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ABSTRACT

Detection of changes in the resonant frequencies and
mode shapes of a system is a fundamental problem in
dynamics. This paper describes a time series method of
detecting and quantifying changes in these parameters for
a ten degree-of-freedom bilinear system excited by
narrow band random noise. The method partitions the
state space and computes mode fi-equencies and mode
shapes for each region, Different regions of the space may
exhibit different mode shapes, allowing diagnosis of
stiffness changes at structural discontinuities. The method
is useful for detecting changes in the properties of joints
in mechanical systems or for detection of damage as the
properties of a structure change during use.

NOMENCLATURE

P vector of delayed inputs and responses.

J local matrix relating measurements to

states. s = Jp.

P matrix of past delay vectors.

F matrix of fiture delay vectors.

d Euclidian distance between two vectors.,,n

A, B, C, D Matrices describing the state space and

state to measurements transformation.

kij stiffness connecting masses k and j.

c,j damping coefficient between masses k and j.

k
rcf

reference stiffhess, bilinear dynamic system.

NONLINEAR STRUCTURAL ELEMENTS.

During a typical vibration the test item is excited with a
relatively complex waveform and a complex response
obtained. The excitation and the response are composed
of a wide range of frequencies. Global, linear estimation
of the frequency response functions and mode shapes is
used to obtain the modal characteristics of the structure.
Modal characteristics are the best “average” structural
properties describing the input-response relationship. For
a linear system, the average properties are usually an
excellent estimate of the true properties. For a nonlinear
system, however, the average properties may be a poor
description of the system characteristics. Nonlinear
models represent changing system characteristics as
fi.mctions of an input or response parameter. Nonlinear
models usually require more parameters than linear
models of the same order. More data is needed to
accurately estimate this larger parameter set. Data
requirements are quite demanding for some forms of
nonlinear models.

A nonlinear model may describe response changes in the
frequency domain (Bendat, 1990, Nikias, 1987, higher
order spectra), changes in structural elements as
fimctions of displacement or velocity (Masn, 1979, force
state mapping), or trajectories in the state space (Farmer,
1988). Each discipline has evolved an approach to the
analysis of nonlinear systems. Physicists often use the
state trajectory approach, control theorists nonlinear time
series models, and engineers, higher order spectral
techniques or nonlinear time series modeling techniques .



“ NONLINEAR TIME SERIES ANALYSIS. .

.< Consider a dynamic system with force input f(t) and
acceleration responses at k locations ak(t). Formulate the
functional relationship:

[

a(t) = f u(t), Z@- t), Z@- 2t), . . .. U(t- jt),

J

(1)

e(t–ir), e(t-2r), ”.,, e(t-/r)

Equation 1 relates the current acceleration response, at
time t, often a vector quantity, to past acceleration
responses and the input u(t). Error terms are modeled by
e(t). If f is a linear functional relationship Equation 1
describes the standard ARMA (Autoregressive Moving
Average) model.

The functional relationship of equation 1 is simply stated.
In practice computation of the functional relationship may
be quite complex. The number of lags must be selected
judiciously, noise effects minimized, and the effective
rank of the system estimated. Together these problems
make accurate computation of the fictional relationship
a challenging problem. This problem is much more
demanding when the fi,mctional form f is nonlinear, since
an appropriate functional form must be chosen. Often we
do not know the proper form a priori. Functional forms
are often selected based on their ability to approximate
relatively general relationships, for computational
convenience, or for the potential insight they lend into
system properties. Popular fictional forms include
polynomials (Billings, 1988), rational polynomials, radial
basis fimctions (Casdagli, 1989) and neural networks
(Lapedes, 1987).

