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WORKSHOP OBJECTIVE

The objective of the workshop "Photovoltaics and the Environment" was to bring together PV
manufacturers and industry analysts to define EH&S issues related to the large-scale
commercialization of PV technologies.

WORKSHOP BACKGROUND

The National Photovoltaic Environmental, Health and Safety (EH&S) Assistance Center

The National Photovoltaic EH&S Assistance Center is operated at BNL, under the auspices of the
U.S. Department of Energy (DOE), to foster the safe and environmentally friendly operation of
photovoltaic facilities and products, extending from R&D to manufacturing and use. The objectives
of the Center are to prevent accidents, to reduce EH&S occupational and public risks, and lower the
environmental- and safety-related costs.

The BNL Center undertakes the following types of activities:

1. It directly supports DOE Headquarters, the National Renewable Energy Laboratory (NREL), and
Sandia National Laboratory (SNL) to ensure that their facilities and those of their contractors are
operated in an environmentally responsible manner.

2. It conducts EH&S audits, safety reviews and incident investigations, as needed.

3. It assists the photovoltaic industry to identify and examine potential EH&S barriers and hazard-
control strategies for new photovoltaic material, process and application options before their
large-scale commercialization. To facilitate the transfer and application of knowledge derived
from this work, BNL hosts workshops, tutorials and symposia, uses electronic mail and a web
page, and publishes articles in the peer-reviewed journals. The current workshop is one of these
"industry outreach" activities. '

The Thin Film Partnership

The Thin Film PV Partnership is the main program funded by DOE to support R&D in thin film
options, such as amorphous silicon, cadmium telluride, and copper indium diselenide. The
Partnership funds in subcontracts to leading companies and universities to perform this research.
Subcontractors are categorized as Technology Partners if they are companies with commercial or
near-commercial thin films. Others are categorized as R&D Partners, and they undertake work that
will keep further advances in the pipeline for the future. The members of the Partnership work on
technology-specific National R&D Teams in collaboration with NREL in-house researchers; these
teams are directed to solve critical fundamental and technological problems. An additional cross-
cutting team, the Thin Film Partnership ES&H Team, is made up of the Technology Partners and
others with commercial interests, as well as invitees, who address ES&H challenges together. The
workshop in Keystone was one of their activities, planned jointly with BNL.



THE WORKSHOP

The workshop was opened by BNL's Paul Moskowitz who welcomed the participants and
emphasized the need for open discussion and collaboration on EH&S issues among all industry
players.

Session 1: Proactive Recycling: Near-term and Long-term Sirategies

To safeguard the environmental friendliness of photovoltaics, the PV industry follows a pro-active,
long-term environmental strategy involving a life-of-cycle approach to prevent environmental damage
by its processes and products from “cradle to grave.” Recycling manufacturing waste and spent PV-
modules is examined as part of this strategy. Although the PV industry will not face this problem in
a large scale before the year 2020, today’s choices of materials and module designs may very well set
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The session was chaired by Vasilis Fthenakis, BNL who briefly summarized the previous studies and
work on recycling. The first workshop on recycling was organized by BNL and NREL and was held
in March 1992 at Golden, CO. The 1992 workshop focused on Cd and Se and brought together
interested parties from the PV industry, the metal-smelting industry, the utilities, the DOE, and the

national laboratories. It established the state-of- current-affairs and provided a foundation for the
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Inc. and Drinkard Metalox Inc. between 1993 and 1998. In April 1994, BNL and NREL hosted a
workshop that focused on understanding and managing the heaith and environmentai risks of CIS,
CGS and CdTe module production and use. The 1994 workshop covered the toxicology of these
new materials, and the pertinent implications to occupational health and the environment. This
workshop identified the need to examine regulatory drivers and constraints to recycling.

mdustry s perspectlves and analyse of the collection and r ecycling infrastructure regulatory concerns,
technical feasibility, economic incentives, and costs. In the open discussion forum different opinions
from the industry participants were heard and discussed.

Photovoltaic modules may contain small amounts of regulated materials, which vary from one

technology to another. Environmental regulations can determine the cost and complexity of dealing
with end-of-life PV modules. If they were classified as “hazardous” aornrdmo to Federal or State
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criteria, then spec:al requxrements for matenal handlmg, dlsposal record-keepmg and reportmg would
escalate the cost of Oecommlsslomng modules. Chris Eber apauncl upuoun discussed such issues
related to recycling of CdTe and crystalline Si PV modules. He showed that several of today's CdTe
modules failed the US-EPA Toxicity Characteristic Leaching Procedure (TCLP) for potential
leaching of Cd in landfills. Similarly, some of today's x-Si modules failed tests for leaching of Pb.
Consequently, such modules may be classified as "hazardous" waste. The TCLP is the current EPA
method to characterize the fmm-mz nntpntml of wastes. Tt assumes a particular worst-case scenaro
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of potential leaching of compounds in a landfill. However, many parameters that affect the
leachability of contaminants in the field are not addressed in the current TCLP, and the EPA is
investigating a more flexible approach that can be tailored to different types of waste. Danny
Cunningham, BPSolar, discussed issues related to preparing PV scrap for TCLP testing. He showed
that preparation of the sample can affect the results of the test and pointed out the need for
preparation guidelines.

