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Photon-Assisted Transmission through a Double-Barrier Structure
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We study multi-photon-assis~d transmission of electrons through single-step, sin-

gle-btier and double-barrier potential-energy stictures as a function of the photon

energy and the temperature. Sharp resonances in the spectra of the tunneling current

through double-barrier structures are relevant to infra-red detectors.
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I. INTRODUCTION

Transport of electrons under the influence of intense low-energy photons in artificially

structured semiconductors has received increasing attention recently. [1 - 4] In this paper,

we study multi-photon-assisted transmission of electrons through single-step, single-bar-

rier, and double-barrier potential-energy structures as a function of the photon energy and

the temperature. Sharp resonances are found in the tunneling current through double-bar-

rier structures and may have valuable applications for IR (infra-red) detectors.

II. PHOTON-ASSISTED TUNNELING AND ACTIVATION

We study the transmission of an electron through a general double-barrier structure

shown in Fig. 1. The structure reduces to a single-step barrier for the special cme V2= V3=

V4 = V5 and to a single barrier for V2 + V3 = V4 = V5-The electron has an effective mass

mi* in the regions i = 1, ... 5. Region 1 is in contact with the source and is under a highly

conducting metallic gate which drives the electron with an intense and uniform oscillating

sinusoidal potential energy VI = Ea&os(@- This model wu originally introduced b ~ien

and Gordon to study tunneling between superconducting films. [5] A more general

time-periodic model has been studied recently by Burmeister and Maschke. [4] Region 5

is in contact with the drain.

The time-dependent wave function of an incoming electron with a wave number k

reflected at the boundary at xl = O is given, in regionl (x< O, Fig. 1), by

(1)

where fitik = (fik)2/2m1* and CY= SaJfi~. The factor exp(-icmin(~tj) in Eq. (1) accounts for

the time-dependent V1 in the Harniltonian and can be expanded into the Fourier compo-



,

Page 3

nents exp(-iasin(tit)) = X.ln(a)exp(inut) where .ln(a) is the n-th order Bessel function and

n runs over the integers. [5] Matching the boundary conditions at x = xl requires the

reflected wave k’ to take only the discrete values which generate the same time-Fourier

components as the incoming waves, yielding

yl = ~keih i Jn(aX
_i(@k+.o)t + ~ Afi,,n.n.e‘ik’-’inln.(a)e-i(ak+no)f, “(2)

n=+- n,.’ =-

1’2 This quantity as well as other kj,n to be defined later iswhere /cl,n = [2nzl*(r.dk+ ncd)/fl .

assumed to take positive imaginary values when the argument inside the brackets becomes

negative.

In the regionsj = 2, .,5, the wave functions are linear superpositions of free plane-wave

states without the time-dependent part exp(-iasin(~t)). Thking only the same time-Fourier

components as the incoming waves, we write

(3)

where /kj,n= [h’tj*(@k + md - \/fi)/ml’2 and J&,.n = O . The A-coefficients satisfy the

boundary conditions for the continuity of the wave function and the current density at the

boundaries ~j for all t, yielding for j =2, 3, and 4

A~j ~ =
1

[(’Yjkj,n * I’j+lkj+l,n)e ‘kj+l$nxjA;+lkj+l “

2Yjkj,n

+ (Yjkj,n T Yj+lkji-l.n
“~+hxj~;+lkj+l” ]e=ikj,n-vj,)e 1

(4)

where Yj= I/mj* and the second term is zero for~ = 4 (i.e., “&,.n = O). ~~e relationship in

Eq. (4) is valid for a multi-barrier structure in general. According to Eq. (4), the A.coeffi-

:;y-..
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-=2, 3, and 4. We therefore definecients are determined by 4+k,.in the regions j

(5)
A~h” G P*(~)A& 1 (2’Y2%,n)”

Here, ~t(n) is found by successive substitutions of the relationship in Eq. (4).

The boundary conditions at xl = O, yield

~,Jn(a)+ XA~l ~_n,Jn(a)=A&n ‘A;k,,ny
n’ ‘ (6)

ylH4~Jn(a) – xA~l,n.n. Jri (~)1 = y2h,nIA;k2,n - ‘;k,,n ).
n’

Choosing ~~ =1, inserting Eq. (5) in Eq. (6), the coefficients &li~ - Rn,o rue given by the

L.OT (7)

following linear equation for the column matrix R:

[{(~+ + P-)JK1 + K2(P+ - P-) J}R]n,o= [{YIW’- + F’+)+ (F’- – P+)K2’

where the matrices P&, J, and Kj are defined by

P*n,n’ = ~n,n,P*(~); Jn,n, = Jn-n!(a); (~j)n,n = ~j~j,n~n,n’. (8)

