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ABSTRACT

The intrinsic chirality of metal surfaces with kinked steps (e.g. Pt(643)) endows them

with enantiospecific adsorption properties (D. S. Shell, Langnmir, 14, 1998, 862). To

understand these properties quantitatively the impact of thermally-driven step wandering

must be assessed. We derive a lattice-gas model of step motion on Pt(l 11) surfaces using

diflhsion barriers from Density Functional Theory. This model is used to examine

thermal fluctuations of straight and kinked steps.
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Section 1: Introduction

Stepped surfaces are of chemical interest because their exposed low-coordination sites

may have an important effect on catalytic activity and selectivity. Surfaces cut to expose

an array of kinked steps are a particularly exciting exampIe, because kinks are

intrinsically chiral [1-7], and thus provide an environment where the different

enantiomers of chiral molecules carI be expected to have different adsorption geometries,

energies and reactivities [1,3-7]. For example, the electro-oxidation of D-glucose over a

Pt(643) electrode differs from that of L-glucose over the same electrode because of the

intrinsic chirality of the Pt(643) stiace [3,4]. It is not hard to imagine many interesting

processing applications, such as enantioseIective catalysis and enantioselective

crystalIizatioL based on these naturally chid surfaces.

Because their enantiospecific properties depend on ordered local arrangements of

surface atoms, it is important to develop an atomic-scale understanding of chiral surface

structure under practical conditions. In previous theoretical studies, chiral surfaces have

been modeled as petiectly ordered high Miller index planes [1,5-7], an assumption whose

approximate validity is confirmed by low energy electron diffraction (LEED) [2-4,6].

Nonetheless, stepped sw%aces must deviate from their ideal structure due to thermally

induced step wandering. For a recent review of step fluctuations, see Ref. [8]. In order to

understand how step wandering will affect the enantiospecific adsorption properties of

naturally chiral metal surfaces, it is first necessary to predict the structures of chiral

surfaces after step fluctuations have occurred. Although the qualitative theory of step

fluctuations is very well developed [8], accurate prediction of step structures for metal

surfaces with atomic resolution remains challenging.
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The aim of this paper is to develop a model that faithfully represents atomic motion along

step edges on Pt surfaces and serves as a tool for characterizing the effects of step

wandering on naturally chiral Pt surfaces. The surface structures generated by this model

can then be used to assess the effect of step fluctuations on the enantiospecific adsorption

of chiral organic molecules on chiral Pt surfaces [9]. The paper is structured as follows.

In section 2 we describe how we use energy barriers computed via density fi.mctional

theory (DFT) to parametrize a lattice gas (LG) modeI of Pt step dynamics. The

pararneterization’s simplicity allows us to simulate step edges comprised of thousands of

atoms on experimentally re~evant time scales. In section 3 we demonstrate the accuracy

of our theoretical approach by comparing our DFT and LG results to previous

experimental measurements of step roughening for straight steps on Pt surfaces. The

results of applying our model to the kinked Pt steps that are chriracteristic of chid Pt

surfaces are described in section 4. We conclude with a discussion of our results and

prospects for fiture work in section 5.

Section 2: Lattice Gas Model of Pt Step Dynamics

Quantitative modeling of surface step fluctuations is challenging because one must

account for the thermally driven mass transport of thousands of stiaces atoms over long

time scales. Much progress has been made in this area by using atomically-based lattice

models and coarse-grained continuum models [8]. A limitation of existing models is that

they are based on simplified representations of the bond strengths and energy barriers to

atomic diifkiion. To model specific materials, it is obviously of value to replace these

simplified models with more detailed models when possible. The possibility of applying

density fictional theory (DFT) to periodic systems containing hundreds of atoms offers



an attractive tool for developing these refined models. In this sectiou we describe how

we have used DFT to parametrize a lattice gas (LG) model for step dynamics on Pt

surfaces.

We restrict our work to stepped surfaces vicinal to Pt(l 11) which are known not

to reconstruct below 800K [3,4,10,11] and which when cut to expose kinked steps, are

intrinsically chiral [1,3-5]. Straight steps on these surfaces have one of two orientations.

