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ABSTRACT
The intrinsic chirality of metal surfaces with kinked steps (e.g. Pt(643)) endows them
with enantiospecific adsorption properties (D. S. Sholl, Langmuir, 14, 1998, 862). To
understand these properties quantitatively the impact of thermally-driven step wandering
must be assessed. We derive a lattice-gas model of step motion on Pt(111) surfaces using
diffusion barriers from Density Functional Theory. This model is used to examine

thermal fluctuations of straight and kinked steps.
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Section 1: Introduction

Stepped surfaces are of chemical interest because their exposed low-coordination sites
may have an important effect on catalytic activity and selectivity. Surfaces cut to expose
an array of kinked steps are a particularly exciting example, because kinks are
intrinsically chiral [1-7], and thus provide an environment where the different
enantiomers of chiral molecules can be expected to have different adsorption geometries,
energies and reactivities [1,3-7]. For example, the electro-oxidation of D-glucose over a
Pt(643) electrode differs from that of L-glucose over the same electrode because of the
intrinsic chirality of the Pt(643) surface [3,4]. It is not hard to imagine many interesting
processing applications, such as enantioselective catalysis and enantioselective
crystallization, based on these naturally chiral surfaces.

‘Because their enantiospecific properties depend on ordered local arrangements of
surface atoms, it is important to develop an atomic-scale understanding of chiral surface
structure under practical conditions. In previous theoretical studies, chiral surfaces have
been modeled as perfectly ordered high Miller index planes [1,5-7], an assumption whose
approximate validity is confirmed by low energy electron diffraction (LEED) [2-4,6].
Nonetheless, stepped surfaces must deviate from their ideal structure due to thermally
induced step wandering. For a recent review of step fluctuations, see Ref. [8]. In order to
understand how step wandering will affect the enantiospecific adsorption properties of
naturally chiral metal surfaces, it is first necessary to predict the structures of chiral
surfaces after step fluctuations have occurred. Although the qualitative theory of step
fluctuations is very well developed [8], accurate prediction of step structures for metal

surfaces with atomic resolution remains challenging.

o T W I TR g raare s - . - . v e
L DR N I e A s X NIy e £ A N i 12 1 SN SNV S RS 0 S AN P T T



The aim of this paper is to develop a model that faithfully represents atomic motion along
step edges on Pt surfaces and serves as a tool for characterizing the effects of step
wandering on naturally chiral Pt surfaces. The surface structures generated by this model
can then be used to assess the effect of step fluctuations on the enantiospecific adsorption
of chiral organic molecules on chiral Pt surfaces [9]. The paper is structured as follows.
In section 2 we describe how we use energy barriers computed via density functional
theory (DFT) to parameterize a lattice gas (LG) model of Pt step dynamics. The
parameterization’s simplicity allows us to simulate step edges comprised of thousands of
atoms on experimentally relevant time scales. In section 3 we demonstrate the accuracy
of our theoretical approach by comparing our DFT and LG results to previous
experimental measurements of step roughening for straight steps on Pt surfaces. The
results of applying our model to the kinked Pt steps that are characteristic of chiral Pt
surfaces are described in section 4. We conclude with a discussion of our results and
prospects for future work in section 5.

Section 2: Lattice Gas Model of Pt Step Dynamics

Quantitative modeling of surface step fluctuations is challenging because one must
account for the thermally driven mass transport of thousands of surfaces atoms over long
time scales. Much progress has been made in this area by using atomically-based lattice
models and coarse-grained continuum models [8]. A limitation of éxisting models is that
they are based on simplified representations of the bond strengths and energy barriers to
atomic diffusion. To model specific materials, it is obviously of value to replace these
simplified models with more detailed models when possible. The possibility of applying

density functional theory (DFT) to periodic systems containing hundreds of atoms offers
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an attractive tool for developing these refined models. In this section, we describe how
we have used DFT to parameterize a lattice gas (LG) model for step dynamics on Pt
surfaces.

