problems involving a singular source, such as a pencil beam.

The multidimensional “beam problem” has been examin ed.rather extensively. The first

mathematical exploration of the topic seems to have been made by Enrico Fermi in a lecture

in 1940. In considering cosmic rays incident on the atmosphere, Fermi simplified the descrip

tion of the beam to an anzdytically-solvable form by assuming anon-absorbing, homogeneous

medium with no energy-dependence: a thin slab with highly forward-peaked scattering so

that the beam remains collimated and backscatter is negligible. In 1941, Rossi and Griesen

11 In 1948, Eyges extended Fermi’s descriptionprovided a written account of Fermi’s work.

to include energy dependence with the continuous slowing down approximation, correlating

energy loss with pathlength travelled. 12 Vfhile this analytical solution is quite useful, it has

shortcomings: it neglects larg~angle scattering, the low-energy diilusion of particles, and

the production of secondary particles such as bremsstrtiung photons.

The problem of radiation beams with highly forward-pesked scattering has received at-

tention in the past couple of decades, as attempts have been made to more accurately model

the spreading of the beams. An overview of efforts within the medical physics community

has been provided by Jette.13 Within the past 5 years, this problem has been examined

increasingly within the nuclear engineering community as well.l+lg

k this paper, we demonstrate that exact multidimensional information concerning the

spreading of 3-D high-energy radiation beams can be obtained by solving 1-D transport

problems. Specifically, we derive 1-D transport equations for the exact radial moments of

a beam of radiation, by taking “transverse” space-angle moments of the underlying 3-D

transport equation. For a radiation beam describ&l by three spatial, one energy, amd two

directional dimensions,. we take moments to obtain equations with one spatial, one energy,

3

-...—---_ —— . T-.7.7.. .?*, ; .‘..,‘‘Jr.. ,.,-;?--.y!;!;.:-.%,;-.>, -. ,.,.,,<:.,,. ,.. ~,.----- ~;, , ~—.—------ --(,-...,.,,,. ,., ..



, 1

and one directional dimension. These equations yield moments information for the radial

dimension of the beam. We solve these equations using a 1-D S~ code with realistic cross

sections. We are, able to overcome mauy of the drawbacks of the Fermi-Eyges treatment

by directly solving the linear trausport equations, but we are limited to acquiring radial

moments in layered slab geometries. While our solutions are not analytical, the necessary

1-D calculations are fast ~d accurate.

The remainder of this paper is orgmized as follows. h Section II, we extend the radial mo-

ment equations previously derived by Larsen20 to coupled multiple-species, energy-dependent

problems. In Section III, we discuss the methods smd the computer codes employed to solve

the energy-dependent transport problems that we examine and the numerical methods rel-

evant to the implementation of the radial moment equations. In Section IV, we examine

the efficiency of the modified PN synthetic acceleration method for speeding up the iterative

convergence of charged particle SN calculations. 6 In Section V, radial moment results are

presented for coupled electron-photon beam problems. We conclude with a brief summary

of our work.

The work contained in this paper is taken from the Ph.D. thesis of the first author

(B.C.F.).21 We refer the readers of this paper to the thesis for additional details concerning

theory, implementation”and numerical results.

II. Radial Moment Equations

The slab-system (O < z < Z) pencil beam radiation transport problem is described

by 3-D transport equations coupled for each species of particle. We specifically consider

the application of these equations to coupled electron-photon beam problems. However,

these equations can easily be adapted to other coupled particle transport problems and

to pr~blems with arbitrary sources and boundary conations. In the case of an electron-

photon beam with positrons, we have three coupled transport equations. In this paper, we

denote diilerent species of p~icles with superscripts 1, 2, and 3 for photons, electrons, and

positrons, respectively.

To model the highly forward-peaked scattering of electrons and positrons, the most

forward-peaked interactions are treated by the Fokker-Plamk approximation. This treat-

4
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ment is a precursor to the implementation of the SN method, for which the accuracy of the

scattering cross section is limited by the order of the moments expsmsion. Those scatte@ng

interactions that ‘me too forward-peaked to be accurately modelled by SN are treated by the

Fokker-Planck approximation. Thus, the distributions of photons, electrons, ad positrons

are described by a system of coupled Boltzmazm-Fokker-Planc& equations:4

as(~)(z, E)?) (z,–2@) Q E)+ Q . @@ (7-,Q, E) + Zy)(z, q?)(k)(z,D, Jq
‘@

+51/ ‘0 @k(z, n’. Q E’ + E)@~)(z,Q’, E’) dQ’dE’, k = 1,2,3.— (1)
j=l m 0

In these equations, .H”+k are cross sections for the production of species k horn species j.

