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Ab-initio step- and kink-formation

energies on Pb(lll)

Peter J. Feibelman

Sandia National Laboratories

Albuquerque, NM 87185-1413

Ab-initio formation energies for (100)- and (111)-microfacet steps on Pb(lll)

are in satisfactory agreement with measured values, given that these values are

known only as well as the Pb(lII) surface energy; the calculated step-energy ratio,

1.29, is within -8?Zoof experiment. In contrast, calculated kink-formation energies,

41 and 60 meV for the two step types, are 40-50% below published experimental

values derived from STM images. The discrepancy results from interpreting the

images with a step-stifiess vs. kink-energy relation appropriate to (100) but not

(111) surfaces. Good agreement is found when the step-stifiess data are reinter-

preted, taking proper account of the trigonal symmetry of Pb(lll).

I) Introduction - The energies needed to form steps and kinks are fundamental

parameters in the quasi-continuum description of surface morphology, and key to

predicting how surfaces evolve in time. 1 Step wandering, for example, is governed

by kink-formation energies, while the orientation-dependence of step-formation

cost determines equilibrium island shapes.

Because of these connections, “experimental” step- and kink-formation ener-

gies tend to be best-fit parameters that emerge from a comparison between a contin-
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Introduction

The analysis of complex mixtures using NMR spectroscopy continues to impact a

variety of different fields including agriculture, industry, medicine, materials, chemistry

and biochemistry. While the use of numerical techniques is well founded in the analysis

of NMR data (For example see Ref. (1), and references cited therein), the use of

chemometric multivariate techniques for NMR has seen rather limited use in comparison

to other spectroscopes. In this context we will refer to chemometrics as any multivariate

technique that extracts chemically relevant information from data produced in chemical

experiments. With the utilization of NMR spectroscopy to-investigate increasingly more

complex problems, advanced chemometric techniques for NMR data analysis will

become an important part of the analysis arsenal. The production of very large and/or

complex data sets are becoming more common with the introduction of conjugated

analytical techniques (such as LC-NMR and LC-MS-NMR), the increased use of

automated ardor flow- NMR for process control, and the NMR analysis of combinatorial

synthesis experiments. In addition, the recent advances in computational power, plus the

increased ease of data transfer between computer systems now makes the suite of

chemometric techniques more available to the routine user. In this review the use of

chemometrics as applied to NMR spectroscopy will be presented, along with a few

specific examples to illustrate the general concepts.

The chemometric analysis of NMR spectra begins with the assumption that the

observed data set of i spectra, AZ(O),covering a frequency range co, is a linear

combination of k pure component spectr~ P,{co), with concentrations (intensities) Cy

given by



This can be expressed in matrix form as

A=CP

(1)

(2)

For example, a data set containing spectra of 32 mixtures (i = 32), where each NMR

spectra has 8096 (8K) real points (frequencies), resulting from the combination of four

different pure component spectra (k= 4), the dimensions of the various matrices in Eqns.

1 and 2 would be 32 x 8K for A, 32 x 4 for C and 4 x 8K for P. A visual representation

of these matrices is shown in Figure 1. While this example utilizes the actual NMR

spectra for the matrix A, it should be noted that there are numerous ways to create a

multivariate data set from NMR data for possible chemometrics analysis. Examples

include; 1) the use of simple peak intensities, 2) number of peak numbers within a given

spectral region, or 3) the total spectral integral for a defined spectral region. In the

sections below the form of data used in creation of the multivariate data matrix for non-

standard situations will be noted.

Chemometric techniques that allow for calculation of C and P from a set of NMR

experimental spectra A are of great interest and will be the focus of this review. The

numerical solutions to the above matrix relationship (Eqs. 1 and 2) are not unique, and

can give rise to abstract factors (spectra-like eigenvectors) or scores (concentration-like
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profiles. IrI many instances, these abstract solutions are sufficient for the identification or

classification of the chemical species present within the sample, and can be used without

further analysis. This is the situation commonly encountered during principal component

analysis (PCA), and is detailed in the next session. Techniques allowing the identification

of real or pure component spectra and concentration profiles from these abstract solutions

will be discussed in the subsequent self-modeling and three-way methods section.

Principal Component Analysis (PCA)

Principal component analysis (PCA) refers to the transformation of the data into

an orthogonal basis set. The variance described by the basis vectors is largest in the first

vector and decreases with additional vectors. The data matrix A (Eqns. 1 and 2), with i

samples, each sample containing n frequency points (i <n), can be interpreted as an

ensemble of i points in a n dimensional space. PCA is the process of obtaining a series of

“lines and planes of cfosest fit to a system of points in space’’.(2) The closest fit in this

case is the least squares fit. The vectors within this new basis set are referred to as PCA

loadings and scores. If the noise within the data is randomly varying, it will be contained

in the later loadings and scores of the PCA decomposition. Estimating the data set by

using only significant PCA loadings can effectively filter random noise. Without

additional constraints, there are an infinite number of mathematical solutions to the eigen

problem defined in Eqs. 1 and 2.

