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Chemometric analysis of nuclear magnetic resonance (NMR) spectroscopy has increased
dramatically in recent years. A variety of different chemometric techniques have been
applied to a wide range of problems in food, agricultural, medical, process and industrial
systems. This article gives a brief review of chemometric analysis of NMR spectral data,
including a summary of the types of mixtures and experiments analyzed with
chemometric techniques. Common experimental problems encountered during the
chemometric analysis of NMR data are also discussed.
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Introduction

The analysis of complex mixtures using NMR spectroscopy continues to impact a
varietyb of different fields including agriculture, industry, medicine, materials, chemistry
and biochemistry. While the use of numerical techniques is well founded in the analysis
of NMR data (For example see Ref. (1), and references cited therein), the use of
chemometric multivariate techniques for NMR has seen rather limited use in comparison
to other spectroscopies. In this context we will refer to chemometrics as any multivariate
technique that extracts chemically relevant information from data produced in chemical
experiments. With the utilization of NMR spectroscopy to-investigate increasingly more
complex problems, advanced chemometric techniques for NMR data analysis will
become an important part of the analysis arsenal. The production of very large and/or
complex data sets are becoming more common with the introduction of conjugated
analytical techniques (such as LC-NMR and LC-MS-NMR), the increased use of
automated and/or flow NMR for process control, and the NMR analysis of combinatorial
synthesis experiments. In addition, the recent advances in computational power, plus the
increased ease of data transfer between computer systems now makes the suite of
chemometric techniques more available to the routine user. In this review the uée of
chemometrics as applied to NMR spectroscopy will be presented, along with a few
specific examples to illustrate the general concepts.

The chemometric analysis of NMR spectra begins with the assumption that the
observed data set of i spectra, 4{®), covering a frequency range ®, is a linear
combination of & pure compoﬁent spectra, P{w), with concentrations (intensities) Cj;

given by



4(@) =3 C;P,() M

This can be expressed in matrix form as
A=CP @)

For example, a data set containing spectra of 32 mixtures (i = 32), where each NMR
spectra has 8096 (8K) real points (frequencies), resulting from the combination of four
different pure component spectra (k = 4), the dimensions of the various matrices in Eqns.
1 and 2 would be 32 x 8K for A, 32 x 4 for C and 4 x 8K for P. A visual representation
of these matrices is shown in Figure 1.'While this example utilizes the actual NMR
spectra for the matrix A, it should be noted that there are numerous ways to create a
multivariate data set from NMR data for possible chemometrics analysis. Examples
include; 1) the use of simple peak intensities, 2) number of peak numbers within a given
spectral region, or 3) the total spectral integral for a defined spectral region. In the
sections below the form of data used in creation of the multivariate data matrix for non-
standard situations will be noted.

Chemometric techniques that allow for calculation of C and P from a set of NMR
experimental spectra A are of great interest and will be the focus o_f this review. The
numerical solutions to the above matrix relationship (Eqgs. 1 and 2) are not unique, and
can give rise to abstract factors (spectra-like eigenvectors)v or scores (concentration-like

eigenvalues), that are linear combinations of the pure spectra and pure concentration




profiles. In many instances, these abstract solutions are sufficient for the identification or
classification of the chemical species present within the sample, and can be used without
ﬁlrther analysis. This is the situation commonly encountered during principal component
analysis (PCA), and is detailed in the next session. Techniques allowing the identification
of real or pure component spectra and concentration profiles from these abstract solutions

will be discussed in the subsequent self-modeling and three-way methods section.

Principal Component Analysis (PCA)

Principal component analysis (PCA) refers to the transformation of the data into
an orthogonal basis set. The variance described by the basis vectors is largest in the first
vector and decreases with additional vectors. The data matrix A (Eqns. 1 and 2), with i
samples, each sample containing » frequency points (i < n), can be interpreted as an
ensemble of i points in a » dimensional space. PCA is the process of obtaining a series of
“lines and planes of closest fit to a system of points in space”.(2) The closest fit in this
case is the least squares fit. The vectors within this new basis set are referred to as PCA
loadings and scores. If the noise within the data is randomly varying, it will be contained
in the later loadings and scores of the PCA decomposition. Estimating the data set by
using only significant PCA loadings can effectively filter random noise. Without
additional constraints, there are an infinite number of mathematical solutions to the eigen
problem defined in Eqgs. 1 and 2.

