

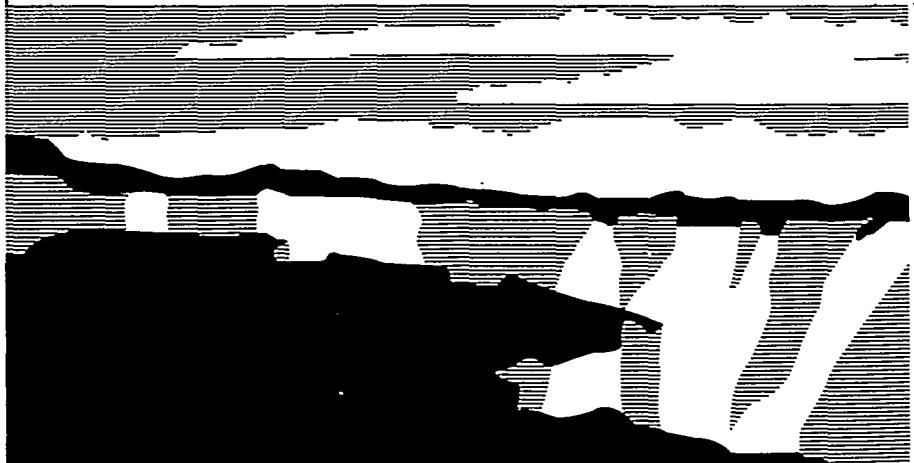
LA-UR- 98-3806

Approved for public release;
distribution is unlimited.

Title:

OBSERVATION OF THE BEHAVIOR OF CONFINED
PBX 9501 FOLLOWING A SIMULATED COOK-OFF
IGNITION

RECEIVED
AUG 18 1998
OSTI


Author(s):

P. M. Dickson
B. W. Asay
B. F. Henson
C. S. Fugard

Submitted to:

Detonation Symposium
Snowmass, CO
August 1998

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (10/96)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Inelastic Neutron Scattering Study of Mn₁₂-Acetate

Yicheng Zhong and M. P. Sarachik

Physics Department, City College of the City University of New York, New York, New York 10031

Jonathan R. Friedman

Department of Physics and Astronomy, The State University of New York at Stony Brook, Stony Brook, NY 11794

R. A. Robinson, T. M. Kelley, H. Nakotte and A. C. Christianson

Manuel Lujan Jr. Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545

F. Trouw

Intense Pulsed Neutron Source, Argonne National Laboratory, Argonne, IL 60439

S. M. J. Aubin and D. N. Hendrickson

Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093

(August 19, 1998)

Abstract

We report zero-field inelastic neutron scattering experiments on a 14-gram deuterated sample of Mn₁₂-Acetate consisting of a large number of identical spin-10 magnetic clusters. Our resolution enables us to see a series of peaks corresponding to transitions between the anisotropy levels within the spin-10 manifold. A fit to the spin Hamiltonian $H = -DS_z^2 + \mu_B B \cdot g \cdot S -$

$BS_z^4 + C(S_+^4 + S_-^4)$ yields an anisotropy constant $D = (0.54 \pm 0.02)$ K and a fourth-order diagonal anisotropy coefficient $B = (1.2 \pm 0.1) \times 10^{-3}$ K. Unlike EPR measurements, our experiments do not require a magnetic field and yield parameters that do not require knowledge of the g -value.

