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ABSTRACT

Electrode gap is a very important parameter for the safe and successful control of
vacuum arc remelting (VAR), a process used extensively throughout the specialty metals
industry for the production of nickel base alloys and aerospace titanium alloys. Optimal
estimation theory has been applied to the problem of estimating electrode gap and a filter
has been developed based on a model of the gap dynamics. Taking into account the
uncertainty in the process inputs and noise in the measured process variables, the filter
provides corrected estimates of electrode gap that have error variances two-to-three
orders of magnitude less than estimates based solely on measurements for the sample
times of interest. This is demonstrated through simulations and confirmed by tests on the
VAR furnace at Sandia National Laboratories. Furthermore, the estimates are inherently
stable against common process disturbances that affect electrode gap measurement and
melting rate. This is not only important for preventing (or minimizing) the formation of
solidification defects during VAR of nickel base alloys, but of importance for high
current processing of titanium alloys where loss of gap control can lead to a catastrophic,

explosive failure of the process.




I. INTRODUCTION

Vacuum arc remelting (VAR) is a process used throughout the specialty metals
industry for controlled casting of segregation sensitive and reactive metal alloys. Of
particular importance in the former group are nickel base superalloys, whereas common
reactive metal alloys include titanium and zirconium alloys. In this process, a
cylindrically shaped, alloy electrode is loaded into the water-cooled, copper crucible of a
VAR furnace, the furnace is evacuated, and a DC arc is struck between the electrode
(cathode) and some start material (e.g. metal chips) at the bottom of the crucible (anode).
The arc heats both the start material and the electrode tip, eventually melting both. As the
electrode tip is melted away, molten metal drips off and an ingot forms in the copper
crucible. Because the crucible diameter is typically 0.05-0.15 m larger than the electrode
diameter, the electrode must be translated downward toward the anode pool to keep the
mean distance between the electrode tip and pool surface constant; this mean distance is
called the electrode gap (G). The objective of VAR is to produce an ingot of appropriate
grain structure that is free of segregation, porosity, shrinkage cavities, or any other
defects associated with uncontrolled solidification during casting. The VAR process is
schematically depicted in Figure 1.

G is an extremely important control parameter for VAR.!" If this variable becomes
too large, the arc will search for a less resistive path to ground with the result that a
greater percentage of arc energy will be collected by the crucible wall above the ingot
pool surface. This gives rise to both a decrease in, and a redistribution of, the energy flux

to the electrode tip and anode pool. If this condition persists, disruption of the




solidification process occurs and the probability of producing ingot defects increases. In
severe cases, the arc may completely attach to the crucible and burn a hole in it, admitting
cooling water into the melt. This is a major safety concern for high current (30-40 kA)
VAR of reactive metals where such situations have caused furnace explosions and loss of
life. On the other hand, if G is too small (<0.006 m, which is of the same order as the
amplitude of the liquid motion on the pool and electrode tip surfaces), transient arc
interruptions occur due to multiple, nearly simultaneous contacts between the electrode
and ingot."”! This leads to decreased melt rate, process instability, and disruption of the
solidification process. Again, if this situation persists, ingot defects may be generated.

Successful VAR practice requires careful control of electrode gap. Because it cannot
be measured directly by non-intrusive methods, a related process variable must be
measured and used for this purpose. Most modern VAR control systems use either
process voltage or drip-short frequency as a control variable for G.*) The former is used
in high current titanium and zirconium VAR while the latter is commonly used for VAR
of nickel base alloys and steels. A typical way of controlling gap while melting at
constant current is to adjust the electrode drive velocity (V) or position (X) so as to
maintain the measured control variable at its setpoint. A simple proportional controller is
often adequate for this purpose so long as the process is maintained in a region of control
space wh.erc the control variable responds linearly to the control input.

A more intelligent method of control requires developing a measurement model for
G as a function of related process variables, e.g. melting current, voltage and pressure.™!
V or X is then adjusted at appropriate time intervals to maintain the model-based measure

of G at G, the setpoint. This method has the advantage of being tolerant of changes in




the system variables used in the measurement model so long as the process is held within
the region of control space for which the model is valid. It has an additional advantage in
that it constitutes an inherently linear means of c;ontrol. For example, because G is a
nonlinear function of drip-short frequency, a change in X does not produce a proportional
change in drip-short frequency. Thus, except within a small range considered to be
approximately linear, the proportional gain used in the controller will produce a control
signal that is either too small or too large. This may cause the controller to become
unstable. However, a change in X always produces a proportional change in G. Control
based on estimates of G may be used to extend the range of control into regions of
control space unavailable to simple voltage or drip-short controllers without special
means being provided to deal with nonlinear responses.

