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TEST-ANALYSIS CORRELATION AND FINITE ELEMENT
MODEL UPDATING FOR NONLINEAR, TRANSIENT DYNAMICS

Fran~ois M. I-lemez’ and Scott W. Doebling2
EngineeringSciences &Applications,ESA-EA, M/S P946
Los Alamos National Laboratory, Los Alamos, NM 87545

ABSTRACT

This research aims at formulating criteria for
measuring the correlation between test data and finite
element results for nonlinear, transient dynamics.
After reviewing the linear case and illustrating the
limitations of modal-based updating when it is applied
to nonlinear experimental data, simple time-domain,
test-analysis correlation metrics are proposed. Two
implementations are compared: the conventional
least-squares technique and the Principal
Component Decomposition that correlates
subspaces rather than individual time-domain
responses. Illustrations and discussions are provided
using the LANL 8-DOF system, an experimental
testbed for validating nonlinear data correlation and
model updating techniques.

NOMENCLATURE

The recommended ‘Standard Notation for
Modal Testing & Analysis” proposed in Reference [1]
is used throughout this paper.

1. INTRODUCTION

The recondite nature of nonlinearity has
made development of correct analytical models of
nonlinear systems a difficult task. Although anal~lc
methods and numerical tools are available for
modeling specific types of nonlinearity, a systematic
investigation of the formulation and resolution of
inverse problems for nonlinear dynamics has never,
to the best of our knowledge, been addressed in the
literature. This work summarizes such an investigation
and illustrates the issues of nonlinear finite element
(FE) updating with a simple yet realistic testbed.

Handling nonlinear models is generally
something analysts prefer to avoid because it too
often stretches to their limits our mathematical tools
and points to our lack of understanding of the physics
of structural dynamios. Nevertheless, improving
performances requires to account for the true,
nonlinear nature of structural systems and, therefore,
it can be predicted that the field of conventional
modal analysis will increasingly involve nonlinearity as
structural designs are increasingly being optimized.

When modal analysis is performed, structural
systems are usually tested and analyzed under the
assumption that the behavior remains linear in the
frequency range of interest. This fundamental
assumption makes it possible to interpret data in the
frequency domain because signals measured or
simulated through finite element analysis can
generally be found periodic. On the other hand,
analyzing nonlinear systems based on Fourier
superposition or other modal transforms would
theoretically require the addition of higher-
dimensional kernels, the definition of which depends
on the type of nonlinearity encountered [2]. Another
drawback is that most transformations, such as Fourier
transforms, wavelets or Singular Value
Decomposition (SVD), are essentially linear tools:
there is a theoretical limitation at analyzing nonlinear
data with linear techniques. This motivates our choice
of attempting to instrument and correlate FE models
in the time domain, even though this choice adds
difficulties that the frequency-domain approach allows
to bypass.

This research aims at formulating criteria for
measuring the correlation between test data and finite
element results for nonlinear, transient dynamics. We
place a particular emphasis on developing a
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methodology that can handle any type and source of
nonlinearity, therefore, requiring both parametric and
non-parametric model updating. Typical examples of
nonlinearities we are interested in include material
nonlinearity, friction, impact and contact at the
interface between two components. These are typical
of nonlinearity sources dealt with in the automotive
and aerospace industries. The study of geometrical
nonlinearity, on the other hand, is extensively
covered in the literature: accurate models that handle,
for example, large displacements and/or large
deformations can be obtained using the adequate
variational principles and FE discretizations [3].

[n this paper, the effectiveness of a rather
classical time-domain, least-squares comparison
between measured and simulated responses is
assessed using two implementations. The first one
correlates directly the measured and simulated
signals while the second one focuses more
specifically on correlating the subspaces to which
these signals belong. Demonstration examples using
simulated and real test data illustrate ideas proposed
and offer a discussion of issues regarding the
implementation of these techniques.

