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RADIATION OF ELASTIC WAVES FROM POINT SOURCES
IN A UNIFORM WHOLESPACE

David F. Aldridge
Geophysical Technology Department
Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico, USA, 87185-0750

ABSTRACT

Seismograms generated by various simple point sources situated within a homogeneous and isotropic
elastic wholespace are readily calculated from closed-form mathematical formulae. An obvious
advantage of this approach is speed and accuracy in numerical modeling. Equations for particle velocity
(equal to A/ &), acoustic pressure (proportional to div u), and particle rotation (equal to curl u), where u
is the elastic particle displacement vector, are tabulated for a complete suite of point force and point
moment sources. Pressure and rotation propagate with the P-wave speed and S-wave speed, respectively,
and thus are useful for separating compressional and shear portions of the radiated elastic wavefields. All
near-field, intermediate-field, and far-field terms are included in the formulae, and the expressions are
valid for arbitrary source activation waveforms. The mathematical equations are expressed in a vector
formalism independent of any particular coordinate reference frame. Hence, evaluation of the equations
for general (i.e., fully three-dimensional) source-receiver configurations is facilitated. Synthetic seismic
data calculated by this approach are quite useful for i) establishing the validity and accuracy of elastic
responses computed by purely numerical (e.g., finite-difference or finite-element) algorithms, ii)
evaluating various seismic data processing, analysis, and inversion schemes, and iii) assisting in the
rational design of seismic energy sources and/or source arrays.
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1.0 INTRODUCTION

The elastic waves radiated from a point source in a homogeneous and isotropic wholespace have been
described, with varying degrees of completeness and generality, by numerous investigators (e.g., Eringen
and Suhubi, 1975; Aki and Richards, 1980, Ben-Menahem and Singh, 1981; White, 1983; Kennett, 1988).
However, it is difficult (if not impossible) to locate a comprehensive mathematical treatment of the
subject that could form the basis of a reasonably general synthetic seismogram algorithm.

In the present study, the equations characterizing the elastic wavefields produced by a variety of different
point sources are assembled in a unified mathematical notation. Derivations of the formulae are not
provided. All possible point force sources (represented by an orientation vector) and point moment
sources (represented by an orientation tensor) are included. Arbitrary source activation waveforms are
allowed. The radiated elastic waves are expressed in terms of the particle velocity and particle rotation
vectors, and the acoustic pressure. Mathematical formulae describing these wavefield quantities contain
all near-field, intermediate-field, and far-field terms. In the limiting case of vanishing shear wave speed,
the expressions are applicable to an ideal fluid (i.e., acoustic) medium.

The resulting set of “closed-form™ mathematical expressions describing the radiated elastic wavefields are
amenable to rapid and accurate numerical evaluation. Synthetic seismic data calculated via this approach
are useful for a variety of applications, including

1) assessing the veracity and accuracy of numerical algorithms designed to solve the governing partial
differential equations of elastodynamics (e.g., finite-difference or finite-element algorithms).

2) testing inversion algorithms designed to recover seismic energy source parameters (i.e., location,
waveform, magnitude, orientation vector or tensor) from recorded seismograms.

3) assisting in the rational design of seismic energy sources and/or source arrays.

A computational algorithm based on these equations is briefly described in section 6.0, and several
example synthetic seismograms are displayed in section 7.0. These examples illustrate some interesting
seismological phenomena. In particular, in a homogeneous and isotropic elastic medium, the acoustic
pressure p propagates with the compressional (P-wave) speed ¢, and the particle rotation vector ®
propagates with the shear (S-wave) speed S Hence, pressure and rotation sensors are useful for
separating the P-wave and S-wave portions of a seismic wavefield. Although pressure transducers
(hydrophones) are commonly used in seismology, relatively little work has been conducted with rotation
sensors (e.g., White, 1983, page 237). Also, the examples illustrate that the velocity and rotation
wavefields are orthogonal: (v - @) = 0. The mathematical equations reveal that this orthogonality
condition rigorously holds at all distances and directions from a point source. Finally, the examples
indicate the range and diversity of seismic source situations that can be examined with this computational
algorithm. In particular, elastic wavefields generated by spatially distributed arrays of non-interacting
point sources, with or without beam-steering or focusing, are easily simulated.

The current algorithm calculates the elastic particle velocity vector, rather than the displacement or
acceleration. This choice is motivated by a desire to compare calculated synthetic seismograms to
analogous responses computed by a finite-difference algorithm that numerically solves the “velocity-
stress” differential equations of elastodynamics (e.g., Graves, 1996). Also, velocity transducers
(geophones) are the most commonly used seismic ground motion sensors. However, with some effort,
the mathematical expressions for velocity presented here can be integrated and differentiated to obtain
equations for displacement and acceleration, respectively.
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2.0 POINT SOURCES OF ELASTIC WAVES

Consider a homogeneous and isotropic elastic wholespace characterized by P-wave speed o, S-wave
speed f3, and mass density p. A point source of elastic waves is located at position x; with rectangular
coordinates (x;, ¥, ;). A point receiver is located at another position x, with coordinates (x,, y,, z,). The
vector pointing from source to receiver is

szr - X; =(xr _x:)ex+(yr_ys)ey+(zr —z:)e:> 2.1

where (e,, €, €;) is an orthonormal triad of basis vectors for the rectangular coordinate system. A unit
vector pointing in this same direction is

R _-x)  O0-y), (G -2)
eR-"R"— R e + R e,+ 7 e., (2.2)

where R2 = (x, - x)* + (- ys)* + (2, — z,)* is the squared distance from source to receiver.

Expressions for the particle velocity vector v, acoustic pressure p, and particle rotation vector @ at the
receiver are given below for various types of point sources located in a uniform elastic wholespace. The
acoustic pressure within an elastic solid is defined to be p = -1/3 (0 + 5, + o) where the symbols g
refer to components of the stress tensor. It is straightforward to demonstrate that this expression evaluates
to p = -K div u, where K is the bulk modulus (K = po? [1-(4/3)y/] where y= /) and u is the particle
displacement vector. Particle rotation is defined as @ = curl u; note that rotation is a dimensionless
quantity.

Independent variables in the following equations are the source-receiver radius R, the source-to-receiver
unit direction vector eg, and the P~-wave and S-wave retarded times

T, =t—£, T, '=t—£. (2.3a,b)

a B

2.1 Point Force

The unidirectional point force is a fundamental source of elastic waves. Mathematically, a point force
located at position x; is represented by the force density (i.e., force per unit volume) function

f(x,1) = Fw()ad(x-x,), (2.4)

where F is a force amplitude scalar (SI units: Newtons), w(?) is a dimensionless source waveform, and a is
a dimensionless unit vector describing the orientation of the force. The waveform w(?) is typically
normalized to unit maximum absolute amplitude. Expressions for the elastic wave radiation from this
source are:




Particle velocity:

F { ! wi(z, )(a eg)eg — —l_w’(Tp )[(a “€p)ep — a]

~4np R B°R
1 1 1% ar || ] .
+ R w(ra)——[—j’ﬁw(rﬁ)+?;£w(r) T |]3(a-ez)e, —aj;. (2.52)
Acoustic pressure:
p=f—ﬁ(l—%ylj%w’(m+%w(ra)]<a-eg>. (2.5b)
Particle rotation:
F 1 1
= —_—w +—W axe,). 25
47z‘pﬂ2 [ﬂR (Tﬂ) R2 (Tﬁ):| ( R) ( C)

The equations for the elastic radiation contain far-field terms (proportional to 1/R) and near-field terms
(proportional to 1/R?). Velocity, pressure, and rotation waveforms change shape from the near-field to the
far-field; in the far-field, they have the shape of the derivative of the source force waveform. The
acoustic pressure wavefield (propagating with the P-wave speed ) vanishes on the nodal plane defined
by a - e = 0. The particle rotation wavefield (propagating with the S-wave speed f) is perpendicular to
both a and eg, and vanishes along the nodal line eg = +a. Interestingly, velocity and rotation vectors are
orthogonal at all source-receiver distances and directions, i.e., (v - @) =0.