We restrict our work to stepped surfaces vicinal to Pt(111) which are known not
to reconstruct below 800K [3,4,10,11] and which when cut to expose kinked steps, are
intrinsically chiral [1,3-5]. Straight steps on these surfaces have one of two orientations.
Those that form a (100) microfacet are referred to as A steps while those forming (111)
microfacets are B steps [10,12]. Surfaces with steps that alternate between A and B, such
as the Pt(854) surface shown in Fig. 1, are chiral [1-4].

One of us recently performed an extensive ab initio study of Pt atom diffusion
along the bottom of steps on these surfaces [12]. Confirming the importance of
calculating diffusion energetics via DFT, the computed energy barriers for diffusion of a
Pt atom along straight A or B steps are roughly three times larger than the diffusion
barrier on a bare Pt(111) surface - quite different, for example, from what one would
imagine in a bond-counting picture. In addition, the diffusion barriers along A and B
steps differ, even though an atom adjacent to a step edge has the same number of nearest
neighbors independent of the step’s identity. The DFT results are in good agreement with
experimental measurements of barriers for diffusion on Pt(111) and Pt(331) [12]. It is
also noteworthy that these barriers are not correctly predicted by current semi-empirical
potentials [12].

Despite the predictive power of DFT, it is not practical to compute energy barriers
directly for all processes that can contribute to step roughening via thermal fluctuations.

Thus, we derive a LG model for diffusion of Pt atoms along step edges that embodies all
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of the energy barriers currently known from DFT calculations. Four assumptions make
this approach feasible. First, we assume that all atomic motion along step edges takes
place by single Pt atoms hopping between adjacent local energy minima on the surface.
That is, we do not include any multi-atom diffusion pathways such as concerted
substitution. DFT results indicate that while concerted substitution can occur along Pt
step edges, the barriers to these events are significantly higher than for single atom
hopping [12]. Second, we assume that Pt atoms cannot escape from a step edge onto an
adjacent terrace. In the terminology of the step fluctuation literature, we allow only
periphery diffusion. This assumption is based on the observation that the energy barriers
for an atom moving from a step edge to a terrace are larger than those for motion along
the step edge [13]. Third, the energy barriers for removing Pt atoms from seven- or eight-
fold coordinated positions in the step edge are assumed to be large enough that these
processes can be ignored. For the perfect Pt(854) structure shown in Fig. 1, for example,
this assumption means that only the six-fold coordinated kink atoms are considered to be

mobile. Finally, the rate of each process is assumed to have the form
k =vexp(—E, / k,T), where the pre-exponential factor is fixed to be v=10"s" for all

processes and E} is the 'p'rocess-dependent activation energy.

We noted above that simple bond counting schemes do not even qualitatively
describe Pt self-diffusion on stepped surfaces. To extend the energy barriers computed
with DFT to give a LG model that can accurately describe any diffusion event subject to
the assumptions listed above, we have developed an extended bond counting method that

characterizes the local environment of the moving atom. In this model, each diffusion

activation energy has the form E, = E™ —E®, where E™ and E°® are the atom’s energy
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at the transition state and step edge local minima, respectively. To reflect the mobile
atom’s local geometry, nearest-neighbor Pt atoms in the step edge are identified as being

either A, B, 120° corner, 240° corner, 300°A corner, and 300°B corner atoms, as indicated

in Fig. 2. E® is then defined by

6
ES=YNE’, (1)

i=1
where the index i runs over the 6 types of neighbors, N; is the number of nearest

neighbors of type i and E; indicates the interaction energy of the mobile atom with a

neighbor of type i. Transition state energies are defined using a variation on Eq. (1). We
define any nearest neighbor atom that is present in both the initial and final minimum
energy states as a full bond and any nearest neighbor present in only one of the minima as

a partial bond. The transition state energy is then defined as

ER =3 (N, +7 MEF. @

i=1
Here, N; and M; are the number of full and partial bonds for the process, respectively, and
EF is the interaction energy with a neighbor of type i. Equations (1) and (2) define a

system involving 13 parameters that must be fit to DFT data. The DFT data comprise 18
transitions involving 4 of the 6 neighbor types (A, B, 120° comner, and 240° corner) we
have identified. The 300°A and 300°B corner type atoms occur at the intersection of A-A
steps and B-B steps respectively. These structures do not appear on any Miller index
surface of Pt. In principle, these two structures may occur if the thermal roughening is
severe, but in the simulations discussed in section 4 we have not seen this development.
Nevertheless, to complete the picture of diffusion along steps we include the atom types

associated with these comers in Eqgs. (1) and (2). The energy barriers for diffusion
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around 300°A and 300°B corners have not been computed. using DFT, so we estimate
these barriers based on similar transitions found at the A-B step intersections.