CANONICAL VARIATE ANALYSIS

Canonical Variate Analysis (CVA) is an extension of the
ARMA model technique. Originally developed by
Hotelling (Hotelling, 1936), this method has been
improved by Larimore (Larimore, 1983), whose current
implementation of CVA gives accurate estimates of
transfer fi.mctions and mode shapes for complex systems
described by noisy signals CVA is described in detail in
several references (Larimore, 1983, Hunter, 1997). Figure
1 schematically illustrates the method.
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Canonical Variate Analysis
Figure 1

Figure 1 shows the three critical transformations involved
in CVA, namely the Measurement to State
Transformation, the evolution of past states to fimre
states, and the future state to estimated measurement
transformation, each outlined by a dark arrow. Equations
2 and 3 below implement the steps indicated in Figure 1.

[

a(t–r), a(t–2r),..., a(lr),),
s(t) = J

u(t), U(t- t), Z@- 2t), . . .. u(t - jl)
(2)



- J selects the critical waveform components
●

“of the delay vector formed by a and u.. .
s(t + r) = As(t) + Bu(t) + e(t) (3a)

a(i) = Cs(t) + Du(t) + Ee(t) + w(t) (3b)

Equations 3a and 3b evolve the past states to future states
and transform past (or future) states to measurements. The
measurement to state transformation matrix is based on
correlations between the past and future waveforms. A
matrix formulation of the past and fiture waveforms is
defined in Equations 4.

P=

F=

a(ll – r),. ”.,a(tl –17), U(il),””.,u(tl -jt) -

a(tz – r),.. .,a(tz – 17), u(tz), ”-“,u(t2- jt)

a(tk– r),””“,a(t~– 17), u(t~),””“,u(t~- jt)-

a(~l), o“-, a(tl + 17)

a(tz), .“., a(t2 + 17)
(4)

Minirnizinz the error in the Prediction of the fhture
waveforms results in the formulation of Equation 5,
which defines the measurement to state transformation J
interms of P and F.

J = UT[PTP]-;

[ 1SVD [PTP]~[PTF] [FTF]-: = uwv’ (5)

It is important to realize that the “s(t)” terms in equation 3
Derived from s=Jp, refer to selected critical waveforms
(components) of the past and fature rather than velocity
andlor displacement. Matrix J reduces the dimension of
P from the somewhat arbitrary value based on the
number of lags I+j to the dimension ofs, a number based
on the number of functionally related orthogonal
waveforms composing P and F. For a single degree of
fleedom,vibration system, for example, there are two
statess, and the rank of A in equation 3a is two.

modelling, which is the old idea of expanding a nonlinear
system as a series of linear models. Each linear model is
expanded about a different operating point. In local
modeling equations 2-5 are applied to a series of local
regions, as illustrated in figure 2. Each local region is
defined by judiciously selecting a subset of the past and
future waveforms fi-om the global past and Future
Matrices P and F. Judicious selection of the criteria for
the local waveform is crucial. In general, the criteria for a
local waveform is the Euclidian distance from a reference
waveform and is defined by the equation:

‘(rn)={~(ari-an‘6)
The summation in Equation 6 is taken over the c
components of the reference waveform Z. The reference
waveform is chosen as the past waveform for which a
prediction of the future waveform is desired. From the
complete set of measured past and future waveforms only
those close (in the sense of equation 6) to the waveform
for which prediction of the fhture is desired are used..

Local
Fl(t) Model \

J

Local vs. Global Modelling
Figure 2

A different local model is used in each region of the
waveform space. For a linear system, except for
perturbations caused by noise, the local models are
identical, since the space is defined by hyperplanes, For a
nonlinear system, some systematic variation in the model
form should be observed. To minimize the complexity of
this functional variation carefi,d selection of the distance
criteria is critical. Preferential selection of waveforms at
certain response locations (perhaps based on nonlinear
effects) or, for a time varying systems, selection of
waveforms which are close in time is necessary. The
following example illustrates the application of the local
linear CVA method. Local frequencies and local mode
shapes are obtained for a nonlinear system.

