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Abstract

Electromagnetic induction by a magnetic dipole located above a dipping interface is of rele-
vance to the petroleumn well-logging industry. The problem is fully three-dimensional (3-D)
when formulated as above, but reduces to an analytically tractable one-dimensional (1-D)
problem when cast as a small tilted coil above a horizontal interface. The two problems are
related by a simple coordinate rotation. An examination of the induced eddy currents and
the electric charge accumulation at the interface help to explain the inductive and polariza-
tion effects commonly observed in induction logs from dipping geological formations. The
equivalence between the 1-D and 3-D formulations of the problem enables the validation
of a previously published finite element solver for 3-D controlled—source electromagnetic

\

induction.




Introdﬁction

Wireline induction logging is a controlled-source electromagnetic (CSEM) application that
utilizes coaxial borehole transmitter and receiver coils of fixed separation. The method is
widely used within the oil industry to determine electrical conductivity depth profiles within
sedimentary formations. Spatial variations in electrical conductivity are analyzed jointly
with other physical properties derived from well logs to discriminate between water, shale

and hydrocarbon-bearing rocks.

An induction log reflects to a certain extent the true formation electrical conductivity, but
logs are contaminated by electromagnetic (EM) induction effects associated with the presence
of the borehole, bed boundaries, the dip of the formation bedding planes with respect to
the borehole axis, formation anisotropy, tool eccentricity, and the fluid invasion zone. Fully
3-D numerical simulations are required to model these effects and eventually permit an

estimation of the true formation conductivity profile from the observed log response.

The effect of dip on induction log responses has long been of interest to the oil industry.
Dip is defined as the angle « between the borehole/tool axis and the normal to the bedding
planes. An early deconvolution technique [1] was developed to correct induction logs for the
dip effect in formations without fluid invasion. The technique is based on the assumption
that the log response (apparent conductivity) can be regarded as a linear function of the
true formation conductivity. The linearity assumption is reasonable for modest conductivity
values within beds but it breaks down near bed boundaries due to the nonlinear EM effects
of electric charge accumulation. The charge accumulates as eddy currents generated by the

tilted dipole are forced across the interface.

A 3-D investigation of the charge accumulation effects on induction logs for the case of dip
with invasion was carried out in [2] using an extended Born approximation. More recent
studies of the dip—withﬁnvasion induction logging problem use finite difference (FD) and
integral equation methods [3-5]. The emphasis in these studies is typically on code validation
' ﬂmv@ﬁmm—ﬁpﬁmWS”they‘ pertain to industry-standard logging tool
responses. However, to properly interpret induction logging responses it is necessary to have

a good understanding of the underlying EM field behavior.

The objective of this study is to analyze the physics of electromagnetic diffusion geﬁerated
by a dipole transmitter embedded in a dipping formation without a borehole. The problem

1s one-dimensional if the vertical axis coincides with the normal to the bed boundary. All




the beds are assumed to be homogeneous. In this case, an analytic solution is available
[6], which is expressed by the superposed fields of a vertical and horizontal magnetic dipole
exciting a horizontally layered formation. The problem, howéver, is fully 3-D when solved
in a coordinate system in which the vertical axis is aligned with the dipole moment vector.
Most 3-D numerical solutions {3-5,8] operate in this coordinate system. Therefore, the 1-D

analytic solution can be used to help validate 3-D numerical results.

In this study, a finite element (FE) algorithm based on the (A, ¥,) secondary coupled electro-
magnetic potentials formulation of Maxwell’s equations [7-8] is used, where A, is a secondary
magnetic vector potential and ¥, is a secondary electric scalar potential. The secondary po-
tentials are defined relative to primary potentials (A,,¥,) that are known solutions to a
specified CSEM induction problem. The method operates with unstructured meshes and
consequently can address difficult EM induction problems characterized by complicated con-

~

ductor geometries.

Governing Equations

In source-free regions, the governing equations for the Coulomb-gauged coupled potential

formulation of Maxwell’s equations assuming e~#* harmonic excitation are given by [8]:
VxVxA-V(V-A) - jwper(A +VE) =0 (1)
V - [jwpoo(A + V)] = 0. (2)
Numerical sélutions are best obtained in terms of secondary potentials (As,¥s) defined by:
' A‘—;Ap +As and ¥=¥s+ ¥p. The governing equations become: ’
V x (V x Ag) — V(V - Ag) — iwpoo(As + V¥s) = jwpoAc(Ap + Vi¥p) | (3)
V - liwpoo(As + V)] = —V - [jwpoo(Ap + Vp)], . 4)

where Ao=0— og is the difference between two conductivity distributions: o(r), the actual

conductivity whose response is required, and oo(r), a ‘background’ conductivity whose re-

element method. The boundary conditions are of homogeneous Dirichlet type [8].