2. EXPERIMENTAL TESTBED

The LANL 8-DOF (which stands for Los
Alamos National Laboratory eight degrees of
freedom) testbed consists of eight masses
connected by linear springs. The masses are free to
slide along a center rod that provides support for the
whole system. Boundary conditions are unrestrained.
Figure 1 shows the experimental testbed. It is
instrumented with eight accelerometers and
excitation is provided using either a hammer or a
shaker. The first degree of freedom where the
excitation is applied provides a driving point
measurement for identification purposes. The
advantage of the LANL 8-DOF testbed is that it can
be modeled fairiy accurately using a linear, mass-
spring system. Nevertheless, the correlation of FE
simulations with test data illustrates the limitation of a
linear modeling approach, as seen in Section 4.

Modal tests are performed on the nominal
system and on a damaged version where the stiffness
of the fifth spring is reduced by 14Y0. A contact
mechanism can also be added between masses 5
and 6 to induce a source of contact/impact between
these two masses. The system is then tested under
various excitation levels to assess the degree of
nonlinearity. Time-domain responses are measured at

each one of the 8 masses and modal parameters are
identified using a classical frequency-domain curve
fitting algorithm.

Figure 1: LANL 8-DOF Testbed.

Table 1 compares the first five modes
identified with the nominal and damaged systems,
both in the linear configuration (the contactlimpact
mechanism is removed). Hammer excitations and data
averaging are used for these series of tests. Large
damping ratios can be observed. It suggests that the
sliding mechanism and the friction it generates play an
important role in the dynamics measured. These high
damping ratios are produced artificially when the
identification algorithm attempts to best-fit the
measured response using (implicitly) a proportional
damping model. Also, the reduction of stiffness
translates, as expected, into a reduction of modal
frequencies. However, it can be stated from
frequencies in Table 1 and a visual comparison of
mode shapes that this damage scenario has little
overall effect on the response of the LANL 8-DOF
system.

Table 1. Identified Modal Parameters For
the Nominal and Damaged Systems.
Nominal Modal Damaged Modal

Frequency Damping Frequency Damping

22.6 Hz 8.5’% 22.3 Hz 13.6’%0
44.5 Hz 4.3% 43.9 Hz 5.070
65.9 Hz 3.3’3!0 64.8 Hz 3.5’70
86.6 Hz 5.0’% 85.9 Hz 5.9?A0
99.4 Hz 2.6’% 99.7 Hz 3.6%

Next, test-analysis correlation (TAC) results
are shown in Table 2 between the identified modal
parametem of the damaged system and results
obtained with the nominal (undamaged) FE model.
The modal assurance criterion (MAC) illustrates the
excellent agreement between test and model vectors
since most values are above 98Y0, despite the
unmodeled stiffness reduction and the effect of
friction. Although it clearly shows a systematic error
(the first three modes are very well correlated but
exhibit a systematic 2.4?40frequency error in average),
the linear FE model is believed to be a good starting
point for the optimization.



Table 2. TAC Before FE Model Updating
(Damaged System Vs. Nominal FE- Modei).

Identified FE Model Frequency MAC
Frequency Frequency Error

22.3 Hz 21.8 Hz -2.3Y0 99.770
43.9 Hz 43.0 Hz -2.OYO 99.45%0
64.8 Hz 63.0 Hz -2.894. 99.470
85.9 Hz 80.8 Hz -6.OYO 93.2’%.
99.7 Hz 95.6 Hz -4.1 ‘%0 98.5%

3. TAC FOR LINEAR SYSTEMS

One method of obtaining a correct
representation is to create a finite element model of a
system and correlate this model with measurement
data taken from the system itself or some of its
components. Applied essentially to linear systems,
this approach has been found quite effective when
modal data are used in the correlation process. In this
case, the equation of motion can be writlen as

[M(p)]{a(t)} + [K(p)]{u(t)} = {Fe(t)} (1)

which spells the equilibrium between inertia forces,
internal (linear) forces and applied loading. In
equation (1), the mass and stiffness matrices depend
on design variables {p} which express the parametric
nature of FE representations. We W-II see in the
following that model updating is the procedure by
which these variables {p} are optimized to minimize
the distance between test data and FE simulations.