LOCAL CANONICAL VARIATE ANALYSIS

Local Canonical Variate Analysis combines the WA
approach defined in equations 2-5 and the idea of local
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‘ A NONLINEAR SYSTEM WITH DIFFERENT
.. STIFFNESSES IN TENSION AND COMPRESSION

Mode

Consider the system illustrated in Figure 3. This system
is composed often masses interconnected by springs and
dampers, forming a ten degree of freedom assembly. In
the linear case each of the springs has a stiffness
k=kr=(2*n* 100). Nonlinearity is introduced by modifjing
k45, the stiffhess interconnecting masses 4 and 5, to
0.250*kr when b~ is in tension and 4.O*kr when h~ is in
compression. Differing stiflless between the cases of
tension and. compression is observed in physical systems.
The phenomena is caused by factors like loss of preload
or changes in the properties of joints..

M1O
K9,1O
C9,1O

M9
K89 CS9

I
I
I
I

/

M2
K12 C12
Ml

Ten Degree of Freedom Bilinear System
Figure 3

Numerical analysis of the system in Figure 3 is
accomplished for three cases: &S=0.250kr, &s=l .00kr,
and lq5=4.0kr. The results are summarized in Table 1
below. Eigenfrequencies are computed tlom the
eigenvalues of the stiffness matrix. The first (rigid body)
mode has been omitted ffom Table 1. Calculated
frequencies range from a minimum of 26 Hz. to a
maximum 302 Hz.

2
3
4
5
.6
7
8
9
10

K45=0.250
kr

25.9392
57.5348
84.0750
104.2248
141.5366
145.9681
173.9412
185.4712
193.3781

K45=1.00kr K45=4.Okr

31.2869
61.8034
90.7981
117.5571
141.4214
161.8034
178.2013
190.2113
197,5377

34.4308
64.1400
93.1504
126.0292
141.5420
169.4889
182.2436
192.4603
302.3715

Eigenfrequencies of The Bilinear System
Table 1

It is surprising that this rather large change in stiffhess
(8/1) in k4s results in only modest frequency changes for
many modes. For example the frequency of mode 9
changes from 185 to 192 Hz. Mode 10, the highest mode,
shows the largest frequency change. Computed Mode
Shapes for the fwst mode is illustrated in Figure 4.

0.5

0

k45

J
k454.00kr, i534.4 Hz

-1---
0 2 4 6 8 10

Mode Shapes for K45=0.250 kr
and k45=4.00 kr

Figure 4

A reasonable change in mode shape is noted for this
relatively drastic change in stiffiess. The lower frequency
Mode shape in figure 4 corresponds to stable stiffiess k45
=0.250 kr, and the higher frequency mode shape
corresponds to k45=4.00 kr, When the stiffness changes
dynamically from 0.25 kr to 4.00 kr the transient mode
shapes may not match the two shapes in Figure 4. Still,
the shapes in Figure 4 provide a baseline for something
like the expected dynamic mode shapes.
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*MODELLING THE BILINEAR SYSTEM USING
. . TIME SERIES RESPONSES

The system in Figure 3 is simulated using a fourth order
Runge-Kutta ordinary differential equation solver. Nine
thousand data points are computed with at effective
sample rate of 1000 samples/second. The force excitation,
applied to mass 1 is Gaussian Noise with power
concentrated between 10 Hz. and 200 Hz. This bandwidth
was selected to emphasize excitation of the lower system
modes. For a nonlinear system, band limited inputs are
desirable to minimize the complexity of the system
response.

Since the major nonlinearity is a fi,mction of displacement
the past and fi.kure are constructed flom band limited
double integrals of the 10 acceleration waveforms.
Acceleration waveforms could also be used.. Integration
must be done carefidly, especially in a realistic case,
where noise is a major contaminant of the time series
response.