There are some problems associated with simply estimating gap from voltage or
drip-short measurements and using this information in a controller. First, these
measurements tend to be very noisy and this requires that the data be averaged over a
relatively long period (20-60 seconds) before being used as the basis for a control
decision. Even so, it is difficult to accurately estimate G to better than a few millimeters
under the best of conditions and this requires designing a relatively highly damped
controller. Second, control based solely on measurement models assumes that a valid
model is available for all conditions encountered during the process. If a disturbance
occurs that invalidates the normal model, the controller must detect it and implement
control based on a new model, valid for the disturbance condition, or apply a robust

default control mode. Thus, effective control requires that process upsets be detectable




and that measurement models or appropriate default control methods are available for
each upset condition.

The issue of measurement noise and its effect on controller response is very
important. One method of dealing with this issue, recently patented by Hysinger et. al., is
to incorporate a process observer into the control system.”) In the sense of state space
control theory, an observer is a dynamic system the state of which is defined by a set of
variables that are the estimates of the state variables of the system to be controlled.'®! It is
assumed that the state of the system is completely determined once the values of the state
variables have been specified. For the specific case of electrode gap control during VAR,
the observer must incorporate a dynamic model of the process that involves estimates of
those state variables affecting electrode gap. The observer may be constructed in such a
way as to output improved estimates of the state variables and measured outputs of the
system. In fact, it was demonstrated in the 1960’s that an optimum observer could be
constructed, called a Kalman filter, that yields the best possible estimates of the state
variables and measured outputs given the process variables, measurement and process
noise characteristics, and assuming a linear state model.”’

In this paper, Kalman filter technology is applied to the problem of estimating
electrode gap during VAR. The filter development is discussed in Section II. In that
section, a simple state-space model of the VAR process is presented. Section III describes
simulations performed to evaluate the effectiveness of the filter in reducing the noise in
electrode gap estimates. The performance of the filter during common process
disturbances is also simulated. Though the main purpose of this paper is to focus on the

filter design and development work, an example is provided of filter performance from a
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test using the VAR furnace at the Liquid Metals Processing Laboratory at Sandia
National Laboratories. The test work, including industrial tests, will be described in detail

in a later publication. Finally, the performance of the filter is discussed in Section IV.

II. FILTER DEVELOPMENT

The electrode gap dynamics are described by the following equation:

G =iy — g~V [1]

This equation states that, over a very short time interval, the change in gap equals the
change in electrode length (li) due to melting minus the change in ingot height (hing) due
to mold filling and the distance the electrode was moved. The first term on the right can
be found by assuming that liquid metal leaves the surface as soon as it forms and that the
electrode tip surface is flat with an area given by €A, where A, is the room temperature
cross-sectional area and € accounts for the effects of thermal expansion. The resulting

expression is

[el = [2]

where R is the electrode melting rate and pyq is the liquid metal alloy density.




The second term in Eq. [1] is directly related to the first since the ingot is formed
from material melted off the electrode. The relationship is complicated by the fact that
the ingot is being cooled and its density is a function of both ingot height and radial ingot
position. In steady-state, it is assumed that the change in ingot height with time can be

described by

) A .
Fing = x-fze, [3]
1

where k is a factor that corrects the room temperature electrode/ingot area ratio (often
called the fill ratio) for thermal effects. This is born out in practice where it is found that,
under steady-state melting conditions, a linear drive speed is required to achieve a
constant electrode gap.

Substituting Eq.’s [2] and [3] into Eq. [1] gives the following expressions for the

time dependent gap behavior:

pPiE\ A, A

In practice, an average o for a particular process is estimated from melt data. Eq. [4] is
integrated and solved for o. The resulting equation is then evaluated by supplying data
for the initial and final gaps, the total mass melted and the total distance the electrode was

moved during the melt.




Standard state-space methods were used to describe the VAR electrode gap
dynamics. This technique assumes that the state of the process, or plant, is determined by
specifying the values of the state variables. These variables, taken together, form the state
vector, x, of the system. The state variables chosen to describe the VAR process for this
work were electrode gap, electrode mass (M), electrode position, and electrode melting
rate.

Besides those variables needed to characterize the system, others are required to
drive or “force” the system to change state. These process inputs form the input vector, u.
There is only one input for this application, namely electrode drive velocity.

Given the state and input vectors, the discrete time process can be described by a

matrix equation of the form

X, 41=Ax,+Bu,+Nw, (5]

where A, B and N are the transition, input, and process noise matrices, respectively. N
operates on w, a vector characterizing the uncertainty in the inputs that drive the plant as
well as uncertainty in the plant itself. These terms constitute the process noise. It is
assumed that each component of w can be represented in discrete time by a white
sequence with zero-mean. In other words, the process noise is uncorrelated and unbiased.