These “abstract” solutions are linear combinations of the cl_lemically correct pure
component spectra, and for many applications are sufficient for chemical classifications

and identification. Principal component (PC) scores plots will occasionally reveal clusters




of related samples allowing sample identification and discriminations. A plot of a three-
dimensional PC space is shown in Figure 2, where distinct groupings are clearly evident
and could provide a means of sample segregation. Different variations of PCA are
available depending on the information desired in the resulting loadings. If the
experimental data matrix A is mean-centered, this form of PCA is known as the
covariance method, and resulting loadings retain the scale of the original spectral data. If
the data in A is mean-centered and ﬁormalized, this form of PCA is referred to as the
correlation method. In this method the spectral scaling is not retained, with all spectral
features influencing the PCA equally, such that minor spectral features can have
significant inpact.(3) Several chemometric methods are available that will mathematically
discriminate the scores plots, placing boundaries and statistical limits on the visual
grouping. Often, the group is composesi of more than three eigenvectors and cannot be
discerned visually. Methods such as the Mahalanobis distance,(4) Linear Discriminant
Analysis (LDA),(5) and Soft Independent Method of Class Analogy (SIMCA), (6) can
provide delineation of each group. PCA has been used widely through the chemical
sciences for pattern recognition including gas chromatography,(7) mass spectroscopy,(8)
and throughout the infrared and near infrared community.(9)

PCA has been applied to the anaiysis of "H NMR spectra of apple juices,(3) olive
0ils,(10) wheat,(11) gasbline,(12) and complex biofluids such as urine.(13) PCA has also
been applied to the analysis of '>C NMR of cellulose,(14) pulp fibers,(15) pulp
kinetics,(16) olive oils,(17) the attempted classification of soil types,(18) along with the
13C and *'P NMR spectra of kraft black liquor and dissolved lignin.(19) Most of these

analyses utilized either integration for well defined spectral regions or the actual NMR




spectra in the formation of the multivariate matrix A. By using the intensity of cross-peak
correlation in the construction of the multivariate data set, PCA analysis of 'H-">C
heteronuclear two-dimensional (2D) NMR data sets were used to differentiate grapevine
cultivars.(20) PCA analysis of peak intensities from 2D NMR correlation spectroscopy
(COSY) experiments has been reported for the pattern recognition of complex spin
systems.(21) Coupling of a generalized Bayesian approach with LDA has been used for
automated signal class recognition.(22) A multivariate data set built from different
relaxation rates, ( 'H rotating frame spin-lattice relaxation and the dipolar dephasing

relaxation rate), was used for the PCA analysis of solid-state coal samples.(23)

Self-Modeling and Three-Way Techniques

The abstract eigenvectors and e.igenvalues from PCA require an additional
transformation step to produce real or pure component spectra and concentration profiles
for the individual species within the mixture. Self-modeling and three-way modeling
analysis techniques allow this transformation to be evaluated without resorting to known
standards, and as such, are powerful tools in the analysis of mixtures. Because
determination of the pure component spectra allows a more rigorous quantitative analysis
of the analyzed mixtures, these self-modeling and three-way method analysis techniques
will be discussed in more detail. Utilization of chemical and physical constraints allows
these transformation matrices to be determined. For example, pure component solutions
can be obtained by requiring such constraints as positive spectra amplitudes, positive
concentrations, non-negative diffusion decay profiles, single peak pure compohents, or

unimodal character of concentration profiles. Examples include the Alternating Least-




Squares (ALS) optimization and Multi-Curve Resolution (MCR) analysis of DOSY and
pulse-filed gradient (PFG) spectra of polymer mixtures,(24) and the global optimization
procedure named CORE-NMR (COmponent-REsolved NMR) of pulsed-gradient spin-
echo (PGSE) data sets.(25, 26) CORE is a global fitting procedure that utilizes a two
level optimization approach for every significant frequency channel in the NMR
spectrum. It requires that the relaxation modulation function be defined (multi-
exponential or other functionals can be used), that individual components do not overlap
or that the components overlap preferentially. In the analysis of PFSE data sets CORE
NMR was found to be very robust and stable.(26)

The solutions obtained are only as valid as the imposed constraints, and in many
instances can provide ambiguous results or non-unique solutions. Interestingly it has been
shown that if two data sets can be obtained that are proportional to each other, only the
correct "pure" solution is obtained fror.n the analysis of this eigenvalue problem,(27)
without resorting to the use of imposed constraints. Since a single spectra is a vector or
one-way array, and a matrix is a two-way array, then the analysis of these proportional
data sets (and in general an infinite set of combined matrices) involves three-way arrays,
these techniques are commonly referred to as three-way methods.