These cross sections ‘include scattering as well as secondary production. X2+3, the produc-

tion of positrons by electrons, is the only cross section that is always zero. In the case of

photons, which do not employ the Fokker-Plsmk approximation, the stopping power S and

the momentum transfer coefficient a are zero. The slab-system is radially homogeneous but

can be axially heterogeneous (“layered” in the z-direction).

In general, we are interested in a beam of photons, electrons, and/or positrons incident

on the left edge of the slab. For such a problem, the boundary conditions are

?J(khY, 0, /-4 ,# E)=&) (z, y, fi, #,@, O<psl, k=l,2,3, (2)

@)(z, y, Z, p, +, E) = 0, –l~p<O, k=l,2,3, (3)

where $(k) are prescribed.

The ‘first” equations that we solve are obtained by %ansversely” integrating the 3-D

transport equations over z, y, and azimuthal angle, @. This yields the following exact 1-D

equations for the transversely-integrated angular flux for each species:



#

with boundary conditions:

dk)(M-@)= &)(@), 0< P <1,

4$)(Z, ~,E) = O, –l<p<o.

(4)

(5)

(6)

Here we have defined:

The “second” equations that we solve are obtained by transversely integrating the 3-D

transport equations multiplied by (z cos @+ y sin @). This yields the following exact 1-D

equations for the first radial moment of the net radial current:

with boundary conditions:

d%M@) =dk)(P,E), 0< P S 1,
(11)

@$)(Z, p, E) = O, –l<p<o. (12)

6
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Eqs. (10) have source terms containing the transversely integrated flux +$) (z, p, E) deter-

mined by solving Eqs. (4). They also have a modified Fokker-Planck term and a scattering

cross section expansion based on the first-order associated Legendre fimctions, F“,l (p).

The “third” equations that we solve are obtained by transversely integrating the 3-D

transport equations multiplied by (z’ + y’). This yields the following exact 1-D equations

for the second radial moment of the flux

~ (k)
a s(k)(z, E)+ik) (z, P,

@ + P&+’ (4/%——
t3E

E)+ ~$k)(z, E)~$k) (Z, p,@

. . = ~~@\k)(z,p,E) + a(k):’E)$(l - P2)&”)(z,@)

+ f ~ (2n + 1) P.(p) ~~” E;+k(z, E’ ~ E)@$](z, E’) dE’ ,.
j=l n=o

with boundary conditions:

V$%,P,E) = &~k)(P,@, 0< P <1,

@$k)(Z,p, E) = O, –l<p<o.

Here we have defined:

@$k)(z,/-@)= ~’”~:~: (Z2+!/2)#k)(z,Q,E)dzdyd#,

~f R(p’)&(z,p’,E)dp’,+$1(% E)= 2 _,

&$)(P,E) - ~’” ~: ~: (Z2 + y’) &k)(fI%y,W?$E) dzdyd# .

(16)

(17)

(18)

(19)

(20)

(21)

Eqs. (16) contain source terms based on the first radial moment of the net radial current

7 .
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#(% P, E) determined by solving Eqs. (10).

These three sets of coupled equations, which have been derived from the 3-D equations

without approximation, can be solved sequentially: first Eqs. (4), then Eqs. (10) and then

Eqs. (16). If the Fokker-Planck approximation is not relied upon, these equations are exact.

They yield the zeroth and second radial moments of the photon, electron, and positron

angular flux as a function of depth and energy. The above derivation can be extended to

higher-order radial moments as well.

III. Numerical Methods

The information that is generally of the most interest in charged particle transport prob-

lems is energy deposition or dose. The transverse energy deposition is:

where Z~ is an energy deposition cross section. [Only charged particles deposit dose. How-

ever, in the context of the calculation, photons can deposit dose by scattering below” the

numerical cutoff energy or by producing secondary particles below the cutoff energy.] The

rms radius of the energy deposition is:

f(z)

{ }

~EOpwz,wixz,ln] ~~ ‘
=1

= .
D(z)

(23)

We see that ~(z) provides the total energy deposition at depth z. Conceptually, this quantity

is the standard output of a conventional 1-D particle tramsport code. However, ?(z) provides

8
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the exact rms radius of the energy deposition at depth z. This is a true multidimensional

quantity that has not previously been calculable by 1-D codes.

