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Abstract

The Two-Dimensional Adaptive Correlation Enhancer Algorithm (2DACE) is an
open-loop adaptive filtering technique that can be applied to Synthetic Aperture
Radar (SAR) images for the purpose of reducing speckle. This report includes
the development of the 2DACE algorithm and the optimum filter parameters for
this specific task. The unique implementation of 2DACE with a data amplitude

pre-compression operation was proven to effectively reduce speckle, enhance

fine features, and maintain image resolution.
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EXECUTIVE SUMMARY

This work presents research into the application of the Two-Dimensional
Adaptive Correlation Enhancer Algorithm (2DACE), an open-loop adaptive
filtering technique, to reduce speckle in Synthetic Aperture Radar images.
Open-loop filters are application specific and the variable parameters must be
optimized for the task. This project presents a unique implementation involving
data amplitude compression to manage the gain control problems inherent with
the open-loop architecture.

The objective was to determine if 2DACE could effectively reduce speckie
without degrading the target resolution. The effects of varying filter parameters
and development of the optimal parameter combination are presented. The filter
was tested using two-dimensional Gaussian and Taylor Point Spread Functions
as test images. White Gaussian noise and actual speckle from a Synthetic
Aperture Radar image were added to the test images to determine the efficacy of
2DACE.

The performance of the 2DACE algorithm is quantified through
signal-to-noise ratio calculations and resolution measurements. The SNR is
calculated with the variance of the clean ideal image divided by the least squares
error calculation of the filtered image and the clear image. As the error between
the filtered image and the clear image decreases the SNR increases.
Measurements of the — 3dB and —14dB pulse widths of the two-dimensional
Taylor Point Spread Function are documented to quantify the effects of the

2DACE filter and the parameters on the resolution.
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Because of the wide dynamic range of the pixels in the SAR images,
nonlinear data compression techniques were applied before and after the image
processing. The compression techniques were required to control the open-loop
gain of the filter, improve the resolution, and restore the contrast of the image.

As a final test the 2DACE filtering algorithm was applied to SAR images
obtained from the Synthetic Aperture Radar Department 2345 at Sandia National
Laboratories. A subjective comparison between the original speckled image and

the filtered image proves the expected performance of the algorithm.
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CHAPTER 1

INTRODUCTION

Synthetic Aperture Radar (SAR) is a high-resolution radar system using
coherent processing of backscattering Doppler histories to obtain small angular
resolution [1]. SAR is capable of generating images in day or night, with or
without cloud cover, in any type of weather condition. Typical applications of
SAR are found in surveillance from air and space, navigation, missile guidance,
and mapping [2,3,4].

In 1951 Carl Wiley of the Goodyear Aircraft Corporation [1] introduced the
idea that a moving radar system could generate pulses, delayed in time. A pulse
to pulse comparison of the returned signals could be used to produce radar
images with greater resolution than a standard radar system [2]. In 1953 the first
SAR system was tested at the University of lllinois [1].

SAR images are commonly used for detection, classification, and
identification. The utility of the images is directly dependent upon the quality of
the image. Image quality is a general term used to describe the appearance of
an image. A wide range of factors combine to improve or degrade the image
quality, such as contrast, clarity, sharpness of the edges, signal-to-noise ratio,
distortion, warping of targets at the image boundaries, and the amount of
speckle. The key attributes of SAR images are detectability of scatterers, spatial
resolution, positional accuracy, and image intensity [2]. In order to meet the

required specifications on the attributes all of the factors must be controlled.




Image quality is achieved through system design, real time signal processing,
and post-processing techniques.

The radar system, radar waveforms, and signal processing affect image
quality. The radiation pattern of the antenna affects the transmitting and
receiving characteristics of the SAR system. The impulse response of the radar
is characterized by the mainlobe and sidelobe specifications. Sidelobe
minimization in the radar signal, storage process, and filter design is required for
high quality images [4]. The sidelobes can be reduced by properly selecting
window functions used in the signal processing system [5]. Overall the image
quality is related to both the system design and signal processing techniques
employed.

In general an object in a SAR image is very rough in relation to the
wavelength of the radar signal. When coherent radiation is reflected from a
rough surface the reflected signal has different phases due to the surface
properties. The combination of the coherent nature of the signal and dephased
returns produces the granular pattern of intensity. This granular pattern, known
as speckle, is undesirable in SAR images because it reduces the resolution and
detracts from the fine details.

Speckle is a granular looking byproduct of coherent imaging systems that
adversely affects the image quality and target resolution. Objects viewed in
highly coherent light acquire a granular appearance and the granularity has no
apparent relationship to the properties of the object. The irregular pattern is best

described by the methods of probability and statistics.




The area of speckle reduction in coherent information processing has
been a constant focus of research for decades. In fact, some of the most
important work in speckle was performed in the 1970s and 1980s [6]. Speckle
reduction is not only relevant to SAR but is also important in the fields of acoustic
imaging, laser imaging, optical information processing, holography, holographic
interferometry, and laser microscopy [7]. These fields apply to many areas such
as surveillance, mapping, medical technologies, and others.

The literature on speckle reduction in SAR images goes back to the 1970s
and 1980s. As computing power increases new techniques are constantly
developed to better reduce the speckle while enhancing the images. Real time
signal processing and post-processing algorithms exist for improving the image
quality by reducing the speckle content in the image. A few techniqueé Qsed to
remove speckle are: multilook SAR systems [3], low pass filters, adaptive one
dimensional filtering techniques [8], adaptive two-dimensional filters [9,10],
wavelet transforms and thresholding [11] and neural networks [12].

Various drawbacks are associated with speckle reduction in SAR images.
SAR system design is complicated and expensive. The advantage of multilook
systems is that a number of independent images of the same scene can
combined to reduce the speckle. Multilook SAR systems are capable of
generating very clear images [3], but they are difficult to design and build. Also it
is not always possible or practical to obtain independent images of the same
scene. The post-processing algorithms usually reduce the resolution, 'smooth out

fine details, and/or are computationally complex. The two-dimensional low pass




filter (2DLPF) increases the pulse widths of the point targets, effectively reducing

the resolution. In addition the 2DLPF smoothes out the fine features. Other
post-processing algorithms, such as the two-dimensional adaptive least mean
square algorithm [10], are computationally complex and have a slow rate of
convergence. Research based on the wavelet transforms with applications to
speckle reduction is widely documented. Wavelet decomposition codes are
readily available on the internet and through software providers. The results of
initial tests using wavelet decompaosition and thresholding were unacceptable.

This work presents research into the application of the Two-Dimensional
Adaptive Correlation Enhancer Algorithm (2DACE) [13], an open-loop adaptive
filtering technique, to reduce speckle in SAR images. Open-loop filters are
application specific and the key filter parameters must be optimized for the task.
This report presents a unique post-processing approach that combines nonlinear
data amplitude compression and the 2DACE algorithm. The nonlinear
compression is applied prior to the 2DACE to manage the gain control problems
inherent with the open-loop architecture. This process maintains the initial image
resolution. The various parameters in the 2DACE filter development are
documented and the optimum settings are developed through testing with
synthetic images and SAR images.

Implementing the 2DACE filter algorithm to best filter the SAR images
required finding the optimum filter parameters and developing pre and
post-processing routines. Tuning the filter design to achieve the best balance

between reducing speckle and maintaining image resolution involved filtering




synthetic data and actual SAR images with many variations of the filter
parameters. The key parameters affecting the speckle reduction and resolution

are the scaling option, the adaptation constant, 8, and the filter lag, L. The filter
size is (2L +1)x (2L +1) where the filter lag L is the maximum lag of the

estimated autocorrelation function.

The 2DACE algorithm with the open-loop architecture is designed to
rapidly converge to the two-dimensional autocorrelation function of the input
image, an mxn matrix. Under ideal circumstances the two-dimensional filter will
converge to a matched filter. Since the images are not stationary the filter
coefficients are constantly updated with the time conétant determined by the

adaptation constant 3.

The post-processing speckle reduction routine developed has a series of
six operations. Refer to Figure 1. First data amplitude compression is applied to
the image to reduce the dynamic range. The compression process controls the
gain and maintains the image resolution. The second step is data padding of the
input image with reflected pixel values. This allows the filter coefficients to
converge to the statistics of the image before the convolution is performed with
pixels on the border of the image. The third step is to filter the compressed and
padded image with the 2DACE algorithm. The fourth step is to crop the image to
remove the data padding and the fifth step is to restore the dynamic range of the
image. Restoring the dynamic range is an expansion process that is effectively
the inverse process of the initial data amplitude compression. Step six is

nonlinear data compression routine. This final data compression routine is
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optional and is applied after the 2DACE filtering to improve the contrast of the
image. The data compression reduces the magnitude of the high intensity pixels

and increases the magnitude of the low intensity pixels.

2DACE Adaptive Filtering

Input SAR | pre compress image )
Image to reduce dynamic range Data padding Key Parameters:
Scaling Option
m,n m+10,n+10 :
yox® | el Lag
Beta
,ﬁ <
|
| Crop image ‘ Expand image to restore ‘
L pimag dynamic range ‘
[ ]m+10,n+10 to [ ]m,n y=X1/C ( l
|
Processed
J SAR Image

improve contrast

| Optional compression to T
y = x08

Figure 1. Block diagram showing the series of operations involved in speckle
reduction with the 2DACE algorithm.

A two-dimensional low pass filter was used as the benchmark to test the
performance of the 2DACE algorithm. The 3x3 LPF was easy to implement,
provided a satisfactory degree of speckle reduction, and has been routinely used
at Sandia National Laboratories as a quick means to improve the image quality.
The drawback to the 2DLPF was the degradation in resolution and the blurring of
the SAR image. Results presented in this report prove that the 2DACE has

superior performance over the 2DLPF.
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Chapter 2 presents a short background on Synthetic Aperture Radar.
Chapter 3 includes the characteristics and statistics of speckle. Chapter 4 and 5
contain the analysis of the Adaptive Correlation Enhancer algorithm, the filter
implementation, and detailed test resﬁlts. SAR images processed with the
2DACE filter are included in Appendix A and the filtering algorithms can be found

in Appendix C.




CHAPTER 2

BACKGROUND OF SYNTHETIC APERTURE RADAR

Synthetic Aperture Radar uses coherent processing of backscattering
Doppler histories to obtain images with fine angular resolution [1]. Many
subsystems within a SAR are used to form the final radar image. Platform
motion sensing, microwave pulse generation, and image processing are used
together and influence the range resolution and azimuth (or cross range)
resolution. SAR is used for surveillance from air and space, navigation, missile
guidance, mapping, and can generate images in any type of weather condition
[2,3,4].

In 1951 Carl Wiley of the Goodyear Aircraft Corporation [1] introduced the
idea that a pulse to pulse comparison of the returned signals from a moving radar
system could be used to produce high quality radar images. The term Synthetic
Aperture Radar was used to describe the process of image formation from a
moving platform. The synthetic aperture produces images with a resolution that
would otherwise require a much larger antenna aperture. Even though the
synthetic aperture only improves the azimuth resolution comparable range
resolution can be achieved by increasing the radar signal bandwidth. The
moving platforms required to generate the synthetic aperture are commonly
mounted on aircraft.

SAR was first tested in 1953 [1] at the University of lllinois. The first SAR
was a stripmap mode system where the antenna is pointing in a fixed position

relative to the flight line. The synthetic aperture image is formed by a
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two-dimensional mapping of received signal energy. The intensity of each
individual pixel is the energy in the signal received from the corresponding
location illuminated by the radar. The brightness of the pixel is related to the

degree of an object’s radar reflectivity.

2.1  Spotlight Mode Versus Stripmap Mode

At Sandia National Laboratories the SAR spotlight mode technique is most
commonly used. Spotlight mode focuses the antenna on a specific target area
and the radar continuously illuminates the target area for a period of time. The
flight path determines the length of the aperture.

Spotlight mode has flexibility and two main advantages over stripmap
mode. Spotlight mode achieves a finer resdlution while using the same physical
antenna aperture. In addition with spotlight mode multiple images of the same
target or even multiple images of different targets can be processed from
different viewing angles [2].

Stripmap mode is used to image a long strip of terrain and the resolution is
limited to the azimuth beamwidth of the radar antenna. The azimuth resolution
increases with the length of the synthetic aperture. The azimuth beamwidth
determines how long a target is illuminated by the radar. Refer to Figure 2 for a
block diagram comparison of Stripmap mode and Spotlight mode.

The capability of spotlight mode to process an image from multiple viewing
angles is advantageous because scattering properties can vary with the angle of
observation. Multiple viewing angles can improve target detection and

identification and produce smoother, more interpretable images [2,4].
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Spotlight Mode

g‘%‘%a

Stripmap Mode
Figure 2. This diagram is a comparison of two SAR imaging techniques.
Spotlight Mode focuses the antenna on a specific target area. In stripmap mode
the antenna is focused in a fixed direction and is used to image a long strip of
terrain.