Since the dynamics are linear, the equilibrium
(1) can be transformed in the frequency domain using
a convolution operator (such as Laplace or Fourier
transform). The resulting equation relates the input
and output frequency response functions (FRF) of
the system at any given sampling frequency Z as

([K(p)] - h [M(p)]) {u(L)} = {Fe(k)} (2)

Resonant frequencies L and mode shapes
{0} are extracted from the homogeneous version of
equation (2). With orthogonality conditions added to
equation (3) below, the mode shapes provide a basis
for the subspace to which the response {u(X)}
belongs.

([K(p)] - X [M(p)]) {$}= O (3)

Experimentally, the system’s modal
parameters are identified from measured FRFs or
directly from time-domain data using identification

algorithms, a review of which can be found in
Reference [4]. Hence, equations (l-3) emphasize the
relationships between FE matrices and quantities
measured or identified during modal tests. They form
the basis of any TAC procedure: clearly, the system’s
correct representation is obtained when these
equations are verified as measured quantities replace
the FE outputs {a(t)}, {u(t)}, {u(s)} or (l.;{$}) in
equations (1-3).

Note that this formalism extends without
difficulty to damped structural systems. In this case,
modal parameters are complex quantities and the
comparison between their real and imaginary parts
provides information regarding the type of damping.
The main difference between non-proportionally and
proportionally damped systems is basically that the
real and imaginary parts of mode shape vectors are
not parallel in the former case. Note also that
experimental procedures are available for dealing with
damped systems. While most techniques apply to
proportional damping only, some recent
developments have proven efficient for
reconstructing full-order, non-diagonal modal
damping matrices [5].

3.1 TAC & Linear FE Model Updating

Typical examples of TAC metrics that have
been applied successfully to linear yet relatively
sophisticated systems include minimum distance
between identified and simulated frequencies, mode
shapes [6] or frequency response functions [7], as
well as the minimization of modal residues [8-9], the
definition of which is summarized below. Obviously,
the equation of vibration (3) is violated when FE
modal parameters are replaced with test data as long
as the parametric representation is erroneous. This
inequality can be used for defining modal residue
vectors {Rf(p,L)} that account for the out-of-balance
forces in the model as

[K(p)] {$} = % [M(p)] {@} + {Rf(p,A)} (4)

Vectors {Rf(p,%)} exhibit the largest entries
at degrees of freedom (DOF) where the equilibrium is
violated the most. This can be used as the basis foc
1) Identifying the source of modeling erro~ and 2)
Updating the model by minimizing a norm of vectors
{Rf(p,%)}. This approach is referred to as force-
based model updating since entries of residues
{Rf(p,%)} in equation (4) are consistent with forces.
The alternate approach of enforcing equation (3) is by
allowing a mismatch of vectors that multiply the mass
and stiffness matrices



[K(P)] {w} = ~ [M(P)] {0} (5)

Then, a hybrid residue is defined as the difference
between the mode shape {$} and the first inverse
iterate {v} obtained by inverting the stiffness matrix in
equation (5). Clearly, the FE model is in good
agreement with test data when the “inertia” mode
shape {~) is equal to the “strain” mode shape {v},
resulting in a minimum-norm residue {Rd(p,L)}

{Rd(p,L)} = {@}- {v} (6)

[n theory, these two modal residues are
closely related: multiplying equation (6) by the
stiffness matrix and substituting equation (5) yields

[K(P)] {Rd(p,L)} = {Rf(p,L)} (7)

In practice, implementation constraints (in particular,
the spatial incompatibility between measurement and
FE discretizations) give rise to a variety of updating
and modal expansion techniques for which the
condition (7) is not necessarily satisfied. Therefore, a
mismatch between the updated models provided by
the minimization of residues {Rf(p,k)} and
{Rd(p,k)} may be observed, as will be seen in
Section 4, even though equation (7) proves that the
solution is unique.3 Note that similar residues may be
defined directly with the FRF input-output equation
(2), offering a wide range of TAC and FE model
updating techniques. Reviews and discussions of
state-of-the-art updating methods can be found in
Reference [9] for hybrid residues and in References
[10-1 1] for force-based residues.