We evaluate the efficiency of this method by comparing the accuracy of calculations as

a function of computation time. We have calculated ~(z) and ?(z) for several radiation

beams. We desire an accurate calculation across the entire depth of the slab, so we define

accuracy in terms of an L2-norm of the relative difference between results as a function of

depth:

E= 1 z ?b(z)– ?(2) 2—HLz c1 ?b(z) ) dz

1
5

Y (24)

where e is the relative error, and ?b is the benchmark csJculation to which other calculations

are compared.

The benchmarks are established by high-order calculations with the SN and Monte Carlo

methods. Because the SN and Monte Carlo codes use different cross sections to solve the

transport problems, the two types of codes will converge toward slightly different results

as discretization and statistical errors are reduced. For this reason, SN calculations are

compared to an SN benchmark calculation, and Monte Carlo calculations are compared to a

Monte Carlo benchmark calculation. The SN and Monte Carlo benchmark calculations me

compared to each other, to check for approximate agreement between the two methods.

Computational timings do not include the time required for cross section generation,

either with XGEN for use in CYETRAN or with CEPXS for use in ONEBFP. All timings

were performed on a single 533 MHz processor on the “Tera” computing cluster at Lawrence

Livermore National Laboratory.22

111.A. Discrete Ordinates

We have implemented our radial moments method in the ONEBFP code developed at Los

A.lames National Laboratory. 23 This 1-D multigroup SN code solves the Boltzmann-Fokker-

Planck equation for charged particles and the Boltzmann equation for neutral particles. It

uses a quadratic discontinuous discretization scheme in space and energy for transport calcu-

lations and employs S2 acceleration of the scalar flux and current with linear discontinuous

9
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( discretization. % It also employs a Fokker-Planck angular differencing scheme in the transport

calculation.5 SN with Gauss-Legendre quadrature is used for the angular discretization.

We utilize cross section moments generated by the CEPXS code developed at Sandia

National Laboratories.2G This code models the physics of photon, electron,

interactions27 and has been validated against results from other codes and

data.3

and positron

experiment d

Alterations were made to ONEBFP to implement the radial moment equations derived

above, and to improve the efficiency with which these equations are solved. The code was

adapted to utilize first-order Legendre functions to solve the “second” equations [(10)-(12)].

In addition, an Sz acceleration scheme was implemented for these equations. Then, the S2

acceleration schemes for all equations were generalized to modified PN synthetic acceleratiori

‘ to allow for the acceleration of higher-order angular moments.

111.B. Monte Carlo

The radial moment results calculated with ONEBFP are compared with results from the

CYLTRAN Monte Carlo code that is part of Version 3.0 of the Integrated TIGER Series

(ITS) codes developed at Sandia NationaJ Laboratories.28 CYLTRAN was chosen because

of its close relationship with CEPXS in terms of the physics modelled.

111.C. Hybrid Monte Carlo/Discrete Ordinates

In the case of high-energy photon beams, it is advantageous to employ a hybrid Monte

CarlO/SN method. Like electrons, high-energy photons undergo highly forward-peaked scat-

tering. Unlike electrons, the photons do not use a Fokker-Planck approximation. Thus,

a very high-order SN cross section moment expansion is required to accurately represent

the angulax scattering distribution. Unfortunately, it is computationally expensive to use

CEPXS to generate high-order expansions of photon cross section moments. The hybrid

method avoids this difficulty by using a modified version of the CYLTRAN code to simulate

the incident photons through their lives. We record the spatial and angular distribution of

all secondary electrons and positrons produced and use this as a source in ONEBFP. All

10
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subsequent transport calculations are performed with ONEBFP, including bremsstrahlung

and annihilation photon transport. The advantage of this method is that CYLTRAN can

efficiently and exactly simulate the nearly singular primary photon transport. The ONEBFP

portion of the calculation requires a relatively low-order quadrature, because it begins with

a distributed source of charged particles in each of the radial moment equations.

IV. ACCELERATION

The Diffusion Synthetic Acceleration (DSA) method effectively accelerates transport

problems with weakly anisotropic scattering by correcting the two lowest angular moments.2g

The Modified PN Synthetic Acceleration (MPSA) method is a generalization of DSA that ef-

fectively accelerates calculations involving highly anisotropic scattering by correcting higher-

order angular moments. 6 For n even, the MPSA method uses the following equations to ac-

celerate the convergence of the mth and (n+ 1)-th angular moments of the ‘(first” equations

[(4)-(6)]:

= X~+k(Z)g~k)(Z, E) - a(k~(z)n(n + l)g~k)(z, E), (25)

(26)

Here $$~)and g~k)are the correction and residual terms for the n-th Legendre moment of the

flux. [Eqs. (25) and (26) are obtained by taking the mth and (n+ 1)-th Legendre moments

of the exact 1-D equations for the trausport correction and discarding terms involving the

(n– 1)-th and (n+2)-th an@m moments of the Correction” This discarding of cetitin ‘ems

is a partial decoupling that somewhat reduces the efficiency of these acceleration equations,

11
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but it makes them much easier to solve.] The boundary conditions for Eqs. (25) and (26)

are, for n even:

jy(o, E) = –dn,()3pof:) (o, E), jy(z, q = fh,o 3prjfY)(z, ~) , (27)

where

(28)

Eqs. (25) and (26) are independent of the acceleration of other moments and other particle

species. For n = O,these equations become the PI acceleration equations of the DSA method.