The subscripts in Eq. [5] refer to time-steps in the discrete time system. A, B and N are

determined by considering the gap dynamics of the VAR process.
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As seen above, changes in electrode gap are directly related to the relative velocities
of the growing ingot and moving, melting electrode. Converting Eq. [4] to discrete time

and accounting for process uncertainty, the electrode gap dynamics are described by

G,H_] = Gn +aR,,T - VnT - WX" W) + RoTWan [6]

where T is the sample time, Ry is the nominal melt rate, WX (V) quantifies the

uncertainty in electrode position due to uncertainty in the electrode drive velocity, and

w,, quantifies uncertainty in o.. This uncertainty stems from surface variations in both
n

the electrode and crucible, variation in the electrode cross-sectional area due to voids, and
fluctuating temperature distributions in both the electrode and ingot.

Changes in electrode mass are directly related to melt rate by
M, =M, —-R,T. (7]

In words, the mass at t,.; is the mass at t, less what melted off in the time interval.

Position changes are tied directly to velocity according to

Xll+1=Xn+ VT + wx (V) [8]

The position at t,; is just the position at t, plus the distance moved in the last time step

corrected for the uncertainty in the electrode drive velocity.
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Finally, this formulation assumes that the melt rate is a random variable with no

driving term so that the dynamics are simply described by

Rn+l =Rn +an [9]

where WR. quantifies the uncertainty in the melt rate. Note that Eq. [9] does not

guarantee that the melt rate will remain indefinitely at its initial value. Indeed, over a time
period consisting of many time steps it will randomly walk away from that value, the
maximum step size of the walk being determined by the uncertainty. In practice, the plant
behavior differs from this because one attempts to drive the melt rate with melting
current. Insofar as the development of the filter is concerned, this is irrelevant so long as
one has correctly accounted for the process and measurement noise sources.®!

The development has assumed a straight electrode and crucible: A, and A; are not
functions of time. However, it is often the case that melting is performed with both
tapered electrode and crucible for the simple reason that a tapered casting is easier to
remove from the mold. Beca;lsc of this, it is not uncommon for o to vary linearly by 10-
20% over the duration of a VAR melt. One may easily account for this non-random error
by modeling the time-dependent behavior of o, an exercise that adds complication to the
filter development but nothing conceptually to the way it works and performs. For this
reason, the more complicated formulation is not given here. However, a simple method of
including this feature in the model is to linearize Eq. [4] about the nominal values

(09,R0,V0), and then add a new state variable Ao=0-00 where o is now a function of the

amount of material melted.
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Making appropriate substitutions, Eq. [5] can be written as

Gn+1 Gn wx W)
M M n
n Al T BV, ]+ N w, | [10]
Xn+1 Xn WR"
Rn+1 Rn "

which relates the electrode gap, mass, position and melt rate at t,, to their values at t,
given both deterministic and random inputs. A, B and N can now be derived from

inspection of Eq.’s [6]-[10]. They are

1 0 0 ar
01 0 -T
A= [11]
001 O
0 0 0 1
[T
0
B= 12
. [12]
_0
and
—1 RyT O
0 0 O
N= ) (13]
| 0 O
0 0 1
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Besides state variables and inputs, the system is also characterized by outputs, some,
or all, of which can be measured. The outputs for this system are taken to be electrode

gap, mass and position. The output equation is then given by

G G
n Mn
M, |=C [14]
Xn
Xn
Rn

Again by inspection, it is seen the C must be given by

(15]

o

1l
O O -
O = O
- O ©
o O O

Assuming that all outputs can be measured, the measurements at t, are modeled by

G, v
M n
7z, =C X: +|vpr, [16]
v
R Xn

where the elements of the column vector, v,, characterize the measurement noise
(assumed white with zero mean) present in the gap, mass and position measurements.
Given the process and measurement models embodied in Eq.’s [6]-[16], a Kalman

filter (or optimal state observer) can be constructed using known methods the details of
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which are presented in standard texts on modern control system design.”” The equation

for the filter in discrete time is

£n+l=A£n+Bun +Mg (Zn - C)%n ) [17]

where A, B and C are as defined above for the plant, and a “hat” over a variable denotes
an estimate. X, is the predicted system state at t;; estimated from measurements and

the estimated state at t,. The Kalman matrix, Mk, is chosen so as to minimize the error
covariance of the estimated variables relative to their true values and can be derived from
the steady-state process and measurement noise covariances. Each column of Mg
corresponds to one of the measured system outputs, while each row is associated with a

state variable. In the present application, Mk is a 4x3 matrix. Off-diagonal elements arise

because of couplings between the variables. For example, G is related to the measured

values of all three outputs since wx (v) is a position term and melt rate is directly

related to electrode mass (Eq. [6]). Therefore, the first row of My contains all non-zero
values. On the other hand, there is no measurement for o and, thus, no corresponding
element in Mg. The difference term in Eq. [17], called the innovation, goes to zero only
in the case where the measurements are noise free and match perfectly the model
predictions. In this situation, the future state is perfectly predicted from the present state
by the system model, and all estimated values exactly equal the actual values. This
situation never holds in practice.