Those that form a (100) microfacet are referred to as A steps while those forming (111)

microfacets are B steps [1O,12]. Surfaces with steps that alternate between A and B, such

as the Pt(854) stiace shown in Fig. 1, are chiral [1-4].

One of us recently perllormed an extensive ab initio study of Pt atom difiion

along the bottom of steps on these surfaces [12]. Confirming the importance of

calculating difiion energetic via DFT, the computed energy barriers for diffhsion of a

Pt atom along straight A or B steps are roughly three times larger than the diffusion

barrier on a bare Pt(l 11) surface - quite different for example, from what one would

imagine in a bond-counting picture. In additiom the diffhsion barriers along A and B

steps differ, even though an atom adjacent to a step edge has the same number of nearest

neighbors independent of the step’s identity. The DFT results are in good agreement with

experimental measurements of barriers for difhsion on Pt(l 11) and Pt(331) [12]. It is

also noteworthy that these barriers are not correctly predicted by current semi-empirical

potentials [12].

Despite the predictive power of DFT, it is not practical to compute energy barriers

directly for all processes that can contribute to step roughening via thermal fluctuations.

Thus, we derive a LG model for diffision of Pt atoms along step edges that embodies all



of the energy barriers currently known from DFT calculations. Four assumptions make

this approach feasible. Fi&4 we assume that all atomic motion along step edges takes

place by single Pt atoms hopping between adjacent local energy minima on the surface.

That is, we do not include any multi-atom diffhsion pathways such as concerted

substitution. DFT results indicate that while concerted substitution can occur along Pt

step edges, the barriers to these events are significantly higher than for single atom

hopping [12]. Secondj we assume that Pt atoms cannot escape from a step edge onto an

adjacent terrace. In the terminology of the step fluctuation literature, we allow only

periphery diffbsion. This assumption is based on the observation that the energy barriers

for an atom moving from a step edge to a terrace are larger than those for motion along

the step edge [13]. Thir& the energy barriers for removing Pt atoms horn seven-or eight-

fold coordinated positions in the step edge are assumed to be large enough that these

processes can be ignored. For the perfect Pt(854) structure shown in Fig. 1, for example,

this assumption means that only the six-fold coordinated kink atoms are considered to be

mobile. Finally, the rate of each process is assumed to have the form

k = vexP(-E* / kBT), where the pre-exponentkd factor is fixed to be v =1013s-l for all

.
processes and E~ is the p;ocess-dependent activation energy.

We noted above that simple bond counting schemes do not even qualitatively

describe Pt self-difiion on stepped stu%aces. To extend the energy barriers computed

with DFT to give a LG model that can accurately describe any diffbsion event subject to

the assumptions listed above, we have developed an extended bond counting method that

characterizes the local environment of the moving atom. In this model, each diffbsion

activation energy has the form E~ = Em – Es, where Em and Es are the atom’s energy



at the transition state and step edge local minim% respectively. To reflect the mobile

atom’s local geometry, nearest-neighbor Pt atoms in the step edge are identified as being

either A, B, 120° corner, 240° comer, 300°A comer, and 300°B comer atoms, as indicated

in Fig. 2. Es is then defined by

ES = ~N~E,!, (1)
j=l

where the index i runs over the 6 types of neighbors, Ni is the number of nearest

neighbors of type i and Eis indicates the interaction energy of the mobile atom with a

neighbor of @pe i. Transition state energies are defined using a variation on Eq. (l). We

define any nearest neighbor atom that is present in both the initial and final minimum

energy states as a fidl bond and any nearest neighbor present in only one of the minima as

a partiaI bond. The transition state energy is then defined as

Em=~(Ni+y Mi)E,P. (2)
1=1

Here, Ni and .A4are the number of fhll and partial bonds for the process, respectively, and

E? is the interaction energy with a neighbor of type i. Equations (1) and (2) define a

system involving 13 parameters that must be fit to DFT data. The DFT data comprise 18

transitions involving 4 of the 6 neighbor types (A, B, 120° comer, and 240° comer) we

have identified. The 300”A and 300”B comer type atoms occur at the intersection of A-A

steps and B-B steps respectively. These structures do not appear on any Miller index

surface of Pt. In principle, these two structures may occur if the thermal roughening is

severe, but in the simulations discussed in section 4 we have not seen this development.