PACS numbers: 78.70.N, 29.30.H, 36.40.Cg, 75.45.+j

INTRODUCTION

High-spin molecular magnets provide a unique laboratory for the study of Quantum Tunneling of Magnetization (QTM). To date, the most intensively studied system of this type is Mn₁₂-Acetate, [Mn₁₂O₁₂(CH₃COO)₁₆(H₂O)₄]·2CH₃COOH·4H₂O. First synthesized by Lis [1], it consists of Avogadro's number of weakly interacting [2], chemically identical Mn₁₂-Acetate molecules residing on a body-centered tetragonal lattice. The magnetic core of each molecule contains four Mn⁴⁺ ($S = 3/2$) and eight Mn³⁺ ($S = 2$) ions which form an $S = 10$ ground state at low temperatures [3]. A strong magnetocrystalline anisotropy results in a double-well potential with each molecule's 21 states yielding two degenerate ground states $m = \pm 10$ and a set of doubly degenerate excited states $m = \pm 9, \pm 8, \dots$ (except for $m = 0$) [3,4]. Below the blocking temperature of ≈ 3 K, a remarkable series of steps were found in the hysteresis loops of oriented powder samples at regular intervals of magnetic field, steps which were interpreted as a manifestation of QTM [5]. Experimental confirmation of these steps was provided soon thereafter in studies of single crystals [6].

Other experimental evidence supports this interpretation [7,8] but there is no general agreement on the mechanism responsible for the QTM in Mn₁₂-Ac. Up to fourth-order terms, the spin Hamiltonian of the system can be written as:

$$H = -DS_z^2 + \mu_B \mathbf{B} \cdot \mathbf{g} \cdot \mathbf{S} - BS_z^4 + C(S_+^4 + S_-^4) = H_0 + H' \quad (1)$$

where D is the anisotropy constant, the second term represents the Zeeman energy, and the remaining are higher-order terms in the crystalline anisotropy. $H_0 = -DS_z^2 + g_{para}\mu_B B_z S_z - BS_z^4$ includes all terms that commute with S_z and do not give rise to tunneling; $H' = g_{perp}\mu_B B_x S_x + C(S_+^4 + S_-^4)$ represents symmetry-breaking terms that could give rise to tunneling, associated with an internal transverse magnetic field and transverse fourth-order anisotropy terms. Major efforts are currently underway to determine the relative importance of magnetic fields and crystalline anisotropy in accounting for the relaxation rates observed in Mn₁₂-Ac [9-11]. Accurate, reliable experimental determinations of the spin Hamiltonian, Eq. (1), thus provide crucial information.

EPR measurements performed recently in $Mn_{12}\text{-Ac}$ have yielded two different sets of values for the coefficients D and B of Eq. (1). Barra *et al.* [12] measured HF-EPR spectra at frequencies ranging from 150 to 525 GHz in magnetic fields up to 25 T on a polycrystalline powder sample, yielding $D = (0.56 \pm 0.04)$ K and $B = (1.1 \pm 0.1) \times 10^{-3}$ K. Using high-sensitivity EPR techniques in the frequency range between 35 and 115 GHz, Hill *et al.* [13] studied a submillimeter single crystal; their results imply $D = 0.59$ K and $B = 0.88 \times 10^{-3}$ K [14].

EPR measurements must therefore be done in a magnetic field, and their interpretation requires knowledge of the g -value. In contrast, neutron scattering experiments are generally performed in the absence of external magnetic fields, and yield a more direct determination of the coefficients B and D . An inelastic neutron scattering study by Hennion *et al.* [15] of partially deuterated $Mn_{12}\text{-Ac}$ found a well-defined peak around 0.3 THz (1.24 meV) which was attributed to excitations from $m = \pm 10$ to $m = \pm 9$. The peak broadens on its low energy side as the temperature increases, but these authors were unable to resolve any detailed structure.

In the present study, we have performed zero-field inelastic neutron scattering experiments on fully deuterated $Mn_{12}\text{-Ac}$. The excitation spectra were measured with relatively uniform and high resolution at finite neutron energy transfer up to 20 meV, covering the excitation energies of the spin-10 manifold of $Mn_{12}\text{-Ac}$. Since g -factors do not enter the problem in the absence of a magnetic field, this method allows a more accurate determination of the spin Hamiltonian.