The Kalman filter produces estimates of the future state and current outputs. These

estimates are tied to process and measurement noise through a model of the system
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according to an optimal weighting scheme. If the process inputs and parameters are
known with a high degree of precision relative to the measured outputs, the estimates will
not be greatly influenced by the measurements, i.e. the filter “knows” that the
measurements cannot be trusted. In this case, the elements of Mg will be very small and
the estimator will be model based. The filter simply takes advantage of the fact that the
state of the system is nearly completely determined by the physical constraints placed on
it by the inputs and process variables coupled with knowledge of the previous state. On
the other hand, if relatively exact measurements are available, the estimator will weigh
them more heavily than the process model and the filter will be measurement based.

Obviously, if all the outputs can be measured exactly, they do not need to be estimated.

1. SIMULATED FILTER PERFORMANCE

A block diagram of the VAR process model coupled to the Kalman filter in a
feedback controller system is shown in Figure 2. A computer program was written using
the Matlab™ programming language (The Math Works, Inc:, Natick, MA) for the
purpose of evaluating the improvement in the Kalman estimated outputs relative to the
measured values. The simulations assume a 0.432 m (17 in.) diameter electrode being
melted into 0.508 m (20 inch) diameter ingot at a nominal melt rate of 0.060 kg/s (476
Ib/hr) and electrode drive speed of ~1.8x10” m/s (2.6 in./hr). These parameters are
typical for VAR of Alloy 718. a. is taken to be 2.94x10™ m/kg based on experience

melting this type and size material at this melt rate. This number is about 9% larger than
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what would be obtained by simply setting e=x=1 in the expression for o. In the
simulations, a sample time of 4 seconds was used.

Suppose, first, that the process is relatively noise free. The random sequences
characterizing the process and measurement noise terms are each characterized by a
standard deviation and variance. For the base simulations, ox(v) was set to 2.0x10% m
corresponding to an uncertainty in V of 5.0x10” m/s, and o was set at 1.0x10™ kg/s. o,
was estimated to be 1.3x10” m/kg, or about 5% of the nominal value, by assuming that
the electrode and crucible radii vary by only £0.001 m over the duration of the melt, that
the liquid density is known to £100 kg/m3 , and that the other parameters are constant.
The measurement noise (standard deviation) terms were set to 5x10° m, 1 kg and 10> m
for vg, vm and vy, respectively. These are believed to be typical of the measurement

capabilities available on many VAR furnaces in industry.

Figure 3 shows a plot of G and G (its filtered value) resulting from a 5000 s

simulation for an open-loop system. V was set to 1.755x10” m/s in this simulation. The

figure demonstrates that G tracks the “true” gap very well. The drift in the gap from the
nominal value of 0.01 m is due to the uncertainties in the system. Because the random
errors in the system, the difference between the gap and its nominal value follows a

random walk trajectory.

G is shown in Figure 4 plotted with the simulated measured electrode gap. The
noise reduction achieved through Kalman filtering is readily apparent. This effect is seen
in Table 1, Case 1, where error variances are tabulated for both the measured (upper
numbers) and estimated (lower numbers) outputs of the simulation in the last three

columns. Note that the variances in the simulated measurements always approximately
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equal the squares of the specified measurement noise terms, as required. Also note that

the error variance in G may vary by as much as a factor of two from simulation to

simulation whereas the error variances for the other estimates are more stable.

Table 1. Open loop simulation results of the estimator performance.
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Case oG, OM, Ox Var(G—-G) | Var.(M -M) | Var(X -X)
No. Oxv» OR, Oa Var(G-G) | Var(M M) | Var(X-X)
1 5.0x10°, 1.0, 1.0x10” 2.5x10” 0.99 9.7x10”

2.0x10%, 1.0x10%, 1.3x10” 1.3x10° 2.5x107 2.3x10”
2 5.0x10°, 1.0, 1.0x10” 2.4x10” 1.0 9.9x10”
4.0x10°%, 1.0x10*, 1.3x10° 5.7x10° 2.9x102 3.9x10°®
3 5.0x107, 5.0, 1.0x10” 2.5x10° 0.98 1.0x107
2.0x10°, 1.0x10°, 1.3x10° 2.4x10°% 8.5x10 2.0x10?
4 5.0x107, 5.0, 1.0x10™ 2.5x107 0.99 1.0x10°
2.0x10°, 1.0x10%, 5.4x10° 7.3x10°® 2.8x107 2.1x10”
5 5.0x10%, 1.0, 1.0x10™ 2.5x10” 1.0 9.9x10”
2.0x10°, 1.0x10*, 1.3x107 3.2x10° 2.5x107 1.7x107
6 5.0x10°, 10.0, 1.0x10° 2.5x107 99 9.9x10”
2.0x10°, 1.0x10%, 1.3x10° | 7.4x10° 0.78 2.0x10”
7 5.0x107, 1.0, 1.0x10™ 2.4x10” 1.0 9.9x10”
2.0x10%, 1.0x10*, 1.3x10” 1.7x10° 2.7x107 2.1x10"°
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The large noise reductions in the estimated outputs are due to the small process
uncertainties relative to the measurement errors. Physically, if the drive speed, melt rate
and furnace dimensions are accurately known with a high degree of precision, the plant
outputs are determined to a corresponding precision. However, it may be the case that the
process uncertainties are not so precise. How are the various estimates affected by
increasing the process errors?