The PV industry may choose to recycle spent modules, even if there are no regulatory issues related
with their disposal, because recycling may improve market penetration. Recycling is most cost-
effective if is done collectively by the industry, and in high volumes. Jef Bagby, who presented the
experience of the Rechargeable Battery Recycling Corporation (RBRC) discussed the benefits of a
collective approach. Two hundred and fifty manufacturers of rechargeable products fund RBRC,
representing about 75% of the world's rechargeable producers. Bagby described the difficulties in
setting up the logistics and operating the collection and transport of products for recycling. These
difficulties included allocating cost among participants, non-uniformity of state laws, restrictions from
antitrust laws, national laws and international agreements affecting transportation, and additional
overhead due to tax laws. The RBRC program became more effective when it was expanded beyond
the manufacturers and involved distributors, retailers, end-users, and the government.

The technical feasibility of recycling was proved by work funded by the DOE small-business initiative
research (SBIR). John Bohland presented the results of such research at Solar Cells Inc. (SSI), which
demonstrated the feasibility of recycling the basic components of spent CdTe and x-Si modules. For
CdTe, their technique entails crushing the module in a hammer-mill, screening EVA flakes, and
stripping metals from the crushed glass in successive steps of chemical dissolution, mechanical
separation, and precipitation or electrodeposition. The estimated cost for this process for a 2 MW
process (about 40,000 modules) integrated with a manufacturing facility is 2-4 ¢/W, excluding
transportation. For x-Si cells, SSI tries to recover the functioning cells which have a high value. So
far, they worked with PV coupons (not complete modules), and recovered most of the Tedlar
backsheet and the functioning x-Si cells, which have an electrical efficiency only slightly, lower than
the original ones. Their method starts by gently heating and manually peeling off the backsheet.
Then, inert atmosphere pyrolysis at about 500 °C vaporizes the EVA lamination layer. Si-cell
recovery was estimated to cost about 13 ¢/W, for an operational scale of 150,000 x-Si cells per year.
For comparison, a new x-Si cell costs at least $1.50/W to produce.

Bob Goozner, Drinkard Metalox (DMI) discussed the results of another DOE-SBIR project, dealing
with recycling of CdTe and CIS modules. DMTI's operations include chemical stripping of the metals
and EVA, skimming off the EVA from solution, and successive steps of electrodeposition,
precipitation, and evaporation to separate and recover the metals. DMI reports recovery of 95% or
better of Te, and 96% or better of Pb from CdTe modules. Chemical stripping leaves the SnO.-
conducting layer intact on the glass substrate, potentially allowing the re-use of the substrates for PV
deposition. They project a processing cost of 9 ¢/W or less for either CdTe or CIS modules.

Goozner also showed some promising preliminary results of stripping x-Si coupons with an HNOs

solution.



It has been shown that there is an economic incentive to design modules that will not be hazardous,
or to design them in such a way that they can be recycled at a reasonable cost. This issue was
discussed by Simon Tsuo, NREL, who presented alternatives in silicon solar-cell manufacturing that
are friendlier to the environment than today's common practices. Tsuo started by referring to sources
of information on environmentally benign semiconductor manufacturing, and continued with a step-
by-step analysis of manufacturing and environmental improvements for x-Si PV. His major points
were that alternatives exist that are both environmentally benign and cost-effective, and that the PV

industry can benefit by coordinating efforts with the printed-circuit industries.
The following are some additional salient points from this session:

¢ Recycling makes sense because it conserves relatively rare minerals like tellerium, reduces the
energy requirement in PV manufacturing, and preserves the environmentally friendliness of PV.

e Recycling can help market acceptance and penetration.

e Effective methods of recycling have been developed that can be used for both in-house and large-
scale recycling.

e Currently, economic incentives may be inadequate to move the PV industry into voluntary
recycling. However, this may change in future, as more economic incentives may be given to
developing clean technologies, preventing pollution, and reducing CO, emissions.

e Also, in future, recycling costs are likely to decrease as the technologies mature, whereas the
costs of landfill disposal are constantly increasing.

e The industry must keep an eye on regulatory developments related to TCLP, and similar waste-
defining rules and exceptions as they affect the need for, and economics of, PV recycling.

