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ABSTRACT

Detection of changes in the resonant frequencies and
mode shapes of a system is a fundamental problem in
dynamics. This paper describes a time series method of
detecting and quantifying changes in these parameters for
a ten degree-of-freedom bilinear system excited by
narrow band random noise. The method partitions the
state space and computes mode frequencies and mode
shapes for each region. Different regions of the space may
exhibit different mode shapes, allowing diagnosis of
stiffness changes at structural discontinuities. The method
is useful for detecting changes in the properties of joints
in mechanical systems or for detection of damage as the
properties of a structure change during use.

NOMENCLATURE
p vector of delayed inputs and responses.
J local matrix relating measurements to
states. s = Jp.
P matrix of past delay vectors.
F matrix of future delay vectors.
d Euclidian distance between two vectors.

A,B,C,D Matrices describing the state space and
state to measurements transformation.

k, stiffness connecting masses k and j.

C; damping coefficient between masses k and j.

k reference stiffness, bilinear dynamic system.

ref

NONLINEAR STRUCTURAL ELEMENTS.

During a typical vibration the test item is excited with a
relatively complex waveform and a complex response
obtained. The excitation and the response are composed
ofa wide range of frequencies. Global, linear estimation
of the frequency response functions and mode shapes is
used to obtain the modal characteristics of the structure.
Modal characteristics are the best “average” structural
properties describing the input-response relationship. For
a linear system, the average properties are usually an
excellent estimate of the true properties. For a nonlinear
system, however, the average properties may be a poor
description of the system characteristics. Nonlinear
models represent changing system characteristics as
functions of an input or response parameter. Nonlinear
models usually require more parameters than linear
models of the same order. More data is needed to
accurately  estimate this larger parameter set. Data
requirements are quite demanding for some forms of
nonlinear models.

A nonlinear model may describe response changes in the
frequency domain (Bendat, 1990, Nikias, 1987, higher
order spectra), changes in structural elements as
functions of displacement or velocity (Masri, 1979, force
state mapping), or trajectories in the state space (Farmer,
1988). Each discipline has evolved an approach to the
analysis of nonlinear systems. Physicists often use the
state trajectory approach, control theorists nonlinear time
series models, and engineers, higher order spectral
techniques or nonlinear time series modeling techniques .




* NONLINEAR TIME SERIES ANALYSIS
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Consider a dynamic system with force input f(t) and
acceleration responses at k locations a,(t). Formulate the
functional relationship:

a(t-7),a(t-27),--,a(t - I7),
a(t) = flu(t),u(t-1),u(t-21),ult- jt), | (1)
e(t—17)e(t-27), et -I7)

Equation 1 relates the current acceleration response, at
time t, often a vector quantity, to past acceleration
responses and the input u(t). Error terms are modeled by
e(t). If fis a linear functional relationship Equation 1
describes the standard ARMA (Autoregressive Moving
Average) model.

The functional relationship of equation 1 is simply stated.
In practice computation of the functional relationship may
be quite complex. The number of lags must be selected
judiciously, noise effects minimized, and the effective
rank of the system estimated. Together these problems
make accurate computation of the functional relationship
a challenging problem. This problem is much more
demanding when the functional form f is nonlinear, since
an appropriate functional form must be chosen. Often we
do not know the proper form a priori. Functional forms
are often selected based on their ability to approximate
relatively general relationships, for computational
convenience, or for the potential insight they lend into
system properties. Popular functional forms include
polynomials (Billings, 1988), rational polynomials, radial
basis functions (Casdagli, 1989) and neural networks
(Lapedes, 1987).

CANONICAL VARIATE ANALYSIS

Canonical Variate Analysis (CVA) is an extension of the
ARMA model technique. Originally developed by
Hotelling  (Hotelling,1936), this method has been
improved by Larimore (Larimore,1983), whose current
implementation of CVA gives accurate estimates of
transfer functions and mode shapes for complex systems
described by noisy signals CVA is described in detail in
several references (Larimore,1983, Hunter,1997). Figure
1 schematically illustrates the method.
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Figure 1 shows the three critical transformations involved
in CVA, mnamely the Measurement to State
Transformation, the evolution of past states to future
states, and the future state to estimated measurement
transformation, each outlined by a dark arrow. Equations
2 and 3 below implement the steps indicated in Figure 1.