Nevertheless, to

associated with

complete the picture of difision along steps we include the atom types

these comers in Eqs. (1) and (2). The energy barriers for diffhsion
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around 300°A and 300’% corners have not been computed using IXT, so we estimate

these barriers based on similar transitions found at the A-B step intersections.

Inserting the DFT barriers into Eqs. (1) and (2) yields a system with 22 equations

and 13 unknowns. Once y is fixe~ the resulting system can be solved using linear least

squares. One usefi.d fact is that the estimated barriers for 300°A and 300% comers only

influence the 4 unknowns involving the same comers, so these estimated barriers do not

affect the parameters associated with other atom types. Table 1 shows a comparison of

the predicted energy barriers to both the LDA and GGA DFT data for an optimal

parameter set. Table 2 shows the values of the parameters used to determine the energy

barriers from the correlation fimction. In Table 1, different types of energy barriers are

distinguished by denoting energy minima on A steps, B steps, comers, and kinks of steps

from Miller index surfaces by A, B, C, and & respectively. In some cases, the energy

barrier depends not only on the initial and final state but also on a third state accessible

from either the initial or final states. These cases are shown in Table 1 by placing this

third state in parentheses.

Many features of Pt diffusion along step edges are accurately represented by our

model. For example, the model captures the DFT prediction that the barrier to difiion

along an A step is approximately 0.05 eV lower than for difl%sion along a B step. Not all

barriers are represented so accurately. LDA predicts that the energy barrier to move from

a kink site to an A step (1.27 ev) is 0.14 eV lower than to move from a kink site to a B

step (1.41 ev). In our model, these two barriers are 1.32 and 1.34 eV respectively, i.e.

the difference between them is greatly reduced. The root mean square (RMS) deviation

between the LDA results and the results of our model in Table 1 is 0.032 eV, compared
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to an estimated uncertainty of +0.02 eV in the DFT results [Feibelman99]. L

Parameterizing our model using GGA barriers yields a RMS deviation of 0.029 eV. The

final parameters used in Eqs. (1) and (2) are listed in Table 2. This model gives a LG

model for self-diffusion along Pt step edges that is directly based on energy barriers

computed using DFT an~ as we till show in section 4, can be used to perform practical

simulations of Pt step roughening.

Section 3: Thermal Fluctuations in Straight Step Edges

Although we are ultimately interested in modeling fluctuations in kinked steps on

naturally chiral Pt surfaces, we begin by applying our model to straight step edges. This

allows us to introduce some necessary terminology an~ more importantly, compare our

results to existing experimental data.

To describe fluctuations of stiace steps succinctly, it is convenient to define x

and y axes in the surface plane such that y measures distance along a step edge (in lattice

units) and x measures displacement of the step from its initial position. This coordinate

system is illustrated for a kinked step in Fig. 3. The time dependent position of a step is

written in these coordinates as xfi,~. The main measure of step fluctuations we will

consider here is the temporal correlation fimction,

G(t) = ([X~>t)- x~,())l’). (3)

Theoretical and experimental studies of step fluctuations have established that G(t) cc t“,

with the scaling exponent a depending on the physical mechanism of mass transport

[8,10]. Langevin analysis of models of step fluctuations via periphery diffhsion,

evaporation-conde~atio~ and step-step difl%sion predict that a =1/4, 1/3, and 1/2,

respectively [8,14]. Experimental observations of thermal fluctuations of straight A and B
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steps on Pt surfaces have revealed that ct = 1/4 for temperatures up to 800 & suggesting

that step fluctuations at these temperatures are dominated by periphery diffbsion [1O].