2.2 Synthetic Aperture Radar Processing

The SAR system transmits pulses at time intervals as the radar platform
moves along its flight path. The platform may deviate from the flight path
horizontally or vertically. If these deviations are measured accurately then the
received data can be appropriately phase compensated. SAR transmits and
receives signals over an angular interval that is inversely proportional to the
desired azimuth resolution. The time interval is called the coherent aperture
time. The radar illuminated target reflects energy from each transmitted pulse
and the SAR receives the reflected signals during a specific time delay interval.
The interval is called the range gate.

Essentially, SAR image formation requires the following steps [2].

22




*= Transmit and receive a wide bandwidth signal with a deterministic

phase relationship from pulse to pulse.

» Measure and adjust for vertical and horizontal movements of the radar

platform relative to the target.

» Format the data based on radar system parameters and data collection

specifics.

= Compress the data in range and azimuth to achieve the desired

resolution.

The radar pulse specifications and motion compensation are required in
order to maintain the phase coherence from pulse to pulse during the coherent
aperture time. SAR images are formed in a number of ways depending on the
size of the image and the radar frequencies. To achieve the final image
resolution the data is typically compressed with a two-dimensional Fast Fourier
Transform (FFT). The coherent pulses are transmitted as a periodic pulse train
with pulse repetition interval, T. The reciprocal of the pulse repetition interval is

called the pulse repetition frequency (PRF). SAR usually has a constant PRF.

2.3 Basic Synthetic Aperture Radar Components

A SAR system has three basic components: the SAR sensor, the motion
sensor, and the image processor [2]. The image processor uses data from the

SAR sensor and motion sensor to generate the image.
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[

\ Scene
Image Information
Sensor I —
' Processor

Motion
Sensor

Figure 3. This is a basic SAR block diagram showing the connections between
the sensor, motion sensor and image processor.

2.3.1 SAR Sensor

The SAR Sensor, shown in Figure 4, includes the electronics that
generate, transmit, and receive the radar pulses. This includes the antenna,
transmitter, receiver, transmission channel, data recording electronics, antenna
steering, and timing electronics. Most SAR systems are monostatic, the same
antenna is used for both transmitting and receiving the radar pulses [2]. The
transmitter generates lowpass and bandpass coherent pulses and the receiver
detects and filters the reflected pulses. The received signal is then converted to
digital data with an A/D converter and stored or processed in real time. The
timing electronics generate a stable clock signal and a coherent phase reference
for the transmitted signals. The transmitter generates a wide bandwidth, high
frequency signal from a digital waveform stored in the system memory. This
generated signal is then filtered with a bandpass filter, mixed with the carrier

signal, amplified, and then transmitted via the antenna.
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Figure 4. A detailed view of the SAR sensor [2] showing the connections from
the antenna to: the A/D converter and data recorder, the navigation and control
module, transmitter and receiver.

The backscattered signals detected by the antenna within the specified
range gate are sent to the receiver for processing. Within the receiver the RF
carrier frequency is removed along with any modulation generated in the
transmitter. The A/D sampling rate must satisfy the Nyquist criteria in both the
azimuth and range. In the azimuth the sampling rate is eq‘uivalent to the pulse
repetition frequency. In the range the sampling rate must be greater than the
signal bandwidth when using in phase and quadrature channels. Downsampling
can be used to reduce the amount of data processed and stored in memory.

Azimuth ambiguities can be created by the edges of the main lobes or
side lobes of the azimuth antenna pattern. This causes the pulse repetition

frequency to not adequately sample the Doppler frequency of the returned data.




An antenna with low side lobes is the primary method to reduce or limit the
energy from range and azimuth PRF regions. Range ambiguities occur when
received signals are detected outside of the specified range gate of a transmitted
pulse.

Popular frequencies used in SAR transmitters are VHF (30-300 MHz), X-
Band (8-12 GHz), and up to KA-Band (27-40 GHz) [14]. Frequency selection is

dependent upon the application and propagation factors.

2.3.2 Motion Sensor

Motion sensors are required for high-resolution SAR images generated on
airborne systems; motion sensors are not required on satellite systems [2]. The
motion sensor subsystem generates data used to estimate position changes of
the SAR antenna. The motion sensor tracks the changes in the antenna phase
center (APC). An inertial measurement unit (IMU) and a global positioning
system (GPS) navigator are used to track the short duration and long duration
changes in the APC. The IMU detects the short duration changes in motion,
which are changes in the antenna position with duration less than the synthetic
aperture time. Long duration changes are changes with periods greater than the
aperture time. The position of the antenna is estimated by measuring the
position vectors from the GPS antenna system to the IMU and then to the APC.
Changes in the position vectors correspond to long duration changes in the APC.

The motion sensor is used to point the SAR antenna and specify the
range gate — the expected transit time of the radar signal. The motion sensor

also selects reference signals that are used in the receiver to remove corrupted
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data from the received signal. The image processor uses motion sensor data to
calculate the antenna position estimates which are then used to remove the

effects of movements of the radar platform.

IMU
Motion APC
,_[ Sensor
GPS —
Image
Processor

Figure 5. SAR motion sensor block diagram. The IMU and GPS operate
independently and feed data to the motion sensor. The motion sensor controls
the APC and sends the motion data to the image processor.

2.3.3 Image Processor

The image processing subsystem includes the hardware and software
used to process the received signal and the motion sensor outputs. The image
processing includes the azimuth and range filtering required to limit the scene
size. Downsampling is performed in the image processor along with any
required motion compensation due to non-ideal radar platform movements. The
image processor also performs data formatting, compression with a
two-dimensional FFT, and compensation for effects in the transmission channel
and/or unanticipated radar signal defects.

The image processor can also be programmed to perform post-processing

of the SAR image. The post-processing can include image enhancement, target
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detection, target recognition, moving target identification, and image comparison

[2]. Image enhancement includes speckle reduction — the topic of this thesis.

24 SAR Image Formation

Processing the Radar Return and forming the SAR image uses three sets
of information: Positioning information, angular resolution, and intensity of radar
return. Positioning information is used to locate the sources of the radar returns
in two dimensions. A three-dimensional image can be formed with the addition of
data and processing techniques [4]. Angular resolution is the ability of the
system to discriminate between the independent scatterers. Each scatterer
within a target scene is identified by the intensity of the radar return. The
intensity is the characteristic used to form the image. Intensity varies across the
target according to the reflectivity coefficients of the illuminated objects.

SAR systems can either transmit continuous waveforms or transmit pulses
[2]. Most SARs transmit in the pulse mode with a fixed pulse repetition frequency
(PRF) or by varying the amplitude or frequency of the pulse. Frequency
modulation is used in many SAR systems to modulate a constant amplitude
pulse. Discrete changes in phase or frequency are also used to vary the radar

pulse.

2.4.1 Range Resolution

The distance between the radar system and the radar scatterer is the time
delay between transmitting the radar pulse and receiving the return pulse.

Range resolution is determined by the radar system’s capability to distinguish
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time differences between echoes from two adjacent targets. Therefore the range
resolution directly depends on the radar bandwidth [4].

For a constant frequency waveform the range resolution p_ is given in
(1-1) [2] where c is the speed of light and T, is the pulse duration.

ch
=— 1-1
P == (1-1)

Conversely, the ability to detect the radar pulse in noise is related to the pulse
width. For constant frequency pulse systems the range resolution is related to
the pulse width. The shorter the pulse width the finer the resolution, but the
probability of detection decreases with a decrease in pulse width [2].

As higher range resolution is desired there is an increase in difficulty in

transmitting the required power level in the continuous wave pulse [4]. Power

can be defined as ﬂx(t)\zdt. As T decreases the average power also
T

decreases. Modern SAR systems use linear frequency modulation (LFM) signals
in order to increase range resolution and the power level in the pulse. The linear
frequency modulation signal is easy to generate and is commonly referred to as
a chirp.

The linear FM pulse has a pulse length of T, and a frequency that varies

with a chirp rate of y. The bandwidth of the chirp is = yT, which has a
compressed time duration of l. This time duration defines the range resolution

given in equation (1-2).
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cK, _
p, = o (1-2).

K, is a variable that compensates for changes in the main lobe due to

techniques used to reduce the sidelobe levels, such as antenna design. The

pulse compression ratio (PCR) is defined as the pulse length T, multiplied by the

bandwidth B=y-T,, PCR = y~Tp2 . The PCR represents the improvement in

resolution obtained via pulse compression.

The pulse compression technique allows a transformation related to the
chirp rate and distance of each individual scatterer. The received signal is mixed
with a time delayed replica of the transmitted signal and converted into a
frequency relative to the dechirp signal. This process is referred to as range
dechirping. The time delay is equal to travel time to the center of the target
scene and back to the antenna. The mixing of the received signal reduces the
bandwidth of the return signals relative to the to the swath distance of the
independent targets. A near range target would have a higher received
frequency than a long-range target. The bandwidth of the dechirped signal is
called the intermediate frequency (IF) and is calculated as shown in equation

(1-3) where Ar is the swath range size.

2vA
B = tr (1_3)

The swath range Ar produces a time delay between the near range target and

the far range target. The time delay is the transmit - to - receive time Z—Ar—. The
C
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frequency of the dechirped signal from each scatterer is related to the time delay

between the signal and the reference function within the SAR system.

2.4.2 Azimuth Resolution

The unique design of SAR is the generation of the synthetic aperture to
reduce the synthetic beamwidth and increase the azimuth resolution. The
synthetic aperture is constructed by moving radar with a defined beamwidth. As
the radar travels in a straight line the beamwidths overlap in time and therefore
can be used to construct the narrower synthetic beam.

The azimuth resolution is the ability to recognize two independent targets
that are adjacent to one another. If the two targets are farther apart than the
radar’s azimuth beamwidth angle at the target scene then the two targets can be
independent resolved. If two adjacent targets are both illuminated at the same
time then they cannot be independently resolved.

The azimuth resolution for a synthetic aperture of length L [2] is defined

as

Ak R,
AT ot S
Pa 2Lsin(a,, ) (-¢)

R, is the range to the target, A_ is the center frequency of the carrier, k, is the
main lobe widening factor ~ 1.2 [4]. a,, is the Doppler cone angle, the angle that

the antenna is pointed relative to the platform’s velocity.
The SAR processor builds a synthetic array by adjusting the phase of the
complex received signals and adding the data samples. It receives data along

the path length L - which is defined as the synthetic aperture length. The
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coherent summation of data samples and the synthetic aperture generate a
beamwidth that is significantly smaller than the actual antenna beamwidth.

The azimuth resolution p, is dependent on the range to the target scene.

In spotlight mode the azimuth resolution is not limited by the antenna aperture,

D, of the radar system. Conversely, in stripmap mode the azimuth resolution is

limited by % An additional advantage of spotlight mode operation is that a

smaller antenna beamwidth with high gain can be used. The high gain antenna
improves the signal-to-noise ratio. The one drawback to spotlight mode is the
smaller scene size compared to stripmap mode. Stripmap mode operation is
independent of range because as the range increases the synthetic aperture

length also increases. For spotlight mode the Doppler cone angle, a,. , varies

with the range and azimuth of the targets.

2.5 SAR Imaging
The SAR image provides a visualiiation of the complex radar reflectivity of

a target scene [2]. The data can be expressed as a complex image Ae®. The

physical features of the earth’s surface cause changes in the phase ¢ and the

amplitude A of the radar pulse. The SAR receives and separates the reflected

waves’ in phase Acos¢ and quadrature phase Asin$¢ components. Thus the

complex image Ae” is formed with complex data Acos¢+ jAsing. SAR images
can be displayed in a variety of ways [2]: the real part Acos¢, imaginary part

(quadrature) Asin¢, the amplitude A, the intensity I= A?, or the log of the
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intensity logl. The most common method for displaying the SAR Images is the

intensity output.

Coherent imaging systems, such as Synthetic Aperture Radars, exhibit
noiselike characteristics classified as “Speckle” [3]. Speckle is a real
electromagnetic phenomenon with noiselike characteristics and is a result of the
scattering properties in the target scene [6]. The next chapter discusses the

generation and statistics of speckle.

33




CHAPTER 3

SPECKLE - CHARACTERISTICS AND STATISTICS

Generally speaking, objects viewed in highly coherent light, acquire a
granular appearance and the granularity has no apparent relationship to the
properties of the object. The irregular pattern is best described by the methods
of probability and statistics. Characterization of speckle has been a research
topic of many vears, actually some of the most important work in speckle was
performed in the 1970s and 1980s [6].