Inserting the DFT barriers into Eqgs. (1) and (2) yields a system with 22 equations
and 13 unknowns. Once v is fixed, the resulting system can be solved using linear least
squares. One useful fact is that the estimated barriers for 300°A and 300°B corners only
influence the 4 unknowns involving the same corers, so these estimated barriers do not
affect the parameters associated with other atom types. Table 1 shows a comparison of
the predicted energy barriers to both the LDA and GGA DFT data for an optimal
parameter set. Table 2 shows the values of the parameters used to determine the energy
barriers from the correlation function. In Table 1, different types of energy barriers are
distinguished by denoting energy minima on A steps, B steps, corners, and kinks of steps
from Miller index surfaces by A, B, C, and K, respectively. In some cases, the energy
barrier depends not only on the initial and final state but also on a third state accessible
from either the initial or final states. These cases are shown in Table 1 by placing this
third state in parentheses.

Many features of Pt diffusion along step edges are accurately represented by our
model. For example, the model captures the DFT prediction that the barrier to diffusion
along an A step is approximately 0.05 eV lower than for diffusion along a B step. Not all
barriers are represented so accurately. LDA predicts that the energy barrier to move from
a kink site to an A step (1.27 €V) is 0.14 eV lower than to move from a kink site to a B
step (1.41 eV). In our model, these two barriers are 1.32 and 1.34 eV respectively, ie.
the difference between them is greatly reduced. The root mean square (RMS) deviation

between the LDA results and the results of our model in Table 1 is 0.032 eV, compared
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to an estimated uncertainty of +0.02 eV in the DFT results [Feibelman99]. &

Parameterizing our model using GGA barriers yields a RMS deviation of 0.029 eV. The
final parameters used in Egs. (1) and (2) are listed in Table 2. This model gives a LG
model for self-diffusion along Pt step edges that is directly based on energy barriers
computed using DFT and, as we will show in section 4, can be used to perform practical
simulations of Pt step roughening.

Section 3: Thermal Fluctuations in Straight Step Edges

Although we are ultimately interested in modeling fluctuations in kinked steps on
naturally chiral Pt surfaces, we begin by applying our model to straight step edges. This
allows us to introduce some necessary terminology and, more importantly, compare our
results to existing experimental data.

To describe fluctuations of surface steps succinctly, it is convenient to define x
and y axes in the surface plane such that y measures distance along a step edge (in lattice
units) and x measures displacement of the step from its initial position. This coordinate
system is illustrated for a kinked step in Fig. 3. The time dependent position of a step is
written in these coordinates as x(y,#). The main measure of step fluctuations we will

consider here is the temporal correlation function,

Gt) = ({x0,1)-x(0)). )
Theoretical and experimental studies of step fluctuations have established that G(¢) o< 77,
with the scaling exponent o depending on the physical mechanism of mass transport
[8,10]. Langevin analysis of models of step fluctuations via periphery diffusion,

evaporation-condensation, and step-step diffusion predict that o =1/4, 1/3, and 1/2,

respectively [8,14]. Experimental observations of thermal fluctuations of straight A and B
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steps on Pt surfaces have revealed that o =1/4 for temperatures up to 800 K, suggesting
that step fluctuations at these temperatures are dominated by periphery diffusion [10].
Fluctuations of straight steps due to periphery diffusion can be quantitatively
analyzed in terms of the energy barriers for atomic motions along the step edge. In this
section, we perform this analysis using the DFT barriers described in section 2 and
compare our results to the experimental data of Giesen et al. [10]. We concentrate on the

temperature dependence of G(2) by writing

— __l_;’;e,t_f_ 1/4
G(t)—vex;{ T }‘ . @)

Using experimental data taken between 540 and 800 K, Giesen et al. measured the
effective energy barrier in this expression to be 0.50 + 0.04 eV for both A and B steps
[10]. The observation that both steps give the same barrier (within the experimental
uncertainty) is inconsistent with experimental data on equilibrium island shapes on
Pt(111) [15] and with recent DFT calculations of kink- and step-formation energies [16].
This inconsistency has led to the suggestion that Giesen et al. may not have been able to
distinguish between A and B step orientations in the experiments [16]. In this case, the
experimental results would be an average of the separate results for A and B steps. We
return to this point below.