Session 2: PV for Carbon Dioxide Reduction

Session II focused on the potential of PV to reduce emissions of carbon dioxide, and thus have an
ameliorating effect on global climate change. The Chair of this session, Ken Zweibel, NREL opened
the discussion with a synopsis of the fundamental terms used in ‘analyzing PV energy payback and
carbon dioxide mitigation. PV CO, emissions are zero during use because PV systems require little
or no maintenance or oversight. Some CO, emissions can be attributed to manufacturing because it
takes energy to manufacture a module. Thus, PV requires some input energy, which it pays back
early in its lifetime. This energy pay back (EPB) was the focus of the paper by E. A. Alsema
(“Energy Requirements and CO, Mitigation Potential of PV Systems”) of the University of Utrecht.
For PV to be useful, the energy payback must be reasonable. In the past, PV has had high EPB
because technology was immature and burdened by energy-intensive processing. As Alsema points
out, EPB for existing PV systems is in the 3-10 year range; and future technological options will



likely allow system EPB to fall to the 1-3 year range. In this range, the amount of CO; displaced by
PV over a thirty year lifetime outdoors is 90% to 97% as compared to the CO; of the energy it
offsets. For example, if we assume the US mixture of energy generation causes 160 g carbon
equivalent of CO, per kWh of electricity, then a 1 kW PV array in an average US location would
produce about 1600 kWh each year, and 48,000 kWh in 30 years. That would avoid about
(48,000*0.95)*160 g/kWh, or about 7 metric tons (MT) of carbon equivalent during its useful life.
The “0.95" in the equation represents a reasonable guess about future energy payback at the system
level. Clearly, certainty about the order-of-magnitude of this number is far more important than
predicting it to three decimal places; and also more important than the expected absolute amount of
carbon dioxide that PV will displace, since that is dependent on (1) the mix of energies with which
PV will be manufactured and (2) the mix that it will displace (which will vary with location,
application, and date).

Once it is established that substituting fossil-fuel energy generation with PV can prevent substantial
CO, emissions, it is then necessary to establish that PV can become a large-scale source of electricity.
The major barrier to PV becoming a large-scale energy source is PV electricity cost. Today’s PV
systems sell for about $6-$10 per peak Watt, with an implied electricity price of about $0.4 to
$0.7/kWh. This is much higher than conventional sources, which sell for about 8 cents’kWh in the
US. However, PV technologies are making rapid progress toward improved output per unit cost.
Existing technologies are improving, and new technologies are coming on line. Projections of future
costs based on progress in PV technologies are consistent with module costs below $0.5/W
(compared to $3/W today) and reduced balance of system (BOS) costs as volume and design
sophistication increase. Thus the competitive economic future of PV is quite promising.

However, PV faces several other hurdles before it can be a source of energy on a global scale. Two
of them are covered in two other papers delivered during the session: “Materials Availability and
Waste Streams for Large Scale PV’ by Bjorn Andersson of Goteborg University and “The
Competition Facing PV in a Greenhouse Gas (GHG) Emissions-Constrained World” by Robert
Williams of Princeton. Andersson discusses the various potential constraints on the use of several
thin film PV technologies that are expected to have excellent cost potential. However, each of these
technologies uses a rare raw material: germanium in amorphous silicon; tellurium in cadmium
telluride; and indium and gallium in copper indium diselenide. Andersson provides some sobering
parametric insights into the potential of these technologies to be used on a global scale, i.e., at
volumes per year of 10-100 GW. Each of these technologies must address the materials availability
issue in order to be viable at these volumes. Fortunately, research avenues such as making thinner
layers, increasing device output per unit area, increasing the materials utilization of processes,
recycling, and substituting other materials for the rare ones, provide excellent avenues for meeting
the materials availability challenges. These challenges will not impede the near-term adoption of these
technologies (prior to 2010 or 2020, depending on growth), but will need to be addressed during this

grace period.

Williams addresses the issue that PV must compete for markets that will have other choices, such as
wind and biomass electric power. Indeed, such competition will always be a ‘moving target’ since
all energy technologies will progress substantially during the time it will take PV to mature. If they
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have favorable cost, favorable environmental or infrastructure qualities, they will be hard competition
for PV in developed and developing nations. The special uses of PV (e.g., for rural electrification in
developing countries) means that some of this future market competition will out of necessity remain
uncertain while markets and technologies develop.