2.2 Point Double-Force

A finite double-force consists of two point forces with equal magnitudes F, equal waveforms w(f),
oppositely directed orientations a and —a, and separated in space by the vector dn (where 4 is the
separation distance and n is a dimensionless unit vector). In the limit as d — 0 and ¥ — oo, such that the
product Fd = M remains finite, a point double-force of strength M is obtained. Note that M has dimension
moment (force times distance, or energy; SI unit: Joule). Expressions for the elastic wavefield radiated
from the point double-force are derived from the single-force equations via a limiting process. The
mathematical details of this process are somewhat involved, and thus are not reproduced here. Only the
results are given. First, define the three dimensionless vectors

p=(a-ez)(n-ez)e,, q=(n-ey)a, r=6p-q-(a-n)e; —(a-e;)n. (2.6a,b,c)

Then, the formulae for the elastic radiation from a point double-force source are:

w4 ey e p—
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Particle velocity:

M1 1,
—;ﬂ;{ast (z.)p ﬂst (zz)P-9)

# W (5 ﬂ}sz(rﬂ)(r )
+ L w(z,) - L w(t )+ jw(r)dr 3(r-p)t. (2.7a)
aR3 a ﬂR B )

Acoustic pressure:

M 4 1 ” 1 ,
p =Z7;(1"'3‘}’2){a2RW (%)(P'en)‘{ﬁw (7,

Particle rotation:

a)} Bp-ex)-(a- n)]} - (2.7b)

M
47[,6’

{ﬂl w'(z; )(g % eR)+|:ﬂ;{2w(rﬂ)+ 3w(rﬂ):|[3(qxeR)—(axn)]}. (2.7¢)

The radiation from a point double-force consists of far-field (proportional tol/R) terms, intermediate-field
(proportional to 1/R?) terms, and near-field (proportional to 1/R%) terms. Also, note that all far-field terms
contain the second derivative of the source waveform w(f), in contrast with the situation for a point force
source. This dimensionless waveform is now interpreted as a moment waveform, rather than a force
waveform. Two important special cases of these formulae are described below.

2.2.1 Point Dipole

In the case n = a, a point dipole of strength M and orientation a is obtained. Vectors p, q, and r become

p=(a-ez)’e,, q=(a-ey)a, r=6p—e, -2q. (2.8a,b,¢)
Expressions for the velocity and pressure are identical to equations (2.7a,b) above (although in the
pressure equation one can put a - n = a - a = 1). Since the cross product a x n equals zero, particle

rotation simplifies somewhat to:

Particle rotation:

M

1 3 3
=471;.7[ﬁ2 ( p)+ﬂR W(Tﬂ)'l'R W(Tﬂ)jl(a eR)(axeR) (29)

The rotation now vanishes on the nodal plane a - eg = 0 and the nodal line ez = +a.
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2.2.2 Point Couple

In the case where n is perpendicular to a (implying a - n = 0), a point couple of strength A/ and orientation
m =n x ais obtained. The mathematical forms of vectors p and q remain the same, -whereas vector r
reduces to r = 6p — q —(a - eg)n. The expression for the radiated acoustic pressure simplifies to:

Acoustic pressure:
M 4 ., 3 3
p= E(l——?,—yzj{azR w'(z,)+ " (ra)+-}-z;W(Ta)J(a -ep)(n-ep). (2.10)

The pressure wavefield now has two orthogonal nodal planes passing through the source position, one
perpendicular to a and the other perpendicular to n.

2.3 Point Double-Couple

Consider the case of rwo point couples located at the same position x; in space. Let these couples be
characterized by moment scalars M, and M,, orientation vectors a and b, and moment-arm vectors n, and
n,, respectively. Note that a - n,=b - n, = 0. Both couples are activated by the same source waveform
w(f). The velocity, pressure, and rotation generated by this type of source are obtained by superposing the
previous expressions for the single-couple. First, define the root-mean-square moment magnitude

M, =1/%(Mj +M?). @.11)

The moment scalars M, and M, can be positive, zero, or negative. However, M, is always non-negative.
Also, define the three dimensionless vectors

M M
p=|—>(a-e;)m,-e;)+—=(b-ey)(n, -e )}e , (2.12a)
{MO R oM, R RIR
M M,
=—=2(n,-ez)a+—(n, -e;)b, 2.12b
q Mo(a r) Mo(b r) ( )
M M
r=6p-q-—=2(a-e;)n, ——>(b-e;)n,. (2.12¢)
M, M,

Then, the elastic wavefield radiated by the set of two coincident point couples has the same mathematical
forms as those radiated from the single-couple, viz:

wn




Particle velocity:

M,
V= 4@{ wi(z,)p - ﬂ " )P-a)
+Of2R2 w,(Ta)r ﬂszw(Tﬂ)(r q)
H—w )‘J—W(T HLTW(T)dT 3(r-p);- (2.13a)
aR3 a ﬂRS B R4 2
Acoustic pressure:
M 4 1, 3, 3
p=4—ﬂ‘_’(l—§y2)[a2Rw(';a R a)+£—3W(Ta)}(p-eR)- (2.13b)

Particle rotation:

M,
" dnpf?

{ﬂl w (Tﬂ)(qxeR)-{ﬂ;z w'(rﬁ)+-§13—w(rp)] [3(qxeR)+ma +mb]}. (2.13¢)

In the last expression, m, = (n, xa)and m, =(n, xb) are unit magnitude moment-direction vectors.
There are two important special cases to consider.

2.3.1 Double-Couple With Moment

Suppose that M, =M, =M, b =1n,, and n, = +a. In this case, the pair of couples exerts a net moment
on the elastic medium about an axis through the source location. Vectors p and r vanish, and q becomes

M M M
q=—|n, -eR)a—(a-eR)na]z—[(na xa)xeR]:——(mxeR), (2.14)
o b1 b

where m = n, x a. The velocity and rotation vectors reduce to:

Particle velocity:

M| 1 <
= Z;;[ﬁ3R wi(t,)+—= 7 R2 w (Tﬂ)jl(m Xeg), (2.153)

ey g . ce v e - - pp S v e e T e sy e gy e = e o
i e S - a0 sa e SRR PTG AR it A MRt Al Y\ AL aat S R FRNTALE Y e LN a LTy PSSy TN



Particle rotation:

M
"~ dnpp?

{ﬁl (r/,)[(m e,)e, — m]+[ﬁ}22 w'(f/,)+};?w(z—ﬂ):| [3(m~eR)eR —m]},
(2.15b)

and the pressure p vanishes. This source generates only shear waves. The velocity vector is
perpendicular to both m and ez, and vanishes in the source-to-receiver directions er = £m. Hence, the
vector m may be regarded as an axis about which the motion takes place. Other names for the double-
couple with net moment are “point center of rotation” or “point torque”.