To compare E,4 to the DFT barriers discussed in section 2, we note that scaling
theories predict [10,17,18]

G@) = (b*)"*(D,)"* 1'%, (5)

where D; is the diffusion coefficient for mass transport along the step and b’ is the so-

called step-diffusivity. If we denote the difference in energy between an atom located at a
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kink site on the step edge and an isolated adatom on the step edge by 2¢, the step
diffusivity obeys b* o exp(—€/k,T) [10]. When the concentration of isolated adatoms
on the step edge is low, as it is for straight Pt steps below 800 K,
D, =D, exp(—2¢e/k,T), where Dy is the tracer diffusion coefficient of a single atom
hopping along the step edge [10,19]. Natori and Godby showed that this tracer diffusion
coefficient can be calculated analytically when the potential energy surface traversed by
an atom while diffusing past a kink has the form shown in Fig. 4 if the kinks are equally
spaced [20). Taking this kink spacing on a real surface to be the average kink spacing
gives

D = n’T,
" (n-141/8Xn-1+T,/T,)’

©

where n=(1/2)exp(+e/k,T) is the average spacing in lattice units between step kinks
[10]), and T, =T, exp(-E, /k;T), T, =T, exp(-2€/kzT), and S =exp(-A/k,T)are
defined using the energy barriers labeled in Fig. 4 [10,20]. T, is a pre-exponential factor

assumed to be constant for all hopping processes included in the Godby model. Noting
that »n >>1 for the systems of interest, Eq. (6) simplifies to [10]

T, exp(—E, /k,T)

D = (2exp(e/ k,T)+4exp(A/k,T)) @

Combining Egs. (5)-(7), we find that
G(t) < {1+ 2exp((A—€]/k,T)}'* ex;{—- (-;-s +-}Ed )/ kBT)t”". (8)

Comparing this expression to Eq. (4), we see that the effective energy barrier measured

by Giesen et al. is a nontrivial combination of a variety of microscopic energy barriers.
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To apply the microscopic DFT barriers for diffusion at Pt step edges to Eq. (8),
we first note that the potential energy surface shown in Fig. 4 is a simplification of the
true situation, which is illustrated in Fig. 5 for an A step (the B step, not shown, is
similar). The main difference between the Godby model and the actual potential energy
surface is that the Godby model only identifies two energetically distinct minima while
three distinct sites have been identified using DFT. The third site is a locally stable
minimum that occurs as an atom diffuses around a corner (C) site (see Fig. 5). To
reconcile the differences between Figs. 4 and 5, we analytically solve the population
master equations [21] for a diffusing atom initially located at site K. For the situation
shown in Fig. 5, absorbing boundary conditions are applied in the S sites available from
sites C and K. The same boundary conditions are applied in the two S sites available from
site K in Fig. 4. It is an excellent approximation to represent the decay of the population

in site K of Fig. 5 by exp(-£,,t) , where ki, is the sum of the hopping rates from site K to

ot
the two relevant S sites. This is precisely the functional form of the analytic solution for
Fig. 4, so the calculated %, is used to define A and E, in Fig. 4. Performing this
calculation at a range of temperatures shows that A and E, are very slightly temperature
dependent. It is useful to note that the numerical results quoted below do not change
appreciably if E, is simply fixed to be the highest energy barrier along the path K = C >
S in Fig. 5.