We have derived similar acceleration equations for the “second” equations [(10)-(12)]

based on the first-order Legendre functions. For n odd, the MPSA method uses the following

equations to accelerate the wth and (n+ 1)-th first-order Legendre moments of the flux

8 (Mzq+ ~ (k)–s(k) (z)&. ( J --&#n+Jzj E)

a(k)(z)
+$) (Z)fy (z, E) – Z~+k(Z)f~k)(Z, E) + z n(n + l)f!t) (z, ~)

~(k) (z)
= ~~+k(z)g~k)(z, E) – z n(n + l)g~k)(z,~), (29)

n + 2 af(k)(Zj ~)2 (k)(z, ~)+2n+3~z n–s(k)(z) ~Efn+l
—.

+dk) (Z) f?q(% ~) – Z:f(z)f$!w ~) + ‘(k;(z) (n+ 1)(72+ Z) ffll(z t’)

= %1!(49%(% @ – a(~(z) (n + 1)(72+ 2)9!i~l(z, ~). (30)

Eqs. (29) and (30) are obtained by taking the n-th and (n + 1)-th jirst-order Legendre

moments of the exact 1-D equations for the transport correction to Eqs. (10) and discarding

terms involving the (n – 1)-th and (n+ 2)-th first-order Legendre moments of the correction.

The above equations have not been previously derived. However, the derivation is closely



analogous tothederivation of Eqs. (25) and (26).

jy(o, E) = –L$.Q;pljy (o,E),

where

The boundary conditions are, for n odd:

f:k)(z, @ = Jn,l :PJYJ(Z, E) , (31)

C,( 2)2 ]/j&(wwJwm].p,= ~ ~-pm p.wn (32)

The “third” equations [(16)-(18)] are based on the usual Legendre polynomials and use

acceleration equations of the form of Eqs. (25) and (26). Here, as in the other transport

equations, one obtains the acceleration equations for photons by setting the stopping power

S and the momentum transfer coefficient a to zero.

We consider a

radius on the left

energy deposition

V. RESULTS

V.A. Electron Beam

monoenergetic 10 MeV electron pencil beam normally incident at zero

side of a 0.5 cm copper slab. Fig. 1 shows the transversely integrated

as a function of depth, ~(z), and illustrates that the width of the slab

is almost the 10 MeV electron range. A relative difference of 1.561 x 10-2 + 4 x 10-5

exists between the ONEBFP and CYLTRAN calculations shown here. These differences

exist because of discretization and statistical errors, but also due to differences in the cross

sections and methods used. Therefore, slight differences in the results of the two methods

persist, even % higher-order calculations are used.

Fig. 2 shows the rms radius of the energy deposition as a function of depth, ?(z), and

illustrates the broadening of this beam. We note that in this and all other problems, the

beam does not have ?(0) = O,due to electrons that turn around and leak out of the incident

edge of the slab. A relative difference of 2.15 x 10-2 + 3 x 10-4 exists between these two

calculations.

The results shown in Figs. 1 and 2 are used as the “benchmarks” for computing the

relative error in less accurate results obtained with lower-order calculations of each method.

13



CYLTRAN results are compared with the CYLTRAN benchmark, obtained using 108 in-

cident electrons. ONEBFP results are compared with the ONEBFP benchmark, obtained

using 100 energy groups, the 128 augle Gauss-Legendre quadrature set, and 25 spatial cells.

In Fig. 3, we show the relative error versus computation time of low-order CYLTRAN and

ONEBFP calculations of the energy deposition compared with their respective benchmark

calculations. In Fig: 4, we show the relative errors in the rms radius of the energy deposition

for the same calculations. For calculating the rms radius in this problem, we find that the

SN code is more than one order of magnitude faster than the Monte Carlo code. CYLTRAN

requires approximately 300 s to achieve a 570 relative error and 15,000 s to achieve a l%

relative error, while ONEBFP requires 25 s and 1,200 s, respectively. In these error versus

time plots, the CYLTRAN timin~ were taken with increasing numbers of incident electrons.