For the primary potentials (Ap, ¥p) we consider the solution for a horizontal loop of radius
a, placed at z=z; and carrying current I, which is embedded in a conducting wholespace of

uniform conductivity oy. The formula for Ap in cylindrical coordinates is:

pol
2

. ad>/ Le-aop-zalh(,\a)]l(,\p),\d,\ : (5)
o @0 -
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——————3ponse is already known. The differential equations for (As, ¥s) are solved using the finite




where al= A’-juqwoo, while ¥p vanishes in this case. The Hankel transform is performed
using a digital filter method [9].

- Method

A derivation of the sparse, complex symmetric linear system of equations that is generated by
applying the finite element method to the (As, ¥s) partial differential equations is provided in
the Appendix. The linear system is solved using the quasi—minimal residual (QMR) method
described in [10]. Jacobi preconditioning is used to enhance the convergence rate of the
QMR iterates [11].

The solution domain Q is discretized into tetrahedra using a mesh generator with local
refinement capability [8,12]. The mesh generator produces high—quality tetrahedra with few
if any long, thin ones that degrade the accuracy of the FE solution. Local mesh refinement
is performed in regions where electromagnetic field gradients are expected to be large, such
as along bed boundaries, or where high accuracy is required, such as close to receivers. The
local refinment algorithm allows multiple nested refinements so that a mesh that has been
locally refined can be further refined within the same region. An example of a mesh with

two nested local refinements is given in Figure 1.

Once the mesh is generated and the finite element linear system solved, a moving least
squares interpolation (MLSI) method [13] is used to differentiate the computed potentials
and hence obtain the direct electromagnetic field components at any specified point within

the solution domain.

Benchmark

The problem considered is that of a horizontal coil embedded in a double halfspace electrically
conducting medium with a dipping interface. The geometry is illustrated in Figure 2, in the
coordinate system used by the FE solution. In the coordinate-systemehosenfor-the-analytic——— -
solution, the coil.is tilted and the interface is horizontal. However, the FE and analytic -
solutions are‘equivalent once the proper coordinate transformation has been applied, with

both containing the full 3-D physics of charge accumulation at the interface.

The analytic solution is the superposition of a horizontal magnetic dipole (HMD) and a
vertical magnetic dipole (VMD) energizing a double half-space formation with a horizontal

interface. A conventional logging tool measures the component of magnetic field that is

4



aligned with the transmitter axis. Therefore, in the coordinate system used by the FE
method, the magnetic field sensed by the logging tool is given by Hrx = H,, whereas for the

analytic solution, it is
Hpx = sin®a HIMP | sina cosa [HYMP + HIMP] 4 cos?a HYMP, (6)

where HYMP is the z—component of the magnetié field generated by the VMD source of the

same magnetic moment as the transmitter, and so forth.

The FE calculations were performed in terms of secondary potentials, where the primary
potential A, is that due to a horizontal loop energizing a uniformly conducting wholespace of
conductivity oo, which is the value characterizing the bed in which the transmitter is located.

The MLSI algorithm was then applied to extract the secondary magnetic field.

A mesh {60k nodes, 300k tetrahedra) was constructed using three nested refinements in
the region where the vertical (coil) axis intersects the interface between upper and lower

halfspaces, as shown by the shaded rectangle in Fig.2. A linear transformation of the form
2 — z; + z; tana ' (M)

is applied to each node i=1,...,N of the mesh to ensure that the edges of the tetrahedra
conformed to both the coil axis and to the dipping material interface, see the example in
Figure 3. Dip angles of 30°, 45° and 60° are considered. The parameters used in this study are
00=0.1 S/m, ,=1.0 S/m. Convergence of the QMR solver was achieved in about 800-2000

iterations, the slower rate of convergence corresponding to higher dip angles.

The secondary magnetic field components H,, (hereafter called the X—signal) and H,, (the
Z-signal) as a function of position along the coil axis are shown in Figure 4a-f for the
various dip angles. The total Z-signal would be recorded for a single logging point by a
ool consisting of one transmitter and a continuous array of aligned receivers. The total
X—Signal would be measured by tools whose receiver axes are oriented in the z—direction,

orthogonal to the transmitter axis. The secondary X, Z-signals are plotted, rather than the

total response, since they-more-clearly reveal the-underlying- physics-ofinductionrtogzing-tm

a dipping formation.