Once the relevant microscopic energy barriers are specified, we determine E ¢ by
plotting the right hand side of Eq. (8) over the temperature range of Giesen et al.’s
experiments and fitting this result using Eq. (4). For B steps, this yields E,y = 0.61 and

0.50 eV using barriers determined using LDA and GGA, respectively. For A steps, LDA
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and GGA barriers lead to Ez= 0.52 and 0.39 eV, respectively. As noted above, the only
available experimental measurement of Eg gave 0.50 +/- .04 eV for both A and B steps
[10]. Noting that LDA and GGA barriers for Pt have previously been observed to over-
and under-estimate experimentally observed results slightly [22,23], we see that DFT -
provides good predictions for the temperature dependence of straight step fluctuations on

P ¥ é‘/\‘esmz

Pt surfaces. The o@y discrepancy between the theoretical and experimental results is that
N T

the latter predicts that the effective energy barrier for A and B steps is ﬁ(the same. This
observation is’\&nsistent with detailed DFT calculations of step- and kink-formation
energies [16] and with the observed anisotropy of Pt island shapes on Pt(111) [15]. Our
results lend weight to the possibility that the orientation of the steps in Giesen ef al.’s
experiments were not correctly identified, since the effective energy barrier observed in C/// Ok
these experiments is completely consistent with an average of the theoretical values for /‘(\Mﬁ \o
the two types of steps. It would be interesting to reexamine this issue experimentally in a
way that rules out any possible ambiguity in the step orientations.

Because our LG model predicts slightly different energy barriers than DFT, the
values of E, for our LG mc‘)del deviate slightly from the DFT predictions above.
Performing the same analysis as above using our LDA-based (GGA-based) LG model
yields E. =0.57 (0.44) eV for A steps and 0.56 (0.45) €V for B steps. These energy
barriers are also consistent with the experimental results, but the difference between the
A and B step results found using the DFT barriers directly is no longer present. This
discrepancy occurs because our LG model does not accurately capture the difference

between energy barriers from a kink site to the two types of step edges, E; in Eq. (8) (see

section 2). Since these processes are rate limiting steps for diffusion along step edges,
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they play an important role in the overall rates of thermal roughening. Despite these
quantitative discrepancies, the overall agreement between the experimental data and our
DFT-based LG model gives us confidence that we can use this ﬁodel to assess
fluctuations in more complex steps such as those treated in the following section.
Section 4: Thermal Fluctuations in Kinked Step Edges
We reiterate that the major thrust of our work is to develop accurate models of thermal
step fluctuations on chiral Pt surfaces. To allow us to pursue a detailed examination of
enantiospecific adsorption on thermally roughened chiral surfaces in the future, we need
to generate roughened surfaces for which we know the location of each atom. For this
reason, we have used Monte Carlo methods to simulate our LG model rather than extend
the type of scaling analysis used above to kinked steps. In this section we describe our
MC simulations and demonstrate some of the information that can be derived from them.
The LG model defined in section 2 reduces atomic motions to discrete hops
between lattice sites with hopping rates determined by the local environment. The
dynamics of models of this type can readily be realized using Kinetic Monte Carlo
(KMC) simulations. We have simulated our model using the N-fold way [24], an efficient
algorithm for simulating systems containing disparate hopping rates, as ours does. With
this algorithm we can routinely simulate systems comprised of thousands of step edge
atoms on experimentally relevant time scales. In all of the simulations discussed below,
we consider a single isolated step on a Pt(111) surface that initially has a periodic array of
kinks. We will denote initial steps that alternate between A steps n atoms long and B
steps m atoms long as (n,m) steps. For example, the step edges on the Pt(854) surface (see

Fig. 1) are (3,1) steps.
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The step temporal correlation function, G(), for (3,1) steps is shown for several
temperatures in Fig. 6. Each data set in Fig. 6 was averaged over 3 independent
trajectories for an initial step of length 2128 atoms and 532 initial kinks. Since thermal
roughening is an activated process, the time scale for step wandering decreases rapidly as

temperature is increased. As noted above, Langevin analysis of models of step
fluctuations via periphery diffusion predicts that G(¢) =< t"* [8,14]. Figure 6 shows that
the results from our MC simulations are well described by the power law expression

G(t) =< t*, with o slightly less than 1/4. The scaling exponents obtained from applying

our simulations to a range of steps are summarized in Table 3. In each case we found o
by performing a least squares fit to data equally spaced in /n(?). The uncertainty estimates
in Table 3 are one standard deviation about the mean o determined from fitting 3-5 KMC
trajectories independently. All the exponents in Table 3 are slightly less than 1/4 ,
indicating a systematic deviation between the models used for Langevin analysis of these
systems and our more detailed model. Although this deviation is interesting from a
theoretical .point of view, it appears to be considerably too small to be resolved
experimentally [10].