In general an object is very rough in relation to the wavelength of the
radiating source. When coherent radiation is reflected from a rough surface the
returned signal has different phases due to the surface properties. The
combination of the coherent nature of the signal and dephased returns produces
theAgranuIar pattern known as speckle. Speckle is undesirable in SAR images
because it detracts from the fine details and degrades the image quality by
reducing the resolution. Figure 6 is a three dimensional plot of speckle from a
SAR image. A chapter by J.W. Goodman in the publication ‘“Topics in Applied
Physics: Laser Speckle and Related Phenomena’ [6] documents the statistics
and other details of speckie. The following sections are mostly based on this

reference.

3.1 Speckle as a Random Walk

Speckle and its statistical properties have been associated with the
Random Walk Process since the 1960s [15]. Using the random walk statistical

process the electromagnetic wave is of the form A(x,y,z)exp(j2nvt) [16] where
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A is the amplitude at point (x,y,z) and v is the frequency. The amplitude of the

phasor can be rewritten as A(x,y,z) = |A(x, Y, z)| exp(j2nvt) and the intensity of the

wave is I(x,y,z) =|A(x,y,z)| . The intensity can also be written as

I=Re[A]+Im[A*] with 6 = tan™ %% For the random walk process the
c

complex fields have zero means, equal variances, and are uncorrelated. Using
the central limit theorem for an arbitrarily large number of samples, N, the real
and imaginary parts are asymptotically Gaussian.

Synthetic Aperture Radar Speckie

0
300

Figure 6. Mesh plot of speckle, 256x256 pixels. The speckle was cropped from a
field in the SAR image F2_335493_308.

3.2 Joint and Marginal Distributions

From the equations in Section 3.1 the joint probability distribution function
(PDF) of speckle can be calculated via the transformation method [6]. The Joint

PDF is shown in equation (3-1) and equation (3-2) is the variance of speckle
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where |ak| is the magnitude of the k™ elementary phasor from the phasor
amplitude A(x,y,z).

1

2 2exp(2_12) for 120 —-n<6<=m
Po(i,0)=¢""" °

(3-1)

0 otherwise

Tl e

The marginal density functions, for intensity and phase respectively, are then

. 1 ~1 1
P (1) = 120, P,)=— -—-m<O< 3-3).
1(1) 262 exp(202j G( ) 27C T T ( )

The intensity and phase are statistically independent. P, (i) has a negative

exponential distribution and P,(6) has a uniform distribution.

3.3 Intensity of Speckle
In SAR images intensity is of primary interest. The n'"moment of the
intensity is given by
(") =n(2?)" =n(D)"  (3-4).
The 1% and 2" moments, the mean and variance, are of particular interest and

can be calculated from (3-4). The mean value, n=1, is
() = 20" (3-5)

The variance, n=2, is
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Since o’ = E{IZ}—uIz the standard deviation o, is equal to the mean intensity p, .

The first order statistics of the sum of amplitudes of speckle returns is a
circularly complex Gaussian random variable. Since each speckle return is a

circularly complex random variable the amplitude of the sum of the speckle

N
returns is A = ZAk . Re[A,] and Im[A, ] are Gaussian random variables
k=1

therefore the sum Re[A, ]+ Im[A, ] is also a Gaussian random variable. From

this argument Re[A, ] and Im[A, ] are also zero mean. The total intensity of a

sum of speckle returns is I = ]AI2 which is defined as a negative exponential

distribution, just like the independent speckle returns. The same process can be

N
followed with a sum of intensity speckle patterns. I=>"1, where = A" and
k=1

I, = ]Aklz. The correlation between N intensity components is

C = el = (LX) o).
[<(IK _<IK>)2><(IL _<IL>)2>]E
The intensity correlations are a result of correlations between the amplitudes of

speckle pattern
A A
Uy = (Aur2) - (3-9).

i)

*denotes circular Gaussian statistics resulting in the limit of a large number of

independent, scattered contributions.
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For a single look SAR system the intensity of the image is the sum of the

squares of the in phase (real) and quadrature (imaginary) components of the
radar return. The components are assumed to be zero mean with Gaussian
distributions. The intensity is T=Re|A> ]+ Im|A?]. The intensity has a Chi
Squared distribution with two degrees of freedom, i.e. a Rayleigh distribution [16]
For muitilook SAR systems the intensity is the average of the square roots of the

intensities from each look. If N is defined as the number of looks and A, = \/f

N N
then Z = %ZADZ = %EZ\E where Z is the gray level of the final pixel value
i=1

i=1

and \/f has a Chi distribution with two degrees of freedom.

3.4  Statistics

The first order statistics of speckle are measured from a single
observation point. The single observation point fully describes the
brightness/intensity of the speckle. The second order statistics give a measure
of the coarseness of the spatial properties of speckle.

The second order statistics are the autocorrelation and its frequency
representation, the power spectral density. The speckle is observed at a distant
point from the rough surface on which the radiation was scattered. The auto

correlation is calculated at this distant point from the intensity function
I(x,y) :]A(x,y)]2 where (x,y) denotes the x,y plane. The autocorrelation

function is given by

RII {I(X17}/1)>I(X2>YZ)}: <I(X1’y1)9I(X29yZ)> (3 - 10) .
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The ensemble average is computed by averaging over the ensemble of rough
surfaces. The average width of the speckle is directly related to the width of the

autocorrelation function.
The autocorrelation is calculated assuming that the reflecting surface is
rough compared to the wavelength of the incident wave. The amplitude of the

reflected field A(x,y) is a circularly complex Gaussian random variable at each
point (x,y). The autocorrelation of the intensity can be related to the
electromagnetic fields reflected. This is given by

R {AGL YDA, Y = (ALY LA (R, Y,))  (B-11).

R, is called the mutual intensity of the field. R, is related to R, by

Ry = {1,y 15, 7))+ R, ALY D AGL Y)Y (B-12).
R,.(x,y;x,y) is defined as (I(x,y)). Therefore R, is calculated by finding R ,, .
The autocorrelation is based on three assumptions: 1) for the calculation
we are only concerned with the modulus of R ,, , 2) the microstructure of the

scattering surface is very fine and is unresolvable from the distant observation
point, 3) the scattering region is uniform and square - LxL meters. With these

three assumptions the autocorrelation reduces to

R, (Ax,Ay)= (1)’ [1 +sinc’ (%A—Xj sinc? (E}fﬁﬂ (3-13).

V4 Z
. . . o LAX
Therefore the average width of the speckle is the value of Ax where sinc (——j

Az

is equal to zero.
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The power spectral density (PSD) of the intensity of the speckle 1(x,y) is
the Fourier transform of the autocorrelation function R ,(Ax,Ay). For the case of

a uniform and square scattering spot the PSD is
2 PANNEY Az
P, (VX,Vy ) = <I> I:S(Vx,Vy )+ (—L—) A(fvx)A(f Vyﬂ (3 ~14)

A=l—]x[ for ‘x’Sl

. Speckle has no frequency
0 otherwise

A is the triangle function and {

components above % in both the v, and v, directions.
V4

3.5 Multiplicative Nature of Speckle

SAR uses coherent radiation to produce images. The coherent
processing inherently produces speckle in the images. It has been repeatedly
documented that speckle is multiplicative in nature [14,17,18,19]. The random
multiplicative noise increases with the average gray level of the image [17]. As
shown in Section 3.2 speckle has a negative exponential distribution. The
standard deviation is equal to the mean, thus the multiplicative nature of speckle.

Not all researchers agree that speckle is multiplicative under all
conditions. In [20] it is shown that the multiplicative model fails when the object
contains fine details which cannot be resolved by the imaging system.
Reference [21] models speckle as a physical process of the coherent image
formation. The model includes noise in the form of signal dependent effects and

shows that the speckle is spatially correlated.



3.5.1 Statistics of Multiplicative Noise

For multiplicative noise z; = x;v;, where x; is the ij pixel without noise,

j?
v;; is the noise contribution to the ij pixel, and z; is the noisy pixel. v; has a

i
mean, u.,, of one and a standard deviation, o, which is independent of x,;.
Since the signal x and the noise v are independent the mean of the noisy pixels
is p, = K,

E{z} = Efxv} = ExJE{v} = E{x} (3-15)
The variance is

Bz, =Bl o, ) = BV |- 2pm Bfxvl+ (un, F
=B R - 2050d + (uem, ) (3-16)
=E’ By’ j-pinl

For areas of constant signal, i.e. over relatively flat areas of the SAR image

E{x2}= u’. Therefore the variance becomes

Efz—u,) = n2Ef? - nip?
=2 (B }-n2) (3-17)
=u3o,

Equation (3-17) shows that the variance is the mean of x squared times the

variance of the noise. The standard deviation o, = 9z =22 where c, isthe
By My

standard deviation of the noisy signal and p, is its mean. The marginal PDF of

the speckle intensity has a negative exponential distribution as given in (3-3).

Therefore ¢, =1 and o, =p,. This says that the standard deviation of the noise

is equal to the mean, which is 1.
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CHAPTER 4

ADAPTIVE CORRELATION ENHANCER ALGORITHM

This report presents a unique implementation of the Adaptive Correlation
Enhancer algorithm (ACE), an open-loop adaptive filter. The two-dimensional
version of ACE was applied to speckled SAR images with minimal degradation in
resolution. This was accomplished by using a unique approach. Data amplitude
compression was applied prior to filtering to control the open-loop gain and
maintain the image resolution. In addition a nonlinear data amplitude
compression technique was applied after the filtering process to balance the
contrast of the image.

The one-dimensional ACE algorithm was first reported in [22] where it was
applied to seismic data. The ACE algorithm updates the filter coefficients of a
finite impulse response (FIR) filter and under steady state conditions it converges
to the autocorrelation of the input data. The statistical properties of the ACE
algorithm were first studied in [23] and are included in Section 4.1. 2DACE is the
two-dimensional implementation of ACE. It is important to understand the
develobment of the ACE algorithm in order to fully understand and apply the

2DACE algorithm.

4.1 Adaptive Correlation Enhancer Algorithm

The Adaptive Correlation Enhancer is an open-loop architecture for
updating FIR filter weights. The FIR filter size is proportional to the lag of the
update equation described below. The ACE filter coefficient update equation is
given in (4-1).
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w[n]=pw[n-1]+(1-p) xr[f; ]E;[f] (4-1)

w[n] is the filter coefficient vector of size (2L +1)xI and is given in equation (4-2)

w,[n]
wln]= wiln] 4-2)

Waor [n]

x[n] is the input data vector with matrix dimensions of (2L +1)x1.

x[n—LJ]

M
x[n] =| x[n] | @-3)
M

_x[n +1]]
This notation shows that the ACE algorithm is a noncausal filter. § is referred to
as the smoothing parameter or the adaptation constant. B is adjusted by the user

and determines the rate of convergence of the filter. The output signal vector is

the convolution of the input vector and the filter coefficient vector.

y[n] = X[n] * w[n] 4-4
pln] is a measurement of the difference between the present input signal power
x*[n] and the most recent recursive measurement p[n—1]. As in the update
coefficient equation the past value is weighted with the value of B and the

present signal power is weighted with (1-p).
plo]=ppln ~1]+(1-px’[n]  @-3)

The filter update equation is rewritten in equation (4-6) where k = (1_[3 )

Lp[n]
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wn]=pwln ~1]+ kx[n]x[n] (4-6)

For a stationary input x[n], the above equation can be reduce to equation (4-7).

wlh]=pwlh-1]+kxfnkln] = wh]=—— xnkl] @-7

(1-B)

The steady state ACE impulse response is calculated by taking the

expectation of both sides of equation (4-7)

k

E{wlnl}= (T_EE{X[n]x[n]} (4-8).

The expectation of x[n|x[n] is the autocorrelation of x|n]

Ellbdn-L}] [R.(L)
M M

Ebdiklil=| BRbkRD [-[R.0)]  @-9.
M M
kbl (R0

By inspecting equation (4-9) it is clear that the steady state filter
coefficients are clearly proportional to the autocorrelation of the input vector,

w[n]z—k—R [n] (4-10).

(i-p) ™

4.1.1 Stability of ACE Algorithm

The stability of the ACE algorithm is governed by the adaptation constant,

B. The Z transform of equation (4-1) is shown in equation (4-11).
wz]= —X[z]+X[z]  @-11).
1-Bz

The convolution operator is * and the Z transform of x|n] is X[z].
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[z _LX[Z]—
M

X[z]=| X[z] (4-12)
M

|z X[z]

The Z transform of the input vector x|n] shows that L is the maximum lag of the

system. The input vector can be shifted by L and the input vector becomes

o]
Z2L

X'[z]=| 27+ [X[z] (4-13).

X'[z] is the causal implementation of the ACE algorithm.

The adaptation constant, p, determines the region of convergence for the

. k , :
algorithm. The term ZI-—_BZT) in the Z transform equation (4-11) shows that the

region of convergence (ROC) is ‘z[ > for the system to be a right handed,

causal sequence, and B <1 for the system to be stable.