a(t-7)a(r-27),-,a(t - I7),
u(t),u(t-t),u(t-2t),--,u(t - jr)

s(t) = )

State toMeasurement
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- J selects the critical waveform components

"of the delay vector formed by a and u.
s(t + 7) = As(t) + Bu(t) + (t) (3a)
a(t) = Cs(t) + Du(t) + Ee(t) + w(¢) (3b)

Equations 3a and 3b evolve the past states to future states
and transform past (or future) states to measurements. The
measurement to state transformation matrix is based on
correlations between the past and future waveforms. A

" matrix formulation of the past and future waveforms is
defined in Equations 4.

a(t, — ), a(t, — 17), u(t) - ut,- jt) ]
p_ a(t,— 1), a(t, —17), u(ty), -, ult, - jt)
a(t, —7), -, a(t, —It), u(t), - ult, - jt).

a(t, +17) |

Pe :a(tz), ey a:(t2+lr) @

,a(f, +17)
Minimizing the error in the prediction of the future
waveforms results in the formulation of Equation 5,
which defines the measurement to state transformation J
in terms of P and F.

J= UT[PTP]'§
SVD{[PTP]—%[PTF] [FTF]_%} =UWV" (5)

It is important to realize that the “s(t)” terms in equation 3
Derived from s=Jp, refer to selected critical waveforms
(components) of the past and future rather than velocity
and/or displacement. Matrix J reduces the dimension of
P from the somewhat arbitrary value based on the
number of lags 1+j to the dimension of s, a number based
on the number of functionally related orthogonal
waveforms composing P and F. For a single degree of
freedom,vibration system, for example, there are two
states s, and the rank of A in equation 3a is two.

LOCAL CANONICAL VARIATE ANALYSIS

Local Canonical Variate Analysis combines the CVA
approach defined in equations 2-5 and the idea of local

modelling, which is the old idea of expanding a nonlinear
system as a series of linear models. Each linear model is
expanded about a different operating point. In local
modeling equations 2-5 are applied to a series of local
regions, as illustrated in figure 2. Each local region is
defined by judiciously selecting a subset of the past and
future waveforms from the global past and Future
Matrices P and F. Judicious selection of the criteria for
the local waveform is crucial. In general, the criteria for a
local waveform is the Euclidian distance from a reference
waveform and is defined by the equation:

d(r,n)= {Z (a, - ani)z} (6)

i=1

The summation in Equation 6 is taken over the c
components of the reference waveform a,. The reference
waveform is chosen as the past waveform for which a
prediction of the future waveform is desired. From the
complete set of measured past and future waveforms only
those close (in the sense of equation 6) to the waveform
for which prediction of the future is desired are used..

Local
4 ro Model

Global
Model

>

Local vs. Global Modelling
Figure 2

A different local model is used in each region of the
waveform space. For a linear system, except for
perturbations caused by noise, the local models are
identical, since the space is defined by hyperplanes. For a
nonlinear system, some systematic variation in the model
form should be observed. To minimize the complexity of
this functional variation careful selection of the distance
criteria is critical. Preferential selection of waveforms at
certain response locations (perhaps based on nonlinear
effects) or, for a time varying systems, selection of
waveforms which are close in time is necessary. The
following example illustrates the application of the local
linear CVA method. Local frequencies and local mode
shapes are obtained for a nonlinear system.
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* ANONLINEAR SYSTEM WITH DIFFERENT
STIFFNESSES IN TENSION AND COMPRESSION

Consider the system illustrated in Figure 3. This system
is composed of ten masses interconnected by springs and
dampers, forming a ten degree of freedom assembly. In
the linear case each of the springs has a stiffness
k=kr=(2*n*100). Nonlinearity is introduced by modifying
k45, the stiffness interconnecting masses 4 and 5, to
0.250*kr when kys is in tension and 4.0*kr when kg5 is in
compression. Differing stiffness between the cases of
tension and. compression is observed in physical systems.
The phenomena is caused by factors like loss of preload
or changes in the properities of joints..

M10
K9,10
9,10

M9
K89 C89

M2
K12 Ci2
M1

Ten Degree of Freedom Bilinear System
Figure 3

Numerical analysis of the system in Figure 3 is
accomplished for three cases: k4s=0.250kr, ky4s=1.00kr,
and k4=4.0kr. The results are summarized in Table 1
below. Eigenfrequencies are computed from the
eigenvalues of the stiffness matrix. The first (rigid body)
mode has been omitted from Table 1. Calculated
frequencies range from a minimum of 26 Hz to a
maximum 302 Hz.