These “abstract” solutions are linear combinations of the chemically correct pure

component spectra, and for many applications are sufficient for chemical classifications

and identification. Principal component (PC) scores plots will occasionally reveal clusters
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of related samples allowing sample identification and discriminations. A plot of a three-

dimensional PC space is shown in Figure 2, where distinct groupings are clearly evident

and could provide a means of sample segregation. Different variations of PCA are

available depending on the information desired in the resulting loadings. If the

experimental data matrix A is mean-centered, this form of PCA is known as the

covariance method, and resulting loadings retain the scale of the original spectral data. If

the data in A is mean-centered and normalized, this form of PCA is referred to as the

correlation method. In this method the spectral scaling is not retained, with all spectral

features influencing the PCA equally, such that minor spectral features can have

significant inpact.(3) Several chemometric methods are available that will mathematically

discriminate the scores plots, placing boundaries and statistical limits on the visual

grouping. Often, the group is composed of more than three eigenvectors and cannot be
9

discerned visually. Methods such as the Mahalanobis distance,(4) Linear Discriminant

Analysis (LDA),(5) ad Soft Independent Method of Class Analogy (SIMCA), (6) can

provide delineation of each group. PCA has been used widely through the chemical

sciences for pattern recognition including gas chromatography,(7) mass spectroscopy,(8)

and throughout the infrared and near infrared community.(9)

PCA has been applied to the analysis of lH NMR spectra of apple juices,(3) olive

oils,(l O) wheat,( 11) gasoline,(l 2) and complex biofluids such as urine.(13) PCA has also

been applied to the analysis of 13CNMR of cellulose, pulp fibers, pulp

kinetics, olive oils,(17) the attempted classification of soil types,(l 8) along with the

13Cand 3*P NMR spectra of kraft black liquor and dissolved lignin.(1 9) Most of these

analyses utilized either integration for well defined spectral regions or the actual NMR
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spectra in the formation of the multivariate matrix A. By using the intensity of cross-peak

correlation in the construction of the multivariate data set, PCA analysis of ‘H-13C

heteronuclear two-dimensional (2D) NMR data sets were used to differentiate grapevine

cultivars.(20) PCA analysis of peak intensities from 2D NMR correlation spectroscopy

(COSY) experiments has been reported for the pattern recognition of complex spin

systems.(21 ) Coupling of a generalized Bayesian approach with LDA has been used for

automated signal class recognition. A multivariate data set built from different

relaxation rates, ( lH rotating frame spin-lattice relaxation and the dipolar dephasing

relaxation rate), was used for the PCA analysis of solid-state coal sarnples.(23)

Self-Modeling and Three-Way Techniques

The abstract eigenvectors and eigenvalues from PCA require an additional

transformation step to produce real or pure component spectra and concentration profiles

for the individual species within the mixture. Self-modeling and three-way modeling

analysis techniques allow this transformation to be evaluated without resorting to known

standards, and as such, are powerful tools in the analysis of mixtures. Because

determination of the pure component spectra allows a more rigorous quantitative analysis

of the analyzed mixtures, these self-modeling and three-way method analysis techniques

will be discussed in more detail. Utilization of chemical and physical constraints allows

these transformation matrices to be determined. For example, pure component solutions

can be obtained by requiring such constraints as positive spectra amplitudes, positive

concentrations, non-negative diffusion decay profiles, single peak pure components, or

unimodal character of concentration profiles. Examples include the Alternating Least-
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Squares (ALS) optimization and Multi-Curve Resolution (MCR) analysis of DOSY and

pulse-filed gradient (PFG) spectra of polymer mixtures, and the global optimization

procedure mimed CORE-NMR (COmponent-REsolved NMR) of pulsed-gradient spin-

echo (PGSE) data sets.(25, 26) CORE is a global fitting procedure that utilizes a two

level optimization approach for every significant frequency channel in the NMR

spectrum. It requires that the relaxation modulation function be defined (multi-

exponential or other functional can be used), that individual components do not overlap

or that the components overlap preferentially. In the analysis of PFSE data sets CORE

NMR was found to be very robust and stable. .