4.1.2 Effects of the Adaptation Constant
The smaller the magnitude of §, the less “memory” the recursive system

has. This can be seen by inspecting equation (4-1).

wln]=pwln -1]+ 1-p)X [ K{n] For B <0.5, w[n] has more of a dependence on

Lpn] -

the current input data and less of a dependence on previous histories of the

filtering coefficients.

45




The inverse Z transform of W[z] is shown in equation (4-14).

w(n]=kB" x[n]x[n] (4-14).

The filter coefficient vector w{n] is a function of the impulse response h|n]=kf"

and the input data x[n]- x[n]. The time constant, n, of the algorithm is ﬁ and
n

p

1
is approximated by —I—I—B As shown in equation (4-1) along with n = W
controls the rate of adaptation of the filter coefficients. For small § there is a

smaller contribution of the past coefficients and thus the system will adapt faster
to the present input data. As with all adaptive algorithms the mean square error
also increases as the adaptation rate decreases. Therefore to minimize the error

due to gradient noise the smallest § is not necessarily the best.
The behavior of the ACE algorithm as a function of f can be shown with
the variance of the filter coefficients. The variance of w[n] is calculated in [22],

[23] and is shown in equation (4-15).

2k202(cs2 +A2) A‘k? i
(1-B)’ +8(l—2Bcos(2oa0)+B2) > 1=t
O, = k262(02 +A2) Ak? (4-15)
, 1#L

+
(1-B)’ 81 - 2B cos(2a, )+ B*)
As B increases the variance of the filter coefficients decreases. As § increases

the adaptation rate slows down and the algorithm uses more samples to obtain

the estimate of the expected filter coefficients.




4.1.3 Gain of ACE Algorithm

An extensive analysis of the one dimensional ACE algorithm performance
for a narrowband signal in additive broadband noise is documented in [23]. The
analysis shows that the filter gain approximately equals the filter lag, L. The

SNR .
SNR.

m

gain is defined as G =

4.2 Two-Dimensional ACE — 2DACE

The two-dimensional implementation of the Adaptive Correlation Enhancer
was first presented in [13]. The research presented by C.D. Knittle and N.
Magotra used the 2DACE algorithm to enhance features in varying contrast and
to extract linear features in noisy images. One application of the 2DACE
algorithm is to enhance narrowband signals in broadband noise. This was
demonstrated by using the 2DACE on SAR images, along with a low pass filter,
to detect and enhance linear perturbations caused by surface ships on the
ocean. The horizontal lowpass filter was used to filter the speckle in the SAR
image. Then the 2DACE filter was used to enhance the wakes of the surface
ships. This work proves that the 2DACE algorithm has superior performance

- over a lowpass filter when applied to a speckle-corrupted image.

4.2.1 Analysis of 2DACE Algorithm

The analysis of the 2DACE algorithm directly follows the analysis of the
ACE algorithm in Section 4.1. The 2DACE analysis is documented in [24] and
repeated here for completeness.

The two-dimensional filter weight coefficients are
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x[m.n]x[m,n]

wlma]=pwlmn -1+ (0-p)= e E

(4-16).

This notation is for a horizontally scanning filter with dimension (2L +1)x (2L +1),

where L is the lag of the filter. The 2DACE algorithm implemented in MATLAB
scans across the columns in the image. The software implementation is shown
in equation (4-17).

X[(m—L)+ j,(n-L)+kx[m,n]
2L*p[m,n]

w. [mn]=B-w,, [mn-1]+(1-B) 0<jk<2L (4-17)
One option is to transpose the input image and then the horizontally scanning

filter scans down the rows. The filtered image is then transposed back to the

initial [m,n] matrix. When the last column in a row is reached the filter is moved

to the first column in the next row. This can be referred to as left to right filtering.

The filter coefficients w[m,n] are written in matrix form as

Woomn] A wyy [m,n]
wigmnal A wi,[mn]
M O M
Wl [mn] A Waa [m,n]

w[m,n] = (4-18)

The subscript 2L,2L refers to the element in the filter weight matrix and m,n
refers to the index of the input image matrix x[m, n]. The input matrix to the filter
is of the form shown in equation (4-19) where m,n is the element index.

xm-Ln-L] A x[m-Ln+ L]
x[m-L+1ln-L] A x[m—L+1,n+L]
M 0) M
x[m +L.n— L] A x[m +L.n+ L]

x[m,n]= (4-19)
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B is referred to the smoothing parameter or adaptation constant, and L is the

maximum lag of two-dimensional filter.
In equation (4-16) the present value of the input data is divided by a

recursive estimate of the input signal power, p[n,m].
plm,n] = Bp[m,n — 1]+ (1-B)x*[m,n] (4-20)

Defining k = 2—L(21_TB)—] allows equation (4-16) to be written in the form show
pim,n

below in equation (4-21).
wlm,n]=Bw[m,n—1]+kx[m,nfx[m,n]  (@4-21)
The expectation of the two-dimensional filter weight coefficients is
developed in equations (4-22) through (4-24).
B{w[m,n}= Epwlm,n~ 1]+ kxfm,nk[m, ]} (4-22)

E{w[m,n[} = BE{w[m,n — 1]+ kx[m,n]x[m,n]} (4-23)

E{W[m,n]}=%E{x[m,n]x[m,n]} (4—24)

The right hand side of equation (4-24) is IL times the two-dimensional

autocorrelation of the input data as shown in equation (4-25).

[ R, [-L-1] A R, [-LL] ]
R _[-L+1,-L] A R_[-L+LL]
E{x[m,njx[mn]}= M ) M (4-295)
R [L-1,-L] A R_[L-1L]
R.[L-L] A RGLL] |
Rxx(i, j) is the two-dimensional autocorrelation of the input data where |i,j <L
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4.2.2 Stability of 2DACE Algorithm

As with the ACE algorithm the stability of the 2DACE algorithm is apparent
after taking the Z transform of equation (4-21). The two-dimensional convolution
is denoted by * and the Z transform of the input matrix, x[m,n], is X[z,,z,]. The

Z transform is shown below in equations (4-26) and (4-27).

k

W[Zl,Z2]=mX[Zl,ZZ]*X[Zl,ZZ] (4-26)

'z, A z]'z
L+l _-L —L+l_L
z, "z, A z]z
Xlz,,z,]=| M2 o ! M2 X|z,,2,] (4-27)
zrz;" A zl7)

In equation (4-26) it is seen that the filter is stable and causal for |z,|> B as long

as p<l1.

4.2.3 Adaptation Constant

Within the Z transform equation of the filter coefficients the term -
— Pz

can be approximated by the geometric series with ratio B in the time domain.

The time constant of the 2DACE algorithm is defined as t© ~ . By fitting t to

1

1-p
a1

the geometric series and showing that B=e * it is evident that B controls the rate

of adaptation. As B — 1 1 rapidly increases. [ is also referred to the smoothing

parameter. This is a good explanation for the effect that § has on the input data.
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For larger values of B the processed SAR image has significant smearing,

caused by the smoothing effect of 3.

4.2.4 Gain and Matched Filter of the 2DACE Algorithm

SNR,,

~ 217
SNR

The two-dimensionail filter gain is derived in [24] as G, =

out

For the input signal in equation (4-28) the matched filter can be derived as
follows.

x[m,n] = Acos(n(y,,, +a,, )+ o[rn,n] (4-28)
v|m,n] is a white noise process with variance o*and y,,a, are vertical and
horizontal frequencies. The impulse response of the 2DACE filter with the given

input is shown in equation (4-29).

A2

ho o (i, j) = 1—:{—2— cos(nyoyi_L + oL,y + 028(i -L,j- L))} 4-29)

The impulse response h_, (i, j) resembles a matched filter excluding the impulse

term ¢28(i—L,j~L).
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CHAPTER 5

IMPLEMENTATION OF THE 2DACE ALGORITHM

The Two-Dimensional Adaptive Correlation Enhancer Algorithm is

implemented by convolving the input image, a (j,k) matrix, with the 2D filter
coefficients, w[m,n]. Each input pixel, element of the (j,k) matrix, is multiplied
with each filter coefficient from w[m,n] and then summed to produce y[j,k] as

given by
. +L k+L .
y[J,k]= Z be,k]-w[m,n] 5-1.
m=j-L n=k-L
Refer to Section 4.2 equation (4-16) for the filter update equation. The filter

coefficients, w[m,n|, are updated at every pixel with the current statistics. Refer

to Appendix C for a complete listing of the MATLAB code that performs the

2DACE filtering on an input image.

5.1 2DACE Fiiter Parameters

~ Implementing the 2DACE filter algorithm to best filter the SAR images
required finding the optimum filter parameters and developing pre-processing
and post-processing routines. Tuning the filter design to achieve the best
balance between reducing speckle and maintaining image resolution involved
filtering synthetic data and actual SAR images with many variations of the filter
parameters. The parameters affecting the speckle reduction and resolution are
1) normalizing and unnormalizing routines 2) scaling option 3) adaptation

constant, B 4) filter lag, L.
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5.2 2DACE Tests with a 2D Gaussian Image

The initial investigation of the filter parameters used a two-dimensional
Gaussian image embedded in white Gaussian noise of variance 0.02. The test
image was 256x 256 pixels in size and the SNR was -0.5862 dB. Refer to
Figure 7 for the 2D Gaussian image and to Figure 8 for the 2D Gaussian image
embedded in white Gaussian noise. Each parameter was individually varied
while the other parameters were held constant. The output image was visually
examined for degradation of the image and reduction in speckle. The subjective
visual test was very important because a filtered image with high SNR could

have poor visual characteristics due to target warping or DC shifts.

-

256058, e = 128128, var= 20000, {7

300

Figure 7. Mesh plot of a two-dimensional Gaussian image. The image is
256x256 pixels with p,,u, =128,0%,0; =200, and a maximum amplitude of 1.
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256x256, meaii = 128128, var = 2005200 |
1.,.-- 260 mean gaussian noise variance = 0.02° . ;.

\ 300

Figure 8. Mesh plot of a two-dimensional Gaussian image with zero mean
AGWN. The image is 256x256 pixels with p ,u, =128,07,65 =200, and a

maximum amplitude of 1. The variance of the AWGN is 0.02.

The signal-to-noise ratio was used as a method for quantitatively
measuring the speckie reduction. The method used for calculating the SNR is
the least square method. This definition of the SNR gives a measure of the
difference between the two images. Equations (5-2) and (5-3) use the variance
of the original, noise free image and the least mean square criterion [25] of the

original image and the noisy image.
(52
SNR ;; =10log,, —- 5-2)
Gls
M N 2

oL :ﬁZZIX(m,n)-X'(m,nX (5-3)

m=1 n=1

Equation (5-3) calculates the difference between the original image pixels x(m,n)

and the noisy image pixels x'(m,n). The difference o2 is the least square error.
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For a noisy image the least square error, c_, is large compared to the variance
of the original image, ¢, and the SNR ;, is negative. For filtered images o, is

small compared to ¢ and the SNR , is positive. This is a relative measurement

in the sense that it is dependent on the original, noise free image. It gives a
measurement used to determine the amount of noise removed by the filtering
process along with the any changes in the image that increase the least square
error.

The purpose of initial test series with the Gaussian image was to select
the best normalizing/unnormalizing routine and to gain an understanding in how
the filter parameters affect the filtering process. The degradation in resolution of
the test image was investigated in a second series of tests with a
two-dimensional Taylor Point Spread Function (PSF).

The results of the parameters variations in the 2D Gaussian test series are

documented in the next four sections.

5.2.1 Normalizing and Unnormalizing Routines.

For the initial filter tests three normalizing and four unnormalizing routines
were tested. For the normalizing and unnormalizing tests the lag was fixed to 1

and the adaptation constant B was fixed at 0.5. Two different scaling options

were used and are documented in the next section.
The normalizing routines are:
1. Calculate the mean and dynamic range of the image. Subtract the mean from

the image and scale the dynamic range to +/-1.
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2. Calculate the image mean and subtract it from the image. Calculate the
dynamic range of the zero mean image and then scale it to +/- 1.

3. No normalizing routine

The unnormalizing routines are

1. Factor the input mean and dynamic range into the output image.

2. Apply a DC shift to the filtered image so the minimum value is zero.

3. Apply a DC shift to the filtered image so the maximum pixel value equals a
fixed value.

4. No normalizing routine.

Refer to Table 1 for a tabulation of the filter parameters and the calculated SNRs

from each filtering process.

5.2.2 2DACE Scaling Options
Three different scaling options are built into the MATLAB implementation
of the 2DACE algorithm. Refer to the 2D filter coefficient equation (4-21,5-4).
w[m, n] = Bw[m,n - 1]+ kx[m, n]x[m, n] (5- 4) .
Three variations in k are investigated and are listed in equations (5-5), (5-6) and
(5-7).