Fluctuations of straight steps due to periphery diilhsion can be quantitatively

analyzed in terms of the energy barriers for atomic motions along the step edge. In this

section, we petiorm this analysis using the DFT barriers described in section 2 and

compare our results to the experimental data of Giesen et al. [1O].We concentrate on the

temperature dependence of G@)by writing

HE
G(t) = vex -= t’”. (4)

k~T

Using experimental data taken between 540 and 800 ~ Giesen et al. measured the

effective energy barrier in this expression to be 0.50 + 0.04 eV for both A and B steps

[10]. The observation that both steps give the same barrier (within the experimental

uncertainty) is inconsistent with experimental data on equilibrium island shapes on

Pt(l 11) [15] and with recent DFT calculations of kink- and step-formation energies [16].

This inconsistency has led to the suggestion that Giesen et al. may not have been able to

distinguish between A and B step orientations in the experiments [16]. In this case, the

experimental results would be an average of the separate results for A and B steps. We

return to this point below.

To compare E.fl to the DFT barriers discussed in section 2, we note that scaling

theories predict [10,17,18]

G(t) cc @2)3’4(DJ1’4 tl’4, (5)

where DS is the diftiion coefficient for mass transport along the step and b2 is the so-

called step-diffhsivity. If we denote the difference in ener~ between an atom located at a



kink site on the step edge and an isolated adatom on the step edge by 2q the step

diffhivity obeys b2~exp(–c/k#) [10]. When the concen@ation ofisolated adatoms

on the step edge is low, as it is for straight Pt steps below 800 ~

D,= D,, exp(–2&/k#), where l%is the tracer diffusion coefficient of a single atom

hopping along the step edge [10,19]. Natori and Godby showed that this tracer diffusion

coefficient can be calculated analytically when the potential energy stiace traversed by

an atom while diffhsing pasta kink has the form shown in Fig. 4 if the kinks are equally

spaced [20], Taking this kink spacing on a real stiace to be the average kink spacing

gives

‘“= (n-l+m3jL+rdma)’ ‘6)

where n =(1/2) exp(+s / k#) is the average spacing in lattice units between step kinks

[10], and rd=r.exp(–E~ /k,T), r.=rdexp(–2c / k~l”), and S = exp(–A/ k#) are

defined using the energy barriers labeled in Fig. 4 [10,20]. rOis a pre-exponential factor

assumed to be constant for all hopping processes included in the Godby model. Noting

that n>> 1 for the systems of interest, Eq. (6) simplifies to [10]

r.exp(–E~ /k#)

‘“= (2exp(~/k,T)+4exp(A/k~T)). ‘7)

Combining Eqs. (5)-(7), we find that

(-($’++E’)’’BT)’’G(t) cc{1+ 2exp([A -s]/ kBT)}’4 ex

Comparing this expression to Eq. (4), we see that the effective energy barrier measured

by Giesen et al. is a nontrivial combination of a variety of microscopic energy barriers.



To apply the microscopic DFT barriers for diffhsion at Pt step edges to Eq. (8),

we first note that the potential energy surface shown in Fig. 4 is a simplification of the

true situation, which is illustrated in Fig. 5 for an A step (the B step, not shown, is

similar). The main difference between the Godby model and the actual potential energy

surface is that the Godby model only identifies two energetically distinct minima while

three distinct sites have been identified using DFT. The third site is a locally stable

minimum that occurs as an atom diffhses around a corner (C) site (see Fig. 5). To

reconcile the differences between Figs. 4 and 5, we analytically solve the population

master equations [21] for a diflbsing atom initially located at site K. For the situation

shown in Fig. 5, absorbing boundary conditions are applied in the S sites available fi-om

sites C and K. The same boundary conditions are applied in the two S sites available from

site K in Fig. 4. It is an excellent approximation to represent the decay of the population

in site K of Fig. 5 by exp(–k,Ott), where kt~tis the sum of the hopping rates from site K to

the two relevant S sites. This is precisely the fictional form of the analytic solution for

Fig. 4, so the calculated k~~~is used to define A and E. in Fig. 4. Performing this

calculation at a range of temperatures shows that A and J?Lare very slightly temperature

dependent. It is useful to note that the numerical results quoted below do not change

appreciably if E. is simply fixed to be the highest energy barrier along the path K ~ C ~

Sin Fig. 5.