2.3.2 Double-Couple Without Moment
Suppose that the two point couples have identical magnitudes and oppositely directed moments, so that

the net moment of the pair vanishes. This occurs if M, =M, =M, b = in,, and n, = £a. Vectors p, q, and
r become

M M
P2 e e, a=galo, et @en,]  r=6p-24.  @lseno

and the particle velocity and acoustic pressure can be expressed solely in terms of p and q. The radiated
elastic wavefield is given by .

Particle velocity:

IE.

4rp

/f

+alR w(z,)26p - q) - ﬂlR Wwi(z,)3(2p - Q)

J{a;s w(r,)— ﬂ; G ,,)+R Tjﬂw(r)dr}(sp 2q)+. (2.17a)

Acoustic pressure:

i)
P 47 3}, a’R

’\

)+R w(z, )]Z(a-eR)(na'eR)- (2.17b)

w(z,

N



Particle rotation:

M

| - 3
=———| W () +——=Ww (1) +—W(7T a-ex;)n, +(n,-ezlalxe (2.17¢)
p {m (z5) ﬂRz )+ p)}k R0, + (@0, ep)alxe,.
Careful examination reveals that the P-wave radiation generated by the point double-couple without
moment is exactly fwice that generated by the single-couple. The difference in the two wavefields is
contained entirely in the far-field and intermediate-field S-wave radiation.

An alternate representation of the double-couple without moment in terms of orthogonal tension and
compression dipoles is illustrative. Define the two orthogonal unit vectors

1 1

t=—7=\n,6 +a), ¢c=—\n,—aj. (2.18a,b)
7o 7

Vectors p and q for the double-couple without moment can be expressed as
M M

p=M[(t'eR)z _(c'eR)z]em qzm[(t'e}z)t_(c'e}z)c]: (2.19,b)

and these can be inserted into the above formulae for the velocity and pressure radiated by this source.
However, these forms for vectors p and q (and thus r = 6p - 2q) are identical to those associated with the
superposition of two orthogonal force dipoles with equal strengths M, one in tension (with orientation t)
and the other in compression (with orientation ¢). Hence, this particular superposition constitutes an
equivalent description of the point double-couple without moment.

2.4 Point Tri-Dipole

A reasonably general source force configuration consists of three dipoles with arbitrary orientations (a, b,
¢) and strengths (M., M;, M,) located at the. same point in space. The elastic waves radiated from this type
of source are obtained by superposing the expressions for the single force dipole. The root-mean-square
magnitude of the three moment scalars is

M, = \/%(Mz + M} +M?). 2.20)

Also, define three dimensionless vectors as

M, M ,
P=\7/ (a-ez)’ 57 &v; ex, (2.21a)
0 0 0
q= g" (a- eR)a+Z” (b- eR)b+ZC (c-ep)c, (2.21b)
[1] 0 0
8
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M, +M, +MC]eR. (2.21¢c)

r=6p—2q—[ Y
0

Then, the particle velocity and acoustic pressure seismograms for the tri-dipole source are given by

Particle velocity:

M,
v= 4@{ w(z, )p—ﬂ w'(z,)(P—q)
W (e, ) w2, )~ )
a’R? a ﬂ2R2 B
+ 0;3 w(z,) - /3]12 w(rﬂ)+R jw('l')df 3(r—p)t. (2.222)
Acoustic pressure:
_M( 41,
e (l—gy }{azR «)P-eg)
I , 3 M,+M, +M,
Jr—aR2 a)+Fw(ra)][(p~eR)— 3M”0 ]} (2.22b)
Particle rotation:
= Mo -—1-—W”(’l' )+ ——w'(r )+ w(z,) [(gxeg). (2.22¢)
47[Pﬂ2 ﬂzR £ ﬂR2 A B R

Note that the relevant expressions for the double-couple with no net moment are obtained by taking M, =
M, M,=-M,M.=0,and a-b=0. Vectors a and b are then interpreted as unit tension and compression
vectors for the two orthogonal dipoles, respectively. Once again, the remarkable orthogonality property
(v- o )=0Iis evident.

2.4.1 Point Source of Compression

A point source of compression (i.e., an explosion) can be represented by three mutually perpendicular
tension dipoles of equal strength. Hence, this source is a special case of the tri-dipole source described
above. If (a, b, c) is an orthonormal triad of vectors and M, =M, =M, =M, then p = q =r = sgn(M) e
and formulae (2.22) reduce to:
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Particle velocity:

M1 1
vV=—o w'(z, )+ w'(r ) le,, 2.23a
47zp[a3R ( a) asz ( a)} R ( )
Acoustic pressure:
M 4 ,) 1
=—|1==y w'(z,), 2.23b
p 47[( 37 )az 77 ) (2.23b)

and the rotation @ vanishes. Note that the velocity is strictly radial and propagates with the P-wave speed
o. The pressure amplitude is inversely proportional to the radial distance R, and the pressure wavefield

has no nodal planes.
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3.0 ACOUSTIC MEDIUM

A homogeneous and isotropic acoustic wholespace is characterized by shear wave speed S equal to zero.
In the limiting case f — 0, the above expressions for acoustic pressure p are well defined (the
multiplicative factor 1-(4/3)3” approaches unity; recall that = /). Limiting expressions for the particle
velocity vector v are obtained as follows. For non-zero radius R, the S-wave retarded time 73 =t - R/f
approaches ~o as f— 0. If the two conditions

: 1 . I,
llml,_,ozw(rﬁ)=0, hmp_)o?w (r;)=0,

hold, then the equation for the particle velocity vector radiated by the point force source reduces to

Point force:
F |1 1 17
47['0{ % w(t, )a-ey)e, + [aRZ w(r,)+ F:Lw(f) dr][3(a -@p)ep — a]} i (3.1)
If the additional condition

1
lim o — 7 (Tﬂ) 0,

is satisfied, then the limiting equation for the particle velocity vector radiated by a point moment source is

Point moment:

M, | 1 1
47[,0{ R Wiz, )p+—— iR w('r )r+[&?w(r )+—Iw(z')dr}3(r p)} (3.2)

The formulae appropriate for a force dipole, force couple, double-couple (with or without moment), tri-
dipole, explosion, etc. are all special cases of this equation, provided the appropriate forms of the vectors
P, q, and r are used. In particular, for the tri-dipole source, if vectors (a,b,c) are orthonormal and M, =
M, = M, =M, the above expression becomes

Point source of compression:

_ ﬂ[
4rzp

Interestingly, the particle velocity radiated by an explosive source is the same for an elastic or acoustic
wholespace. The pressure, however, differs by the factor 1-(4/3)7%.

w'(r, )+ w(r ):IeR. (3.3)

11




Since shear waves do not propagate within an ideal fluid, the particle rotation vector @ must reduce to
zero. Curiously, the mathematical conditions required for vanishing rotation are more stringent than those
used to obtain the particle velocity in an acoustic medium. In particular, for a force source, the limits

. 1 . 1,
llmﬁ’—’o—’;w(’[ﬂ)zo’ hmﬂ_)on(rﬂ)=O,
imply that rotation @ — 0. For a moment source, the additional condition
r | -0

m 4_, FW (75)=0,

is required for vanishing o.