EXPERIMENTS AND RESULTS

A 14-gram deuterated $Mn_{12}\text{-Ac}$ powder sample was prepared for the inelastic neutron scattering experiments. The sample was characterized following the method of ref. 5 and steps at the same values of magnetic field were seen in its hysteresis loops. We used the PHAROS chopper spectrometer [16] at the LANSCE spallation neutron source at Los Alamos, covering energy transfers between 0 and 20 meV with resolutions of 0.4 and 0.8 meV FWHM (full-width-at-half-maximum) respectively, and temperatures between 1.4 and

77 K. We also used QENS [17], an inverse geometry crystal analyzer spectrometer at the Intense Pulsed Neutron Source at Argonne National Laboratory with final neutron energy of 3.63 meV at five different temperatures ranging from 1.4 K up to 30 K. Its energy resolution is $\approx 100\mu\text{eV FWHM}$.

Data taken at temperatures of 1.4 K, 10 K, 17 K and 30 K are shown in Fig. 1. The large maximum centered about zero energy is due to elastic scattering. At 1.4 K, a single sharp peak is observed at 1.24 meV; we attribute this to excitations from spin states $m = \pm 10$ to $m = \pm 9$. We note that at 1.4 K, the overwhelming majority of spins are in the ground states $m = \pm 10$. As the temperature is raised and some of the spins are thermally activated to higher energy states, new peaks develop on the low energy side of the 1.24 meV peak; we attribute these to transitions from $m = \pm 9$ to ± 8 , ± 8 to ± 7 , etc. Transitions such as those between $m = \pm 9$ and ± 7 are forbidden by neutron scattering selection rules, $\Delta S = 0, \pm 1, \Delta m = 0, \pm 1$. Due to the increased population of higher energy levels at higher temperature, peaks also appear that are symmetrically placed with respect to $E = 0$ on the neutron energy-gain side. No maxima appear above 1.24 meV, confirming that this energy corresponds to transitions between the ground and first excited states of the spin manifold. The maxima are labelled by the index m which denotes the level from which each excitation occurs; thus, the 1.24 meV peak is labeled 10, the adjacent peak, 9, and so on. As shown below, the positions of these peaks contain key information regarding the spin Hamiltonian of Mn₁₂-Ac.

Since there is no externally applied magnetic field in our experiments, and the Zeeman energy due to the internal magnetic field of Mn₁₂-Ac (estimated to be several hundred Oe [18]) is at least two orders of magnitude smaller than the anisotropy energy, the term $\mu_B B \cdot g \cdot S$ in spin Hamiltonian (1) can be safely neglected. Furthermore, the fourth-order transverse anisotropy term $C(S_+^4 + S_-^4)$ has little effect on the Eigen-energies of the states $|m\rangle$ and $| - m\rangle$ for odd m , as well as for large values of m near the bottom of the anisotropy wells ($|m| \geq 6$). After these simplifications, the energy of a state with magnetic quantum number m can be approximated by $E_m = -Dm^2 - Bm^4$ with good accuracy for

levels with $|m| \geq 5$ (as is true for our case), and the energy of excitation from levels $\pm m$ to $\pm(m-1)$ will be $\Delta E_m = E_m - E_{m-1}$. In Fig. 2, six excitation energies are plotted as a function of the index m . The deviation from a linear dependence clearly indicates the importance of including a diagonal fourth order term. A two-parameter fit that includes a fourth order term, as discussed above, gives $D = (4.67 \pm 0.18)$ meV = (0.54 ± 0.02) K and $B = (1.04 \pm 0.10) \times 10^{-4}$ meV = $(1.2 \pm 0.1) \times 10^{-3}$ K. These values are very close to the EPR results obtained by Barra *et al.*: $D = (0.56 \pm 0.04)$ K, $B = (1.1 \pm 0.1) \times 10^{-3}$.