Once the relevant microscopic energy barriers are specifieQ we determine l?,~by

plotting the right hand side of Eq. (8) over the temperature range of Giesen et al’s

experiments and fitting this result using Eq. (4). For B steps, this yiekis -Eeti= 0.61 and

0.50 eV using barriers determined using LDA and GGA, respectively. For A steps, LDA



and GGA barriers lead to Ee~= 0.52 and 0.39 eV, respectively. As noted above, the only

available experimental measurement of E,fl gave 0.50 +/- .04 eV for both A and B steps

[10]. Noting that LDA and GGA barriers for Pt have previously been observed to over-
-/

and under-estimate experimentally observed results slightly [22,23], we see that DIT c

provides good predictions for the temperature dependence of straight step fluctuations on

~F ~ &e5.m7

Pt surfaces. The only discrepancy between the th~oretical_.z.zdexperimental results is that

L~
the latter predicts that the effective energy barrier for A and B steps is

N
the same. This

‘1%
observation is consistent with detailed DFT calculations of step- and kink-formation

4
energies [16] and with the observed anisotropy of Pt island shapes on Pt(l 11) [15]. Our

results lend weight to the possibility that the orientation of the steps in Giesen et al.’s

experiments were not correctly identifie~ since the effective energy barrier observed in ,/ &.
[ \

these experiments is completely consistent with an avemge of the theoretical values for fi ~@ ~

the two types of steps. It would be interesting to reexamine this issue experimentally in a

way that rules out any possible ambiguity in the step orientations.

Because our LG model predicts slightly different energy barriers than DFT, the

values of E~E for our LG model deviate slightly horn the DFT predictions above.

Performing the same analysis as above using our LDA-based (GGA-based) LG model

yields E.ff =0.57 (0.44) eV for A steps and 0.56 (0.45) eV for B steps. These energy

barriers are also consistent with the experimental results, but the difference between the

A and B step results found using the DFT barriers directly is no longer present. This

discrepancy occurs because our LG model does not accurately capture the difference

between energy barriers i%oma kink site to the two types of step edges, Ed in Eq. (8) (see

section 2). Since these processes are rate limiting steps for diffksion along step edges,



they play an important role in the overall rates of thermal roughening. Despite these

quantitative discrepancies, the overall agreement between the experimental data and our

DFT-based LG model gives us confidence that we can use this model to assess

fluctuations in more complex steps such as those treated in the following section.

Section 4: Thermal Fluctuations in Kinked Step Edges

We reiterate that the major thrust of our work is to develop accumte models of thermal

step fluctuations on chiral Pt surfaces. To allow us to pursue a detailed examination of

enantiospecific adsorption on thermally roughened chiral stiaces in the fiture, we need

to generate roughened surfaces for which we know the location of each atom. For this

reason, we have used Monte Carlo methods to simulate our LG model rather than extend

the type of scaling analysis used above to kinked steps. In this section we describe our

MC simulations and demonstrate some of the information that can be derived from them.

The LG model defined in section 2 reduces atomic motions to discrete hops

between lattice sites with hopping rates determined by the local environment. The

dynamics of models of this type can readily be realized using Kinetic Monte Carlo

(KMC) simulations. We have simulated our model using the N-fold way [24], an efficient

algorithm for simulating systems containing disparate hopping rates, as ours does. With

this algorithm we can routinely simulate systems comprised of thousands of step edge

atoms on experimentally relevant time scales. In all of the simulations discussed below,

we consider a single isolated step on a Pt(l 11) surface that initially has a periodic array of

kinks. We will denote initial steps that alternate between A steps n atoms long and B

steps in atoms long as (n,m) steps. For example, the step edges on the Pt(854) surface (see

Fig. 1) are (3,1) steps.