Scaling Option 1 k =(1-p) (5-5)

Scaling Option 2 k = (lz‘Lf) (5-6)

: : 1-B)
Scaling Option 3 k = —(—— 5-17
caling Option 2 pfmon] (5-7)
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In equations (5-6) and (5-7) L is the lag of the filter and p[m,n] is the recursive
measurement of the signal power defined in equation (4-20).

Equations (5-5) and (5-6) show that the 2D filter coefficients, w[m,n] ,are
recursively computed with the past values of the filter weights and the input
power scaled by a constant. Comparing the normalized data, Scaling Option 1
produces the same resuits as Scaling Option 2. These two equations have a
constant ratio, i.e. equation (5-5) multiplied by 2L* is equal to equation (5-6).
Because the two equations are scalar multiples of each other only test results of
equation (5-6), Scaling Option 2, are documented in this thesis.

Equation (5-7), Scaling Option 3, shows that the 2D filter coefficients are

recursively updated with past values of the filter weights and the input power
scaled by k =C/P, where C= (—12%3—) and P = p[m,n] is the recursively computed

input signal power of equation (4-20).

Scaling Option 3 is the scaling factor documented in the analysis of the
2DACE algorithm in Section 4.2. Scaling Option 2 is simply the constant portion
of Scaling Option 3. Refer to Table 1 below where the results of 2D Gaussian
tests show the performance of the scaling options and normalizing/unnormalizing

routines.
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Table 1 2DACE Scaling and Normalizing Tests
SNRgp in = -0.5862 dB

Filtering Options SNR Calculations
Scaling | Norm | Unnorm | SNRyg out | SNRygp gain | SNRyp cout | SNRyg tgain | SNRys cgain
2 1 1 1.5391 2.1253 -12.3833 -11.7971 -13.9224
igg“;mm»,;:1;5.‘%,«‘5,?%:;.fi‘r?;ﬂ Hi ity oA 10l i e & e ey S j;}‘u T ]
2 4.3955 4.9817 -3.9947 ~8.3902
3 4.3995 4.9817 ~3.9947

28.3002
: 18 i o m»‘
1 -12.7338 | -12.1476 | -17.7308

il

‘

34085
T "

2 | 43995 | 49817 | 39947
3| 43995 | 49817 |- 39947 BEY T
3 1 4 48744 | 54606 ”4.35465‘&‘;‘ T
S I 7 S T N

Table 1 lists the scaling options, normalizing and unnormalizing routines,

and the associated SNRs. Five SNR measurements are included in the table.
The input SNR, SNRgs in, is the ratio of the clear image variance, o*, and the

least mean square variance, o, and has a value of —0.5862dB. Refer to

equations (5-2) and (5-3). SNRgg out is the ratio of ¢ to the filtered o, and

SNRgyg gain is SNRyg out - SNRyg in. A second set of SNR measurements is
applied only to filtering operation that incorporate Scaling Option 2. As described

in Section 5.3.2 Scaling Option 2 requires a nonlinear compression operation on

the filtered data. SNRgg cout is the ratio of ¢ to the o of the filtered and

compressed image. SNRgp tgain is the total gain in the signal-to-noise ratio
between the input image and the filtered and compressed image, SNR4g cout -

SNRgg in. SNRgp cgain is the gain between the filtered image and the compressed
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image. Since the noise floor is raised by the compression process SNRgg cgain is
always less than 1.

A benchmark, conv3, was created by filtering the noisy Gaussian image
with a 3x3 lowpass (LPF) filter. The 2DLPF was chosen as the benchmark
because it is a standard, easy to implement, speckle reduction method used at

Sandia National Laboratories. The 2DLPF is shown in equation (5-8).

0.3333 0.3333 0.3333
LPF,, =|0.3333 0.3333 0.3333 (5-98)
0.3333 0.3333 0.3333

Each element in the lowpass filter has a value of 0.3333. A 2D convolution with
the input (m,n) matrix and the 2DLPF produces the filtered output image.

From the results it is clear that the normalizing and unnormalizing routines
introduce errors in the filtered image. Inspection of the filtered images revealed
that the normalizing routines subtract out the fine detail that is very important in
SAR images. In addition the unnormalizing routines introduce DC shifts that
distort the contrast.

Scaling Option 2 has good performance before the required compression
routine. The average gain SNR measurements are close to 5dB. After the
compression routine the SNR is reduced to —8.4dB, which is significantly lower
than the input SNR which is —0.5862dB. For the case when the normalizing or
unnormalizing routines are not included in the image processing the gain in SNR
is 5.5dB for Scaling Option 2 and 4.0dB for Scaling Option 3. Scaling Option 3

has the best performance, but the SNR is less than the benchmark lowpass
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filtering which has a gain in SNR of 4.2. In Section 5.4 data is presented that

shows the 2DACE filtering algorithm outperforms the 3x3 LPF operation.
The tests also reveal that Scaling Option 2 suppresses the fine details in
the SAR image. Scaling Option 3 retains the fine images but it is very sensitive

to the choice of B. The data in Section 5.2.3 show the effects of B on the

filtering process. To see the effects of Scaling Option 2 and Scaling Option 3
refer to Figure 9 and Figure 10 at the end of this section. At first glance the
filtered images are very similar. Figure 9 has a small DC offset but the Gaussian
image is very similar to the input image. Figure 10 has a lower SNR and the
Gaussian image has some discontinuities. In Section 5.4 the results of the
resolution tests are discussed. Scaling Option 3 has the best performance when

resolution is the judging criteria.

Figure 9. Mesh plot of the 2D Gaussian image filtered with 2DACE , Scaling
Option = 2, Lag = 1, Beta = 0.50. The filtered image is normalized to 1.
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Figure 10. Mesh plot of the 2D Gaussian image filtered with 2DACE , Scaling
Option = 3, Lag = 1, Beta = 0.50. The filtered image is normalized to 1.

In summary the results in Table 1 show that normalizing and
unnormalizing routines degrade the quality of the image. Without the use of the
normalizing routines Scaling Option 2 had a gain in SNR is 5.5dB and Scaling
Option 3 had a gain of 4.0dB. Scaling Option 3 had a lower SNR than the
benchmark lowpass filte which had a gain in SNR of 4.2. This was due fo
selection of the filter parameters. In Section 5.4 the superior performance of

Scaling Option 3 is presented.

5.2.3 Adaptation Constant, 3

The adaptation constant, 3, is also referred to as the smoothing
parameter. Tests show that for Scaling Option 2 as B increases the objects in
the images are smoothed out and distorted. A very low value of § has the best

performance when used with Scaling Option 2. For values of §, ~ 0.2 to 0.3, the
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objects in the images are slighted warped or smoothed out. For large values of

B, ~0.8 to 0.9, there is lateral distortion of the objects in the images. Figure 11
shows the 2D Gaussian test image filtered with Scaling Option 2 and = 0.95.

This image shows the significant warping of the image in the direction that the

filter is shifted.

2

Figure 11. Side view of a 2D Gaussian image filtered with 2DACE, Scaling
Option = 2, Lag = 1 Beta = 0.95. The plot shows the significant warping of the
image in the direction that the filter is shifted

Many different filtering approaches were tried in an attempt to reduce the

distortion when high values of B‘ were used in the 2DACE algorithm. The

approaches consisted of:

1. Shifting the filter from left to right, right to left, i.e. wrapping the filter around at
the end of each row.

2. Scanning left to right, right to left, top to bottom then bottom to top.

3. Filtering small blocks of data.
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None of these techniques reduced the distortion caused by the filtering with
Scaling Option 2. As B is increased the distortion increases and the fine details
and edges are smoothed out.

When Scaling Option 3 is used in the filtering algorithm the optimal B is

between 0.5 and 0.8. Section 5.4 documents the resolution measurements and
the optimum settings are defined. Table 2 lists the SNR measurements for

different combinations of B and the filterrlag, L.

Table 2 shows that as the filter lag was increased from 1 to 2 the SNR
increased slightly. The drawback is that the resolution decreased. Therefore the
best performance of the 2DACE filter is when the lag is set to 1, a 3x3 filter. The

best values of B in terms of SNR are discussed below.

The results in Table 2 show that for Scaling Option 2 the SNR decreases

as P increases. The input SNRis -0.5862 dB. The maximum gain in SNR for
Scaling Option 2 is achieved with B =0.30 and is 5.45dB before compression
and 5.0dB after compression. For Scaling Option 3 the SNR increases as 3
increases. The distortion is also noticeable with Scaling Option 3 as B is

increased past 0.85. The results show that the 2DACE filter significantly
outperforms the 2DLPF used as a benchmark. For the 2DACE filter with Scaling

Option 3, filter lag = 1, and B =0.75 the gain in SNR is 10.1dB and the same

measurement for the 2DLPF is 4.2dB.
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Table 2 Filter Options and SNR Measurements
SNRg in = -0.5862 dB

Filtering Options SNR Calculations
Scaling | Lag Beta SNRgg out | SNRyp gain | SNRyp cout ‘ SNRgp tgain | SNRyp cgain
2 1 0.30 4.8582 5.4444 4.5404 5.1266 -0.3178
2 1 0.50 4.8744 5.4606 4.3540 4.9402 -0.5204
2 1 0.75 4.8546 5.4409 3.9080 4.4942 -0.9466
- g | | fbos3
2 1 0.95 4.5551 5.1413 0.9779 1.5641 -3.5772
Conv3 3.6119 4,1918

LA0012

[ 55800 | 45141 | 51003 | 04797

55474

47370

)75 | 50115 | 55977 | 40341 | 46203 |  -0.9774

52147 | 1.0928 16790 | -3.5357

5.2.4 Filter Lag, L

The effect of the filter lag, L, is similar to the adaptation constant 3. The

filter size is 2L +1. Table 2 shows that there is a very small increase in the SNR

as the lag is increased. As the filter size is increased the resolution is decreased,

as shown in Section 5.4. This decrease in resolution is due to the increase in

size of the filter weight matrix w[m,n], where (m,n)=(2L+1,2L+1). As the

dimensions of weight matrix increase the two-dimensional convolution smoothes

out the sharp edges of objects which reduces the resolution. In addition the

convolution of the input data with the weight matrix uses more surrounding pixels
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in the statistics and thus the fine details are lost. The reduction in resolution far
outweighs the minor increase in SNR.

Another major effect of the filter lag is computational time. The 2DACE
algorithm irhplementation in MATLAB has not been coded for the optimal
computational time. This is not the focus of the thesis. For a standard 900x1280
SAR image the computational time is ~ 55 minutes when processed on a
Pentium Il 400 MHz processor. The computational time varies slightly, ~10%,
depending on the scaling option selected. As the lag increases the
computational time significantly increases. For a lag of 3, filter size of 7, the

computational time is over 4 hours.

5.3 Pre-processing and Post-Processing

Pre-processing of the input data and post-processing of the filtered data
are required. Data padding ensures that no pixels of the input image are
destroyed by the filter start up. The filtered image should be compressed to
improve the contrast. The intensity of the pixels corresponding to areas of low
reflectivity is restored to a detectable level and the very high intensity areas are
suppressed. |
5.3.1 Data Padding

In the 2DACE algorithm the initial filter weights are set to zero. A finite
number of operations are required to fill the filter coefficients with values based

on the statistics of the image. The filter coefficient size is (2L +1)x(2L +1). Data

from the surrounding pixels are used in the update equation to create the filter

coefficient matrix. Therefore the filter lag, L, determines the size of the filter
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coefficient matrix and the number of neighboring pixels used in the calculation.

For example consider a filter lag of 1, if the current pixel value is at x[j,i] the filter
coefficient matrix will be calculated using pixels in the region x[j—l,i~1] to
x[j+1,i+1]. This shows that for pixels in the rows and columns that form the

border of the image the filter coefficient update equation requires data outside of
the image boundary.

The filter start up time requires padding the input image with reflected data
around the borders. The data padding routine is designed to pad the borders
with ten rows and columns. The routine reflects the data points symmetrically
across the border. Data padding allows the filter coefficients to converge to the
statistics of the image before the convolution is performed with pixels that are on
the image’s border. After the image is filtered the padded borders are cropped

from the filtered image. Refer to Appendix D for the data padding routine.

5.3.2 Data Compression
Data compression is required when Scaling Option 2 is selected. The

filter weights are updated with equation (5-9)

wlin,n]= pwlm,n —1]+ (IZ‘L B mnklmn]  (5-9).

The convolution of the input data with the filter weights is shown in equation
(5-10)
m+L n+L

yimn]= Y Y x[maf[ik]  (5-10)

j=m-L k=n-L
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This equation shows that y[m,n] is a function of the input data raised to the
power of 3. Thus for values of x[m,n] >1 the output is much greater that the
input. For values of x[m,n]<1 the output is much smaller than the input. The

compression routine is required to reduce the dynamic range and enhance the
fine features with low intensities.