3.2 Discussion of Modal Correlation

Obviously, formulating TAC in the frequency
domain offers more advantages than a time-domain
approach because: 1) Filtering and averaging are
available to alleviate the repeatability issue; 2) Noisy
components of the signal and rigid-body modes can
be filtered out and 3) Explicit relationships between
test data and FE modeling are available in the form of
equations (2-3). For these reasons, model updating
procedures for structural dynamics always attempt to
enforce equations (2) or(3) and not the original, time-
domain equation of motion (l). Another important

3 In a finite-dimensional space, all norms are equivalent.
Therefore, equation (7) shows that minimizing residues
{Rf(p,%)} or {Rd(p,k)} accounts for minimizing the same
error using different norms. Thus, convergence patterns
may be different but the optimal solution reached upon
convergence must be the same in both cases.

justification is that correlating mode shapes is
equivalent to matching the subspaces that the
measured and simulated responses belong to. This
issue is discussed in Section 5.2 when it is attempted
to apply the same reasoning to nonlinear test data.

Modal data, however, is only relevant when
dealing with linear systems and so confines any
correlation done for nonlinear systems to the time
domain, forcing us to deal with the problems of
multiple field measurement (combinations of
displacement, velocity and acceleration data might
have to be measured), repeatability and noisy
measurements in addition to the already inadequate
representation of the system’s dynamics.

4. LINEAR, MODAL UPDATING OF THE
LANL 8-DOF TESTBED

In this Section, we discuss the main results
obtained when the linear FE model of the LANL 8-
DOF system is updated to match the identified
dynamics. As mentioned previously, our testbed
exhibits a fair amount of friction which neither the
frequency-domain identification algorithm nor the
linear FE model account for. Hence, this experiment
aims at demonstrating the limitations of inverse modal
approaches when the dynamic behavior involved is
nonlinear.

Figures 2 and 3 illustrate the updating
obtained with the force-based and hybrid
formulations, respectively. In this example, the first
five identified modes are used, all 8 elements are
adjusted and the sensing configuration consists of
DOFS 1, 4 and 7 only, although all 8 outputs are
available. Note that no measurement is connected to
the erroneous spring (attached to masses 5 and 6).
This makes it more difficult to find the damage
because test mode shapes must be expanded, which
undoubtfully introduces additional numerical errors. In
Figures 2 and 3, each bar represents the percentage
of adjustment brought to the corresponding spring
stiffness: an unambiguous damage identification
should therefore be limited to a 14?4.reduction of the
fifth stiffness. It can be observed that the two optimal
solutions are slightly different: this is due, as
mentioned previously, to differences in handling the.
reconstruction of mode shapes for the non-measured
components 2, 3, 5, 6 and 8. The reader is referred to
References [8] and [9] for discussions of mode shape
expansion associated to force and hybrid residues,
respectively. Also, References [12] and [13] present

.ry --- --



comparative studies of state-of-the-art techniques for
solving this critical problem.
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Figure 2. Adjustments Brought to the
Linear FE Model When Force-based Modal
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Figure 3. Adjustments Brought to the
Linear FE Model When Hybrid Modal .

Residues Are Minimized.

In Figures 2 and 3, both updating techniques
identify the correct amount of stiffness reduction at
the fifth spring. However, they also bring significant
modifications elsewhere in the model: we believe that
this is a manifestation of the friction that optimization
algorithms attempt to best-fit as stiffness adjustments.
Table 3 lists the correlation obtained atler force-based
optimization. A comparison with Table 2 shows a clear
improvement of the predictive quality of our linear
model,

Table 3. TAC After FE Model Updating
(Damaged System Vs. Adjusted FE Model).