In Figs.4a—f, the center of the transmitting coil is located a distance h=1.5 m below the
material interface. The coil has radius of 0.01 m, and carries a 10'° A current oscillating at
2.5 MHz. The FE-computed responses (larger symbols) are compared to equivalent solutions
(smaller symbols) using the Sandia National Labs 3-D FD code [11]. The analytic Z—signals

are plotted (lines without symbols) as a reference.



A very good agreement for the tilt angles of 30° and 45° is found between the FE-computed
and the FD—computed X-signal and Z-signal. At the highest tilt angle considered, a=60°,
there is a larger disagreement, which can be attributed to the decrease in quality of the mesh
tetrahedra. In Figure 5 the tetrahedron mean quality factor [12] is plotted versus the tilt
angle, for both a mesh without local refinement and for the operational mesh containing the
three nested refinements. As the tilt angle increases, the tetrahedra become progressively
longer and thinner in order to simultaneously conform to both the :-axis and the dipping
material interface. A ldng, thin tetrahedron has a very small quality factor, near zero, while a
well-shaped tetrahedron has a quality factor between 0.6-1.0. A poor quality mesh containing
many long, thin tetrahedra leads to a badly conditioned FE matrix and an accompanying

loss of accuracy in the FE-computed EM responses.

It is also evident from Fig.5 that the refined mesh is of poorer overall quality than the
unrefined mesh. This illustrates a trade-off involved in local mesh refinement: additional
tetrahedra increase the accuracy of FE-computed solutions only if they are of sufficiently
high quality. In the current version of the mesh generator, the quality of the tetrahedra in
a specified region decreases with the number of times that the region is refined [8]. In view
of these factors, the generation of high—quality, conforming meshes for large tilt angles and

multiple nested refinements is an important component of our ongoing research.

Inductive and Polarization Effects

The real component Z-signals contain sharp peaks at the bed interface for high tilt angles, see
Figs. 4d and 4f. These peaks are known as “polarization horns” in the well-logging industry
and arise due to the combined effects of: (a) induced eddy currents, and; (b) currents that

dissipate the charge accumulation at the material interface.

To understand the physics of induction by a tilted coil over a horizontal interface, it is
instructive to examine the secondary fields that are generated f)y the constituent vertical

and horizontal magnetlc dlpoles A schematic representatlon of the induced eddy currents

near the interface is shown in Figure 6 for the case of VMD excitation. The currents flow
azimuthally in the z/y-plane. There is no vertical current ﬂow, and hence no charge accu-

mulation at the interface.

The physics of induction by the HMD source over a horizontal interface is more complicated.
Assume the HMD source is located in the upper half-space. The induced eddy currents

will resemble an image of the transmitter reflected in the lower medium. The eddy current



p~at.tern 1s shown in Figure 7. Notice that there is a vertical component to the current flow,
and some of the currents leak into the upper medium (not shown in the figure), so that
electric charges will accumulate on the interface. A schematic representation of the charge

accumulation is shown in Figure 8.

Contours of the real secondary magnetic field due to the tilted coil (a=45°) are shown in
Figure 9. The quantity plotted is the component aligned with the transmitter axis. The
transmitter is located at position (0.0,1.5) on the plot. The coordinate system for the plot
is the one for the analytic solution. The coil axis is drawn as a reference.  The magnetic
field distribution shown in the figure is generated by both the induced eddy currents and
the dissipative currents previously discussed. Notice there is a kink in the contours close to

location (-1.0,0.0). This kink corresponds to the sharp peak seen in Fig.4d.

Discussion

A very good agreement between analytic, FD and FE solutions has been achieved. The
analytic solution is 1-D when the problem is formulated as a tilted coil above a horizontal
interface. In that case, the full solution is a superposition of the fields produced by VMD
and HMD sources. The FE and FD solutions are fully 3-D, since the numerical codes
treat the problem as a horizontal coil above a dipping interface. The full 3-D physics of
electromagnetic induction, including charge accumulation at the interface, is included in

both formulations.

The physics of the problem is best investigated by analyzing the secondary magnetic field in
the analytic coordinate system. The decomposition of the total response into the VMD and
HMD fields reveals that the VMD produces horizontal loops of induced eddy currents which
do not generate a charge accumulation. The HMD, however, produces a vertical component
of induced eddy currents. Consequently, cha,rgé accumulation occurs as the eddy currents
leak from the lower medium into the upper medium where the transmitter is located. The

inductive and polarization effects seen in the real Z—signal are due to the secondary magnetic

field caused by the eddy currents, combined with currents that arise to dissipate the charge
buildup on the interface. These inductive and polarization effects often occur in induction

logs in dipping geological formations.

