skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formation of Chloropyromorphite in a Lead-Contaminated Soil Amended with Hydroxyapatite

Journal Article · · Environmental Science and Technology
OSTI ID:759986

To confirm conversion of soil Pb to pyromorphite [Pb{sub 5}(PO{sub 4}){sub 3}Cl], a Pb contaminated soil collected adjacent to a historical smelter was reacted with hydroxyapatite in slurries of soil and hydroxyapatite separated by a dialysis membrane and incubated. A crystalline precipitate formed on the dialysis membrane in the slurry systems was identified as chloropyromorphite. Soluble species measured in the soil slurry indicated that dissolution of solid-phase soil Pb was the rate-limiting step for pyromorphite formation. Additionally samples reacted with hydroxyapatite were incubated at field-capacity moisture content. The sequential chemical extraction used to identify species in the field-moist soil incubation experiment showed that hydroxyapatite treatment reduced the first four fractions of extractable Pb and correspondingly increased the recalcitrant extraction residue fraction by 35% of total Pb at 0 d incubation and by 45% after 240 d incubation. the increase in the extraction residue fraction in the 240 d incubation as compared to the 0 d incubation implies that the reaction occurs in the soil but the increase in the hydroxyapatite amended 0 d incubated soil as compared to the control soil illustrates the chemical extraction procedure caused changes in the extractability. Thus, the chemical extraction procedure cannot easily be utilized to confirm changes occurring in the soil as a result of incubation. Extended x-ray absorption fine structure (EXAFS) spectroscopy indicated that the 240 d incubated hydroxyapatite treatment caused a change in the average, local molecular bonding environment of soil Pb. Low-temperature EXAFS spectra (chi data and radial structure functions - RSFs) showed a high degree of similarity between the chemical extraction residue and synthetic pyromorphite. Thus, confirming that the change of soil Pb to pyromorphite is possible by simple amendments of hydroxyapatite to soil.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
759986
Report Number(s):
SAND2000-1900J; TRN: AH200031%%155
Journal Information:
Environmental Science and Technology, Other Information: Submitted to Environmental Science and Technology; PBD: 14 Jul 2000
Country of Publication:
United States
Language:
English

Similar Records

Formation of chloropyromorphite from galena (PbS) in the presence of hydroxyapatite
Journal Article · Mon Feb 15 00:00:00 EST 1999 · Environmental Science and Technology · OSTI ID:759986

Formation of Chloropyromorphite from Galena (PbS) in the Presence of Hydroxyapatite
Journal Article · Wed Oct 14 00:00:00 EDT 1998 · Environmental Science and Technology · OSTI ID:759986

In vitro soil Pb solubility in the presence of hydroxyapatite
Journal Article · Tue Sep 15 00:00:00 EDT 1998 · Environmental Science and Technology · OSTI ID:759986