ONEBFP timings were taken with 25 spatial cells, and a series of results are shown with

quadrature orders ranging from 8 up to 128 for both 25 and 100 logarithmic energy groups

horn 10 MeV to 0.01 MeV. Two other series of results are shown for 16 and 64 order

quadrature with 15, 25, 50, 75, and 100 logarithmic energy groups. All of the ONEBFP

calculations shown here used four-moment MPSA.

It is important to emphasize that the relative errors shown in Figs. 3 and 4 are based on

comparisons with high-order calculations, not with experimental benchmarks. Even the high-

order calculations rely on approximate numericil modeling of the true physics. In generaJ,

the calculated energy deposition values differ from accurate experimental measurements by

perhaps a few percent. Also, differences in the numerical methods employed (due mostly

to different cross sections) result in minor discrepancies between the Monte Carlo and S~

benchmarks. Therefore, in examining the efficiency of calculations, one may usually consider

relative errors below a few percent to be insignificant.

V.A.I. Modified PN Synthetic Acceleration

The MPSA equations were implemented in ONEBFP using linear discontinuous dis-

cretization in space and energy. MPSA yields the possibility of optimizing the number of

flux moments to be accelerated. However, the optimum number of accelerated moments

depends upon a number of factors, such as the spectral radius of the calculation, the rela-

14
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tive speeds of the S~ and MPSA calculations, and the anisotropy of scattering and the flux

distribution. These effects are illustrated in Figs. 5 and 6. Fig. 5 shows the convergence

of an S32 calculation for a single energy group in which the flux is mildly anisotropic with

varying levels of MPSA. Fig. 6 shows the convergence of a similar calculation for a single

energy group in which the flux is stongly anisotropic.

The effectiveness of the acceleration method for the 10 MeV electron problem is shown

in Figs. 7 and 8. Results are shown for ONEBFP calculations, varying the quadrature order

from 8 to 128 with 25 and 100 energy groups using no acceleration, S2, acceleration, and

four-moment MPSA. We find that S2 acceleration speeds up calculations by approximately

a factor of 2, and four-moment MPSA speeds up the calculations by approximately a factor

of 2 beyond S2 acceleration.

In some cases, MPSA was found to be unstable. This occurred when optically thick

spatial cells and a course energy group structure were used. We believe that this instability is

due to the linear discontinuous discretization employed. These instabilities are not predicted

by the infinite medium Fourier analysis, and were more likely to occur when accelerating

more moments with MPSA. Four-moment MPSA was generally (but not always) stable,

while S2 acceleration was stable in all physical cases examined.

V.B. Photon Beam

Next, we consider a monoenergetic 50 MeV photon beam normally incident at zero radius

on a 0.5 cm copper slab with vacuum boundary conditions. Figs. 9 and 10 show ~(z) and

?(z), respectively. Fig. 10 shows that the distribution of energy deposition narrows with

depth rather than broadens. While the incident beam is narrow, energy is deposited by

charged particles rather than photons. The electrons aud positrons at the incident edge of

the slab are due to backscattered particles, and therefore have a relatively broad distribution.

As illustrated in Fig. 9, the slab is sufficiently thin that the beam does not achieve electronic

equilibrium, relatively few particles are backscattered, and little energy is deposited at the

incident edge of the slab. I
Inthis case, the relative differences in the energy deposition distributions between the

SN and hybrid benchmarks and the Monte Carlo benchmark are 5.75x 10-3+6x 10-5 and
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3.9 x 10-3 +’1 x 10-4. The relative differences in therms radius of the energy deposition are

3.05 x10-2+4 x10-4 and 3.42 x10-2+4 x10-4, respectively. The CYLTRAN benchmark was

obtained using 109 photon histories and forced photon collisions. The ONEBFP benchmark

was obtained using 25 spatial cells, 100 energy groups, and a 128 angle quadrature. The

hybrid benchmark was obtained using 109 photon histories in the Monte Carlo portion of the

calculation with forced photon collisions and using the same parameters for the SN poition

of the calculation as were used for the ONEBFP benchmark.

In Fig. 11, we show the relative error in ~(z) for the Monte Carlo, SN, and hybrid

methods for the 50 MeV problem. Likewise, we show the relative error in ?(z) in Fig. 12.