The solutions obtained are only as valid as the imposed constraints, and in mimy

instances can provide ambiguous results or non-unique solutions. Interestingly it has been

shown that if two data sets can be obtained that are proportional to each other, only the

correct “pure” solution is obtained from the analysis of this eigenvalue problem,

without resorting to thi use of imposed constraints. Since a single spectra is a vector or

one-way array, and a matrix is a two-way array, then the analysis of these proportional

data sets (and in general an infinite set of combined matrices) invoIves

these techniques are commonly referred to as three-way methods.

A second data set proportional to Eqn. 2 c~ be described by

three-way arrays,

B = aCP

where cxis a diagonal matrix containing the proportionality

(3)

factor cci~.Use of three-way
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single solution for the pure components and concentration profiles. The creation of two

proportional data sets can be obtained by either analyzing two different sets of samples

fulfilling Eqns. 2 and 3, or by analyzing a single sample under varying experimental

conditions. This type of proportionality can be applied to a range of different analysis

techniques, including fluorescence excitation and emission, modulated infrared

spectroscopy, plus linear and circular dichroism.(27) The elegant work of Windig,

Antalek and co-workers, (28-32) as well as Schulze and Stiles, have demonstrated

that for NMR, this type of analysis can be applied to PGSE diffusion matrices, magnetic

resonance imaging (MRI) data, and spin-lattice relaxation matrices.

For exponential relaxation processes in NMR, spectra obtained for equally spaced

time intervals satisfi the u proportionality in Eqns. 2 and 3. As demonstrated in Figure 3

for an 170 NMR spin-lattice relaxation,matrix of equally spaced time delays, the analysis

matrices A and B can also be out of a single data set. For matrix A the spectra 1 through
.

n-1 are used, while for matrix B spectra 2 through n are utilized. A major advantage of

being able to create both A and B from a single data set is the elimination of variations in

the instrumental response and stability during the collection of the proportional data sets.

By solving Eqns. 2 and 3 for Cu

Ccx = AP+ct

Cct = BP+
(4)

an equation resembling the generalized eigenvector equation is obtained.



AP+ct = BP+ (5)

This equation can be solved directly as the solution to the generalized eigenvector

problem, if the matrices A and B are square; usually they are not, and steps must be taken

to transform A and B such that Eqn. 5 can be solved. The solution of Eqn. 5 allows the

computation of C and P, the concentration and pure component spectral profiles,

respectively.

A method utilizing the direct exponential curve resolution algorithm (DECR4)

has been used to analyze NMR data type of this kind, (28-M, 34) where DECRA is based

on the generalized rank annihilation algorithm.(35) As an example, the DECRA analysis

of the spin-lattice relaxation matrix for the solution ’70 NMR spectra of a two-

component mixture of 3-methyI propanol and ethanol is shown in Figure 4 and 5. The

rapid quadrupolar relaxation of the 170 nucleus results in large line widths producing

.
significant spectral overlap. In Figure 4 the amplitude of the individual i components are

modulated by the spin lattice relaxation time (Tl ~), and provide the data set from which

the matrices A and B are formed. The resulting pure component spectra and residuals are

shown in Figure 5. More details of this analysis are given in Ref. (34). While this

example may appear to be rather simplistic since the components are visually resolved

and should be amendable to conventional deconvolution techniques, we have recently

demonstrated that significant errors result from the introduction of assumptions about the

form of the line shape.(34) DECRA makes no assumptions or constraints about the actual

spectral line shape required, and that a significant reduction in residuals is realized. The

DECRA algorithm does require that the number of factors (pseudorank) be known.



Attempts to extract more factors than are actually in the data set results in a new

component spectra that contains only noise, and can be used as a marker for the

determination of the pseudorank.(28)

Partial Least Squares (PLS) and other techniques

Whereas the PCA algorithm uses only the spectral information to derive the

model, the resulting loading vectors may not be optimal for concentration prediction.

Partial Least Squares (PLS) use the concentration information during calibration to place

more usefi-d information for prediction in the first several loading vectors. The PLS

algorithm has been extensively used in the chemical sciences, including mass

spectroscopy, gas chromatography,(38) and throughout the infrared and near infrared

community.(39-41 )

PLS algorithms have also been utilized in the analysis of NMR data sets spanning

a wide range of applic~tions. PLS analysis of solid-state 13Cmagic angle spinning (MAS)

NMR has been used for the characterization of wood pulp, including the prediction of

carbohydrate constituents, lignin content, and alkali resistance. High

resolution *3Cand 31P NMR has also been analyzed using PLS to predict the combustion

properties of softwood and hardwood kraft black liquors. PLS calibration of lH NMR

has been reported for the analysis of octane number in gasoline, and the 5-day

biological oxygen demand (BOD5) in industrial wastewater.(44) PLS data analysis has

also been used as a tool in NMR shill assignments .(45) Principle Component Regression