A second data set proportional to Eqn. 2 can be described by
B=aCP 3)

where « is a diagonal matrix containing the proportionality factor a.z. Use of three-way

methods to analyze these two proportional NMR data sets (A and B) results in only a




single solution for the pure components and concentration profiles. The creation of two
proportional data sets can be obtained/by either analyzing two different sets of samples
fulfilling Eqns. 2 and 3, or by analyzing a single sample under varying experimental
conditions. This type of proportionality can be applied to a range of different analysis
techniques, including fluorescence excitation and emission, modulated infrared
spectroscopy, plus linear and circular dichroism.(27) The elegant work of Windig,
Antalek and co-workers,(28-32) as well as Schulze and Stilbs,(33) have demonstrated
that for NMR, this type of analysis can be applied to PGSE diffusion matrices, magnetic
resonance imaging (MRI) data, and spin-lattice relaxation matrices.

For exponential relaxation processes in NMR, spectra obtained for equally spaced
time intervals satisfy the o proportionality in Eqns. 2 and 3. As demonstrated in Figure 3
for an "0 NMR spin-lattice relaxation matrix of equally spaced time delays, the analysis
matrices A and B can also be out of a single data set. For matrix A the spectra 1 through
n-1 are used, while for~matrix B spectra 2 through » are utilized. A major advantage of
being able to create both A and B from a single data set is the elimination of variations in
the instrumental response and stability during the collection of the proportional data sets.

By solving Eqns. 2 and 3 for Co

Ca=AP«x

4)
Ca =BP*

an equation resembling the generalized eigenvector equation is obtained.




AP*q =BP* ~ (5)

This equation can be solved directly as the solution to the generalized eigenvector
problem, if the matrices A and B are square; usually they are not, and steps must be taken
to transform A and B such that Eqn. 5 can be solved. The solution of Eqn. 5 allows the
computation of C and P, the concentration and pure component spectral profiles,
respectively.

A method utilizing the direct exponential curve resolution algorithm (DECRA)
has been used to analyze NMR data type of this kind,(28-31, 34) where DECRA is based
on the generalized rank annihilation algorithm.(35) As an example, the DECRA analysis
of the spin-lattice relaxation matrix for the solution 70O NMR spectra of a two-
component mixture of 3-methyl proparzol and ethanol is shown in Figure 4 and 5. The
rapid quadrupolar relaxation of the '’O nucleus results in large line widths producing
significant spectral ovérlap. In Figure 4 the amplitude of the individual i components are
modulated by the spin lattice relaxation time (T); ), and provide the data set from which
the matrices A and B are formed. The resulting pure component spectra and residuals are
shown in Figure 5. More details of this analysis are given in Ref. (34). While this
example may appear to be rather simplistic since the components are visually resolved
and should be amendable to conventional deconvolution techniques, we have recently
demonstrated that significant errors result from the introduction of assumptions about the
form of the line shape.(34) DECRA makes no assumptions or constraints about the actual
spectral line shape required, and that a significant reduction in residuals is realized. The

DECRA algorithm does require that the number of factors (pseudorank) be known.




Attempts to extract more factors than are actually in the data set results in a new
component spectra that contains only noise, and can be used as a marker for the

determination of the pseudorank.(28)

Partial Least Squares (PLS) and other techniques

Whereas the PCA algorithm uses only the spectral information to derive the
model, the resulting loading vectors may not be optimal for concentration prediction.
Partial Least Squares (PLS) use the concentration information during calibration to place
more useful information for prediction in the first several loading vectors.(36) The PLS
algorithm has been extensively used in the chemical sciences, including mass
spectroscopy,(37) gas chromatography,(38) and throughout the infrared and near infrared
community.(39-41)

PLS algorithms have also been utilized in the analysis of NMR data sets spanning
a wide range of applicétions. PLS analysis of solid-state >C magic angle spinning (MAS)
NMR has been used for the characterization of wood pulp, including the prediction of
| carbohydrate constituents,(42) lignin content,(16) and alkali resistance.(43) High
resolution ">C and *'P NMR has also been analyzed using PLS to predict the combustion
properties of softwood and hardwood kraft black liquors.(19) PLS calibration of '"H NMR
has been reported for the analysis of octane number in gasoline,(12) and the 5-day
biological oxygen demand (BODs) in industrial wastewater.(44) PLS data analysis has
also been used as a tool in NMR shift assignments.(45) Principle Component Regression
(PCR) and PLS méthods have also been applied to the discrimination of olive oil variety

using *C NMR.(17) A combination of PLS and Net Analyte Signal (NAS) analysis has




also been recently reported for the investigation of alcohol mixtures using solution 0
NMR.(46) By identifying those constituents that interfere spectrally using NAS analysis,
improved PLS correlations could be obtained. PLS analysis of the NMR free induction
decay (FID) have also been reported, including the 'H analysis of moisture content and
basic density in softwoods,(47) the 'H study of moisture content in meat products,(48)

and the analysis of model process NMR data.(49)