Mode | K45=0.250 | K45=1.00kr Kd45=4.0kr
kr
2 25.9392 31.2869 34.4308
3 57.5348 61.8034 64.1400
4 84.0750 90.7981 93.1504
5 104.2248 117.5571 126.0292
6 141.5366 141.4214 141.5420
7 145.9681 161.8034 169.4889
8 173.9412 178.2013 182.2436
9 185.4712 190.2113 192.4603
10 193.3781 197.5377 302.3715

Eigenfrequencies of The Bilinear System
Table 1

It is surprising that this rather large change in stiffness
(8/1) in kys results in only modest frequency changes for
many modes. For example the frequency of mode 9
changes from 185 to 192 Hz. Mode 10, the highest mode,
shows the largest frequency change. Computed Mode
Shapes for the first mode is illustrated in Figure 4.

05 y T T T

k45 .25kr, =25

Mode Shapes for K45=0.250 kr
and k45=4.00 kr
Figure 4

A reasonable change in mode shape is noted for this
relatively drastic change in stiffness. The lower frequency
Mode shape in figure 4 corresponds to stable stiffness k45
=0.250 kr, and the higher frequency mode shape
corresponds to k4s=4.00 kr. When the stiffness changes
dynamically from 0.25 kr to 4.00 kr the transient mode
shapes may not match the two shapes in Figure 4. Still,
the shapes in Figure 4 provide a baseline for something
like the expected dynamic mode shapes.
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*MODELLING THE BILINEAR SYSTEM USING
TIME SERIES RESPONSES

The system in Figure 3 is simulated using a fourth order
Runge-Kutta ordinary differential equation solver. Nine
thousand data points are computed with at effective
sample rate of 1000 samples/second. The force excitation,
applied to mass 1 is Gaussian Noise with power
concentrated between 10 Hz. and 200 Hz. This bandwidth
was selected to emphasize excitation of the lower system
modes. For a nonlinear system, band limited inputs are
desirable to minimize the complexity of the system
response.

Since the major nonlinearity is a function of displacement
the past and future are constructed from band limited
double integrals of the 10 acceleration waveforms.
Acceleration waveforms could also be used.. Integration
must be done carefully, especially in a realistic case,
where noise is a major contaminant of the time series
response.

The model was constructed using 12 lagged displacement
values at each of the ten response locations. Four
thousand training points were used to build the model.
The input is the driving force signal. The system response
was predicted for 390 successive time values.. Eighteen
states were detected in the time series responses. It is
interesting to note that these eighteen states are detected
in the nonlinear response when it is excited by narrow
band driving force. The nonlinear nature of the system
effectively couples the drive frequency to a myriad of
response frequencies., including frequencies outside of
the excitation range.

Bounding mode shapes are computed for two cases, large
observed positive relative displacement beween masses 4
and 5, and large observed negative relative displacement
between masses 4 and 5. For a reference calculation, and
to partially validate the CVA model, bounding mode
shapes were computed using a separate model for the
linear case , where k45 is invariant with respect to
displacement. Bounding mode shapes for the linear case
are shown in Figure 6 for the second mode. The computed
modal frequency of 32 Hz. This frequency compares
favorably = with the theoretical linear second modal
frequency of 31.3 Hz. For the nonlinear case, the
bounding mode shapes are illustrated in figure 7.
Estimated frequencies range from a low of 28 Hz. To a
high of 32 Hz.. The flexibility change between the mode
extremes in Figure 7 is estimated using the second
spacial derivative of the mode shapes to obtain the
flexibility deviation between the two bounding mode
shapes in Figure 7. Delta flexibility is plotted vs. mass
location in Figure 8. The maximum flexibility change
occurs in the vicinity of the link between masses 4 and 5.
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Estimated Mode Shape Extremes, Bilinear System,
k45 Nonlinear
Figure 7

Figures 6,7, and 8 illustrate the experimental detection of
a significant stiffness change for a somewhat contrived
nonlinear system using local linear modeling techniques.
The first mode is used to illustrate changes in mode
shape. Higher modes also show changes in Frequency
though the changes in mode shape are the most striking.
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Fiégure 9 illustrates the extreme estimated shapes for the
3" mode. Most modes show considerable differences in
bounding mode shapes. Model mode shapes for the
nonlinear case are invariably complex. Generally the real
part of the mode shape dominates, so the real part is
shown in Figures 5-8.
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K45 Nonlinear, Mode 3
Figure 8