All of the above limits certainly hold if the source-wavelet w(f) is causal (i.e., w(f) = 0 for ¢ < 0).
However, they are also valid in the case of a noncausal wavelet that vanishes sufficiently rapidly as ¢
approaches ~o. For example, a Ricker wavelet with peak frequency f; is given by

w(t) = [1-2(xf,1)* Jexp[ (o 1) ]. (3.4)

For large |f|, the nth derivative of w(f) is dominated by a term proportional to (7;73,1‘)”2 exp[-(7gf,,t)2]. As
time ¢ —> -oo, this term vanishes rapidly enough to ensure that all of the above limits are satisfied.

12




4.0 FAR-FIELD APPROXIMATION

In the above equations, the far-field acoustic pressure is in-phase with the far-field radial particle velocity.
Let v = v - e be the radial component of the particle velocity vector. Also, let the subscript “far” denote
far-field quantities (i.e., proportional to 1/R). Then

p

Vr

= pa(l-—-:iyzj. 4.1)

far

For an isotropic elastic medium, 0 < y< V3 /2 ~0.866 (assuming materials with negative Poisson ratio are
allowed). Hence, the right hand side of the above expression is non-negative, implying that far-field
pressure and radial particle velocity are in-phase. In the limiting case of a fluid medium (shear wave
speed S — 0 implying y — 0), the ratio of the far-field pressure to far-field radial particle velocity equals
the acoustic impedance por of the medium.

The above “in-phase” relation between far-field pressure and radial particle velocity is not limited to point
sources of elastic waves in a homogeneous and isotropic wholespace. In particular, it also applies in the
case of a line source of finite length, activated as a force, torque, or pressure source (Aldridge, 1998).
Other examples can probably be found.

13
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5.0 MOMENT TENSOR REPRESENTATION

The point moment sources described above are characterized by a combination of force dipoles or force
couples. An alternative, but equivalent, representation of this type of source involves the moment density
tensor

my(x,t) = -M,w(t)a; Sx-x ) (5.1)

where M, is a moment amplitude scalar, w(f) is a dimensionless source waveform (normalized to unit
maximum absolute amplitude), and a;; are the components of a dimensionless second-rank tensor. The
moment density tensor has physical dimension of moment per volume, or energy per volume (SI unit:
Joule/m®), or pressure (SI unit: Pascal), Consider the most general case discussed so far, where three
point double-forces are superposed at the same position in space. Then, the nine components a, are
defined by

M M M
a,=—2an’+=—2bn’+—=cn, (5.2a)
0 0 0
M M M
a, = M" an +—2bn + MC eh;, (5.2b)
0 [ 0
M M M
a,=—2an’+—2bn +—=cnt, (3.2¢)
0 0 [
Ma a Mb b Mc c S
a, =—*%an; +—*tbn’ +—=cn;, (5.2d)
MO MO MO
Ma a Mb b M 4 5
a»’ = anny +Vobyny +M: Cyny, (3.26)
a ~M"an“+M”bn”+M°cn" (5.26)
2 Mo y'tz ‘}M0 y'tz \ y'z> . )
M, M M, )
a, = an, +—= en,, (5.2¢g)
0 0 0
a_ = M, a.n® M, c.nd (5.2h)
¥ Mo =y Mo , c:ny, ’
M M,
a,=—*%*an; ~c,n;, (5.21)
Mo Mo 0
14
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where superscripts, rather than subscripts, are used to identify the three moment-arm vectors n,, n,, and
n., and M, is the rms value of the three moment amplitude scalars M,, M;, and M,. Expressions
appropriate for the dipole, couple, double-couple (with or without moment), tri-dipole, explosion, etc. are
all special cases of these formulae. Note that the tensor a;is not necessarily symmetric. Let the symbol
A refer to the 3 x 3 tensor with components a; Then, define the three vectors

p= (e;AeR )eR , q=Aeg, r= [6(e;AeR)— tr(A)le, —~[A + A" Je,, (5.3a,b,¢)

where tr(A) = a.. + a,, + a is the trace of A, and the superscript T denotes transposition. Clearly, vectors
p and q are related via p = (q - er)er , and r can be written as

r=6p-tr(A)e, —q—A'e,. (5.3d)

In terms of the above vectors, the elastic wavefield radiated by a point moment source is described by the
now-familiar formulae

Particle velocity:

M,
V= 47[/){ w7, )p - ﬁ Fp” @)p-a)
+——i—w'(r r— ! ——w'(7,)(r-q)
a2R2 a ﬂzRZ B
+[;¢%w(ra>—,—3}gw<m+ T{w(r)dr}(r D)} 6.4
Acoustic pressure:

MO 4 2
=—01——
P 47:( 37/){61

Particle rotation:

w'(T, )p- eR)‘*’li Wz, )+R—1-W(T )}[3(P'6R)—tr(A)]}> (5.4b)

Wi(Tg)+—5w(r,)+ 33 w(z'ﬁ):l(qxeR). (5.4¢)

M, [ 1
 4zpB*| BPR ,BR2

Interestingly, the above formulae imply that the compressional wave radiation generated by a point
moment source depends only on the symmetric part of the tensor A. The symmetric and anti-symmetric
parts of A are given by

A:=%(A+AT), A, =%(A—AT),

15
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respectively. Substituting A = A; + A, into the expressions for vectors p, q, and r gives

T — —_ T - =
p= (eRAseR)eR, q=Ae,+Ae,, T —[6(eRASeR)—tr(AS)]eR —2A e, (3.5a,b,0)
because the inner product ez’ A ez and the trace tr(A,) vanish. Hence, if A is purely anti-symmetric, then
vectors p and r are zero, and no P-waves are radiated by the source. Moreover, the S-waves are polarized

normal to the source-to-receiver direction e, since q - ez = ex’ Az + e’ Aser = 0 + 0. The point torque
source, for which a;; = an; — an;, is an example.

16
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6.0 NUMERICAL ALGORITHM

Closed-form mathematical expressions for particle velocity v, acoustic pressure p, and particle rotation @
are amenable to straightforward numerical evaluation. For force sources [i.e., equation (2.4)], equations
(2.5a,b,c) are evaluated. For moment sources [i.e., equation (5.1)], equations (5.4a,b,c) are evaluated.
Vectors p, q, and r in the latter expressions are obtained from the moment tensor description given by
equations (5.3a,b,c). In the special case of an acoustic medium (5 = 0), velocity wavefields for force and
moment sources are calculated via formulae (3.1) and (3.2), respectively, and rotation wavefields are set
equal to zero. The algorithm does not verify that a source wavelet w(?) satisfies the limiting conditions
appropriate for an ideal fluid detailed in section 3.0. As indicated previously, all expressions for acoustic
pressure remain usable in the limiting case §— 0.

A file describing the geometric distribution of sources and receivers, as well as other defining
characteristics, is input to the algorithm. Required information for each point source includes:

Force source: three-dimensional position coordinates (x;, ys, z5); magnitude scalar F; unit orientation
vector a; waveform w(f).

Moment source: three-dimensional position coordinates (xs, ys, z); magnitude scalar M; orientation tensor
A; waveform w(?).

The elements of tensor A for a moment source are obtained from equations (35.2a) through (3.2i) in terms
of the magnitudes and orientations of three spatially coincident force dipoles or couples. Multiple point
sources, of various types, positions, magnitudes, orientations, and waveforms, may be activated
simultaneously.