Power law growth of G(#) only occurs on sufficiently long time scales [8]. The
time that must pass before beginning power law growth increases as temperature and is
reduced as the distance between kinks along the step edge is increased. This can be seen
by comparing G() for (3,1) steps (see Fig. 6) with similar data for (1,10) steps (see Fig.
7). In Fig. 6, power law growth is established very rapidly, even at T = 450 K. For (1,10)
steps, there are considerable deviations from power law growth at early times for 7 as

high as 650 K (see Fig. 7). Only at T = 700 K does power law growth appear rapidly. If
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each set of data in Fig. 7 is fitted to a single power law exponent, the exponents for 7 <
700 K are considerably larger than 1/4 because of the accelerated growth in G(?) at short
times. We have performed simulations using steps that were allowed to evolve for long
periods of time before fixing the initial configuration used to define G(#) and observed
similar results. This behavior has been seen previously in KMC simulations of step
fluctuations based on simple bond-counting models [19]. It can also be seen in the
experiments of Giesen ef al. on straight steps on Pt(111) [10], where o decreased from
.37 at 607 K to .24 at 800 K, with the lower temperature data showing the same type of
curvature seen in Fig. 7.

The experimentally observable energy barrier Egy can be found by plotting G at a
fixed time at various temperatures [10]. The results of applying this procedure to (1,1),
(2,1) and (3,1) steps are shown in Eig. 8. Each data point in Fig. 8 is the average of 3
KMC trajectories of steps with 532 initial kinks. The observed values of E.¢ for (1,1),
(2,1) and (3,1) steps were 0.35, 0.33, and 0.29 eV, respectively. Very similar results were
observed for (1,2) and (1,3) steps. Experimentally, Giesen et al. observed Eg= 0.50 +/-
.04 eV for straight steps [10] (see section 3). It is not surprising that the highly kinked
steps we have examined show quite different results from straight steps, since several
assumptions in the theoretical model of step fluctuations presented in section 3 fail for
these steps. In particular, the kink density is not simply exp(—&/k,T") for these steps. It
would be interesting to observe the transition from the observed E.¢ for highly kinked
steps to the value for straight steps by simulating (n,1) and (1,n) steps with n >> 1.
Unfortunately, E.gcan only be accurately measured at temperatures where the deviations

from power law scaling shown in Fig. 7 are absent. We have not been able to collect
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sufficient high temperature data for steps such as (10,1) due to the extremely short time
steps that must be used at these temperatures.

The enantiospecific adsorption properties of naturally chiral metal surfaces arise
from the local ordering of atoms along step edges [1,3-5,7]. One preliminary way to
assess the effect of step fluctuations on the local order in our simulations is to examine
the step length distribution. We define P4(L) [Pp(L)] to be the probability that a randomly
chosen A step [B step] segment has length L between kinks. Figure 9 shows these
distributions for a (3,1) step at 7= 500 K. The equilibrium distribution is reached rapidly,
even though the step’s temporal correlation function continues to increase indeﬁniteiy
[8]. The observed distributions after = 6 minutes and ¢ = 1 hour in Fig. 9 are almost
indistinguishable. As might be expected, simulating a (1,3) step leads to very similar
distributions with the roles of the A and B steps reversed. The equilibrium step length
distributions, P4(L), for (1,1), (2,1) and (3,1) steps at 500 K are shown in Fig. 10. The
results in Figs. 9 and 10 show that for these highly kinked steps the average step segment
length increases during equilibration. That is, the kink density is reduced from its initial
value once the step has equilibrated. This situation is the reverse of what happens for
nominally straight steps, where the initial and equilibrium kink densities are nominally
zero and exp(—£/kT), respectively. The ratio of the average A and B step lengths is
constant during roughening for each step, since the overall orientation of the step is fixed.
For example, the ratio P,:P, is inmitially 3:1 for a (3,1) step and is
4.15+0.13:1.39£0.04 after = 1 hour. This observation is important because it indicates
that the net chirality of the step edge is retained, even though some local details of the