The model was constructed using 12 lagged displacement
values at each of the ten response locations. Four
thousand training points were used to build the model.
The input is the driving force signal. The system response
was predicted for 390 successive time values.. Eighteen
states were detected in the time series responses. It is
interesting to note that these eighteen states are detected
in the nonlinear response when it is excited by narrow
band driving force. The nonlinear nature of the system
effectively couples the drive frequency to a myriad of
response frequencies., including frequencies outside of
the excitation range,

Bounding mode shapes are computed for two cases, large
observed positive relative displacement beween masses 4
and 5, and large observed negative relative displacement
between masses 4 and 5. For a reference calculation, and
to partially validate the CVA model, bounding mode
shapes were computed using a separate model for the
linear case , where k45 is invariant with respect to
displacement. Bounding mode shapes for the linear case
are shown in Figure 6 for the second mode. The computed
modal tiequency of 32 Hz. This frequency compares
favorably with the theoretical linear second modal
frequency of 31.3 Hz. For the nonlinear case, the
bounding mode shapes are illustrated in figure 7.
Estimated frequencies range from a low of 28 Hz. To a
high of 32 Hz.. The flexibility change between the mode
extremes in Figure 7 is estimated using the second
spatial derivative of the mode shapes to obtain the
flexibility deviation between the two bounding mode
shapes in Figure 7. Delta flexibility is plotted vs. mass
location in Figure 8. The maximum flexibility change
occurs in the vicinity of the link between masses 4 and 5.
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Experirnentallly Observed First Local Mode
Shapes, k45 Linear

Figure 6
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Estimated Mode Shape Extremes, Bilinear System,
k45 Nonlinear

Figure 7

Figures 6,7, and 8 illustrate the experimental detection of
a significant stiffness change for a somewhat contrived
nonlinear system using local linear modeling techniques.
The frost mode is used to illustrate changes in mode
shape. Higher modes also show changes in Frequency
though the changes in mode shape are the most striking.
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Fi e 9 illustrates the extreme estimated shapes for the
P3’ mode. Most modes show considerable differences in

bounding mode shapes. Model mode shapes for the
nonlinear case are invariably complex. Generally the real
part of the mode shape dominates, so the real part is
shown in Figures 5-8.
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Figure 8

The bounding frequencies detected by the local model are
28 Hz. And 32 Hz. for the second mode and 59 Hz. and
64 Hz. for the third mode. An equivilant linear system,
with the bounding stiffiesses, would have second modal
frequencies of 25 Hz, and 34 Hz. and third modal
bounding frequencies of 58 and 64 Hz. Estimated model
ii-equencies are deemed reasonable. Model bounding

mode shapes have a resemblance to the bounding
analytical mode shapes. The model shapes do show strong
differences, which appear related to the flexibility
changes in the vicinity of k45.

Application to Physical Systems

Local Nonlinear CVA was applied to a wind turbine blade
subjected to varying frequency sinusoidal vibration, Long
term vibration damaged the blade, changing the frequency
and shape of the frost mode. The change in mode shape
was readily detected when time was used as the local
selection criteria. The damage location was determined
using the flexibility change between the damaged and
undamaged mode shapes.

Conclusions

Results for This System/Advantages
This paper illustrates a nonlinear time series analysis
method, called Local linear canonical variate analysis,
which fits a series of linear multidimensional functions to
“local” regions of the response time series. A ten degree-
of-fi-eedom, analytically simulated nonlinear system
served as an example to illustrate the technique. extract
Local eigenvalues and eigenvectors of the state transition
matrix were estimated. Eigenvectors were multiplied by
the state to measurement transition matrix to obtain local
displacement eigenshapes. These were called local modes
of the system, though a more appropriate name is local
eigenshapes, since the computed shapes may not bear a
direct relation to ordinary system modes. For this simple
and noise free system eigenshape changes characteristic
of different local system states were detected and the
change in stifthess tracked to k45, the truly variable
stiffness. A practical example, where a change in
stiffiess was detected in a real physical system, was also
noted.

Nonlinear time series analysis methods are quite powerfil
and sensitive. For at least some simple cases, changes in
eigenshapes characteristic of damage onset are detected.
In many cases, the method seems almost too sensitive,
especially when acceleration signals are used for analysis.