For each source, a discretely sampled waveform w(t,) with #, = tm, + (n-1)Af for n = 1 — N is utilized.
The expressions for velocity, pressure, and rotation require the waveform and its derivatives to be
evaluated at the P-wave and S-wave retarded times 7, and 7z, which may not coincide with any sample
instant #,. Numerical values are obtained between sample times by locally approximating the sampled
waveform w(f,) with a cubic polynomial. In general, the resulting estimates of w, w’, and w"' possess
fourth-order, third-order, and second-order accuracy in the temporal discretization interval At
respectively (Fornberg, 1988). Mathematical details of the technique are presented in Appendix A.
Additionally, the integral of the source waveform between the S-wave and P-wave retarded times is
needed in the formulae. The “alternative extended Simpson’s rule” (Press ef al., 1986, p. 108) is used for
numerical quadrature, yielding high-order accuracy in the sample interval Az.

Required input information regarding point receivers includes:

Velocity or rotation sensor: three-dimensional position coordinates (x,, y,, z,); sensitivity scalar S; unit
orientation vector d.

Pressure sensor: three-dimensional position coordinates (x,, ¥,, z,); sensitivity scalar S.

Multiple point receivers, with various positions, sensitivities, and orientations may also be active
simultaneously. Receivers may be deployed in an arbitrary (i.e., fully three-dimensional) configuration;
there is no restriction to uniform spacing or gridding. A velocity or rotation sensor may be oriented in
any direction d; there is no restriction to orientations parallel to the x, y, or z coordinate axes.
Components of the velocity and rotation vectors along a receiver sensitivity axis are obtained by
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evaluating the dot products (v - d) and (@ - d), respectively. Finally, the sensitivity scalar S is merely a
multiplicative factor designed to convert the calculated wavefield quantity (velocity, rotation, or pressure)
to preferred numerical values or units. Wavefield quantities are not convolved with receiver impulse

Iesponses.
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7.0 SYNTHETIC SEISMOGRAMS , '

7.1 Earth Model and Recording Geometry

The earth model used in subsequent calculations consists of a homogeneous and isotropic elastic
wholespace with P-wave speed o = 2000 m/s, S-wave speed = 1000 m/s, and mass density p = 2000
kg/m’. The data acquisition geometry simulates a crosswell recording configuration. For most of the
examples, various point sources are located at (x;, ys, z;) = (0, 0, 0) m. Forty one receivers, separated by a
5 m depth interval, are distributed in a vertical borehole at (x,, y,) = (100, 0) m. Vertical receiver
positions range from z, = -100 m to z, = +100 m relative to the source. Hence, raypaths to far offset
receivers are oriented at +45° with respect to horizontal. The depth of this crosswell experiment is
considered great enough so that reflected energy from the stress-free surface of the earth does not arnive at
the receivers within the recording time window.

7.2 Sources and Receivers

Various types of point sources are modeled: 1) unidirectional forces oriented in the +x, +y, and +z
directions, ii) isotropic explosion, iii) explosion combined with a vertical force dipole, iv) unidirectional
torques oriented in the +x, +y, and +z directions, v) double-couple without moment, vi) rotating horizontal
point force, and vii) spatially distributed arrays of point forces.

For all examples, the source waveform is a Berlage wavelet (Aldridge, 1990). This waveform possesses
advantages of causality and differentiability. A Berlage wavelet defined by main frequency f; = a/27,
damping factor 4, time-exponent », and initial phase angle &, is given by

w(t) = AH (t)(w,?)" exp(—hw,t)cos(w,t +86,), (7.1)

where H(?) is the Heaviside unit step function. The dimensionless factor 4 is usually chosen so that the
maximum absolute amplitude of w(?) is unity. Figure 1 depicts a Berlage wavelet with /o, =80 Hz, 7= 1,
n =3, and & = -7/2 radians. Additionally, plots of the first and second derivatives of the wavelet (also
normalized to unit maximum absolute value) are given. For point force sources, the far-field velocity,
pressure, and rotation waveforms are given by w'(f). For point moment sources, far-field waveforms
equal w''(?).

The Fourier spectrum of the Berlage wavelet is

—(n+1) . —(n+1)
w(fy=LOED i) guin| Lyl w Ll L (1.2)
47fo 0 0 '

where ['(x) is the gamma function and i = V-1. Thus, for />> f;, the amplitude spectrum is proportional to
1/f™!. Figure 2 displays the frequency amplitude spectrum of the same Berlage wavelet plotted in figure
1, as well as the amplitude spectra of its first and second derivatives. Clearly, differentiation boosts the
high frequency content of the spectrum.

The wavelengths of compressional and shear waves propagating at the P and S wavespeeds are A, = a/f
and Ag = ff, where f'is frequency. For /= 80 Hz, these are A, =25 m and 45 = 12.5 m. Hence, for

19




R s el o e acanad gy ol \ 0o 0 o ot PP gaad s AT (I Sl Je DA & Mva o O it S e acslil It i

frequencies at and near the mode of the source amplitude spectrum, the recsivers are located in the far-
field. At lower frequencies (say f = 20 Hz) the nearest receiver is only 1 compressional and 2 shear
wavelengths distant from the source, and near-field effects are relatively more important.

Receivers record the three Cartesian components of the particle velocity vector (vi, v, v.) and rotation
vector (@, @, @), and the acoustic pressure (p). Computed traces are not convolved with any recerver
impulse responses. Trace duration is 150 ms and time sample interval is 0.5 ms. In accordance with
borehole seismology convention, traces are plotted with time increasing in the horizontal direction.
Shaded lobes of the traces represent positive excursions.

7.3 Example 1: Unidirectional Forces

Figures 3, 4, and 5 illustrate three-component particle velocity seismograms generated by point forces
oriented in the +x, +y, and +z directions, respectively. P-wave and S-wave arrivals with hyperbolic
moveout trajectories across the receiver spread are clearly evident. For the receiver located at the same
depth as the source (z, = z, = 0 m), onsets of these arrivals occur at 50 ms and 100 ms, respectively.
These figures display a “nine component seismic survey” for the crosswell recording geometry: three
orthogonal force sources recorded by three orthogonal geophones.

Figures 6, 7, and 8 depict three-component particle rotation seismograms generated by the same set of
point forces. Only shear wave arrivals exist. Comparing rotation and velocity trace panels illustrates the
orthogonality condition (v - ®) = 0.

Figure 9 indicates that the pressure wavefield generated by the three force sources propagates with the
compresssional wave speed «. There are no shear wave arrivals on the pressure seismograms.

7.4 Example 2: Isotropic Explosion

A point source of compression (i.e., an isotropic explosion) generates only radially polarized P-waves.
Hence, there is no arrival on the tranvserse (v,) component traces in figure 10, and particle rotation traces
are identically zero in figure 11. The acoustic pressure arrival in figure 12 propagates with the P-wave
speed ¢, and exhibits no amplitude nodes.

7.5 Example 3: Explosion Plus Vertical Dipole

The elastic wavefield produced by an explosion source activated in a vertical borehole is not isotropic and
not purely compressional. The confining effects of the borehole on a downhole source are simulated by
combining an isotropic explosion (three mutually orthogonal force dipoles with equal strengths) with an
additional vertically oriented dipole. This is a specific example of the point tri-dipole source described in
section 2.4; the magnitude of the two horizontal dipoles differs from the magnitude of the vertical dipole.
Appendix B outlines the procedure for calculating dipole strengths. In this example, the horizontal
dipoles are assigned strength 4/3 and the vertical dipole is assigned strength 2/3, relative to the isotropic
case in example 2.