The simple compression routine is the cube root of the filtered

image, y[m,n].. = y[m,n]%. This restores the relation of y[m,n] to the first power
of x[m,n].

Data compression is optional when Scaling Option 3 is selected.
Compression is useful when the low intensity pixels of the filtered image need to
be enhanced while the high intensity pixels need to be suppressed. The 2DACE
algorithm with Scaling Option 2 produces filtered SAR fmages that are dark
compared to the input image. Nonlinear compression is applied to the filtered

image to enhances the low intensity pixels. The compression technique is of the
form y =x“ where x is the input data, ¢ is the compression constant, and y is
the output data. To find the best performance of the compression technique ¢
was varied from 0.3 to 0.9. The contrast of the input image is matched when

¢ =0.8. With the optimum ¢ the compression equation becomes y = x"%,
Figure 12 shows the relation ship between input and output image pixel values

for the compression equation y = x°%.
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Figure 12. This plot shows the input to output mapping of the pixel amplitudes.
The data amplitude compression y = x° is shown with ¢ =0.8.

5.4 Resolution Measurements of a 2D Taylor PSF and a SAR Point Target

Typically resolution is the most important characteristic of a SAR image.
Every type of filtering involves a convolution process, therefore filters need to be
carefully designed so the output data maintains the required characteristics.
Maintaining the resolution while reducing speckle is the main focus of this thesis.
This involves finding the 2DACE filter parameters that reduce the greatest
amount of speckle yet do not adversely affect the resolution. The speckle
reduction is quantified in Section 5.2. Table 2 shows that the greatest SNR

improvement is with Scaling Option 3, and an adaptation constant, , greater
than 0.5. For B equal to 0.75 the increase in SNR is 10.1db. The degradation in

resolution is quantified in this section.




To measure resolution a two-dimensional Taylor Point Spread Function
(PSF) is used as a synthetic point target. Resolution is defined as the -3dB
and-14dB widths of the normalized point target. The -3dB and -14dB widths are
interpolated and the resolution units are pixels. Higher resolution means that
smaller details can be resolved. Therefore if resolution is degraded the -3dB
and -14dB measurements of the PSF are wider.

The synthetic target is generated with a zero padded one-dimensional
Taylor window. A window size of 50 is used for generating the synthetic target.
The FFT of the Taylor window produces the Taylor PSF. The [50x1] Taylor PSF
is multiplied with its transpose, [50x1]x[1x50]=[50x50], to create the
two-dimensional [50x 50] Taylor PSF. The MATLAB m file that creates the 2D
Taylor PSF is included in Appendix E. Refer to Figure 13 for the 2D Taylor PSF.

The Taylor PSF is embedded in white Gaussian noise and tested with
combinations of filter lags, adaptation constants, and the two scaling options.
Additional tests are performed with the Taylor PSF embedded in a field of
speckle taken from an actual SAR image. Finally to prove in the filter parameters
a point target within a SAR image is tested. Refer to Figure 14 for the 2D Taylor
PSF embedded in speckle and to Figure 15 for the SAR point target. The

resolution measurements for the series of tests are documented in Appendix B.
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Figure 13. A 50x50 mesh plot of the 2D Taylor PSF generated from a 1D Taylor
PSF. The 1D Taylor PSF is generated from the FFT of a [50x1] Taylor window.

The [50x1] Taylor PSF is multiplied with its transpose, [50x1]x [1x50]= [50x 50],
to create the two-dimensional [50><50] Taylor PSF. The maximum amplitude is 1.

Figure 14. A 50x50 mesh plot of 2D Taylor PSF and SAR speckle. The speckle
was cropped from the SAR image F2_335493 308.
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Figure 15. A 50x50 mesh plot of a SAR point target cropped from the SAR
image F1_501442_217.

The -3dB and -14dB measurements are compared to the original image
and the noisy image. The data, Appendix B Table 7, shows that the resolution is
decreased for all filtering tests with Scaling Option 2. The -3dB and -14dBPSF
measurements are greater in the filtered image than the -3dB and -14dB
measurements in the clear and noisy images. The major increase in pulse width
is in the horizontal direction. As the adaptation constant, B, increases from 0.3
to 0.9 the horizontal —14dB resolution measurements increase from 9.3 to 21.4
pixels. The equivalent resolution for the clear image is 7.2 pixels. The output
image of the 3x3 2DLPF has narrower -3dB and -14dB PSF measurements
then the 2DACE algorithm with Scaling Option 2. The —14dB horizontal

resolution measurement is 8.7 pixels.
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The drawback of a high B and Scaling Option 3 is that minor shadowing

occurs in the direction that the filter is shifted, for all the tests documented this
would be the vertical direction. No shadowing occurs in the horizontal direction.

For a B value of 0.72 the shadowing is minimized and the resolution is very close

to the input image. The results show that the horizontal resolution is better than
the vertical resolution. Depending on the image characteristics the image can be
rotated so the resolutions of the targets are maintained.

The 2DACE filtering algorithm with Scaling Option 3 has the best
performance. The resolution of the filtered image closely matches the input

image resolution when the filter lag is set to 1, and the adaptation constant, B, is

between 0.60 and 0.95. The test results show that the vertical -3dB and -14dB

PSF measurements increase with a smaller p and tend to decrease as

approaches 0.95. Table 3 includes the resolution measurements of the 2D

Taylor PSF embedded in speckle for increments of B from 0.60 to 0.90.

Referring to the results, Table 3, the resolution of the filtered image is very
close to the input image for values of B between 0.68 to 0.90. For B equal to
0.72 the percent difference in —3dB pixel width, when compared to the clear,
noise free image, is less than 1.0% in the horizontal and vertical directions. The
percent difference in —14dB pixel width is less than 1.3% in the horizontal
direction and 7.1% in the vertical direction. When compared to the pulse widths
of the noisy Taylor PSF the 2DACE algorithm with Scaling Option 3 reduces the
pulse width and actually improves the resolution. The resolution increases with

B (the pulse width decreases) as does the SNR.
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The data also proves that the 2DACE algorithm outperforms the 3x3

2DLPF. The percent difference in the —3dB pixel width for 3x3 2DLPF image

and the clear image is 18.6% in the horizontal direction and 8.6% in the vertical

direction. The percent difference in —14dB pixel width is close to 20% in the

horizontal and vertical directions. Compared to the 2DACE data shown above it

is evident that the 2DACE outperforms the 3x3 2DLPF.

Table 3 Filter Tuning Measurements using 2D Taylor PSF

Taylor PSF with Speckle

Lag=1, Scale=3

Horizontal Resolution
Calculations (units = pixels)

Vertical Resolution
Calculations (units = pixels)

3dB 14dB Mean 3dB 14dB Mean LS
Resolution Resolution Resolution | Resolution SNR
Clear image 3.4891 7.2331 0.1066 3.4891 7.2331 0.1066
Noisy image 40911 8.0243 0.1812 3.7141 7.9859 0.1797
Convolution 4.1372 8.6717 0.2009 3.7889 8.7265 0.2107
with 3x3
Beta

0.60

3.3880 7.1569 0.1319 3.4332 7.4438 0.1478 | 5.3345




Figure 16 is a cross section of the input 2D Taylor PSF embedded in SAR

speckle. Figure 17 is a cross section of the filtered Taylor PSF with g =0.72,
L =1, and Scaling Option 3. The -3dB and -14dB resolution for each figure is
documented in Table 3. The cross section in Figure 17 shows that for g =0.72

the filter rebounds from zero in 8 samples and the resolution is very close to the

resolution of the input image.
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Figure 16. A cross section of the 2D Taylor PSF and SAR speckle.
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Center Row of 2D Taylor PSF with Speckle, Beta =0.72
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Figure 17. Cross section of the 2D Taylor PSF and SAR speckle filtered with
2DACE, Scaling Option = 3, Lag = 1, Beta = 0.72. The filtered image is
normalized to 1.

Resolution measurements of the SAR point target support the filter

parameter selections of p=0.72, L =1, and Scaling Option 3. The data shows

that the horizontal and vertical resolutions of the filtered point target are 0.5 10 1.0
pixels greater than the input image, 11% to 33%. This decrease in resolution is
still better than the decrease shown with the 3x3 2DLPF, which has a maximum
increase in pixel width of 50%. Table 9 in Appendix B lists the fine tuning
resolution data of the filtered SAR point target. The data shows that the

horizontal resolution decreased as B increased, but the vertical resolution
increased as B increased. The results don’t match the results of the 2D Taylor

PSF test. There is no change in resolution when the 2DACE filter is applied to

the 2D Taylor PSFs.




The change is resolution of the SAR point target is due to the large

dynamic range. The SAR point target has a peak amplitude of 150, which is very
large compared to the speckie mean. Therefore the convolution process widens
out the point target as it transitions from the base to the peak. To adjust for this
problem the image is compressed before the 2DACE is applied, then the image
is uncompressed after the filtering. Test results show that the compression
reduces the dynamic range of the input image and as a result the resolution is

not affected by the filtering process.
The data in Table 4 shows that with a compression of y =x°, where cis

the pre-compression factor, the resolution of the point target is equal before and

after filtering. The resolution results are best for c = 0.10. For § equal to 0.72

and ¢ = 0.10 the percent difference in —3dB resolution, when compared to SAR
point target, is -2.2% in the horizontal direction and +6.1% in the vertical
direction. The percent difference in —14dB resolution is less than -13% in the
horizontal direction and -1.6% in the vertical direction. Referring to Figures 22
and 23 in Appendix A, it is apparent that the resolution of the point targets is
unaffected by the filtering process.

Another benefit of the pre-compression is that the shadowing is removed.
As shown in Figure 17 the filter generates a shadow in the direction that the filter
is shifted. Since the dynamic range between point targets and the image mean
is reduced, the filter won’t clamp to a low value when transitioning from the peak.

Inspection of numerous filtered SAR images shows that the

pre-compression factor, ¢, should be adjusted for each SAR image. Figure 23
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shows the results when the pre-compression factor is 0.10. For other images the
best value is closer to 0.25. Images with areas of very low pixel values tend to
have black spots generated by the filtering process. This is the one drawback of
the pre-compression operation. By increasing ¢, reducing the compression, the

black spots are removed.

Table 4 SAR Point Target Resolution Measurements
Lag =1, Scale = 3, Beta =0.72

Horizontal Resolution Vertical Resolution
Calculations (units = pixels) Calculations (units = pixels)
3dB 14dB 3dB 14dB
Speckle image 1.8776 4.5169 1.7609 4.3047
Convolution with 2.5805 6.7794 2.5037 6.3342

3x3

Pre-Compression

Comparing the SNR measurements in Table 2 with the resolution
measurements in Table 4 shows the combination of filter parameters that
maintains the resolution of the input image also has a very high SNR gain. This
is ideal in the sense that the greatest amount of speckle is removed while the
resolution of the input image is maintained.

For the data presented in Chapter 5 the optimum filter parameters

are Scaling Option 3, B =0.72, and L =1. When tested with a 2D Taylor PSF

this combination has an increase in SNR of 10.1dB and virtually no change

in the resolution.
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5.5 Comparison of Filtered SAR Images

A SAR image and three filtered images are shown on the next page. This
section subjectively compares the different filtered images with the speckled SAR
image. The four images are 650x 550 and are cropped from the initial 900x1280
SAR image. Refer to Appendix A for the full-scale 900x1280 images. Figure 18
is the F1_501422 217 image from Sandia National Laboratories. Figure 19 is
the SAR image filtered with the 3x3 LPF. Figure 20 shows the image filtered
with the 2DACE algorithm, Scaling Option =3, Lag =1, and g =0.72. Figure 21
is the SAR image filtered with the 2DACE algorithm, Scaling Option =2,lag =1,

and p=0.30.

In Figure 18 the speckle can clearly be seen, especially around the high
intensity targets. The ggra'nularity pattern of the speckle can also be seen in the
areas of flat contrast. In Figure 19 there are noticeable effects of the LPF. The
high intensity objects are brighter and blurrier than the original image. The fine
details are removed with the filtering process. The image in Figure 20 is the
output of the 2DACE filter with the optimal parameter settings. The speckle is
removed from the entire image. The high intensity objects are not blurred, the
objects are more defined than in the original image, and the fine details in the
areas of flat contrast are more pronounced. Figure 20 has much better
resolution than the original speckled SAR image in Figure 18. Figure 21 shows
that Scaling Option 2 reduces the speckle but the fine features are lost in filtering
process. In addition the high intensity objects are brighter and the edges are not

as sharp.
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Figure 18. F1_501422_ 217 Figure 20. F1_501422_217 and
Scaling Option 3

Figure 19. F1_501422_217 and Figure 21. F1_501422_217 and
3x3 LPF Scaling Option 2
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This research presented a unique implementation if the 2DACE algorithm
involving nonlinear compression to manage the gain control problems inherent
with the open-loop architecture. Data amplitude compression was applied prior
to the 2DACE algorithm to control the gain and maintain the image resolution. In
addition nonlinear data compression was applied after the 2DACE filtering to
restore the contrast of the image.