In these calculations, it is advantageous to choose a background conductivity equal to that of
the medium in which the transmitter is located. The reason for this choice is so that the sec-

ondary field are smoothly varying over the entire solution domain. If any other conductivity
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is selected to define the background medium, the secondary field will contain large gradients
in the vicinity of the transmitter. A numerical code will experience difficulty capturing these

large gradients accurately, so that the mesh would have to be made substantially finer.

Appendix: Finite Element Analysis

The Galerkin equations for the boundary value problem defined by Eq.(3-4), subject to ho-
mogeneous Dirichlet boundary conditions, are obtained by weighting Eq.(3) with the vector.
weighting functions W, and Eq.(4) with the scalar weighting functions W. The weighting

functions are satisfying:
Wxn = 0 W=0 on boundary T’ (A1)
since they are used in the expansion of A, and ¥,. Hence:

/W-Vx(VxAs) aQ — /W-V(V-As) o — jwpg/ W-(cAs) dQ — jwm/ W-(cVT,) dQ =
Q Q ) Q aQ

= jwpg fa W.(AcAp) d0 ' (A2)

jw,ug/ WV-(gAs + cV¥,) dQ = —jpr/ WV-(cAp) d (A3)
Q Q

Integrating by parts in the first two volume integrals in Eq.(A2), and in the first volume
integral in Eq.(A3) respectively, one obtains:

/W-VXY(VXAS) dQ = /(VXW)-(VXAS) 40 — j{W-[(VXAS) xn] 4T (A4)
Q Q r :
- / W.V(V-Ay) dQ = / (V-W) (V-Ay) dQ — f (W-n) (V-A,) d5 (45)
Q 93 r
jwito /ﬂ WY-(0As + 0Ap + 0VE,) d2 = jupo f} W(cAs + 0Ap + 0VT,) ndS—

—jw,uO/ (VW) (cAs + 0Ap + oV T,) dQ /(Aﬁ)
Q

- The surface integrals in Eq.(A4) and Eq(A6) vanish in view of Eq.(Al), while the one
corresponding to Eq.(A5) vanishes due to V- As=0 on I'. Therefore, the Galerkin equations

become:

./(VXW)-(VxAS)‘dQ + / (V-W)(V-As) dQ — jqu/ o (W-Ag) d—

Q . ‘ Q ‘ o

—jwugLU(W-VWs) dQ = jwpoLAo (W-Ap) d (AT)

—jwuo/ o (VW) -AsdQ — jw/lo/ g (VWY (V¥,) dQ = jw,u()/ o (VW) -Ap dQ (A48)
Q Q Q )
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By choosing W = Ni(z,y,z)ux and W = 0, where N; —is the scalar shape function associated
to node “1”, Eq.(AT7) transforms into: .

> As,k,z/ [(VN:)-(VNL) = jwpooN; Ni] d2 + D As,k,y/ (VN; xV Ng) ug d2 —
-k Q k o )

-3 As,k,z/ / (VNixVNg) uydQ — > ws,k/ jwuoaNia—]Y’i dQ =
P aJa & Q Oz

= jouo S / (Ao) N; Ap e dS (49)
;Y ,
where: A
Aplz = 2 Ap(mi)e Ny (2,9, 2) : (A10)
m=1

and the summation is over all nodes “k” connected to node “i”, and over all tetrahedra “I”

to whom node “” belongs

Similar expressions are obtained when choosing W = Ni(z,y,2z)uy, and W = 0, or W =

Ni(z,y,z)u; and W = 0 respectively:

— Z A,,k’z/ (VJV,'XVN;C) uy d) + Z As,k,y/ [(VAN,') (VN)C) — jw;zoaN,- ]Vk] aQ) +
k Q k 9]

aN
= jwpo Y / (Ac) N; Ay 1y dY , , (A11)
TR
with: \
Avty = D Aptmiy Nem)(2,9,2) (A12)
m=1
> As,k,x/ (VN;xVN) uy dQ — > As,k,y/ (VNixVNy) ux dQ+
E a % Q
+ Z Askz/ [(VN;) - (VNi) — jwpooN; Ni] dQ — Z\Ifs k/jw#o&Ni%dQ =
Oz
= ]“’MOZ/ A(7712AV% 41; Tz Ccyaaz (A13)"
with:
4 .
Ap,l,z = Z Ap,(m,l),z N(m,l)(xay) Z) ) 7 (A14)
m=1