The bounding frequencies detected by the local model are
28 Hz. And 32 Hz. for the second mode and 59 Hz. and
64 Hz. for the third mode. An equivilant linear system,
with the bounding stiffnesses, would have second modal
frequencies of 25 Hz. and 34 Hz. and third modal
bounding frequencies of 58 and 64 Hz. Estimated model
frequencies are deemed reasonable. Model bounding

mode shapes have a resembelance to the bounding
analytical mode shapes. The model shapes do show strong
differences, which appear related to the flexibility
changes in the vicinity of k45,

Application to Physical Systems

Local Nonlinear CVA was applied to a wind turbine blade
subjected to varying frequency sinusoidal vibration. Long
term vibration damaged the blade, changing the frequency
and shape of the first mode. The change in mode shape
was readily detected when time was used as the local
selection criteria. The damage location was determined
using the flexibility change between the damaged and
undamaged mode shapes.

Conclusions

Results for This System/Advantages

This paper illustrates a nonlinear time series analysis
method, called Local linear canonical variate analysis,
which fits a series of linear multidimensional functions to
“local “ regions of the response time series. A ten degree-
of-freedom, analytically simulated nonlinear system
served as an example to illustrate the technique. extract
Local eigenvalues and eigenvectors of the state transtition
matrix were estimated. Eigenvectors were muitiplied by
the state to measurement transition matrix to obtain local
displacement eigenshapes. These were called local modes
of the system, though a more appropriate name is local
eigenshapes, since the computed shapes may not bear a
direct relation to ordinary system modes. For this simple
and noise free system eigenshape changes characteristic
of different local system states were detected and the
change in stiffness tracked to k45, the truly variable
stiffness. A practical example, where a change in
stiffness was detected in a real physical system, was also
noted.

Nonlinear time series analysis methods are quite powerful
and sensitive. For at least some simple cases, changes in
eigenshapes characteristic of damage onset are detected.
In many cases, the method seems almost too sensitive,
especially when acceleration signals are used for analysis.

Method Limitations and Future Work

As Larimore (Larimore, 1983) demonstrated, the method
of Canonical Variate Analysis is an effective, powerful
means for estimating transfer functions for linear systems,
even when these systems are characterized by small
datasets. For nonlinear systems model optimization,
function selection and noise reduction are very daunting
problems. For special cases like those mentioned in this
paper successful modeling using local linear functional
methods has been achieved. Central features of the
successful cases include appropriate density of
measurment locations (so the true location of flexibility
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P changes can be located), limited active dimensions in the

» estimated state space (a few to prehaps 20 dimensions)
and relatively noise free datasets. General cases in which
the dimensionality is high (perhaps a hundred), and the
input excites strong, complex, nonlinear behavior are
much more daunting. Even for the more tractable cases E
general use of this technique requires either time
consuming ftrial and error or automated model
optimization techniques.. Optimal function selection and
noise reduction are potentially computationally intensive
tasks. Reasonable local eigenshapes for complex, noisy or
poorly instrumented (in the sense of transducer density)
systems have not been demonstarted.

For local linear models it is improtant to select a sensible
criteria for the definition of “;local”. Local may mean
local in time, acceleration amplitude or amplitude of
some other location specific parameter . In some cases
this parameter may be selected based on a-priori
knowledge of the system. Finding the best definition of
local is a tricky task.

Our plans for future work include the systematic
incorporation of better functional fitting methods into the
measurement to state computation and more effective
model optimization techniques.

Nonlinear Canonical Variate Analysis fills a particular
niche in the suite of methods available for experimental
characterization of nonlinear behavior. For very well
defined systems first principles analysis, or nonlinear
finite element analysis appear optimal. For experimental
characterization of systems not quite so well
characterized, the force state mapping technique of Masri
looks very promising. Nonlinear CVA has a place in the
analysis of systems which are too poorly characterized or
instrumented to be amenable to force state mapping, and
for which some sort of functional response surface is
desired. For these sytems, higher order frequency
response functions like the bispectrum and trispectrum
also provide interesting and useful approaches.
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