Method Limitations and Future Work

As Larimore (Larimore, 1983) demonstrated, the method
of Canonical Variate Analysis is an effective, powerful
means for estimating transfer fimctions for linear systems,
even when these systems are characterized by small
datasets. For nonlinear systems model optimization,
function selection and noise reduction are very daunting
problems. For special cases like those mentioned in this
paper successfid modeling using local linear functional
methods has been achieved. Central features of the
successful cases include appropriate density of
measurrnent locations (so the true location of flexibility
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.’ ● changes can be located), limited active dimensions in the
b . estimated state space (a few to prehaps 20 dimensions)
:

b and relatively noise free datasets. General cases in which
the dimensionality is high (perhaps a hundred), and the
input excites strong, complex, nonlinear behavior are
much more daunting. Even for the more tractable cases E
general use of this technique requires either time
consuming trial and error or automated model
optimization techniques.. Optimal function selection and
noise reduction are potentially computationally intensive
tasks. Reasonable local eigenshapes for complex, noisy or
poorly instrumented (in the sense of transducer density)
systems have not been demonstarted.

For local linear models it is improtant to select a sensible
criteria for the definition of “;local”. Local may mean
local in time, acceleration amplitude or amplitude of
some other location specific parameter . In some cases
this parameter may be selected based on a-priori
knowledge of the system. Finding the best definition of
local is a tricky task.

Our plans for future work include the systematic
incorporation of better fictional fitting methods into the
measurement to state computation and more effective
model optimization techniques.

Nonlinear Canonical Variate Analysis fills a particular
niche in the suite of methods available for experimental
characterization of nonlinear behavior. For very well
defined systems fust principles analysis, or nonlinear
finite element analysis appear optimal. For experimental
characterization of systems not quite so well
characterized, the force state mapping technique of Masri
looks very promising. Nonlinear CVA has a place in the
analysis of systems which are too poorly characterized or
instrumented to be amenable to force state mapping, and
for which some sort of functional response surface is
desired. For these sytems, higher order frequency
response functions like the bispectrum and trispectrum
also provide interesting and useful approaches.

Acknowledgements
The author wishes to thank Tom Paez of Sandia National
Laboratories, Wallace Larimore of Adaptics, Inc., and
Angel Urbina of Sandia National Laboratories for their
assistance.

Billings, 1988, Billings, S.A., Tsang, K.M., and
Tomlinson, G.R., Application of the NARMAX Model to
Nonlinear Frequency Response Estimation, Proceedings
of the 6ti International Modal Analysis Conference,
IMAC, 1988,

Casdagli, 1989, Casdagli, Martin, Nonlinear Prediction of
Chaotic Time Series, Physics D, 35, 1989,335-356.

Farmer, 1988, J.D., and Sidorowich, John, J., Exploiting
Chaos to Predict the Future and Reduce Noise, Evolution,
Learning, and Cognition, Y.C. Lee, Ed, pp.277-330,
World Scientific, Singapore, 1988.

Hotelling, H. (1936), Relations Between Two Sets of
Variables, Biometrics 28,321-377.

Hunter, N,F. (1988) State Analysis of Nonlinear Systems
Using Local Canonical Variate Analysis, 11 International
Systems Conference, January 1988.

Lapedes, 1987, Lapedes, A., and Faber, R., Nonlinear
Signal Processing Using Neural Networks,: Prediction
and System Modelling, Los Alamos Unclassified Report,
LAUR87-2662, 1987.

Larimore, W. (1983), System Identification, Reduced
Order Filtering, and Modelling Via Canonical Variate
Analysis, Proceedings of the 1983 American Control
Conference, H.S. Rao and P. Dorata, Eds., 1982, pp. 445-
451.

Masri, 1979, S.F., and Caughey, T.K., A Nonparametric
Identification Technique For Nonlinear Dynamic
Problems, Journal of Applied Mechanics, June 1979, Vol.
46, p. 433.

Nikias, C. L., 1987, and Raghuveer, Bispecturm
Estimation: A Digital Signal Processing Framework,
Proceedings of the IEEE, 75(7), 869, 1987.

REFERENCES

Bendat, J.S., 1990, Nonlinear System Analysis and
Identification From Random Data, John Wiley and Sons,
1990.