The step

temperatures in

temporal correlation fi.mctio~ G(j), for (3,1) steps is shown for several

Fig. 6. Each data set in Fig. 6 was averaged over 3 independent

trajectories for an initial step of length 2128 atoms and 532 initial kinks. Since thermal

roughening is an activated process, the time scale for step wandering decreases rapidly as

temperature is increased. As noted above, Langevin analysis of models of step

fluctuations via periphery diffkion predicts that G(t) cc tl’4 [8,14]. Figure 6 shows that

the results fi-om our MC simulations are well described by the power law expression

G(t) cc t“, with a slightly less than 1/4. The scaling exponents obtained from applying

our simulations to a range of steps are summarized in Table 3. In each case we found u

by petiorming a least squares fit to data equally spaced in in(t). The uncertainty estimates

in Table 3 are one standard deviation about the mean a determined from fitting 3-5 KMC

trajectories independently. All the exponents in Table 3 are slightly less than 1/4 ,

indicating a systematic deviation between the models used for Langevin analysis of these

systems and our more detailed model. Although this deviation is interesting from a

theoretical point of view, it appears to be considerably too small to be resolved

experimentally [1O].

Power law growth of G@)only occurs on sufficiently long time scales [8]. The

time that must pass before beginning power law growth increases ~ temperature and is

reduced as the distance between kinks along the step edge is increased. This can be seen

by comparing G(j) for (3,1) steps (see Fig. 6) with similar data for (1,10) steps (see Fig.

7). In Fig. 6, power law growth is established very rapidly, even at T = 450 K. For (1,10)

steps, there are considerable deviations horn power law growth at early times for 2’as

high as 650 K (see Fig. 7). Only at T = 700 K does power law growth appear rapidly. If

------ -.-:



each set of data in Fig. 7 is fitted to a single power law exponent, the exponents for T <

700 K are considerably larger than 1/4 because of the accelerated growth in G(O at short

times. We have performed simulations using steps that were allowed to evolve for long

periods of time before fixing the initial configuration used to define G(i,) and observed

similar results. This behavior has been seen previously in KMC simulations of step

fluctuations based on simple bond-counting models [19]. It can also be seen in the

experiments of Giesen et al. on straight steps on Pt(l 11) [1O], where a decreased from

.37 at 607 K to .24 at 800 I& with the lower temperature data showing the same type of
.

curvature seen in Fig. 7.

The experimentally observable energy barrier E~ can be found by plotting G at a

fixed time at various temperatures [10]. The results of applying this pro;edure to (1,1),

(2,1) and (3,1) steps are shown in Fig. 8. Each data point in Fig. 8 is the average of 3

KMC trajectories of steps with 532 initial kinks. The observed values of -&ti for (1,1),

(2,1) and (3,1) steps were 0.35,0.33, and 0.29 eV, respectively. Very similar results were

observed for (1,2) and (1,3) steps. Experimentally, Giesen et al. observed E@ = 0.50 +/-

.04 eV for straight steps [10] (see section 3). It is not surprising that the highIy kinked

steps we have examined show quite different results from straight steps, since several

assumptions in the theoretical model of step fluctuations presented in section 3 ftil for

these steps. Jn particular, the kink density is not simply exp(–~ / kBT) for these steps. It

would be interesting to observe the transition from the observed E.ff for highly kinked

steps to the value for straight steps by simulating (n,1) and (1,n) steps with n >> 1.

Unfortunately, Eej-can only be accurately measured at temperatures where the deviations

from power law scaling shown in Fig. 7 are absent. We have not been able to collect

.2.,Y —.- - -



sufficient high temperature data for steps such

steps that must be used at these temperatures.

as (10,1) due to the extremely short time

The enantiospecific adsorption properties of naturally chiral metal surfaces arise

horn the local ordering of atoms along step edges [1,3-5,7]. One prelimimuy way to

assess the effect of step fluctuations on the local order in our simulations is to examine

the step length distribution. We define PA(L) [PB(ZJjto be the probability that a randomly

chosen A step [B step] segment has length L between kirk Figure 9 shows these

distributions for a (3,1) step at T = 500 K. The equilibrium distribution is reached rapidly,

even though the step’s temporal correlation fiction continues to increase indefinitely

[8]. The observed distributions

indistinguishable. As might be

after t = 6 minutes and t = 1 hour in Fig. 9 are almost

expecte~ simulating a (1,3) step leads to very similar

distributions with the roles of the A and B steps reversed. The equilibrium step length

distributions, PA@), for (1,1), (2,1) and (3,1) steps at 500 K are shown in Fig. 10. The

results in Figs. 9 and 10 show that for these highly kinked steps the average step segment

length increases during equilibration. That is, the kink density is reduced from its initial

value once the step has equilibrated. This situation is the reverse of what happens for

nominally straight steps, where the initial and equilibrium kink densities are nominally

zero and exp(–~ /kT), respectively. The ratio of the average A and B step lengths is

constant during roughening for each step, since the overall orientation of the step is fixed.