2DACE was implemented in MATLAB and proven to effectively reduce
speckle in SAR images without adversely affecting the resolution. The 2DACE

filter algorithm was applied to 2D Gaussian and 2D Taylor PSF images to test the
filter's performance. Finally SAR images were filtered with the 2DACE algorithm
and compared with the speckled image and an image filtered with a benchmark
3x3 low pass filter.

Because the performance of open-loop adaptive algorithms is quite often
application specific the parameters must be optimized for the task. The 2DACE
algorithm has three parameters that affect the filtering process. The scaling
option, filter lag, and adaptation constant work together to adaptively filter
uncorrelated data from the image. The data presented in this report showed the
effects of varying filter parameters and the optimal parameter combination was

developed.
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Three different scaling options in the filter update equation were
incorporated in the MATLAB code. Scaling Option 1 and Scaling Option 2 are
both scalars and have the same effect in the 2DACE algorithm. Scaling Option 3
includes a recursive signal power measurement. All tests were performed with
Scaling Options 2 and 3.

The key factors in determining the performance of the filter were the gain
in the signal-to-noise ratio and resolution measurements. The SNR was
calculated with the variance of the clear, ideal image divided by the least square
error calculation. As the error between the filtered image and the clear image
decreased the SNR increased. Measurements of the —3dB and —14dB pulse
widths of the Taylor Point Spread Function are documented to quantify the
effects of the 2DACE filter and the parameters on the resolution.

A two-dimensional Gaussian image with additive white Gaussian noise
was the initial test image used to determine the best normalizing and
unnormalizing routine and demonstrate the effects of the scaling options. For
these tests the filter lag was set to 1 and the adaptation constant was 0.5. The
results of the tests show that the normalizing and unnormalizing routines
adversely effect the image. The SNR decreased with the normalizing routines,
likewise the least squares error increased. The SNR increased for both Scaling
Option 2 and Scaling Option 3 when the normalizing or unnormalizing routines
were removed from the filter implementation. Both scaling options had better

SNRs than the benchmark 3x3 low pass filter.
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A second series of tests was performed to determine the effects of varying
the filter lag and the adaptation constant. The tests showed that a filter lag of 1
was the best selection in terms of maintaining image features and resolution.
The amount of speckle filtered increases as the filter lag increases, as indicated
by the SNR, but the image quality decreased in terms of the resolution. The
reduction in resolution far outweighs the minor increase in SNR. In terms of the
gain in SNR the tests also showed the best value for the adaptation constant, 3,
was different for each scaling option. For Scaling Option 2 the best B is 0.3. For
Scaling Option 3 the best B was around 0.72. Both scaling options again
outperform the benchmark 3x3 LPF. Scaling Option 3 had an SNR gain that
was nearly double the SNR gain of Scaling Option 2.

A two-dimensional Taylor PSF with additive white Gaussian noise and
SAR speckle was used to determine the 2DACE effects on point target
resolution. The results show that for Scaling Option 2 the resolution decreased
as B increased. Thus for Scaling Option 2the best value of B was 0.3. For
Scaling Option 3 the resolution increased as B increased. Fine tuning
measurements documented in Table 3 show the small changes in resolution as
B was varied from 0.60 to 0.90. The resolution of the filtered image nearly
equals the resolution of the Taylor PSF when  was 0.80. As f increased
shadowing behind the horizontal dimension of the object increased. Therefore a
compromise between resolution and shadowing was made with § = 0.72.

Test performed with a SAR point target show that the 2DACE filtering
process with Scaling Option 3 did not affect the resolution in the horizontal or
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vertical dimensions, as long as the image was compressed before the 2DACE
filtering process. In addition, the shadowing was not produced around the point
targets when the dynamic range was reduced with the pre-compression process.
Tables 7, 9,10, and 11 include the resolution measurements of the filtered SAR

point target made for various values of § and the pre-compression factor.

The results in this report show that there is latitude in selecting the scaling
option and the adaptation constant. For Scaling Option 3 the adaptation constant

B can be varied between 0.6 and 0.9, but the value of 0.72 is proven to be the
best choice. For Scaling Option 2 8 should by < 0.3. Both scaling options

produce results that improve the image quality.
The 2DACE filter with the optimum parameters was applied to SAR
images obtained from Sandia National Laboratories. The filtered images showed

that the 2DACE filter with Scaling Option 3, filter lag 1, and f = 0.72 removed the

speckle, restored the fine features, and maintained the resolution of the point

targets. The 2DACE filter with Scaling Option 2, filter lag 1, and g = 0.3 removed

the speckle and only had a minor effect on the resolution. The two drawbacks of
Scaling Option 2 are that the edges of large, high intensity objects were
smoothed out and the very fine details in the low intensity areas were lost.
Comparison of the images filtered with the 2DACE and the image filtered with the
3x3 LPF shows that the 2DACE has superior performance. It is easy fo see this
in a visual test of the images and all the results in this report point to this

conclusion as well.
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6.2 Future Work

Future work can be focused on automating the pre-compression routine.
The data showed that the pre-compression factor ¢ in the equation y=x° had a

direct influence on the image resolution. Depending on the image the pre-
compression factor generated unwanted black spots, discontinuities. By
Adjusting c the pre-compression routine could be changed so the black spots are
not generated. Therefore user involvement is required for obtaining the best
results.

The future work will focus on automating the selection of the
pre-compression factor. One method of automation would be to incorporate
correlation mapping and image segmentation. This process would apply the
pre-compression to independent areas of the image. The pre-compression factor
would be selected based on the statistics of the selected area. This would result
in optimum compression for maximum resolution in areas with features such as
point targets and large objects. For areas without many features the
pre-compression would adapt to a larger factor to reduce the probability of

generating discontinuities in the image.
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Appendix A — SAR Images

The following eight pages are full scale SAR images. The images are 900
pixels by 1280 pixels. Figure 22 is the SAR image F1_501422_217 obtained
from Sandia National Laboratories, Department 2345. Figure 23 is the filtered
image with the optimal 2DACE parameters: pre-compression 0.10, Scaling
Option 3, Lag =1, §=0.72. Figure 24 is the SAR image filtered with the 2DACE

parameters Scaling Option 2, Lag = 1, p=0.30. Figure 25 is the SAR image

filtered with the benchmark 3x3 LPF. Refer to Section 5.5 for a comparison of
these images. Figure 26 is the SAR image F2_335493_308 and Figure 27 is the
image filtered with the following 2DACE parameters: pre-compression 0.25,
Scaling Option 3, Lag = 1, 8 =0.72. Figure 28 is the SAR image
F1_171463_893 and Figure 29 is the image filtered with the following 2DACE
parameters: pre-compression 0.33, Scaling Option 3, Lag=1, £=0.72. The
pre-compression values used for processing Figures 26 and 28 were increased
from 0.1 to reduce the discontinuities (black spots) generated from the

pre-compression process.
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Figure 22 SAR Image F1 501422 217
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Figure 23 SAR Image F1 501422 217 2DACE Scaling Option 3, Lag = 1, Beta = 0.72 Pre Compress 0.10
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Figure 24 SAR Image F1 501422 217 2DACE Scaling Option 2, Lag = 1, Beta = 0.30




Figure 25 SAR Image F1 501422 217 3x3 LPF
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Figure 26 SAR Image F2 3335493 308
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Figure 28 SAR Image F1 171463 893
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Appendix B — Resolution Measurements

Tables 5, 6, and 7 contain the resolution measurement data for the 2D

Taylor PSFs and the SAR point target. The —3dB and —14dB measurements

are included for each combination of parameter setting. The means of the center

row of the test images are included for reference. Tables 8 and 9 list the

resolution measurement data used to find the optimal parameter settings.

Table 5 Resolution Measurements - Taylor PSF with WGN Noise

Filtering Options Horizontal Resolution Vertical Resolution
Calculations (units = pixels) | Calculations (units = pixels)
3dB 14dB Mean 3dB 14dB Mean
Resolution | Resolution Resolution | Resolution
Clear image 3.4891 7.2331 0.1066 3.4891 7.2331 0.1066
Speckle image 4.1970 8.4216 0.1881 4.5863 7.6670 0.1548
Convolution with 3x3 3.6820 7.6517 0.1625 4.0077 8.8010 0.1665
Lag | Beta | Scaling
1 0.30 2 4.1439 8.7049 0.1794 3.8978 9.3407 0.1597
1 0.50 2 4.2327 9.0146 0.1923 3.8073 9.3642 0.1607
1 0.75 2 4.4199 9.4829 0.2325 3.7234 9.4296 0.1686

1 0.30 3 3.7667 6.9457 0.0391 8.8872 0.0516

1 0.50 3 3.5290 6.6624 0.0438 8.0660 0.0633

1 0.75 3 3.0580 6.5124 0.0685 7.3723 0.0938
3

0.3

5.5698

12.0407

0.2330

5.2449

11.9218

0.2056

0.3

1.8151

8.0418

0.0195

1.0856

11.3374

0.0287
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Table 6 Resolution Measurements - Taylor PSF with Speckle

Filtering Options Horizontal Resolution Vertical Resolution
Calculations (units = pixels) | Calculations (units = pixels)
3dB 14dB Mean 3dB 14dB Mean
Resolution | Resolution Resolution | Resolution
Clear image 3.4891 7.2331 0.1066 3.4891 7.2331 0.1066
Speckle image 4.0911 8.0243 0.1812 3.7141 7.9859 0.1797
Convolution with 3x3 4,1372 8.6717 0.2009 3.7889 8.7265 0.2107
Lag Beta | Scaling
1 0.30 2 4.4654 9.3991 0.2136 4.1817 8.5093 0.2143
1 0.50 2 4.5386 10.8460 0.2267 4.2150 8.7287 0.2174
1 0.75 2 4.7570 17.6212 0.2731 4.2854 94713 0.2343
1 0.95 2 0.4244 4.5434 - 0.3001
0.30 . ‘ _% ' 0.2409 4.7332 10.0603 0.2438
0501 27 3. | 02546 4.7746 10.2465 | 0.2473
-1 0.75 2 .1.0.3014 48634 | 11.5295 | 0.2646
210951 2 04611 5.2086 - 0.3367
0.30 3 42832 8.0440 0.1836 4.0755 9.5599 0.1989
0.50 3 0.1567 3.7703 8.8097 0.1761
0.75 3 0.1330 3.4356 7.6190 0.1511
0.95 3 0.1384 3.8165 7.5888 0.1613
0301 ” .1 01836 |  8.5324 11.9187 | 0.2056
0.50 | 1 0.1648 7.5317 11.0091 | 0.1949
075, 101514 | 4.8742 94715 | 0.1857 |
_10.1557 | 4.4832 9.0427 | 0.2002
3 0.3 2 3.6734 7.0171 0.1057 3.3351 6.6243 0.0909
3 0.3 3 2.6954 9.1062 0.1702 1.4289 13.0390 0.1976
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Table 7 Resolution Measurements - SAR Point Target with Speckle

Filtering Options Horizontal Resolution Vertical Resolution
Calculations (units = pixels) | Calculations (units = pixels
3dB 14dB Mean 3dB 14dB Mean
Resolution | Resolution Resolution | Resolution
Speckle image 1.8776 4.5169 0.1290 1.7609 4.3047 0.1180
Convolution with 3x3 2.5805 6.7794 0.1793 2.5037 6.3342 0.1656
Lag | Beta | Scaling

1 0.30 2 2.6376 8.4675 0.1858 2.4067 5.7127 0.1576
1 0.50 2 2.7415 10.3738 0.2038 2.4158 5.9161 0.1630
1 0.75 2 3.0827 19.5990 0.2568 2.4441 6.5362 0.1807
1 0.95 2 3.8210 - 0.4227 2.6039 18.9104 0.2511
1030 2 3.1162 12.1286 | 0.2198 28661 | 84895 | 0.1920
0.50 3| 32863 | 153025 102380 | 28928 | 89613 | 0.1993
0.75 3 [ TT36718 | 243536 | 0.2938 | 29688 TT12.4061 | 02213
0.95 547336 demeeme | 04675 | 3.3240 T 0.3048
0.30 3 1.2838 4.5011 0.0863 4.7095 6.7778 0.1081
0.50 3 1.5116 4.5209 0.0889 4.3175 6.1141 0.1185
0.75 3 2.0265 5.0329 0.0980 3.4258 5.7675 0.1296
0.95 3 2.2946 6.7559 0.1046 2.0877 5.0939 0.1175
0.30 ‘3 1.8308 5.8470 0.0569 | 0.09001 7.1859 | 0.0841
0.50 3 20099 | 61999 | 0.0699 | 10186 72924 | 0.1131
0.75 3 2.3523 71100 | 0.0988 1 1.8771 75889 | 0.1586
1 095, 3 3.3429 10.0175 0.1323 2.7264 7.4887 0.1798
3 0.3 2 3.4262 16.7145 0.2551 2.9755 10.6637 0.2263
3 03 3 2.2641 6.2233 0.0651 1.3538 4.0521 0.1017




Lag=1, Scale=3

Table 8 Filter Tuning Measurements - Taylor PSF with Speckle

Horizontal Resolution Vertical Resolution
Calculations (units = pixels) Calculations (units = pixels)
3dB 14dB Mean 3dB 14dB Mean LS SNR
Resolution Resolution Resolution | Resolution
Clear image 3.4891 7.2331 0.1066 3.4891 7.2331 0.1066
Noisy image 4.0911 8.0243 0.1812 37141 7.9859 0.1797

Convolution
with 3x3

4.1372

8.6717

0.2009

3.7889

8.7265

0.2107

Beta

Cross sections show that for beta = 0.72 the filter rebounds in about 8 samples and the resolution is about
equal to the input image.