DISCUSSION

In the absence of fourth-order anisotropy, the energy levels would be given by $-Dm^2$ and the excitations by $(2m-1)D$, so that the excitation energy would be a linear function of the index m . By contrast, Fig. 2 shows distinct nonlinearity, so that a fourth order diagonal anisotropy term is clearly important, especially for the levels near the bottom of the anisotropy wells. For the values of D and B deduced from our neutron scattering data, one obtains a large ratio for $|Bm^4/Dm^2| \approx 0.2$ for $m = 10$. Since B and D have the same sign, the level spacings near the bottom of the anisotropy wells are relatively sparser, and the distribution of levels near the top of the barrier denser.

Due to the presence of a fourth-order term, the energy levels will not come into resonance simultaneously for a given field applied along the anisotropy axis. Since two levels of different quantum numbers m and m' are degenerate when $H = [D(m+m') + B(m+m')(m^2 + m'^2)]/(g\mu_B)$, all pairs of states $m' = -m$ come into resonance simultaneously only in zero magnetic field. Moreover, the spacing between steps in the hysteresis loops will not be constant. Detailed comparison of the magnetic fields at which maxima in the relaxation rate occur with the calculated level crossings using the parameters given above can, in principle, allow a determination of the specific levels near the top of the barrier that participate in the tunneling.

For our values of D and B , the full height of the anisotropy barrier (defined as the energy difference between $m = 0$ and $m = 10$) is calculated to be (66 ± 3) K. This is very close to the value of 61 K obtained from relaxation measurements [2]; it is inconsistent with

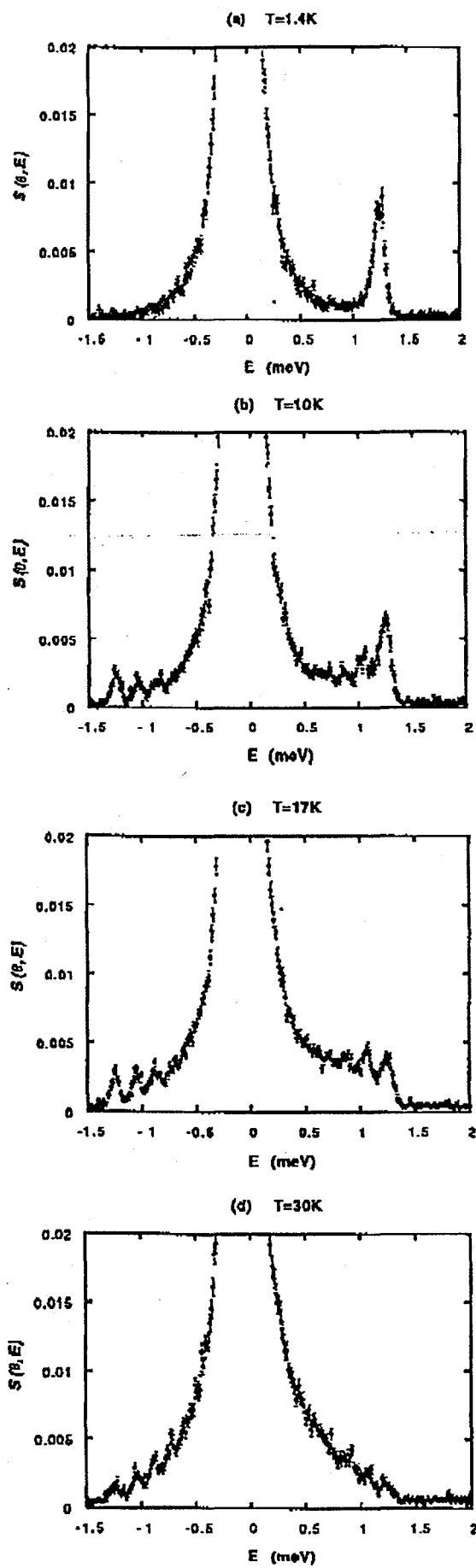
recent results obtained by Gomes *et al.* [20]. It has been pointed out that in Mn_{12} -Ac, thermally assisted tunneling takes place predominantly via one or two levels near the top of the anisotropy barrier, effectively reducing the barrier height [19,8]. From $E_m - E_{10} = 61$ K, we deduce that $m = 2, 3$ are possible candidates for the zero-field tunneling process.