Typically, modern electrode drive controls are rather advanced and drive speed is
a;:curatcly controlled to a relatively high degree of precision. However, if instead of
controlling the speed to +5x10” m/s, one controls to within 10~ m/s, one obtains the
results shown in Table 1, Case 2. The error variances in the estimates of G and X are seen
to increase while tha.1t of M remains unchanged. This is to be expected since this latter

variable is independent of ram velocity and position (Eq. [7]). It should be noted from the

table that, even with relatively poor ram control, the uncertainty in G is still much
smaller than that observed in the measurement.

Next consider the uncertainty in the melt rate. It has been assumed that this
uncertainty is +10* kg/s at steady-state current in the absence of any process disturbance.
In effect, this says that the melt rate will not vary by more than this in a single time step.
Suppose, now, that the uncertainty is an order-of-magnitude larger, namely +1073 kg/s. As

may be see from Table 1, Case 3, increasing the uncertainty in the melt rate produces a
concomitant increase in the error variance of M , little if any change in that of G, and
has no affect on that of X . In a like manner, decreasing the uncertainty in the melt rate

decreases the error covariance of M but has no effect on that of the other variables.

These changes do affect the open-loop performance of the system as would be expected.

P py—— .
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However, because the error in the gap estimate remains relatively unchanged, they do not

significantly affect the closed-loop performance of the system for gap control.

Finally, G is expected to be sensitive to uncertainty in the process parameter o.
Suppose o has an uncertainty of 20% instead of 5%. The simulation results for this case
are shown in Table 1, Case 4. It is apparent that the gap estimate has been degraded a
small amount but that it is still much better than the corresponding measurement. The
error variances of the other estimates are unaffected as one would expect from Eq.’s [7]
and [8]. It should be noted that the Kalman filter corresponding to Case 4, when used
with a standard tapered electrode and crucible combination, yields a maximum bias in the
gap estimate of ~0.001 m.

One can also use the estimator simulation to investigate the effects of changing the

resolutions of the measurements. It turns out that the errorin G increases by a factor of
four or five with an order of magnitude increase in electrode gap measurement noise.
However, further increases have little effect. The effect of increasing the measurement
resolution to +0.0005 m is shown in Table 1, Case 5. Further increases in resolution result
in concomitant decreases in estimation error illustrating the trivial point that one does not
need to estimate variables that can be measured accurately with high precision. At a
measurement error of +5x107° m, the error variance of the measurement equals that of the
estimate.

Table 1, Case 6 shows an increase in uncertainty in G when increasing the mass

measurement error from +1 to *10 kg. However, increases beyond +20 kg have no

significant effect on the estimation error for G. It was also observed that increasing the
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mass measurement resolution had no significant effect on the uncertainty in G though it
does, of course, affect the error in M.

Finally, the variance of G isnot particularly sensitive to changes in the
measurement error of X under these process conditions. Table 1, Case 7 shows the results

of a ten-fold increase in position measurement resolution. It is seen that the change is

only reflected in the error variance of X.

The simulation results show that significant noise reduction can be achieved in
electrode gap estimates by using Kalman filtering. It is of interest to determine how the
estimator responds to common disturbances. A disturbance (upset) is defined as any
change in the system state that cannot be controlled by varying the inputs. Three common
system disturbances will be considered here: 1) variation in melt rate due to a cracked
electrode; 2) a “glow” condition wherein both melt rate and measured electrode gap are
affected; and 3) a gap measurement upset wherein the measured gap is consistently
smaller than the true gap. One anticipates that, given the definition of a disturbance, the
performance of the estimator will be adversely affected. To carry out this study, a
simulator program was written corresponding to the feedback system in Figure 2.