Identified FE Model Frequency MAC
Frequency Frequency Error

22.3 Hz 22.4 Hz 0.3% 99.9’%0
43.9 Hz 44.2 Hz 0.6% 99.9%
64.8 Hz 65.9 Hz 1.7$40 98.2%
85.9 Hz 85.1 Hz -0.9% 97.29!0
99.7 Hz 99.8 Hz -0.1?!0 99.6’?40

Finally, we have also performed an initial
correlation between the FE model and the response
of the nominal (undamaged) system. The result is that
the stiffness of the first spring (connected to the

driving point measurement) is increased by 22% while
all other spring stiffnesses are increased by 5.27. in
average. Hence, the initial modeling, too flexible even
when no damage is introduced, is improved but this
first step does not offset the ambiguous damage
identification results obtained when the model is
optimized to recover the damaged spring. Using all
eight measurement points during the updating
provides significantly better results.

We conclude that these results illustrate how
modal-based FE updating techniques can be useful
tools for improving parametric models. Here, for
example, we learn that the driving point attachment
produces a local stiffness that should be accounted
for in the modeling. At the same time, they show the
rapidity with which identification, TAC and updating
results deteriorate when the dynamics of interest
involve some source or level of nonlinearity.

5. TAC FOR NONLINEAR SYSTEMS

We now investigate the formulation of inverse
problems for nonlinear structural dynamics. As
before, we statt with a description of the equation of
motion used for the (direct) FE simulations. The
correlation metrics are presented in Section 5.1 and it
is shown that two different implementations can be
proposed for solving basically the same inverse
problem.

[n this work, nonlinear structural dynamics are
described with the following equation of motion

[M(p)] {a(t)}+[K(p)]{u(t)}+{Fi(p,t)}={Fe(t)} (8)

Equation (8) states that the system is in equilibrium
when the applied loading in the right-hand side
matches the combination of inertia and internal forces
in the Iet+hand side. The nonlinear internal force
vector {Fi(p,t)} accounts for any nonlinear, implicit
function of the system’s state variables.

Implementing the FE representation (8) is
necessaty not only because systems we are
interested in are nonlinear but also because
excitation sources we consider present a lot of high-
frequency dynamics. The modal superposition
approach becomes ineffective because the loading
can not be approximated from the low-frequency
modes and because time-domain responses fail to be
periodic. Hence, conventional modal analysis does
not apply anymore. Numerical models undergo similar
difficulties as computational and accuracy issues arise

-- . . --, . . .. .z.-.. ,. . .,,.., PT . . .. ..-C’.W. m-m-— - ,. , ----m.mx--- - -I-- Trr’. -



when extracting high-frequency modes, especially
with large dimensional FE models.

5.1 TAC & Nonlinear FE Model Updating

In the following, we assume that time-domain,
displacement measurements {utest(t)} are obtained
by instrumenting the system. This assumption is
made for simplicity. However, it can be verified easily
that all developments below apply to atiirary
combinations of displacement, velocity and
acceleration measurements. (Note that higher-order
derivatives such as strains could also be employed.)

Since our objective is to generate a refined
and more accurate model, the natural TAC metrics to
consider are distances between test and simulation
data. Residue vectors are defined simply as

{R(p,t)} = {utest(t)} - {u(t)} (9)

The computational procedure consists of the
following steps: 1) For a parametric model defined by
a design {p}, the FE response is simulated via
numerical integration of equations (8); 2) Residues (9)
are calculated at prescribed DOFS and time samples;
and 3) The cost function J(p) is minimized using an
optimization algorithm, where

J(p) = llR(p,t)ll + u lip - poll (lo)