Figures 13, 14, and 15 depict velocity, rotation, and pressure traces generated by the tri-dipole source. In
order to facilitate comparison with the isotropic explosion source, plot amplitude levels are identical to
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figures 10, 11, and 12, respectively. The difference in magnitude between the horizontal and vertical
force dipoles is responsible for the shear wave energy radiated from this explosive source.

7.6 Example 4: Unidirectional Torques

Unidirectional point torques oriented in the +x, +y, and +z directions generate only shear wave arrivals on
the particle velocity (figures 16, 17, and 18) and particle rotation (figures 19, 20, and 21) seismograms.
Velocity and rotation vector wavefields are orthogonal. The acoustic pressure is identically zero for this
pure shear wave source, and thus is not plotted.

7.7 Example 5: Double-Couple With No Net Moment

A small shear dislocation in an elastic medium generates both P-waves and S-waves. This type of source
is commonly used to model elastic wavefields produced by microseisms or acoustic emissions, and can be
mathematically characterized as a double-couple without moment. In this example, the shear dislocation
is represented by orthogonal tension and compression dipoles (equations 2.18a,b). In order to illustrate
the complexity of the recorded wavefield amplitudes, dipole orientations taken to be oblique to the
coordinates axes. The polar and azimuthal orientation angles for the tension and compression dipoles are
6, =60°, ¢,=30° and 6, = 150°, ¢, = 30°, respectively.

Figures 22 and 23 illustrate particle velocity and rotation traces. Although event moveout trajectories are
hyperbolae with apexes at the depth of the source, amplitudes are not symmetric or anti-symmetric with
respect to the source position. Velocity and rotation wavefields are orthogonal, even though non-zero
amplitudes are recorded on all three components of each. Pressure seismograms (figure 24) display
similar amplitude asymmetry.

7.8 Example 6: Rotating Horizontal Force

A rotating point force requires some additional explanation. The force density vector of a point force
with a time-dependent unit direction vector a(?) is given by .

f(x,7) = Fw(t)a(t)s(x-x,). (1.3)
If a(?) is restricted to a horizontal plane passing through x;, then it can be expressed as
a(t) =cosp()e, +sinp(t)e,, (7.4)

where e, and e, are unit vectors pointing in the +x and +y directions, respectively. The angle function ¢(f)
describes the orientation of a(?) in the horizontal plane at time #; the cumulative rotation angle from time ¢

=01is ¢ff) - ¢0). Combining the above two expressions gives
f(x,7) = Fw(r) cosp(t)e, 5(x - x, )+ Fw(f)sin p(r)e, 5(x ~ 3, ). (7.5)

Hence, a rotating point force is represented as a superposition of fwo orthogonal unidirectional point
forces. Note, however, that the two source waveforms differ. Each is a trigonometric function modulated
by the waveform w(f) of the rotating point force.
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Figures 25, 26, and 27 display velocity, rotation, and pressure seismograms produced by a rotating
horizontal force. The source waveforms for the x and y components of the applied force are given by the
Berlage wavelet (7.1) with the initial phase angle set equal to 0 and -77/2 radians, respectively. Hence, the
rotating waveform w(f) is a positive-going pulse AH(#)(ant)"exp(-haxt), and the rotation period is 7' = 1/4.
For f; = 80 Hz, the period equals 7= 12.5'ms. Careful comparison indicates that figure 25 is nor merely
the sum of the previously computed figures 3 and 4, because the source activation waveforms of the x-
component point force (f;) differ. For the same reason, the rotation traces in figure 26 differ slightly from
the sum of figures 6 and 7.

7.9 Example 7: Source Arrays

The final examples indicate that spatially distributed arrays of point sources are easily simulated. The
total elastodynamic wavefield radiated from an array is a linear superposition of individual wavefields
generated by each point source comprising the array. A basic assumption is that the individual sources
are physically non-interacting, i.e., the output of one source does not influence the output of another
source.

Figures 28 and 29 depict velocity and rotation seismograms generated by an array of five vertical (1)
point forces uniformly distributed between depths z; = -10 m and z; = +10 m. Each source is activated
with the same Berlage wavform (7.1). P-wave and S-wave arrivals are evident, but moveout trajectories
are not exactly hyperbolae. This vertical array clearly enhances horizontally propagating shear wave
energy. Destructive interference of the five separate wavefields implies that far-field wavelets have
diminished amplitudes and elongated durations at receivers well above/below the source depth (compare
with figures 5 and 8). This observation is consistent with a prior theoretical analysis of the elastic waves
radiated by a continuous line source of finite length (Aldridge, 1998). The line source acts as a filter that
attenuates waves radiated parallel to the source axis, relative to waves radiated perpendicular to the axis.

Array output may be steered in a preferred direction by introducing progressive time shifts into the
individual source activation waveforms. Figures 30 and 31 illustrate velocity and rotation seismograms
produced by a focused array of five non-vertical point forces. As in the previous example, these forces
are located between depths z; = -10 m and z, = +10 m, and are separated by a 5 m vertical interval.
Geometric focusing of the radiated shear waves onto the receiver at (x,, ¥,, z,) = (100, 0, 75) m is achieved
via two mechanisms:

1) Source activation waveforms are time-shifted Berlage wavelets w(z-7) for i = 1 — 3, where individual
time shifts are {-6.23, -3.06, 0.00, +2.93, +5.73] ms for sources at [-10, -5, 0, +5, +10] m depth,
respectively. These are just the traveltime differences, relative to z; = 0 m, of the shear wave arriving at
the distant focal point.

2) Each point force is oriented in the xz plane perpendicular to the line joining the source position and the
focal point. Hence, the amplitude of the radiated shear wave is maximized in the direction pointing
toward the focal point [see equation (2.5a)].

The figures clearly exhibit strong amplitude enhancement of the shear wave in the vicinity of the receiver

at depth z, = 75 m, and amplitude diminution at other depths. However, this constructive/destructive
interference is obviously not perfect, due to the extended frequency bandwidth of the source waveforms.
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8.0 CONCLUSION

A flexible algorithm has been developed for calculating the elastic wavefield generated by a point source
in a homogeneous and isotropic wholespace. The algorithm accommodates a large variety of source and
receiver types, deployed in any three-dimensional geometric configuration. Multiple sources and/or
receivers may be active simultaneously. Orientations of sources (forces or moments) and directional
receivers (velocity or rotation sensors) are unrestricted. Source magnitudes and receiver sensitivities are
user-selectable. Synthetic seismic data computed with this algorithm have a variety of uses, including 1)
testing the validity of elastic responses calculated via purely numerical schemes, ii) testing source
parameter inversion algorithms, and iii) designing seismic energy sources or Source arrays.

Future improvements to the algorithm may include 1) incorporating options for calculating elastic particle
displacement and acceleration, and ii) improving the accuracy of the numerical differentiators used to
obtain derivatives of the source waveform.

Perhaps the most interesting seismological result obtained from this research is the orthogonality relation
between particle velocity and particle rotation wavefields: (v - @) =0. This orthogonality condition holds
at all distances and directions from a point source in a homogeneous and isotropic medium. Current
generation geophones measure the three components of the particle velocity at the receiver location.
Hence, the vector-valued velocity v(x,, #) can be reconstructed. The orthogonality condition implies that
the rotation vector at the geophone w(x,, #) is contained in the time-varying plane perpendicular to v(x,, ).
This may provide a clue regarding how to construct a particle rotation sensor, which in turn can be used to
isolate the shear portion of a propagating elastodynamic wavefield.
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10.0 APPENDIX A: LOCAL CUBIC POLYNOMIAL APPROXIMATION

The various expressions for velocity, pressure, and rotation require the source waveform w(#) and its first
and second derivatives to be evaluated at the P-wave and S-wave retarded times 7, and 7z These times
need not coincide with a sample instant #, of the discretely sampled source waveform w(z,). In order to
obtain values between sample times, the source waveform is locally approximated by a cubic polynomial.
Coefficients of the polynomial are determined from four sequential samples of the source function.