For example, the ratio PA:PB is initially 3:1 for a (3,1) step and is

4.15 *O. 13:1.39 A0.04 after t= 1 hour. This observation is important because it indicates

that the net chirality of the step edge is retaine~ even though some local details of the

step structure have been dkxwpted by the step roughening.



Submonolayer adsorption on chiral metal surfaces is dominated by molecules

adsorbing in or near step kink sites [1,5-7]. It is therefore useful to characterize the kink

sites that exist after step fluctuations occur. To do t.h.is,we denote by mB + nA a kink that

is formed by a B (A) step of length m (M) with the B step on the left when the step is

viewed from above with the step bottom underneath the step edge. Using this notatiou all

the kinks in Fig. 1 are 1~ + 3A kinks. The mirror image of a m~ + n~ kink is a

nA + nzB kink. If a step has mB + nA and nA + mB kinks in equal proportion then the

local chirality of these kinks will exactly cancel, leading to a set of kinks with no net

enantiospecificity. Conversely, if either type of kink is present in excess of the other,

adsorption on this set of kinks will be enantiospecific. For the (3,1) step discussed in Fig.

9, all kinks at t = Oare 1~ + 3A kinks. Once the step’s local structure has equilibrated (t

= 1 hour), the overall kink density is reduced to 69% of the original kink density and a

diverse range of kinks exists: 43.3% are 1~ + nA with nA >2, 18.8% are mB + nA with

mB >1 and nA s 2, and 37.6°/0are m~ + nA with nA S 2. Crucially, less than 0.30/0of

the kinks are nA + mB for any nA or rn~. All the other kinked steps we have simulated

behave similarly. This reinforces the observation above that the net chirality of these

steps is maintained even though their local structure changes significantly as step

fluctuations occur. Detailed models exist for the enantiospecificity of molecular

adsorption at the types of kinks that carI occur on Miller index surfaces [1,6-8]. We are

currently working to extend these models to the range of kinks that we observe on kinked

steps after thermal roughening [9]. Combining this work with the statistical descriptions

of step structures just demonstrated will allow us to describe the enantiospecific



adsorption properties of naturally chiral surfaces both before and after thermally-driven

step roughening.

Section 5: Conclusion

Naturally chiral metal surfaces exhibit enantiospecific adsorption properties due to the

kinked steps that decorate these stiaces [1,2-7]. In this paper we have presented a model

that will allow the impact of step fluctuations on these adsorption properties to be

systematically studied. Our lattice gas model for step motions is derived directly from

energy barriers computed using DFT, and yields good agreement with experimental

measurements of straight Pt steps. We are currently working to combine the model

presented here with models of molecular physisorption on chid Pt stiaces [1,6-8].

We conclude by considering the physical limitations imposed by our model. Our

model assumes that step fluctuations occur exclusively by periphery difiion. All step

fluctuations are expected to be dominated by mechanisms involving mass transport

between steps at sufficiently long times [27,28]. Experimental observation of steps

vicinal to Pt(l 11) has shown that periphery diflbsion dominates for at least 10 seconds

when T = 800 K [1O]and for much longer times at lower temperatures (cJ Figs. 6 and 7).