The reflection coefficients in region 1, Rn,o ~ &l,~ are obtained from Eq. (7) by employ-

ing a sufficiently large size for the matrices Pt, J, and KJ The coefficients 4*k2”are .

obtained from Eq. (6) after inserting these result on the left hand side. The transmission

, are then found from Eq. (5).coefficients A~k~”

The transmitted current is given by summing over the con~butions from au incoming

electrons in region 1. The current per area is given by

(9)

where O(E) is the unit step function, P is the chemical potential, ~ = 1/ kBz and T is the
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situation where only the region 1 is popu-

lated. The electrons in region 5 flows out quickly into the drain.

A semi-log graph of the photon-assisted transmission current through a Vj~l = 50-meV

potential step is shown in Fig. 2 as a function of the inverse temperature for zero photon

(i.e., Eac = O: solid curve) and for Ziti = 10 (dashed curve) and 20 meV (dotted curve). The

electron density equals n =2X 1016/cm3, yieldigg the Fermi energy EF = 4.0 meV for nz* =

0.067mo. We assume a significantly large amplitude Eac = 10 meV for Vi(t) throughout this

paper. The reduction of the activation energy for increasing a is clearly seen in Fig. 2. The

dash-dotted curve shows the current through a 150-~ 50-meV barrier in the absence of the

photon field. The transmission-current spectra are displayed in Fig. 3 for the same struc-

tures. The main peaks there correspond to transmission through one-photon-assisted acti-

vation. A weak two-photon peak is visible near fi~ = 25 meV at T = O K for the step

potential The current is finite even at T = O K for the barrier potential as expected.

The tunneling-current spectra are shown in Fig. 4 for a double barrier structure with V2

= V4 = 260 meV, V3 = V5= 10 meV, ml+ = n13* = 1715*= 0.067m0 and m2* = m4* =

0.09 lmo. The barrier widths are 60 ~. The QW width equals 100 ~. A small change in the

effective barrier height arising from the effective-mass mismatch at the boundaries for a

finite transverse momentum is ignored. The spectra at T= O K show three resonance peaks

for both n =2X 1016/cm3 and 8X 1016/cm3. The two major peaks just below fi~ = 40 meV

and fi~ = 130 meV are due to one-photon-assisted tunneling through the two lowest reso-

nance levels of the QW, while the weak peaks near 20 meV are due to two-phpton-assisted

tunneling through the first resonance level. There are tiny peaks near 65 meV barely visi-

ble in Fig. 4. These peaks me due to two-photon-assisted tunneling through the second res-

onance level. Higher-order contributions are negligible. The peaks for n =8X 1016/cm3 are
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wider and lower than those for n =2X 10i6/cm3 because the Fermi energy (EF = 10.1 meV)

is larger. The widths of the peaks equal approximately the Fermi energies and increase

with n as n23, while the current rises linearly with n approximately. The therrnionic cur-

rent dominates at T = 77 K and above as shown by the dashed curve. The oscillations of

the curves are due to numerical fluctuations. The inset shows the activation behavior for

the zero-photon transmission. The slopes in the region 0.01 K-l <1 /T< 0.05 K-1 corre-

sponds to the activation energy to the first resonance level in the QW.

Ill SUMARY i

In summary, we have studied multi-photon-assisted activation and transmission of elec-

trons through single-step, single-barrier and double-barrier potential-energy structures as a

function of the photon energy and the temperature. Sharp resonances in the tunneling cur-

rent through double-barrier structures may have valuable applications for infra-red detec-

tors.
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Figure Captions

Fig. 1 A double-barrier structure. The A-coefficients denote the amplitudes of the n-th

time-Fourier component of the left- and right-going waves. Region 1 is under a

highly conducting metallic gate driven by an intense time-dependent sinusoidal

potential energy Vi(t).

Fig. 2 Transmission current through a 50 meV potential step with zero photon (solid

curve), 10 meV (dashed curve) and 20 meV photons as a function of the inverse

temperature. The dash-dotted curve represent a zero-photon therrnionic current

through a 150-~ 50 meV barrier. The inset shows a reduction of the threshold tem-

perature caused by 20-meV photons.

Fig. 3 Transmission-current spectra of the potential-step and the barrier structures stud-

ied in Fig. 2 at O K and 77 K.

Fig. 4 Transmission-current spectra of the double-barrier structure described in the text.

The inset shows the activation behavior of the thermionic current without photons.
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