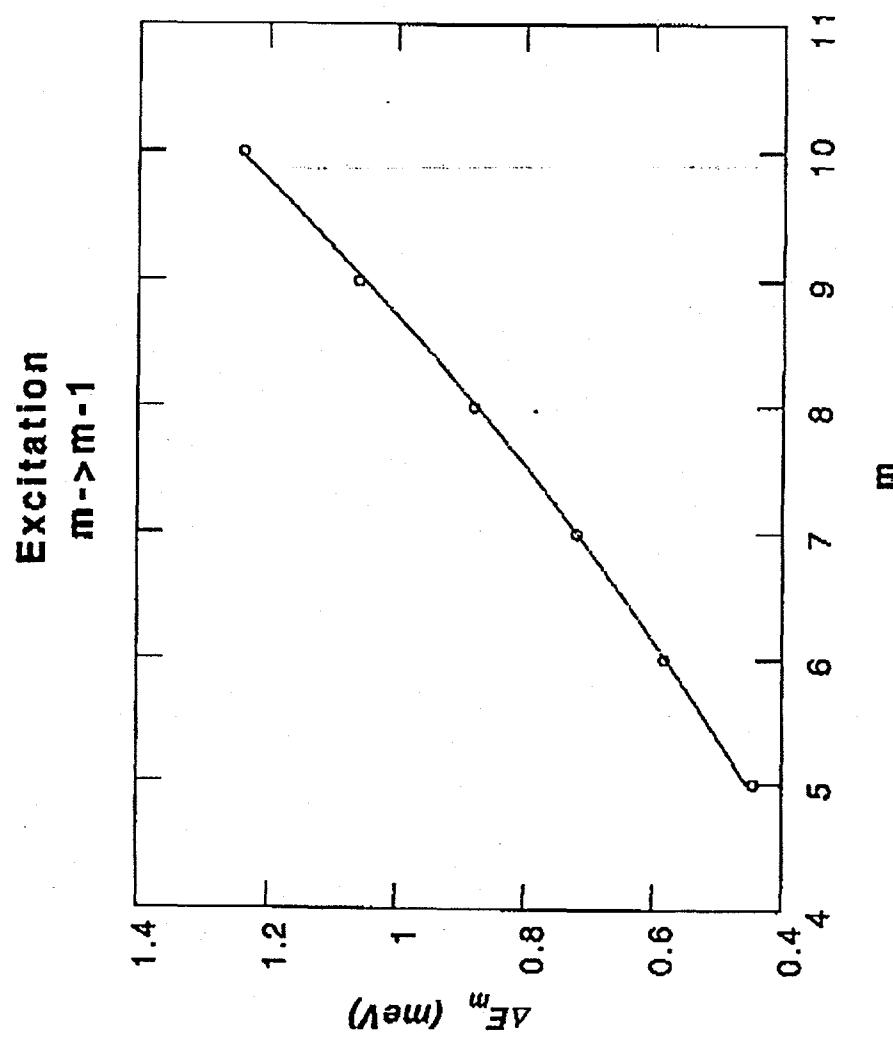
In summary, we have used zero-field inelastic neutron scattering to probe the excitation spectrum of Mn_{12} -Ac. Our resolution enables us to observe a series of peaks within the range from 0 to 1.24 meV which we attribute to transitions within the $S = 10$ manifold. A two-parameter fit yields values for the anisotropy constant D and the coefficient of the fourth-order diagonal anisotropy B that are inconsistent with those deduced from EPR experiments of Hill *et al.* and agree well with results of Barra *et al.* [12].

The work at City College was supported by NSF under DMR-9704309. Work at Los Alamos was supported, in part, by the U.S. Department of Energy under contract number W-7405-ENG-36. The work at ANL was supported by the US DOE, Office of Basic Energy Sciences under Contract No. W-31-109-ENG-38.