Suppose that a cubic polynomial y(x) 1s fitted to the four equispaced points (x), 1), (x2, ¥2), (x3, ¥3), and
(x4, y4). The abscissae satisfy x;:;=x; + & for i = 1, 2, and 3. The fitted polynomial and its derivatives are

to be evaluated within the middle interval at abscissa x = x, + ph, where 0 < p < 1. Let the polynomial
curve be described by

y(x) =y, +b(x—x)+c(x—x)" +d(x-x,)’, (10.1)

and note that y(x;) = y; as required. The first and second derivatives of y(x) are

Y'(x)=b+2c(x—x)+3d(x-x,)*, (10.2)
and
Y'(x)=2c+6d(x—x,), (10.3)

respectively. In particular, at x = x; + ph, then x — x; = A(1+p) and thus

y(x, + ph) =y, + bh(1+ p) +ch*(1+ p)* +dh*(1+ p)’, (10.4)
¥'(x, + ph) = b +2ch(1+ p)+3dh*(1+ p)°, (10.5)
Y'(x, + ph) =2c +6dh(l1+ p). : (10.6)

The coefficients b, ¢, and d in (10.4) through (10.6) are determined by fitting the cubic polynomial to the
remaining three points (x2, y2), (¥, ¥3), and (x4, ys). Hence

y(x2)=y1 +b(x2 _xl)'i'c(xz —x1)2 =d(x2 _x])3 :yz,

or

b+ch+dn® = % (10.7a)

Similarly, y(xs) = y; gives

b+2ch+4dh® = % (10.7b)
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and y(x4) = y4 gives

b+ 3ch +9dh® =%. (10.7¢)

Organizing equations (10.7a,b,c) into the 3 x 3 linear algebraic system yields

1 h Kb (yZ_yl)/]'
1 2h ant|c|=2 s = y)/2|. (10.8)
1 3n 9n*|d e =2)/3

The coefficient matrix of (10.8) is a 3 x 3 Vandermonde matrix with determinant A = 24° # 0. The
solution of the system is

1

b=_6h(‘11}’1+18}’2_9J’3+2J’4): (10.9a)
1

c= W(@‘ ~15y, +12y; -3y,), (10.9b)
1

d= gh—3(-yl +3y, =3y; +1,). (10.9¢)

Substituting expressions (10.9a,b,c) into (10.4) gives

y(x, +ph)=ay, +a,y, +a;y; +a,y,, (10.10)
with
1 1
a :-EP(p—l)(p—Z), a, =E(p+1)(p—~l)(p—2), (10.11a,b)
1 1
a, :—E(p +D)p(p-2), a, =g(p+1)p(p—l). (10.11c.d)

As a check on the correctness of the derivation, note that the sum of the interpolator coefficients equals
unity, as required: a, +a, +as +a, = 1. Substituting the solution (10.9) into (10.5) gives

, 1
Y'(x, +ph)= ;(blyl +b,y, +b,y, +b,y,), (10.12)
with
1 2 1 ~ 2
bl=_g(3p —6p+2), bzz-i(gp —4p-1), (10.132,b)
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b, =-36p*~2p-2), b, ==(p*-1). (101300

Note that b, + b, + b3 + by = 0, which is required for differentiator coefficients. Finally, substituting
(10.9) into (10.6) yields

" 1
Y'(x, + ph)= h—z(cly] +Cy Y, +C3 Y, +c4y4)= (10.14)
where
¢ =1-p, c,=3p-2, (10.15a,b)
¢, =1-3p, c,=p. (10.15¢,d)

andc,+cz+03+c4=0.

The above formulae are usually used to estimate values of a function fx) and its first two derivatives at
the interior point x = x, + ph, where 0 < p < 1. In particular, the case p = 1/2 yields the familiar centered
four-point interpolation and differentiation forms

9 1

y(x, +hi2) =-1—6(yz +y3)—1—6<y, +y,) = f(x, +h12), (10.16)
, 19 1 ,

Y'(x, +h/2) =Z|:§(ys _yz)_2_4()’4 ")ﬁ):l ~ fl(x, +hl2), (10.17)
” 1 1 1 ”

y(x, +h/2)=h_2{_5(y2 +y3)+-£(yl +y4)}zf (x, +h/2). (10.18)

Fornberg’s (1988) algorithm implies that the centered approximations y(x2+h/2) and y'(x;+h/2) possess
fourth-order accuracy in the discretization interval &, whereas y'"'(x,+//2) has second-order accuracy. The

non-centered approximations (i.e., p # 1/2) given by equations (10.10), (10.12), and (10.14) have fourth-
order, third-order, and second-order accuracy, respectively.
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11.0 APPENDIX B: NUMERICAL CALIBRATION OF SOURCE STRENGTH

Calculation of ground motion generated by various seismic energy sources requires knowledge of the
source magnitudes. Two explosion seismic sources are considered in this Appendix. An explosion
within a spherical cavity generates only outgoing P-wave radiation, whereas an explosion in a small
cylindrical cavity radiates both P-waves and S-waves. The latter configuration might represent the
confining effects of a borehole on a downhole explosive seismic source (e.g., a borehole airgun). For
simplicity, the earth model used in the subsequent analysis is assumed to be a homogeneous and isotropic
elastic wholespace with P-wave speed ¢, S-wave speed £, and mass density p.

11.1 Representation of Point Explesions

Algorithms for computing synthetic seismograms usually adopt idealized mathematical representations of
seismic energy sources as a combination of one or more point forces, dipoles, couples, etc. The strengths
or magnitudes of these point sources are required to compute ground motion in physical units.

A point source of compression (i.e., an explosion) can be represented by three mutually orthogonal force
dipoles of equal strength M.. The scalar M, has dimension “moment” (force times distance, or energy).
The far-field particle velocity vector radiated by this source in a homogeneous and isotropic elastic
wholespace is

M, | w'(z,)
Velg = £ lep, (11.1)
* 4np| a’R

where R is the source-receiver distance, ez is a unit vector pointing from source to receiver, w(f) is a
(dimensionless) source waveform, and 7, =t — R/ is the P-wave retarded time. The far-field velocity
consists of compressional waves polarized in the propagation direction eg; the velocity waveform is the
second derivative of the source moment wavelet w(f).