Finally, when choosing W = 0 and W = Ni(z,y,2), Eq.(A8) becomes:

. ON; ) ON; . aN;
_zk: As,k,x/K;JWIlDO'Nk_éx_dQ — ; As‘k,y/Q]w/l()G'.Nk*gy— df) — ; As’k’zL]wﬂoaNkE-dQ-




. . . ON; dN; dN;
- zk:‘l’s,k/ﬂwuoa(VNi)'(VA’k) Q) = JWHOZ/W(U)I (F;Ap,l,x + 8_yAp,I,y + WAp,z,z) d

| | (A15)
where the Cartesian components of vector Ap; are expressed by Eq.(A10), Eq.(A12) and
Eq.(A14) respectively.

The group of Eq.(A9), Eq.(A11), Eq.(A13) and Eq.(A15) organized in a matrix form, define
a symmetric algebraic system. The off-diagonal terms of the upper-left 3x3 part of the
matrix, vanish on the interior of homogeneous subregions when conventional C%, elements

are used. This enhances the sparsity of the FE matrix. Indeed:

(VNixVN;) dQ = / [Vx (N;VNg) — N; (VxVNE)] dQ = j[ nx (N;VNg) dT (A16)
and sinSZ;e both N; and the ?ac,ngential derivatives of N; are con?,ienuous at interior element
boundaries, by proceeding with the summation over all elements, only the integrals on the

exterior boundary may not cancel. This is due to the interior elements with common surfaces

that share oppositely directed normals n.

Regarding the terms associated to the fourth row and column corresponding to Eq.(A9),
Eq.(Al11), Eq.(A13) and Eq.(A15), it can be easily observed that:

4}

Similar expressions are obtained for af}) and o). For the same reason as above when dis-

ik . N . .
o) = - f ]wugd’N;?—f dQ = — ﬁ jupooN; Nynz dS + o) | (A17)

cussing Eq.(A16), by summing over all elements, the contributions given by §;. jwpoN; Ny ndS
cancel except eventually on the outer boundary. Therefore, aff,’}'fl) = aif;ﬁ), m<3, which con-

cludes that the system matrix is a sparse and symmetric one.

/
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Figure Captions

Figure 1. A y=0 slice in the vertical z/z-plane (top) and a z=0 slice in the horizontal z/y~
plane (bottom) through a tetrahedral mesh containing two nested refinements. The actual
meshes used to compute induction logging responses in this paper contain many more nodes
than the mesh shown here, but the topology is the same. The heavy solid line in the upper

figure corresponds to a bed boundary. Distances shown along the axes are in meters.

Figure 2. A horizontal coil embedded in a double ha,lfspace conducting medium with a
dipping interface. The electrical conductivity of the lower medium is oy while that of the
upper medium is o;. The center of the coil is located at depth h beneath the interface. The

dip of the interface is @. Local mesh refinements were applied within the shaded rectangle.

Figure 3. Vertical cross—section in the z/z—plane through a small, but otherwise typical, finite
element mesh. The heavy line is the interface between the two conducting media. Notice

that the edges of tetrahedra conform simultaneously to the interface and the vertical axis.

Figure 4. The X and Z signal for various tilt angles. (a) X-signal, 30° tilt. (b) Z-signal,
30° tilt. (c) X-signal, 45° tilt. (d) Z-signal, 45° tilt. (e) X-signal, 60° tilt. (f) Z-signal,
60° tilt. The larger symbols represent the FE-computed solution, while the smaller symbols
represent the Sandia FD-computed solution. The analytic Z-signals are shown as the lines

without symbols.

Figure 5. Tetrahedron mean quality factor as a function of the tilt anglé, for both refined

and unrefined finite element meshes.

Figure 6. Schematic representation of the induced eddy current distribution caused by the
VMD source located above the interface of two conducting media. The interface is shown in

perspective by the heavy rectangle. The eddy currents are confined to horizontal loops.

Figure 7. (top) Schematic representation of the induced eddy current distribution caused

by the HMD source located above the interface of two conducting media. The eddy and

dissipativeTurrents iave both vertical and horizontal components, as shown in the bottom

drawing.

Figure 8. Schematic represéntation of the electric charge accumulation generated by the
HMD source. Two lobes of opposite polarity are located on the interface and generate

dissipative currents. The symbol p, refers to surface charge density.

Figure 9. Contours. of the real Z-signal for the case of 45° dip, presented in the analytic
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coordinate system. The coil axis is the dashed line.
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