It represents the 2-norm (Euclidean norm) of our
residue vectors: note that the same definition applies
in the linear case with modal residues (4) or (6). h also
includes a minimum change term, or regularization
term, that helps reducing the numerical ill-
conditioning characteristic of inverse problems. From
an engineering point-of-view, it simply means that an
optimum design {p} is sought after that brings the
least possible change to the original design {PO}.
The optimization procedure in Step 3 involves
multiple FE simulations since time-domain responses
must be calculated to evaluate the costs J(p) for
various designs {p}. Our current implementation
features order-zero algorithms (the simplex method)
and order-one algorithms (Gauss-Newton, BFGS and
Levenberg-Marquardt, for which documentation can
be found in Reference [14]). Gradients are required
with order-one optimization methods and they are
currently estimated with a centered finite difference
scheme, which becomes computationally intensive
with large dimensional FE models.

5.2 Principal Component Decomposition

The correlation presented previously can be
viewed as a rather conventional generalized least-
squares (GLS) minimization. The GLS formulation has
been used for solving inverse problems in many
engineering applications for several decades. It is well
known that its success is, to a great extent,
conditioned by the ability of the math model to span
the subspace to which the test data belongs. tt is
interesting to notice that this is exactly what modal
correlation atlempts with linear systems since the
measured response belongs to a subspace spanned
by the identified mode shapes.

Along these lines, the principal component
decomposition (PCD) method developed and
validated in Reference [15] attempts to generalize the
notion of mode shape for nonlinear systems. Rather
than using the direct comparison (9), the SVD of time-
domain data is first performed

( [U] ; ~] ; [V(t)] ) = svd( [u(t)] ) (11)

and the residue is basically defined as the distance
between test and analysis right-singular vectors

{R(p,t)} = {Vtest(t)} - {V(t)} (12)

Since the right-singular vectors are orthogonal, they
provide a basis of the multi-dimensional manifold to
which the nonlinear signals belong [16]. The PCD
consists of minimizing the distance between these
decompositions rather than between the original
signals. Our numerical results presented in Section 6
feature the PCD implementation as it is derived in
Reference [15]. (For clarity, the presentation featured
in equations (11-12) is a simplified version of the
actual method.)

In addition, the SVD offers a practical way of
filtering out any measurement noise or rigid-body
mode contribution because these are typically
associated with singular values much smaller than
those characteristic of the dynamics. However, we
emphasize that the SVD can not be used for
detecting if test data are nonlinear. Although
attractive, this idea is false: using ingenious initial
conditions “for integrating the time-response of a
simple 4-DOF mass-spring system (see Section 6.1),
the PCD can be ‘fooled” and lead to believe that the
response is nonlinear (because, often, the shapes of
right-singular vectors {V(t)} are characteristic of
whether or not the system is nonlinear) when it is, in
fact, perfectly linear.
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6. NONLINEAR UPDATING OF THE LANL
8-DOF TESTBED

In this Section, we present an overview of the
results that have been obtained with the time-domain
FE model correlation and updating procedure. In
Section 6.1, a validation based on data simulated
numerically is discussed. In Section 6.2, the LANL 8-
DOF testbed is analyzed in an attempt to identify the
nonlinear contact/impact force.

6.1 Validation Using Simulation Results

The validation presented here employs the 4-
DOF mass-spring system depicted in Figure 4 where
the fourth spring exhibits a cubic stiffness. The “test”
data are simulated numerically and feature a 15%
stiffness reduction of the (linear) third spring
combined to a 257. stiffness increase of the
(nonlinear) fourth spring. Simulations run up to 0.2
seconds and the response is sampled at 200 equally-
spaced points in the [0;0.2] sec. interval and at DOFS
1, 3 and 4. The second DOF is not measured which
leaves us the choice to either condense the FE
matrices down to the subset of measurement points
available or to work with full-order matrices. No
external force is applied to the system; instead, the
first mode shape of the associated linear model is
used as initial condition for initializing the time
integration. We emphasize that this system is
nonlinear since it results from the combination of a
linear model (where all four spring stiffnesses are
linear) and a nonlinear internal force applied to the
fourth mass and proportional to the third power of the
fourth displacement.