The Monte Carlo portion of the hybrid calculations was performed with 106 photon histories

for the 25 energy group calculations. For the 100 energy group calculations, we used 106

photon histories for the first three points (corresponding to 8, 16, and 24 order quadrature in

the SN portion of the calculation) and 107 photon histories for the remaining points. The SN

calculations and SN portion of the hybrid calculations used 25 spatial cells with increasing

quadrature orders for 25 and 100 energy groups. We employed four-moment MPSA in all

cases except for the 25 energy group cases with 96 and 128 quadrature orders. In these two

ONEBFP and hybrid calculations, four-moment MPSA was unstable and S2 acceleration

was used.

ONEBFP performs poorly with low-order quadrature in this problem, but the hybrid

method performs well. This is because the high-energy incident photons undergo highly

foward-peaked scattering interactions. While ONEBFP uses the Fokker-Planck approxima-

tion to model the highly forward-peaked scattering of electrons, no such approximation is

made for the photons. Thus, the ONEBFP cross section moments expansion and angular

quadrature must be sufficient to accurately model the highly snisotropic scattering and re-

sulting angular photon distribution. This is demonstrated in Figs. 11 and 12 by the strong

dependence of the accuracy of ONEBFP calculations on the quadrature order.

Figs. 11 and 12 show that to achieve a 5% relative error in the rms radius calculation,

the hybrid, Monte Carlo, and SN methods require approximately 40 s, 700 s, and 5,000 s,

respectively. To achieve a l?10relative error, the hybrid method requires approximately 2,000

s, while the Monte Carlo method requires 12,000 s.
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The hybrid method is accurate because the incident photon interactions are exactly mod-

elled. Bremsstrahlung photons are the highest-energy photons that are simulated in the SN

portion of the hybrid method. A low-order quadrature is sufficient here, because these pho-

tons have a less anisotropic angular distribution. An alternative to the hybrid method is to

employ high-order quadrature and cross section moment expansions for primary photons in

ONEBFP and low-order quadrature for the subsequent particle transport. This alternative

is less appesling, due to the high cost of calculating photon cross section moments in CEPXS.

It is more efficient to extract the incident photon transport information from CYLTRAN.

V.C. Thin Slabs

We have found that the highly anisotropic distribution of the incident photon beam can

be conveniently modelled using the hybrid method. However, it is also possible for a highly

anisotropic distribution of secondary photons to occur as a result of leakage from a thin slab.

The ability to use a higher order angular quadrature for the photon transport calculation

than for the charged particle transport calculation is an alteration we made to ONEBFP

that allows the radial moments to be accurately calculated in thin slabs. To examine such

a case, we consider a monoenergetic 10 MeV photon beam normally incident at zero radius

on a 0.1 cm copper slab with vacuum boundary conditions. The energy deposition as a

function of depth is plotted in Fig. 13, and therms radius of the energy deposition is plotted

in Fig. 14.

The relative difference in the energy deposition distributions between the hybrid bench-

mark and the Monte Carlo benchmark is 4.76 x 10–3 + 8 x 10–5. The relative difference in

the rms radius of the energy deposition is 3.2 x 10-2+1x 10-3. The CYLTRAN benchmark

was obtained using 109 photon histories and forced photon collisions. The hybrid benchmark

was obtained using 109 photon histories in the Monte Carlo portion of the calculation with

forced photon collisions and using 25 spatial cells, 100 energy groups, a 128 angle quadrature

for the charged particles, and a 1024 angle quadrature for the photons in the SN portion of

the calculation. The hybrid benchmark used 128 cross section moments for the electrons, I
positrons, and photons.

In Fig. 15, we show the relative error in ~(z) for the Monte Carlo and hybrid methods
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for 10 MeV photons on 0.1 cm of copper. We show the relative error in ?(z) as a function of

computation time in Fig. 16. The Monte Carlo portion of the hybrid calculations was per-

formed with 106 photon histories for calculations corresponding to 8, 16, and 24 quadrature

in the SN portion of the calculation and 107 photon histories for the remaining calculations

for the 25 and 100 energy group calculations in which the SN quadrature was varied. In the

two series of hybrid calculations using either a constant 32 electron quadrature or a constant

512 photon quadrature, 106 incident Monte Carlo photons were followed, 25 logarithmic

energy groups were used, and the photon or electron quadrature were varied, respectively.

The SN portion of the hybrid calculations used 25 spatial cells. In all calculations, ONEBFP

used as many cross section moments as could be accurately employed for the electrons and

positrons and an equal number of cross section moments for the photons, even if a higher

photon quadrature was used. The ONEBFP portion of hybrid calculations used four-moment

MPSA except for the 25 energy group cases with 96 and 128 order quadrature, for which

four-moment MPSA was unstable and S2 acceleration was used.