(PCR) and PLS methods have also been applied to the discrirnina tion of olive oil variety

using *3CNMR.( 7) A combination of PLS and Net Analyte Signal (NAS) analysis has



also been recently reported for the investigation of alcohol mixtures using solution 170

NMR.(46) By identifying those constituents that interfere spectrally using NAS analysis,

improved PLS correlations could be obtained. PLS analysis of the NMR free induction

decay (FID) have also been reported, including the lH analysis of moisture content and

basic density in softwoods,(47) the *H study of moisture content in meat products,

and the analysis of model process NMR data.(49)

Common Experimental Problems

One of the early difficulties encountered with the chemometric analysis of NMR

data was the size of the spectral data sets (coin Fig. 1) which commonly ranged from lK

(1024) real spectral points to 64K (65536) spectral points. The computational difficulty

associated with the large data size was $%rther compounded by the slow CPU speed of

early computer systems (in comparison to today’s systems) used on NMR instrurnents,

along with the difficulty in exporting NMR data to external computational facilities.

Advances in computer technology have all but eliminated these problems, with the

dramatic increase in today’s computation speed making the analysis of NMR data sets

easily manageable. The development of improved interface hardware, along with

standardized data structure protocols have made data transfer to other computer systems

routine. In addition, most of today’s NMR instrument manufacturers now employ third

party Unix and NT based computer systems to control the instrument, such that

chemometrics analysis software can be directly employed on the data sets.

Other difficulties encountered in the analysis of NMR data include the baseline

distortions and variations in the spectral phasing between spectra. Baseline distortions,
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including the annoying baseline roll, have a large detrimental impact on chemometric

analysis, but are commonly eliminated using either manual or automatic baseline fitting

routines, or the implementation of linear prediction techniques. Small changes in the

spectra phase within the multivariate data matrix can also influence the chemometric

analysis. Small phase differences can be eliminated by very carefi.d manual phasing,( 13,

14) use of improved automatic phase routines, or by converting the observed spectra to

magnitude spectra [ S(O) = (Rea12 + Imaginary2)l’2] .(43) Phasing and baseline distortions

also affect the quality of resonance integration.(1 7) For many of the chemometric studies

mentioned in this article, reliable integration values were obtained by using only a small

portion of the entire NMR spectra during analysis, along with using well-defined

frequency ranges.(13, 17, 19) Variations in the integration can also be reduced by use of

more complicated deconvolution techniques. Variations in the NMR instrumental

response, excitation efficiency, magnetic filed or sample homogeneity or differences in

.
spin-lattice relaxation rates also have a large impact effect on the chemometric analysis.

Scaling of the total spectral intensity to a constant value,(14, 15) scaling to a distinct

spectral resonance,(l 1)scaling to an internal reference, or using relative areas(l 1, 43)

helps eliminate the errors caused by the instrumental or excitation variations. Carefhl

attention to relaxation effects, including Nuclear Overhauser Effects (NOE) effects,

will result in an improved chemometric analysis.

The most prevalent problem encountered in the NMR-chemometric analysis of

complex mixtures is the soIvent, concentration, pH and temperature induced shifts of the

observed resonances, especially apparent at high magnetic field strengths This difficulty

has been dealt with in a variety of different ways, including the use of standardized peak

12



referencing, (3, 43) or the reduction of spectral resolution through smoothing or data

compression.(3) Using integration areas for a defined spectral region in lieu of actual

spectral intensity data is also a common processing technique for overcoming solvent

shift effects.(13)

Summary

The use of chemometrics for the analysis of NMR data sets allows more complex

systems and mixtures to be addressed. While there are still many difficulties encountered

in the analysis of NMR data, chemometric analysis has cle~ly been shown to be a viable

technique. With the continued improvements in analysis software along with the

increasing automation of NMR instruments, the implementation of chemometric

techniques to NMR spectral data will become more common.
9
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Figure 2. Scores plot for the PCA classification utilizing three principal

components (PC).
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Figure 3. An illustration of how a single relaxation matrix can be split into two

proportional data sets for DECRA analysis. More details given in the text.
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Figure 4. ’70 NMR spin-lattice relaxation matrix for an ethanol and 3-methyl-l-

propanol mixture, where the relaxation produces an exponentially based signal

modulation used to identify the pure component spectra.
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Figure 5. Results of the DECRA analysis of the 170 NMR spin-lattice relaxation

matrix for an ethanol and 3-methanol-1 -propanol mixture: a) derived pure

component spectra and b) spectra residuals.
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