/
kl B k3 k4

Ml M2 M3 M4

/ M

/

Figure 4. 4-DOF Nonlinear System.

During the correlation, the distance between
‘measured” and simulated displacements at DOFS 1,
3 and 4 is minimized. Figures 5 and 6 illustrate a
typical comparison of displacement responses before
and after model updating, respectively, Clearly, the
FE responses (shown in dashed line) match more
closely the “test” data (shown in solid line) after the
optimization. Table 4 compares the updating results
obtained with four different implementations of our
time-domain TAC technique. For each method, the
first four rows list the percentages of stiffness

adjustment brought to the linear springs. The fifth row
lists the percentages of adjustment brought to the
cubic spring stiffness. The correct answer is therefore
-15% in row, and +25Y0 in row 5 and no adjustment
elsewhere in the model.
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Figure 5. Displacement Time History Before
Updating the 4-DOF Nonlinear Model.

03

Figure 6. Displacement Time History After
Updating the 4-DOF Nonlinear Model.

In Table 4, results of the GLS approach with
FE model reduction (MR) are presented in columns 1
and 2; in the second column, both displacement and
velocity data are used for updating the model. When
displacements only are inputted to the minimization,
the solution expected is not reached. Nonetheless,
the adjustment featured in column 1 reproduces
almost exactly the displacement “test” data, which
reminds us of the non-unicity of the solution. To
resolve this difficulty, velocity data are added and the
optimization then converges to the expected solution
(see column 2). Results of the PCD approach using
full-order matrices (FM) and model reduction are
presented in columns 3 and 4, respectively. Both
simulations are based on displacement data only and
both provide excellent results. Comparing columns 3



and 4 shows that the solution is slightly deteriorated
when MR is used. Condensing the FE matrices may
be necessary for initializing correctly the time
integration procedure and should moreover lead to
significant CPU time reductions with large FE models.

Table 4. Optimized 4-DOF FE ModeIs
Obtained With Various lmplementations~
GLS, MR GLS, MR PCD, FM PCD, MR

D-data D, V-data D-data D-data
6.4% 0.1% 0.2?40 1.6%
4.370 0.570 1.470 5.9!40

-1.770 -14.9% -13.570 -12.170
-3.070 -0.3?40 -1.070 -3.8Y0
5.970 24.6% 22.l% 20.8’%0

There is no noticeable advantage of one
approach over the others in regard to computational
cost, which is not surprising considering the small size
of this system. It is noticed, however, that order-one
optimization algorithms require much fewer iterations
to reach convergence, the drawback being a high
computational requirement (per iteration) for
estimating the cost function’s gradients.

6.2 Application to the LANL 8-DOF Testbed

In this Section, model updating is applied to
the LANL 8-DOF testbed. The objective is to
correlate transient, time-domain test data obtained by
instrumenting the system’s nonlinear configuration.
Hence, the contact mechanism is now introduced.
Figure 7 provides an illustration where it can be seen
that the clearance between the fifth and sixth masses
is reduced to a small threshold, therefore, introducing
a source of contactimpact during vibrations.

Figure 7. Contact Mechanism of the LANL
8-DOF Testbed.

4 Symbols used in Table 4 are GLS, generalized least-
squares; PCD, principal component decomposition; MR,
model reduction; FM, full-order model (no reduction); D-
data, displacement datq and V-data, velocity data.

Random, input excitations at the driving point
(DOF 1) and the eight accelerations are measured at
4,096 samples over a time period of 8 seconds. Data
are available at various force levels to identify the
degree of nonlinearity.

Although all DOFS are measured during
vibration tests, we assume that data are available at
DOFS 1, 5 and 6 only. Therefore, the correlation
consists of matching these three acceleration time-
histories with results from the numerical simulation.
Since the correlation involves three DOFS only,
model reduction is implemented to condense the FE
matrices and force vectors. The particular technique
chosen preserves exactly the lowest frequencies and
mode shapes of the linear model. Figure 8 illustrates
the correlation before FE model updating.
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Figure 8. Acceleration Time History Before
Updating the LANL 8-DOF Testbed.