A common form of melt rate disturbance is caused by a transverse crack in the
electrode. As the melt zone approaches the crack, melt rate increases because the crack
impedes heat conduction along the electrode length. When the zone burns through the
crack and encounters the relatively cool material on the other side, melt rate suddenly
drops. This type of disturbance was simulated by applying a linear ramp to the melt rate
variable of the system model so that melt rate increased from nominal to nominal plus

20% over a period of 5000 seconds. At the end of the ramp, melt rate was instantaneously
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dropped to nominal minus 20% and ramped back to nominal over 5000 seconds. Because
the velocity input cannot control the formation of a crack, it is clear that this condition
constitutes a disturbance to this system. How does the filter perform under these
circumstances?

Figure 5 shows the actual and estimated values of electrode gap during the
disturbance for an open-loop (constant drive speed) configuration using the same Kalman
gains used for the simulation results shown in Table 1, Case 1. It is clear from the figure
that the estimator is, for the most part, able to track the disturbance. The reason for this is
clearly seen in Figure 6 which shows a plot of the estimated melt rate state variable. The
filter uses the available measurement information to infer melt rate estimates consistent
with the data. It is able to track the upset as long as or is not small relative to the ramp
rate. In other words, the estimate will lag the disturbance only if the change in melt rate
due to the disturbance is much larger than the amount the model allows the melt rate to
change in a single time step. For example, decreasing or by an order-of-magnitude
causes the estimate to seriously lag the disturbance. If the simulation is run with
feedback, the results shown in Figure 7 are obtained. It is evident from the figure that the
estimated output does not perfectly respond to the melt rate disturbance at the
instantaneous step as one might expect. However, the gap only varies by about 0.001 m at
this point.

Suppose now that one encounters a “glow” condition in the furnace.!'” This
condition occurs when the arc transfers, either partially or completely, from the electrode
tip onto the relatively cold electrode lateral surface. It is most often caused by oxide

contamination of the electrode or an air leak. Besides the characteristic “glow” in the
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furnace annulus, the condition is typically characterized by a decrease of a few volts in
arc voltage accompanied by a significant increase in furnace head pressure. During a
glow, drip-shorts and melting are commonly observed to cease. The condition may last
only a few seconds, or it may persist for several minutes and occur at regular intervals
throughout a melt. Obviously, this condition comprises a system disturbance: ram
velocity cannot be used to turn the glow on or off.

Glow was simulated by allc;wing the melt rate to suddenly drop to zero for sixty
seconds. Because drip-shorts disappear during the glow and arc voltage decreases, the
measurement based electrode gap estimate suddenly becomes very large during this
condition. It is assumed that logic is built into the controller that does not allow the
measurement based estimate to exceed the range of the validity of the measurement
technique. For drip-short based measurements, the upper end of this range is about 0.025
m beyond which the response becomes very flat. Therefore, in the simulation, when the
melt rate perturbation goes to zero, the gap perturbation is set to 0.025 m for the same
time period.

Figure 8 shows the results of the open loop (constant drive speed) response to the
simulated glow with the original Kalman gains. The sudden decrease in estimated gap is
related to the sudden decrease in melt rate. Despite the increase in the measured value,
the estimator weighs the sudden drop in melt rate more heavily and estimates that the gap
is closing at the open loop drive speed. The closed lgop controller results are shown in
Figure 9. The sharp decrease in gap of about 0.001 m occurs because the estimated melt

rate lags the true melt rate by a small amount as seen in Figure 8. This is supported by the

¥
.1
i
o

e TR, T TS




23

observation that increasing the melt rate uncertainty serves to make the “spike” in Figure
9 shallower and narrower.

The third disturbance to be simulated is one in which the measured electrode gap is
consistently small. This disturbance was simulated by introducing a -0.005 m bias into
the electrode gap measurement. The open loop response to the bias is shown in Figure 10.
The bias was applied at t=5000 seconds and ended at t=10,000 s. It is readily apparent
from the figure that the estimator responds to the incorrect measurement and requires
>10,000 s to recover. The closed loop system gives the result shown in Figure 11. It is
seen from the figure that the discrepancy between the estimated and true gap grows to
nearly 0.003 m over the 5000 s interval.

The simulations were performed for hypothetical situations considered to be typical
of actual VAR processes. As mentioned in the Introduction, the primary focus of this
paper is on the filter development and simulation results. However, it is appropriate to
show some sample data to verify that the predicted improvements in noise are realized in
actual practice.

The data shown in Figure 12 were acquired during VAR of 0.203 m diameter Alloy
718 electrode into 0.254 m diameter ingot on the VAR furnace at Sandia National
Laboratories. Neither the electrode nor the crucible were tapered. Because there is no
mass transducer (load cell) on this furnace, the measurement uncertainty is infinite for
electrode mass. Melt rate during the interval shown was estimated to be 0.040+0.002 kg/s
and the drive speed noise was similar to that used in Table 1, Case 1. A high resolution
encoder is mounted on the furnace so that the resolution in X was 10” m. The noise

variance in the drip-short based measurement of G was 2.6x10”° m’. In comparison, the
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variance in the Kalman filter estimate of G was 5.1x10° m” giving a signal to noise
improvement of about 70. Drive speed control decisions were made every two seconds
based on the filtered estimates. The controller was stable at very tight gaps (0.006 m).
Intrusive gap measurements accomplished by driving the ram down until a dead short
was achieved demonstrated that the controller was accurate to within the intrusive

measurement error (+0.001 m).