In Fig. 15, we again observe that the transversely integrated energy deposition is jointly

dependent upon the quadrature order and the number of energy groups employed. In Fig. 16,

we observe that an accurate calculation of the rms radius of the energy deposition requires

a. high-order photon quadrature. This is due to the fact that energy deposition at large

radius results from bremsstrahlung and annihilation photons. Only those photons going in

directions close to p = O are unlikely to leak from the thin slab before undergoing an inter-

action. To accurately model the anisotropy of this secondary photon flux that contributes

to the energy deposition at large radius, it is necessary to use a high-order angular quadra-

ture set. However, calculation of the photon transport is inexpensive as compared to the

charged particle transport, and we are not stongly penalized by resorting to very high-order

quadrature.

Once more, we have found that by properly choosing the problem discretization, the

radial moment calculations can be performed more efficiently using the hybrid method with

1-D calculations than the 3-D Monte Carlo method. To achieve a 5% relative error in the rms

radius calculation, the hybrid method requires approximately 80 s while the Monte Carlo

method requires approximately 1,500 s.



V.D. Phosphor Screen

Finally, we apply the radiil moments calculations to an application of interest in the

fields of industial radiography and medical imaging .3&34 In these two fields, high-energy

photons passing through a “target” are used to produce an image. The target maybe a weld

in industrial radiography or a patient in medical imaging, but we will consider only a portion

of the imaging problem. When bremsstrahlung photon beams are used with energies in the

MeV to 10’s of MeV range, the photons cannot be recorded directly onto film. Instead, a

“converter” must be employed. This converter may take the form of a phosphor screen that

converts the high-energy photons into visible photons.34

In this section, we examine atypical phosphor screen. The incident photons interact with

the screen and produce secondary electrons and positrons. These charged particles deposit

energy in the phosphor and cause the screen to phosphoresce, yielding visible photons that

can be recorded onto film after escaping from the screen.

The phosphor screen employed in the imaging process cam be optimized for the appli-

cation. A tradeoff occurs between the strength and the resolution of the image. A thicker

screen results in more photon interactions and allows electrons to transfer more energy to

the medium before escaping. This results in greater production of visible photons and can

produce a stronger image. However, a thicker screen also results in spreading of the radia-

tion, both in the energy deposited by the charged particles and the visible photons escaping

from the screen. This degrades the resolution.

A feature used to enhance light production is a metal plate on the incident edge of the

screen.32 A material with high density, such as copper or tungsten, induces more incident

photon interactions and can produce a cascade of charged particles into the phosphor. As

in the phosphor, a similar tradeoff can be evaluated in optimizing the thickness of the metal

plate.

We have demonstrated that we can efficiently calculate the transverse energy deposition

and the root-mean-squared radial spread of the energy deposition for this problem using the

modified ONEBFP code. We can evaluate the mean energy deposition and mean loss of

resolution resulting from the transport interactions of photons, electrons, and positrons by

considering a “unit normal pencil beam. In the quantum accounting formalkm employed by
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Bissonnette et al.,33 this corresponds to Stages 1 and 2.

Todemonstrate theapplicabifity of theradid moments method in ONEBFP to sucha

problem, we evaluate a screen with layers of 0.1 cm of copper and 0.4 cm of gadolinium

oxysulfide (Gd202S), a commonly used phosphor, with a reduced density of 3.67 g/cm3.32

We consider a monoenergetic 10 MeV photon pencil beam normally incident on the screen

at zero radius. The energy deposition as a function of depth is plotted in Fig. 17, and the

rms radius of the energy deposition is plotted in Fig. 18.

The relative difference in the energy deposition distributions between the hybrid bench-

mark and the Monte Carlo benchmark is 6.31 x 10-3 + 8 x 10-5. The relative difference in

the rms radius of the energy deposition is 3.24 x 10-2+9 x 10-4.

For high-energy beams, we have observed that the rms radii of the energy deposition

calculated with ONEBFP or the hybrid method are consistently smiiller than the CYLTRAN

results by approximately 370. The cause of this is unclear. However, the rrns radius in these

problems is strongly dependent on contributions to the energy deposition at large radius

from bremstrahlung and annihilation photons. Small differences in the production of these

photons may be the cause of the discrepancy.

The CYLTRAN benchmark was obtained using 108 photon histories and forced photon

collisions. The hybrid benchmark was obtained using 109 photon histories in the Monte

Carlo portion of the calculation with the same forced interactions as used in the CYETRAN

benchmark and using 25 spatial cells, 100 energy groups, 128 angle quadrature for the

charged particles, 1024 angle quadrature for the photons, and 128 cross section moments for

all particles in the SN portion of the calculation.