step structure have been disrupted by the step roughening.
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Submonolayer adsorption on chiral metal surfaces is dominated by molecules
adsorbing in or near step kink sites [1,5-7]. It is therefore useful to characterize the kink
sites that exist after step fluctuations occur. To do this, we denote by m, — n,a kink that
is formed by a B (A) step of length m (n) with the B step on the left when the step is
viewed from above with the step bottom underneath the step edge. Using this notation, all
the kinks in Fig. 1 are 1, — 3, kinks. The mirror image of a m; —n, kink is a
n, — my kink. If a step has m, — n, and n, — m, kinks in equal proportion then the
local chirality of these kinks will exactly cancel, leading to a set of kinks with no net
enantiospecificity. Conversely, if either type of kink is present in excess of the other,
adsorption on this set of kinks will be enantiospecific. For the (3,1) step discussed in Fig.
9, all kinks at#= 0 are 1, — 3, kinks. Once the step’s local structure has equilibrated (¢
= 1 hour), the overall kink density is reduced to 69% of the original kink density and a
diverse range of kinks exists: 43.3% are 1, — n, with n, >2, 18.8% are m, — n, with
my >1 and n, >2, and 37.6% are m, — n, with n, <2. Crucially, less than 0.3% of
the kinks are n, — m, for any n, or my. All the other kinked steps we have simulated
behave similarly. This reinforces the observation above that the net chirality of these
steps is maintained even though their local structure changes significantly as step
fluctuations occur. Detailed models exist for the enantiospecificity of molecular
adsorption at the types of kinks that can occur on Miller index surfaces [1,6-8]. We are
currently working to extend these models to the range of kinks that we observe on kinked
steps after thermal roughening [9]. Combining this work with the statistical descriptions

of step structures just demonstrated will allow us to describe the enantiospecific
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adsorption properties of naturally chiral surfaces both before and after thermally-driven
step roughening.

Section 5: Conclusion

Naturally chiral metal surfaces exhibit enantiospecific adsorption properties due to the
kinked steps that decorate these surfaces [1,2-7]. In this paper we have presented a model
that will allow the impact of step fluctuations on these adsorption properties to be
systematically studied. Our lattice gas model for step motions is derived directly from
energy barriers computed using DFT, and yields good agreement with experimental
measurements of straight Pt steps. We are currently working to combine the model
presented here with models of molecular physisorption on chiral Pt surfaces {1,6-8].

We conclude by considering the physical limitations imposed by our model. Our
model assumes that step fluctuations occur exclusively by periphery diffusion. All step
fluctuations are expected to be dominated by mechanisms involving mass transport
between steps at sufficiently long times [27,28]. Experimental observation of steps
vicinal to Pt(111) has shown that periphery diffusion dominates for at least 10 seconds
when T = 800 K [10] and for much longer times at lower temperatures (cf- Figs. 6 and 7).
Our model is therefore appropriate for describing surfaces whose thermal history does not
involve extended periods at very high temperatures. An additional restriction is that our
model assumes adjacent step edges remain well separated at all times. This means that it
is best used to describe chiral surfaces with wide terraces and correspondingly limited
surface roughening. Although these restrictions mean we cannot yet provide a completely
general description of Pt step roughening, they do not prevent us from providing useful

information about the surfaces of interest in experimental studies of chiral surfaces. In
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UHYV studies of chiral metal surfaces [2,6], the surface temperature is below room
temperature for the bulk of the experiment. The only portion of these experiments where
the surface temperature is raised to the point where step fluctuations can occur at a
significant rate is when the surface is briefly heated during cleaning. Thus, surfaces of
interest can be generated by allowing an ordered structure to roughen for a limited period
.of time, a task for which our model is well suited, and subsequently quenching the

surface to a temperature where the rate of adatom diffusion is essentially zero.
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Figure Captions
Figure 1: A ball model of Pt(854) with step edges highlighted by solid lines.