IV. DISCUSSION

Optimal estimation techniques were originally developed for application to systems
where measurements of key process variables were either very noisy or unavailable. It is
natural to apply this technology to controlling the electrode gap in the VAR process
where one encounters noisy measurements that are often spoiled by common process
disturbances.

Kalman filtering achieves dramatic noise reduction in the estimate of the electrode
gap relative to voltage or drip-short based measurements on the same time scale. After
only a few seconds of data acquisition, it is to be expected that drip-short or voltage
based estimates of electrode gap will be highly inaccurate due to measurement noise.
However, given the process inputs and noise, and the last state estimate, one can
determine, based on physics alone, how much the gap could possibly have changed
during the last time step. It is this physics-based limitation that the filter imposes on the

gap measurement, and this is the reason for the large noise reduction in the estimate.
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Gap estimation was found to be sensitive to either increases or decreases in the gap
measurement error indicating that the estimator, as defined, is neither model- nor
measurement-based. However, estimates are insensitive to measurement error once it has
been increased beyond about +0.1 m, indicating that the estimator is model-based under
these measurement conditions. In other words, if one cannot measure gap to better than
+0.1 m under these process conditions, the measurement is irrelevant to gap estimation.
On the other hand, the estimator is completely measurement-based with respect to gap
measurement at a measurement resolution of +5x10° m. At this resolution, the estimator
becomes superfluous.

Besides electrode gap estimates, the Kalman filter supplies estimates of melt rate.
This variable is very difficult to measure from load cell data being extremely sensitive to
noise in the transducer because it involves taking a derivative of the transducer output.
Because of this, melt rate data are often averaged for as long as twenty minutes to obtain
a moderately noise-free measurement. Such highly damped measurements are useless for
gap control. However, the Kalman filter produces estimates of melt rate on the same time
scale used to make control decisions. These estimates are consistent with the system
model, measured variables, and noise parameters that characterize the process. The melt
rate noise parameter, wg, can be tuned to make the filter either more or less responsive to
melt rate excursions. This provides a means of tracking melt rate deviations that would
go undetected by highly damped measurement systems.

The simulation results show that accurate mass measurements (=1 kg) are beneficial
for electrode gap estimation. Improvements beyond this have little effect. Increasing the

measurement error adversely affects the gap estimate up to about +20 kg. Under the
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process conditions investigated, one might as well have no mass measurement at all if the
error is increased beyond this value. Thus, with respect to electrode mass measurement,
the estimator is model-based beyond a measurement error of about +20 kg and
measurement-based at measurement errors less than +1 kg.

The results indicate that gap estimation is not improved significantly by improving
the resolution of the position measurement under the simulation conditions investigated.
One must resist concluding from this that exact position measurements are of little
intrinsic value to gap estimation. This depends on the uncertainties characterizing the

system. For example, if one has poor ram control (Table 1, Case 2), the error covariance

in G may be significantly reduced by increasing the position measurement resolution to
+10™ m, a figure that is easily achievable with commercially available encoder systems.
In general, complete system characterization is required before one can decide how to
improve the estimation of important process variables.

The performance of the Kalman estimator was investigated to determine how it
performed during common process disturbances. A control method that falls apart during
minor process upsets is of little value without developing techniques of disturbance
detection and. management. It was discovered that the filter responds very predictably to
the upsets investigated and that it behaved robustly during rather severe melt rate
perturbations and extended glows.

Glows are relatively easy to detect in practice and logic can be built into the
controller to more effectively deal with this condition if the kind of response shown in
Figure 9 is deemed inadequate. For examplc,' the commanded ram velocity could be set to

zero during a glow and the gap estimate held at its pre-glow value. Alternatively, one
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could gain schedule, loading in a Kalman gain matrix during the disturbance that
weighted the mass measurement more and the gap measurement less. This would have
the effect of stopping the ram until the glow condition ended because the measured mass
would not change significantly (i.e. relative to the measurement uncertainty) during the
disturbance.