Our model is therefore appropriate for describing stiaces whose thermal history does not

involve extended periods at very high temperatures. An additional restriction is that our

model assumes adjacent step edges remain well separated at all times. This means that it

is best used to describe chiral surfaces with wide terraces and correspondingly limited

surface roughening. Although these restrictions mean we cannot yet provide a completely

general description of Pt step roughening, they do not prevent us from providing usefi.d

information about the stiaces of interest in experimental studies of chiral surfaces. In



UHV studies of chiral metal

temperature for the bulk of the

surfaces [2,6], the stiace temperature is below room

experiment. The only portion of these experiments where

the surface temperature is raised to the point where step fluctuations can occur at a

significant rate is when the surface is briefly heated during cleaning. Thus, surfaces of

interest can be generated by allowing an ordered structure to roughen for a limited period

of time, a task for which our model is well suited and subsequently quenching the

surilace to a temperature where the rate of adatom diffbsion is essentially zero.
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Fi~ure Captions

Figure 1: A ball model of Pt(854) with step edges highlighted by solid lines.

Figure 2: An island on a Pt(l 11) surface illustrating the atom @pes used in our extended

bond counting model.

Figure 3: A schematic illustration of the coordinate system used to define G(t) for a

kinked step. The solid line indicates the initially ordered step edge and the dashed line

indicates the step position at a later time.

Figure 4: The potential energy surface assumed by Giesen et al. [10] for diffhsion of an

adatom along a step edge pasta kink site (K).

Fi~e 5: The potential energy surface for a Pt atom diffusing along an A step as

determined using DFT [12]. Barriers indicated without (with) parentheses were computed

using LDA (GGA) with energies in eV.

Figure 6: The step temporal correlation fimctioq G@),for a (3, 1) Pt step. Fromlefi to

righ~ the data are for T = 550, 500, and 450 K. The straight lines are least squares fits to

G(t) oct=.

Figure 7: The same as Fig. 6 but for a (10,1) Pt step with T= 700,650, and 600 K from

top to bottom.



.

Figure 8: An Arrhenius plot of G@)with t= 1 hr for (n,l) Pt steps. The effective energy

barriers determined from this da~ Eeti are indicated.

Figure 9: Step length distributions, PA(Z) (circles) and PB(L) (triangles), for a (3,1) Pt step

at T = 500 K. The filled (open) symbols show data taken with t= 6 minutes (1 hour).

Figure 10: Step length distributions, PAL), for (n, 1) Pt steps at T= 500 K and t= 1 hour.
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Transition DFT Eb ~
A~A .84 (.71)

Table 1: Energy barriers from LDA (GGA) DFT calculations [Feibelman99] and as
predicted using Eqs. (AA) and (BB). A, B, C, and K represent energy minima at A-step,
B-step, comer, and kink sites on high Miller index surfaces, respectively.

(eV) Predicted Eb (e~ Difference (eV)
.857 (.714) .017 (.004), . .

A~V Q< (71) .845 (.713) -.005 (.003)
K~A 1.27 (1.01) 1.32 (1.07) .05 (.06)

A ~ C (-K) .96 (.82) .922 (.783) -.038 (-.037)
A ~ C (-B) .99 (.84) .922 (.783) -.068 (-.057)
(K-)C~A .51 (.46) .447 (.405) -.063 (-.056)
(B-)C~A .49 (.44) .447 (.405) -.043 (-.036)

t

(A-)C>K .45 (.42) .427 (.382) -.023 (-.038)
I .90 (.77) I .903 (.775) I .003(.005) I

I
—

1 -., . . . .

— . -. A., --- I fifln , -.A. 1 fi. .,,l . . . 1

Table 2: Parameters used in Eqs. (AA) and (BB) parameterized using barriers computed
using LDA and GGA.

Method 7 EAIS EBIS E1201S E2401S EAib EBIS E1201S EZ401s
LDA .5 -.047 -.044 -.041 -.029 -.475 -.495 -.45 -.50
GGA .5 -.022 .006 -.045 .020 -.379 -.381 -.34 -.395

Table 3: Values of the scaling component, Q for different step structures (n,m).

n m a (T=450K) a (T=500K) a (T=550K)
3 1 .213 +/- .009 .230 +/- .016 ,234 +/- .007
2 1. .225 +/- .005 .218 +/- .003 .231 +/- .012
1 1 .236 +/- .020 .224 +/- .012 .235 +/- .013
1 2 .236 +/- .019 .226 +/- .005 .224 +/- .003
1 3 .221 +/- .023 .229 +/- .018 .219 +/- .012

24
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