Common Experimental Problems

One of the early difficulties encountered with the chemometric analysis of NMR
data was the size of the spectral data sets (® in Fig. 1) which commonly ranged from 1K
(1024) real spectral points to 64K (65536) spectral points. The computational difficulty
associated with the large data size was :further compounded by the slow CPU speed of
early computer systems (in comparison to today’s systems) used on NMR instruments,
along with the difﬁcult.y in exporting NMR data to external computational facilities.
Advances in computer technology have all but eliminated these problems, with the
dramatic increase in today’s computation speed making the analysis of NMR data sets
easily manageable. The development of improved interface hardware, along with
~ standardized data structure protocols have made data transfer to other computer systems
routine. In addition, most of today’s NMR instrument manufacturers now employ third
party Unix and NT based computer systems to control the instrument, such that
chemometrics analysis software can be directly employed on the data sets.

Other difficulties encountered in the analysis of NMR data include the baseline

distortions and variations in the spectral phasing between spectra. Baseline distortions,




including the annoying baseline roll, have a large detrimental impact on chemometric
analysis, but are commonly eliminated using either manual or automatic baseline fitting
routines, or the implementation of linear prediction techniques. Small changes in the
spectra phase within the multivariate data matrix can also influence the chemometric
analysis. Small phase differences can be eliminated by very careful manual phasing,(13,
14) use of improved automatic phase routines, or by converting the observed spectra to

magnitude spectra [ S(®) = (Real’ + Imaginary?®)'”

].(43) Phasing and baseline distortions
also affect the quality of resonance integration.(17) For many of the chemometric studies
mentioned in this article, reliable integration values were obtained by using only a small
;;ortion of the entire NMR spectra during analysis,(42) along with using well-defined
frequency ranges.(13, 17, 19) Variations in the integration can also be reduced by use of
more complicated deconvolution technéques. Variations in the NMR instrumental
response, excitation efficiency, magnetic filed or sample homogeneity or differences in
spin-lattice relaxation ;ates aiso have a large impact effect on the chemometric analysis.
Scaling of the total spectral intensity to a constant value,(14, 15) scaling to a distinct
spectral resonance,(11)scaling to an internal reference, or using relative areas(11, 43)
helps eliminate the errors caused by the instrumental or excitation variations. Careful
attention to relaxation effects, including Nuclear Overhauser Effects (NOE) effects,(17)
will result in an improved chemometric analysis.

The most prevalent problem encountered in the NMR-chemometric analysis of
complex mixtures is the solvent, concentration, pH and temperature induced shifts of the

observed resonances, especially apparent at high magnetic field strengths This difficulty

has been dealt with in a variety of different ways, including the use of standardized peak
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referencing,(3, 43) or the reduction of spectral resolution through smoothing or data
compression.(3) Using integration areas for a defined spectral region in lieu of actual

spectral intensity data is also a common processing technique for overcoming solvent

shift effects.(13)

Summary

The use of chemometrics for the analysis of NMR data sets allows more complex
systems and mixtures to be addressed. While there are still many difficulties encountered
in the analysis of NMR data, chemometric analysis has clearly been shown to be a viable
technique. With the continued improvements in analysis software along with the
increasing automation of NMR instruments, the implementation of chemometric
techniques to NMR spectral data will become more common.
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Figure 2. Scores plot for the PCA classification utilizing three principal

components (PC).
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Figure 3. An illustration of how a single relaxation matrix can be split into two

proportional data sets for DECRA analysis. More details given in the text.
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Figure 4. 7O NMR spin-lattice relaxation matrix for an ethanol and 3-methyi-1-

propanol mixture, where the relavxation produces an exponentially based signal

modulation used to identify the pure component spectra.
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Figure 5. Results of the DECRA analysis of the 70 NMR spin-lattice relaxation
matrix for an ethanol and 3-methanol-1-propanol mixture: a) derived pure

component spectra and b) spectra residuals.
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