Figure 2: An island on a Pt(111) surface illustrating the atom types used in our extended

bond counting model.

Figure 3: A schematic illustration of the coordinate system used to define G(t) for a
kinked step. The solid line indicates the initially ordered step edge and the dashed line

indicates the step position at a later time.

Figure 4: The potential energy surface assumed by Giesen et al. [10] for diffusion of an

adatom along a step edge past a kink site (K).

Figure 5: The potential energy surface for a Pt atom diffusing along an A step as
determined using DFT [12]. Barriers indicated without (with) parentheses were computed

using LDA (GGA) with energies in eV.

Figure 6: The step temporal correlation function, G(?), for a (3,1) Pt step. Fromleft to

right, the data are for 7= 550, 500, and 450 K. The straight lines are least squares fits to

G(t)o<t”.

Figure 7: The same as Fig. 6 but for a (10,1) Pt step with T'= 700, 650, and 600 K from

top to bottom.

22




. me—

Figure 8: An Arrhenius plot of G(#) with # =1 hr for (,1) Pt steps. The effective energy

barriers determined from this data, E.4 are indicated.

Figure 9: Step length distributions, P4(L) (circles) and Py(L) (triangles), for a (3,1) Pt step

at T= 500 K. The filled (open) symbols show data taken with # = 6 minutes (1 hour).

Figure 10: Step length distributions, P4(Z), for (,1) Pt steps at 7= 500 K and # = 1 hour.
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Table 1: Energy barriers from LDA (GGA) DFT calculations [Feibelman99] and as
predicted using Egs. (AA) and (BB). A, B, C, and K represent energy minima at A-step,
B-step, corner, and kink sites on high Miller index surfaces, respectively.

Transition DFTE, (eV) Predicted E; (eV) Difference (eV)
A=2A .84 (\71) .857 (.714) .017 (.004)
A2>K .85 (.71) .845 (.713) -.005 (.003)
K>A 1.27 (1.01) 1.32 (1.07) .05 (.06)

A > C(K) .96 (.82) .922 (.783) -.038 (-.037)
A 2> C(-B) .99 (.84) 922 (.783) -.068 (-.057)
(K-)YC2>A .51 (.46) 447 (.405) -.063 (-.056)
B-)C>A 49 (.44) 447 (.405) -.043 (-.036)
(A-)C2>K 45 (42) 427 (.382) -.023 (-.038)
B-2>B .90 (.77) .903 (.775) .003 (.005)
B2>K .90 (.77) .889 (.760) -.011 (-.011)
K->B 1.41 (1.18) 1.34 (1.11) -.066 (-.07)
B-)C2>K .39 (.35) 429 (.396) .038 (.046)
(K- )C=>B 40 (37) 449 (419) .049 (.049)
(A-)C>B 40 (.38) 449 (419) .049 (.039)
B > C(K) .89 (.74) .944 (.800) .054 (.060)
B> C(-A) .90 (.77) .944 (.800) .044 (.030)
K-> C(-A) 1.32 (1.08) 1.35 (1.10) .03 (.02)
K-> C(-B) 1.39 (1.13) 1.37 (1.12) -.02 (-.01)

Table 2: Parameters used in Eqs. (AA) and (BB) parameterized using barriers computed

using LDA and GGA.

M eth 0 d 'Y EATS EB 5 E120 IS E240TS EA 5 EB IS E]ZOTS E240 IS
LDA S | -.047 | -.044 | -.041 | -.029 | -475 | -495 | -45 | -.50
GGA | .5 | -022 | .006 | -.045 | .020 | -.379 | -381 | -34 -.395

Table 3: Values of the scaling component, o, for different step structures (n,m).
n m o (T=450K) o (T=500K) o (T=550K)
3 1 213 +/-.009 230 +/- .016 234 +/- .007
2 1. 225 +/- .005 218 +/-.003 231 +/-.012
1 1 236 +/- .020 224 +/- .012 235 +/-.013
1 2 236 +/- .019 226 +/- .005 224 +/- .003
1 3 221 +/-.023 229 +/- 018 219 +/-.012
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