Table 9 Filter Tuning Measurements — SAR Point Target

Lag=1, Scale=3

Horizontal Resolution Vertical Resolution
Calculations (units = pixels) Calculations (units = pixels)
Beta 3dB 14dB Mean 3dB 14dB Mean
Resolution | Resolution Resolution | Resolution
Speckle image 1.8776 4.5169 0.1290 1.7609 4.3047 0.1180
Convolution 2.5805 6.7794 0.1793 2.5037 6.3342 0.1656
with 3x3
2.0265 5.0329 0.0980 3.4258 5.7675 0.1296

23058 6.1472 0.1120 2.8913 5.4399 0.1244
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Lag =1, Scale = 3, compression = 0.25

Table 10 Filter Tuning Measurements — Pre-Compression Results

Horizontal Resolution
Calculations (units = pixels)

Vertical Resolution Calculations

(units = pixels)

3dB 14dB 3dBc 14dB ¢ 3dB 14dB 3dBc 14dB ¢
Speckle image | 1.8776 | 4.5169 1.7609 4.3047
Convolution 2.5805 | 6.7794 2.5037 6.3342
with 3x3

Beta

066 [ 22504

5.3400

Table 11 Filter Tuning Measurements — Pre-Compression Variable Tests
Lag =1, Scale =3, Beta = 0.72

Horizontal Resolution
Calculations (units = pixels)

Vertical Resolution Calculations
(units = pixels)

3dB 14dB 3dBc¢ 14dB ¢ 3dB 14dB 3dBc 14dB ¢
Speckle image | 1.8776 | 4.5169 1.7609 4.3047
Convolution 2.5805 | 6.7794 2.5037 6.3342
with 3x3

Pre-Compression
Factor




Appendix C — 2DACE Filter Algorithm - MATLAB Code

$Filter_2DACE.m
program_name = 'Filter_ 2DACE';

%$The input image is transposed before filtering
%$then transposed back after the filtering process.

%JAR 5/23/00

$Main routine for the Adaptive Correlation Enhancer Algorithm.
%The Scaling Option is 3, beta is 0.72 and the lag is 1.
%Prior to filtering the image is compressed.

$After filtering the image is uncompressed.

$The output consists of two images and a structure of filter options.
%The image filtered_image is the image filtered with 2DACE.

%The image "filtered image_c is the filtered image compressed with vy
x~{0.8),

$which improves the contrast on some images.

$The initial image is padded around the borders by reflections of the
pixels.

%The number of padded columns and rows is 10.

image = input({'Enter the name of the image ")
input_name = input('Enter the name of the image... again Y, 's');

$start clock
t0 = clock;
%make sure that image is a double array

image = double (image) ;

image = image';

gnormalize the image to 1
max_im = max(max{(image));
image_norm = image/max_im;
%2set compression constant

compress_constant = 0.15;
uncompress_constant = 1/compress_constant;

scompress image

image = image_norm,. " (compress_constant);
max_im = max(max(image));

image norm = image/max_im;
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image = image_norm;

dimension_1i = size(image);
rows_i = dimension_1(1,1);
columns_1i = dimension_i(1,2);

pad 10;
lag = 1;

filt_size = 2*lag+l
%filt_size = 1

scale = 3;
beta = 0.72;

$pad image with reflected data
[pad_image] = data_pad{image,pad);
$calculate dimensions of padded image
dimension = size(pad_image);

rows = dimension{l,1);

columns = dimension(1l,2);

sweighted average adaptive correlation enhancer function for scale = 2

[filt_im] =
filter_auto(pad_image, rows, columns, filt_size, scale,beta,lag);

%crop 1images to original size

Crop_c columns_i-1;
crop_r rows_1-1;
crop_s = pad + 1;

filt_im = imcrop(filt_im, [crop_S Crop_s Crop_c¢ crop_r]l);

filt_im £ilt_im';

Suncompress image
max_im = max(max(filt_im));

filt_im _norm = filt_im/max_im;

filtered_image = filt_im norm.” (uncompress_constant);
$adjust image to max level of 256.

max_pixel = max(max(filtered_image)) ;
norm_filt im = filtered_image/max_pixel;

filtered_image = norm_filt_im*256;

%adjust constrast
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max_im = max(max(filtered_image));
filt_im norm = filtered_image/max_im;
filtered_image_c = filt_im norm.”(0.8);

max_pixel = max(max(filtered_image_c));
norm_filt_im = filtered_image_c/max_pixel;

filtered_image_c = norm filt im*256;

$calculate elapsed time and date
cpu_time = etime(clock,t0)/60;
date_today = date;

$structure of filter options

filter_ options =
struct ('program',program _name, 'date’,date_today, 'input_image_name', ...

input_name, 'computational_time',cpu_time, 'pad_length',pad, 'lag’, lag, 'sc
ale',scale, 'beta’',beta, ...
'compression_constant', compress_constant) ;

clear program_name date_today input_name cpu_time pad lag beta scale
image_norm

clear max_image min_image dimension i rows_1i columns_i dimension rows
columns

clear filt_im t0 crop_c crop_r crop_s pad_image image filt_size
max_pixel

clear norm_filt_im max_im
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$filter_auto.m

oY

Adaptive Correlation Enhancer function

oe

o

This filter runs left to right and then repeats on incremented row.
%Used with Filter_ 2DACE

function [corr_image] =
filter_auto (norml_image,rows,columns, filt_size,scale,beta, lag)

variance = 0;
autocorrelation = 0;
sum = 0;

w = 0;

row_pick = 0;

start = 1;

%Zero the weight matrix

for k = 1:filt_size,
for 1 = 1:filt_sirze,
wik,1l) = 0;

end
end

%$Beginning of the filtering loop
$Compute the autocorrelation of the weight matrix

%Start by finding the weight matrix average
for m = l:rows,

row_pick = xor(start,row_pick);

if row_pick == 1

nstart = 1;

cnt = 1;

nstop = columns;
else

nstart = 1;

cnt = 1;

nstop = columns;
end

for n = nstart:cnt:nstop,
corr_image(m,n) = 0;

idwri = m-lag;

for k = 1:filt_size,
idwci = n-lag;
for 1 = 1:filt_size,
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if ((idwri < 1) | (idwri > rows) | (idwci < 1) | (idweci >

columns) ) ;
else
update_data = norml_image (idwri,idwci);
corr_image(m,n) = corr_image(m,n) + w(k,1l)*update_data;
end
idwci = idwei + 1;
end
idwri = idwri + 1;
end

switch scale

case 1,

ctf = 1.0 - beta;
case 2,

cf = ((1.0 - beta)/(2*lag*lag));
otherwise,

variance = beta*variance + ((1.0 -

beta) *norml_image (m,n) *norml_image (m,n));

if variance ~= 0
cf = (1.0 - beta)/(2.0*lag*lag*variance);
else
cf = (1.0 - beta)/(2.0*lag*lag);
end
end

$Update the weight matrix

idwri = m-lag;

for k = 1:filt_size,
idwcli = n-lag;

for 1 1:filt_size,

supdate_data is used to check for out of image bounds. If the point is
outside
%the input image a value of zero is assigned to that point

if ((idwri < 1) | (idwri > rows) | (idwci < 1) | (idwci >
columns) )
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end

end

end

idwri

end

update_data

I
(@]

else

update_data = norml_image (idwri, idwci) ;

end
w(k,1l) = ((beta*w(k,1l))+(cf*update_data*norml_image(m,n)));
idwel = idweil + 1;

= idwri + 1;
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Appendix D — Data Padding M File

%data_pad.m

%this function pads the image with reflected data around the border.
%$the number of rows and columns of reflected data is equal to the
$variable ‘lag’.

function [pad image] = data_pad(image, lag)

dimension = size(image);

rows = dimension(l,1);
columns = dimension(1,2);

N = lag+columns;

column_I = eye(N);

row matrixl = imcrop(column_I, [lag+l 1 N NJ]);
padl_t = row_matrixl*image';

padl = padl_t';

N = lag+rows;

row_I = evye(N);

row_matrix2 = imcrop(row_I, [lag+l 1 N NJ]);
pad2 = row_matrix2*padl;

dimension2 = size(pad2);

rowsl = dimension2(1,1);
columnsl = dimension2(1,2);

N = lag+rowsl;

row_I = eye(N);

row_matrix3 = imcrop(row_I, [1 1 N-(lag+l) NI1);:
pad3 = row matrix3*pad2;

N = lag+columnsl;

column_I2 = eye(N);

row_matrixl = imcrop(column_I2, [1 1 N-(lag+l) NI);
padd_t = row_matrixl*pad3’';

pad_image = padd_t';




dimension = size(pad_image);

rows = dimension(l,1);
columns = dimension(l,2);

for m = 1:1lag,

for n = l:columns,

prad_image(m,n) = pad_image(2*lag-m+l,n);

end
end

k = -1;
for m = rows-lag+l:rows,
k = k+2;

for n = l:columns,

pad_image (m,n) = pad_image (m-k,n);

end
end

for n = 1:1ag,

for m = l:rows,
pad_image (m,n) = pad_image (m
end
end
k = -1;
for n = columns-lag+l:columns,
k = k+2;
for m = l:rows,
prad_image{(m,n) = pad_image(m,n-k);
end
end

,2%lag-n+l);
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Appendix E — Two-Dimensional Taylor PSF M File

$taylor_psf.m
%$this function creats a 2D Taylor PSF.

%image = input('enter the name of the image ") ;

N = input('enter the length of the Taylor Window ")
lag = input ('enter the lag ")

gfunction [pad2] = vector_pad(image,lag)

wi=taylor (-35,4,N);

dimension = size(wi);

rows = dimension(l,1);
columns = dimension(l,2);

$zero pad the vector
vector_1l = columns + (2*lag);

zeros (1,vector_1);

]

pad_v

1l:vector_1,

for x
if x <= lag
pad_vi(x) = 0;

elseif x > columns + lag

pad_v(x) = 0;
else
pad_v(x) = wi(x-lag);
end
end

%take fft and abs

t_pst = abs(fft(pad_v));
points = length(t_psf);
i = l:points;

for x = points-5:points,
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$reflect Taylor FFT to generate PSF
t_psf2 = zeros(l,2*points);
for i = 1l:points,

t_psf2(i) = t_psf(points-=(i-1));
end
j = points;

for 1 = 2*points-1:-1:points,

t_psf2(i) = t_psf(j);
i = 3-1;

end

%Create 2D Taylor PSF

taylor_matrix = t_psf2'*t_psf2;

%$Scale 2D Tavlor PSF to 256

taylor_max = max(max(taylor_matrix));
taylor_256 = (taylor_matrix/taylor_max)*256;
%crop image to 50 x 50

dimension_256 = sgize(taylor_ 256);

rows_256 = dimension_256(1,1);
columnsg_256 = dimension_256(1,2);

center_x rows_256/2;
center_c = columns_256/2;

first_r center r - 24;
first_¢ = center ¢ - 24;

taylor_test = imcrop(taylor_ 256, [first_r first_c 49 49]1);

i = l:points:

figure(l),

subplot (211);

stem(pad_v) ;

title('Taylor Window length = 50 Zero Pad = 50 each side'):
subplot(212);

stem(t_psf);

title('Taylor PSF');

figure(2),
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stem(t_psf2);
title('Taylor PSF Reflected');

figure(3),
imagesc{taylor_256) ;
title('Tayleor PSF 2D Matrix');

figure (4),

imagesc{taylor_test);

$mesh (taylor_test);

title('Taylor PSF 2D Matrix 50 x 50');

dimension = size(taylor_256);
rows = dimension(l,1);

columns = dimension(1,2);

index = floor(rows/2);

center_row = taylor_256(index, :);
figure (5)

stem(center_row) ;
title('center row of Taylor PSF 2D Matrix');
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