As in Section 4, our modeling of this system
is perfectly linear, except for the addition of an internal
force vector. First, we attempt to represent the
nonlinearity as an internal force triggered when
contact or penetration are detected during time
integration. The amounts of force applied to masses
5 and 6 are opposite in direction (such that the two
masses are pushed away from each other) and
proportional to the depth of penetration. Therefore,
this simple contact modeling is parametrized by the
amount of penetration allowed and the stiffness of
the reaction force. However, attempts to update
these parameters have proven unsuccessful so far.

Therefore, a second approach is pursued
using a non-parametric force vector. Arbitrary internal
forces are applied to each one of the eight masses of
the system and TAC is used for estimating these
force levels at prescribed time samples.



The overall procedure goes as follows.
Unknowns of the optimization are the eight force
components. Correlation is based on the first 90
acceleration measurements that span the time
window [0;0.1 68] sec. For the numerical simulation,
FE matrices and force vectors are reduced to the size
of the TAC model (DOFS 1, 5 and 6 only) and the
response of the condensed model is integrated in
time using 10 sampling points between any two
measurements. As the FE response is integrated in
time, the internal force vector is optimized.

-1OOO
(NmLwc.Lh?dalheDoF8c401eMde41

o 0.02 O.M 0.05 003 0.1 0.12 0.14 0.16
Tmeh Saada

4ml ,-, 1,,

Ii

3-4m1-=
$t4umbemcenc4eoleooFK401et.kdd)

a. I
om 0.04 0.26 0.00 0.1 0.12 0.14 0.16

llmeh Sexads

Figure 9. Time-Histories of Internal Forces
Obtained Via FE Model Correlation.

Figure 9 shows the reconstruction of internal
force as optimization are performed for each time
interval containing three consecutive measurements.
In other words, 30 optimization are performed, one
every 0.0056 sec. This result is obtained when the
GLS cost function is optimized (no SVD is involved
here). Obviously, no clear interpretation of this forcing
function can be made. However, it can be observed
that components at DOFS 1 and 3 remain practically
zero. In addition, components of the internal force
vector seem separated in two subsets: one is formed
by DOFS 1-4 and the other one consists of DOFS 5-8.
Notice how components 2 and 4 record large
amplitudes around 0.08 sec. while components 5-8
reach their minima at this time sample. This may be a
side effect of our contact mechanism located
between masses 5 and 6.

It can also be observed that, to the exception
of DOF 1 where the external force is applied, all DOFS
feature significant levels of internal force even though
they are not directly involved with the nonlinear
mechanism. This might be a manifestation of the
system’s friction. However, these results are

preliminary and further investigation is required
before any plausible assessment of these forces can
be made. No matter what the source of the internal
force turns out to be, Figure 10 shows a clear
improvement of the correlation with test data when
this force vector is included in the FE model.
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Figure 10. Acceleration Time History After
Updating the LANL 8-DOF Testbed.

We emphasize that results presented here
are a first step: non-parametric model updating does
not necessarily yield a sound understanding of the
system’s physics. For all practical purposes, a second
identification would be required to generate a useful,
parametrized nonlinear model.

7. CONCLUSION

This work presents an investigation of the
correlation of test data to finite element models for
nonlinear, transient dynamics. Modal techniques in
the frequency domain are discussed and it is shown
that they fail to correlate a linear model when the
experimental data involves significant friction.
Therefore, the correlation is formulated in the time
domain and the merits of two implementations are
compared using test data from the LANL 8-DOF
nonlinear testbed.

The preliminary results obtained are very
encouraging and additional full-scale testing is
planned with these and other methods. In particular,
the optimal control-based formulation proposed in
Reference [17] seems very promising because it
enables the non-parametric identification of
unmodeled nonlinear dynamics. It is currently being
interfaced with our modeling and correlation software.
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