In Fig. 19, we show the relative error in ~(z) for the Monte Carlo and hybrid methods

in the metal plate and phosphor screen. We show the relative error in ?(z) as a fimction of

computation time in Fig. 20. The CYLTRAN efficiency data in these figures was generated

using inci-easing numbers of incident photon histories.

In addition, for a series of CYLTRAN calculations using 106 incident photons, the

“SCALE-BREMS” feature was used to enhance the production of bremsstrahlung photons.

We found that, while accurately modeling the secondary photons was crucial to the SN ra-

dial moment calculations, increasing the bremsstrshlung production in CYLTRAN is only
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slightly beneficial for calculating the rms radius of the energy deposition. R is possible that

preferential production of secondary photons in directions close to p = O with correspond-

ingly smaller weights would have been a effective variance reduction method, but we do

not examine that possibilityy here.

For the hybrid calculations, the Monte Carlo portion was performed with 106 photon

histories for the calculations corresponding to 8, 16, and 24 quadrature in the SN portion of

the calculation and 107 photon histories for the remaining calculations for 25 and 100 energy

groups, in which the SN quadrature was varied. In the hybrid calculations using either.

32 electron quadrature or 512 photon quadrature, 106 incident Monte Carlo photons were

followed, 25 logarithmic energy groups were used, smd the photon or electron quadrature

were varied, respectively. The ONEBFP portions of the hybrid calculations all used 25

spatial cells and used four-moment MPSA for all except the 25 energy group cases with 96

and 128 order quadrature, for which four-moment MPSA was unstable and S2 acceleration

was used.

F!rom Fig. 20 we find that with two minutes of computation time we can acquire an

accurate calculation of the energy deposition and the rms radius of the energy deposition in

a phosphor screen. At such a low cost, a wide variety of thicknesses and types of phosphor

screens can be analyzed quickly.

VI. CONCLUSIONS

In this work we have developed an efficient 1-D method for calculating exact information

about multidimensional radiation beams. We have derived 1-D radial moment transport

equations and adapted the ONEBFP discrete ordinates code to solve the radiil moments

transport equations up to the second-order radial moment. To speed up the iterative con-

vergence of the discrete ordinates calculations, we have implemented modified PN synthetic

acceleration (MPSA) in ONEBFP. Acceleration of 4 flux moments with MPSA was found

to produce approximately a factor of 2 speedup beyond S2 acceleration.

We have demonstrated the efficiency of the 1-D method for acquiring realistic calculations

of the rms radius of the energy deposition resulting from electron and photon beams. We

have analyzed the sensitivity of the accuracy of calculations to refinements in the spatial,
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angular, and energy discretization and compared the efficiency of the method to Monte Carlo

calculations using the ITS CYLTRAN code. We found that a hybrid Monte Carlo/discrete

ordinates method is effective for high-energy photon beams and that a high-order photon

quadrature is necessary to calculate accurate radial information in thin slabs.

Finally, we discern a number of possible enhancements to this method. First, we have

used the solutions of the “second” equations only as a source in the “third” equations [(16)-

(18)]. However, these solutions contain physically relevant information - the first radial

moments of the net radial currents. These quantities cannot be directly converted to dose

information, but useful data might be extracted from them at little extra cost. Second,

the radial moments could be employed in a polynomial, exponential, or other analytical

expression to present a more complete description of the radial distribution of the energy

deposition. Third, the radial moments information could be incorporated into a figure of

merit for the optimization of phosphor screens used in radiography. For such applications

the “noise” (statistical variance in energy deposition due to the small number of incident

photon interactions) is ako of interest. Radial moment equations of the variance in energy

deposition could be derived from the stochastic transport equation and implemented.35
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normally incident on a 0.5 cm copper slab.
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Figure 13: ~ versus z for a 10 MeV photon pencil beam normally incident on a 0.1 cm

copper slab.
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Figure 14: ? versus z for a 10 MeV photon pencil beam normally incident on a 0.1 cm copper

slab.
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Figure 15: Relative error in ~(z) versus computation time for a 10 MeV photon pencil beam

normally incident on a 0.1 cm copper slab.
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normally incident on a 0.1 cm Copper slab.
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Figure 19: Relative error in b(z) versus computation time for a 10 MeV photon pencil beam

normally incident on a slab of 0.1 cm copper and 0.4 cm phosphor.
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Figure 20: Relative error in ?(z) versus computation time for a 10 MeV photon pencil beam

normally incident on a slab of 0.1 cm copper and 0.4 cm phosphor.
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