The third disturbance to be simulated, the biased gap measurement, is one that
occasionally occurs during high current titanium melting. It sometimes happens that the
arc attaches to the crucible wall for a time, or, in the case of an off-center electrode, burns
on the side of the electrode closest to the crucible wall where the point of minimum gap
exists. An axial magnetic field is applied to facilitate arc rotation and prevent this from
occurring, but in some cases the field is not strong enough to give rise to rotation. Under
these conditions, the arc voltage is smaller than normal causing the measured electrode
gap to be smaller than the true gap between the electrode tip and ingot pool surface. In
this situation, moving the electrode has little effect on the measurement because the
distance between the crucible wall and electrode tip remains relatively constant. A
conventional controller responds by slowing the ram velocity, or even backing the ram
out, which causes the arc to be more firmly attached to the crucible wall thereby causing
the actual electrode gap to become very large over time. At any time during such an
upset, if the arc becomes concentrated at a location on the crucible, it may burn through,
causing a water leak into the molten titanium. At the very least, this ruins a crucible.
However, it may also cause an explosion that destroys the furnace.

As demonstrated above, the optimal estimator explored in this simulation study can

be configured to improve the response to this type of disturbance. The reason behind this
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is that the estimator relies on an estimate of the electrode gap that is based on a process
model as well as measured values. Thus, the response to the upset is damped by a factor
that depends on how much the estimator weighs the gap measurement relative to the
model-based estimate and other measurements. This is why the long-time response to the
disturbance shown in Figure 11 is so small—the model, mass and position measurements,
which are all correct to within their respective specified uncertainties, partially counteract
the effects of the anomalous gap measurement. As a result, the controller does not react
like a simple, measurement-based, proportional controller by pulling the electrode up or
slowing the drive speed excessively. The electrode tip is kept relatively close to the
molten metal pool surface minimizing the probability of a severe arc constriction onto the
crucible wall.

At this level of process control, there is no complete solution to the upset problem.
The response of the estimator will be compromised \;vhenever process conditions are such
that incorrect values are input to the filter. The next level involves characterizing the
possible disturbance states and including disturbance state variables into the Kalman
estimator. These types of controllers are presently under development at Sandia National
Laboratories for application to VAR of U-6Nb alloy as well as for commercial alloys of

interest to the SMPC.

V. CONCLUSIONS

The following conclusions can be made from this work:
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1. Kalman filtering provides a potentially superior means of estimating electrode gap
for VAR process control. The estimates are significantly less noisy and provide the basis
for improving both the stability and response of the control system. Under the process
conditions investigated, the measurement error in the electrode gap must be improved by
three orders-of-magnitude to yield gap estimates equal to those of the estimator.

2. The Kalman filter development described here provides a means of estimating
electrode melting rate that is not dependent on differentiating the load cell output. Hence,
the estimates are not heavily damped and are useful for control purposes.

3. The error variance of the gap estimate could be affected by either increasing or
decreasing the gap measurement uncertainty indicating that, under the process conditions
of interest, the estimator was neither model-based nor measurement-based. Increasing the
measurement error beyond +0.1 m is equivalent to having no gap measurement at all.

4. An accurate electrode mass measurement is beneficial for electrode gap control up
to an accuracy of +1 kg under the process conditions investigated. Increasing the mass
measurement error to +20 kg is tantamount to having no mass data at all.

5. Increasing or decreasing the position measurement error has little effect unless
one has poor ram control. With poor ram control, accurate, precise position measurement
is beneficial.

6. The Kalman estimator was shown to be relatively robust with respect to common
process disturbances. The three .studied were 1) a melt rate disturbance due to a cracked
electrode, 2) a glow disturbance associated with oxide contaminated melting or furnace
air leaks, and 3) a gap measurement disturbance such as occurs during high current

titanium melting when the electrode is not properly centered.
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Figure 3. Open-loop simulated electrode gap estimate (Ge) and “true” electrode gap (G)

plotted for 5000 s.
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Figure 4. Open-loop simulated electrode gap estimate (Ge) plotted with the “measured”

value (Gz).
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Figure 5. Plot showing the open-loop estimator tracking a simulated melt rate event
where the melt rate linearly increases to 20% above nominal between t=5000 and
t=10,000 seconds, suddenly drops to 20% below nominal at t=10,000 seconds, and then

linearly returns to nominal between t=10,000 and t=15,000 seconds.
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Figure 6. Plot showing the Kalman filter’s estimate of melt rate during the melt rate

disturbance.
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using the same gains as were used to generate the open-loop data shown in Figure S.
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Figure 8. Plot showing the open-loop estimated electrode gap and the true gap during the
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Figure 9. Plot showing the closed-loop controller output for the simulated glow condition

with the same gain settings as were used to produce the results shown in Figure 8.
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Figure 10. Plot showing the open-loop response to a —0.005 m bias in the electrode gap

measurement. The bias was applied at t=5000 s and ended at t=10,000 s.
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same gains.
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Figure 12. Sample data during VAR of Alloy 7138 melting at approximately 0.040 kg/s

showing the Kalman filtered gap estimate and the estimate based solely on drip-short data

over two second intervals. Control decisions were based on the filtered estimates.
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