REFERENCES

- [1] T. Lis, *Acta Cryst. B* **36**, 2042 (1980).
- [2] R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, *Nature* **365**, 141 (1993).
- [3] A. Caneschi, D. Gatteschi, R. Sessoli A. L. Barra, L. C. Brunel, and M. Guillot, *Jam. Chem. Soc.* **113**, 5873 (1991).
- [4] R. Sessoli, H.-L. Tsai, A. R. Schake, S. Wang, B. Vincent, K. Folting, D. Gatteschi, G. Christou and D. N. Hendrickson, *J. Am. Chem. Soc.* **115**, 1804 (1993).
- [5] J. R. Friedman, M. P. Sarachik, J. Tejada and R. Ziolo, *Phys. Rev. Lett.* **76**, 3830 (1996).
- [6] L. Thomas, F. Lointi, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, *Nature* **383**, 145 (1996).
- [7] F. Fominaya, J. Villain, P. Gandit, J. Chaussy and A. Caneschi, *Phys. Rev. Lett.* **79**, 1126 (1997).
- [8] F. Luis, J. Bartolome, J. F. Fernandez, J. Tejada, J. M. Hernandez, X. X. Zhang and R. Ziolo, *Phys. Rev. B* **55**, 11448 (1997).
- [9] D. A. Garanin and E. M. Chudnovsky, *Phys. Rev. B* **56**, 11102 (1997).
- [10] F. Luis, J. Bartolome and J. F. Fernandez, *Phys. Rev. B* **57**, 505 (1998).
- [11] A. Fort, A. Rettoni, J. Villain, D. Gatteschi and R. Sessoli, *Phys. Rev. Lett.* **80**, 612 (1998).
- [12] A. L. Barra, D. Gatteschi and R. Sessoli, *Phys. Rev. B* **56**, 8192 (1997).
- [13] S. Hill, J. A. A. J. Perenboom, N. S. Dalal, T. Hathaway, T. Stalcup and J. S. Brooks, *Phys. Rev. Lett.* **80**, 2453 (1998).
- [14] S. Hill *et al.* [13] considered fourth order terms of the form $[D_{4\parallel} \times S_z^4 + D_{4\perp} \times (S_x^4 + S_y^4)]$


and set $D_{4\parallel} = D_{4\perp}$.


- [15] M. Hennion, L. Pardi, E. Suard, R. Sessoli and A. Caneschi, Phys. Rev.B **56**, 8819 (1997).
- [16] R. A. Robinson, M. Nutter, R. L. Ricketts, E. Larson, J. P. Sandoval, P. Lysaght and B. J. Oliver, in proceedings of ICANS-XII, Abingdon, U.K. 24-28 May 1993, Rutherford Appleton Laboratory, Report 94-025, Vol. I, pp. 44-51.
- [17] K. F. Bradley, S-H Chen, T. O. Brun, R. Kleb, W. A. Loomis and J. M. Newsam, Nucl. Instrum. Meth. A **270**, 78 (1988).
- [18] F. Hartmann-Boutron, P. Politi and J. Villain, Int. J. Mod. Phys. **10**, 2577(1996).
- [19] J. M. Hernandez, X. X. Zhang, F. Luis, J. Tejada, J. R. Friedman, M. P. Sarachik and R. Ziolo, Phys. Rev. B **55**, 5858 (1997).
- [20] A. M. Gomes, M. A. Novak, R. Sessoli, A. Caneschi, and D. Gatteschi, Phys. Rev. B **57**, 5021 (1998).

FIGURES

FIG. 1. Neutron scattered intensity versus energy at temperatures of 1.4, 10, 17 and 30 K.

FIG. 2. Energies of the peaks of Fig. 1 plotted as a function of index m (m denotes initial states for energy loss and final states for energy gain).