Suppose that the point source of compression is combined with a vertically oriented force dipole with
moment strength M. The far-field velocity generated by the dipole is

Valg (11.2)

_ M, | cos’8w'(z,) o sin @ cos8 w'(z ;) .
dzp a’R B°R ak

where the polar angle & is measured from the +z axis in a spherical coordinate system centered at the
source location. The corresponding unit vector is eq. Also, 7=t — R/f is the S-wave retarded time. The
dipole source radiates both longitudinal P-waves and transverse S-waves to the far-field; the waveform of
each is given by the second derivative of the source wavelet. Adding the above two expressions gives the
far-field velocity vector generated by the combined point source of compression and vertical force dipole:

M, w”(ra)}e M, [coszew"(ra)e _sin@cos&w”(rﬂ)e}
o |-

vc+d|far =v0|far +vd[far = 47Z'p|: a3R R 47Z'p a3R R ﬁ3R

(11.3)
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This source is represented by three mutually perpendicular dipoles with unequal magnitudes. The
strength of the two horizontally oriented dipoles is M,r = M., while the strength of the vertical dipole is
Mvzr = Mc + Md-

11.2 Explosion Source Strength Calibration

Numerical values of the moment scalars M, M,,,, and M,,, are required in a synthetic seismogram
computation algorithm. These are determined by comparing the above expressions for far-field particle
velocity with expressions for the velocity vector generated by explosions within simply shaped cavities.

Consider a small spherical cavity of radius a located in a homogeneous and isotropic elastic wholespace.
If a time-varying pressure p(f) = pow(f) is applied to the cavity wall, then radially polarized compressional
waves are generated that propagate away from the cavity with the P-wave speed a. As pp — o and vp =
(4/3)ma® — 0 such that E, = pyv, remains finite, then a point spherical cavity source is obtained. Epis a
pressure-volume product characterizing the strength of the source; note that £, has physical dimension of
energy. From Sharpe (1944), the far-field particle velocity radiated by this source is

_ G/4Ye/B)E, [w"c:,,)]e
far 4zp a’R |

(11.4)

sphere

This equation has the same mathematical form as the velocity generated by the point source of
compression represented by three orthogonal force dipoles [equation (11.1) above]. Comparing the two
expressions indicates that the dipole strengths should be assigned as

M, =%(a/,8)2E0. (11.5)

Example:

For vo = 6.55 x 10* m® and py = 2.07 x 10" P (corresponding to v, = 40 in® and p, = 3000 psi) the
pressure-volume product evaluates to Ep= 1.36 x 10*J. Assuming /8 = 2, then the moment magnitude
is approximately M, = 4.08 x 10* N-m. At radial distance R = 100 m in an elastic medium with P-wave
speed o= 2000 m/s and mass density p = 2000 kg/m’, this explosive source would produce a maximum
particle velocity of Ve = (2.03 x 1072 m-s) max |w"'(#)|, where the latter symbol stands for the maximum
absolute value of the second derivative of the source wavelet (SI units: s). If the source waveform is a
sinusoidal function with frequency f,, then max |[w”(f)] = (274f,)>, and the maximum particle velocity
becomes Vg = 8.01 x 10! 7,2 mys.

Now consider a small cylindrical cavity of radius a and length 4, with axis parallel to the z-axis of the
coordinate system. The circular walls of the cavity (but »not the end caps) are subject to the pressure p(f) =
pow(?). In the limit as p, — oo and vp = 7’k — 0 such that the pressure-volume product Ep = povp remains
finite, the far-field velocity vector generated by this source is

v (11.6)

cyhnder

a’R

B Agp dzp a’R K B°R

_(a/B)E, [w”(r‘z )}R L T2Es licos2 Ow'(z,) . _ sin @ cos@ w'(z ;) eg] ’
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(Heelan, 1953). The pressurized cylindrical cavity radiates both longitudinal P-waves and transverse S-
waves to the far-field. The above equation has the same structure as the velocity generated by the point
source of compression plus vertical dipole [equation (11.3) above]. Comparing the two expressions
indicates that the horizontal and vertical force dipoles of the latter should be assigned magnitudes

M,, =(a/B)VE,, M,, =[a/B) -2]E,. (11.7a,b)

Assuming that the pressure-volume product E, for the point source of compression is identical, then
relative to the moment strength M, these dipole strengths are

Mpor _ 3 M _ 21 _2(p/a)] (11.82b)
M, 3

4 c

In the case of earth materials where f/a = 1/2 the ratio M,. /M, = 2/3. This difference in magnitude
between M,,, and M,,, is responsible for the shear wave energy radiated from an explosive source in a
small cylindrical cavity.
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12.0 FIGURES

Figure 1. Source wavelet w(f) and its first and second derivatives. Each waveform is normalized to unit
maximum absolute amplitude. The source pulse is a Berlage wavelet with main frequency f, = 80 Hz,
damping factor # = 1.0, time exponent » = 3, and initial phase angle & = -90°.

Figure 2: Frequency amplitude spectra of the source wavelet and its first and second derivatives. Each
spectrum is normalized to unit maximum amplitude. Peak amplitude spectrum values occur at 82.0 Hz,
97.7 Hz, and 113.3 Hz for w(¢), w'(f), and w''(f), respectively.

Figure 3: Three-component particle velocity seismograms generated by a horizontal point force oriented
in the +x direction.

Figure 4. Three-component particle velocity seismograms generated by a horizontal point force oriented
in the +y direction.

Figure 5: Three-component particle velocity seismograms generated by a vertical point force oriented in
the +z direction.

Figure 6: Three-component particle rotation seismograms generated by a horizontal point force oriented
in the +x direction.

Figure 7: Three-component particle rotation seismograms generated by a horizontal point force oriented
in the +y direction.

Figure 8: Three-component particle rotation seismograms generated by a vertical point force oriented in
the +z direction.

Figure 9: Acoustic pressure seismograms generated by point forces oriented in the +x, +y, and +z
directions.

Figure 10: Three-component particle velocity seismograms generated by an isotropic point explosion.

Figure 11: Three-component particle rotation seismograms generated by an isotropic point explosion.
All traces are identically zero.

Figure 12: Acoustic pressure seismograms generated by an isotropic point explosion.

Figure 13: Three-component particle velocity seismograms generated by a point source of compression
combined with a vertically oriented force dipole.

Figure 14: Three-component particle rotation seismograms generated by a point source of compression
combined with a vertically oriented force dipole.

Figure 15: Pressure seismograms generated by a point source of compression combined with a vertically
oriented force dipole.

Figure 16: Three-component particle velocity seismograms generated by a point torque oriented in the
+x-direction.
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Figure 17: Three-component particle velocity seismograms generated by a point torque oriented in the
+y-direction.

Figure 18: Three-component particle velocity seismograms generated by a point torque oriented in the
+z-direction.

Figure 19: Three-component particle rotation seismograms generated by a point torque oriented in the
+x-direction.

Figure 20: Three-component particle rotation seismograms generated by a point torque oriented in the
+y-direction.

Figure 21: Three-component particle rotation seismograms generated by a point torque oriented in the
+z-direction.

Figure 22: Three-component particle velocity seismograms generated by a point double-couple without
moment.

Figure 23: Three-component particle rotation seismograms generated by a point double-couple without
moment.

Figure 24: Acoustic pressure seismograms generated by a point double-couple without moment.

Figure 25: Three-component particle velocity seismograms generated by a rotating horizontal point
force.

Figure 26: Three-component particle rotation seismograms generated by a rotating horizontal point
force.

Figure 27: Acoustic pressure seismograms generated by a rotating horizontal point force.

Figure 28: Three-component particle velocity seismograms generated by a distributed array of five
vertical point forces.

Figure 29: Three-component particle rotation seismograms generated by a distributed array of five
vertical point forces.

Figure 30: Three-component particle velocity seismograms generated by a focused array of five non-
vertical point forces. Focal point is at receiver at depth z, = +75 m.

Figure 31: Three-component particle rotation seismograms generated by a focused array of five non-
vertical point forces. Focal point is at receiver at depth z, = +75 m.
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