Finally, our last paper "MARKAL-MACRO: A Computer Tool for Integrated Energy-Environmental-
Economic Analysis", presented by Vasilis Fthenakis of Brookhaven National Laboratory (BNL),
discussed the predictions of a BNL model (MARKAL-MACRO) on how PV will compete in the
future 30 years, against other technologies in the US energy marketplace. Fthenakis used input data
from NREL about future efficiencies and cost reductions of PV, and data from DOE on the expected
performance of about 200 competitive technologies and administrative options, and produced
estimates on PV penetration in the US and corresponding CO, emissions reduction. The model
predicts that by the year 2020, if the targets of 15% PV module efficiency and $0.71/W,, capital cost
are attained, PV installations in the sunniest areas of the US (e.g., Arizona) will total 20 GW; if the
price falls down to $0.57/W,, then PV's share in the US could jump to 140 GW (about 10% of the
projected total 2030 US energy capacity). At that level, PV will be reducing carbon emissions by
about 64 million metric tons per year, a very significant contribution by any single technology.

This workshop has addressed the effort to develop a framework for evaluating PV in relation to
global CO; reduction. We have examined the issues of PV energy payback; PV CO, reduction, the
potential of PV technologies to become cost competitive; competing technologies; and constraints
such as materials availability and waste streams. This is only a first step. For example, we have not
performed an in-depth study of PV with electric or chemical storage or other similar infrastructure
issues unique to non-dispatchable sources like PV.

As PV matures and becomes a more widespread and practical energy option, we shall re-examine this
question again and again. In the future, we hope to adequately characterize the value of PV in this
endeavor so that the public and their representative organizations can properly weigh policy affecting
PV development.

Session 3. Million-Roof Initiative: Potential EH&S Issues

President Clinton announced in June 1997 the ultimate goal for one million solar-energy systems to
be installed on U.S. rooftops by 2010. He committed the federal government to installing 20,000
solar systems on its buildings' rooftops by then. This initiative was the Administration's response to
the issue of Global Climate warming. As discussed in the previous session, PV can make a significant
contribution in reducing carbon-dioxide emissions in the United States, and the Million-Roof Initiative
is intended to jump-start the solar market and create the momentum for necessary price reductions

to achieve this goal.

Christi Herig, NREL talked about the goals of the initiative and the role the administration envisions
for the different partners (e.g., industry, states, municipalities, consumers, developers and builders).
She presented some heartening statistics. In 1998, there were 8,500 solar buildings in the United
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States, up from only 2,000 the previous year. The projected numbers of solar buildings for 2000,
2005, and 2010 are 51,000, 376,000 and 1,014,000 respectively. The DOE wants to identify
potential EH&S concerns related to such a quick pace of development.

The most obvious issue relates to the hazards of electric shock and falls during the installation,
connection, repair, and maintenance of PV roof systems. Ward Bower, Sandia gave an overview
of codes, certification requirements, and guidelines issued by the IEEE, ANSI, ASTM, IEC and
the UL. There are many guidelines and standards applicable to PV-system interconnects and
current efforts at Sandia focus on ensuring that the National Electrical Code includes the PV-
unique requirements for safe installation of PV building systems. Bower distributed copies of
draft of NEC article 690 that covers photovoltaic systems, and discussed several considerations
applicable to PV modules and arrays, (e.g., critical temperatures, voltage ratings, cable and
insulation types, sizing for safe design, over-current protection, manual disconnects, grounding,
anti-islanding protection, and in-surge and transient protection). An easy-to-read safety
document, "IEEE Guide for Terrestrial Photovoltaic Systems Safety" will become available in
early 1999. Other items that were touched upon by the audience included fire hazards to the
buildings' occupants and to firefighters. Questions pending answers include: 1) How are arrays
disabled so that firefighters are protected when using water on the roof? 2) Do firefighters need
extra protection from potential toxic vapors emitted from a burning array? 3) Are there any
environmental issues related to the disposal of roofing shingles and building-integrated modules?
4) Can the industry meet RCRA and state requirements for landfill disposal, or will
treatment/recycling be necessary?

While these concerns are addressed by the industry and solutions are being worked out, it is
imperative to emphasize the positive aspects of the upcoming scaling-up of building-integrated
photovoltaics. Paolo Frankl, INSEAD showed that such systems could offer even greater
benefits in lowering carbon dioxide emissions (on a MW basis) than large stand-alone systems.
This conclusion is based on energy pay-back time, energy yield, and net CO; balance from a life-
of-cycle analysis of current silicon-based photovoltaics. The main advantage of building-
integrated systems vs. stand-alone ones comes from avoiding the expense and energy intensity
needed for structural supports. Frankl also presented a parametric analysis of the effect of future
system designs, showing that future hybrid PV/thermal roof systems are expected to further
enhance the potential of PV to mitigate CO; emissions.
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Recycling of End-of-Life CdTe and Si PV Modules
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1.2  John Bohland
Recycling as an Alternative to Disposal of PV Modules



PHOTOVOLTAICS AS HAZARDOUS MATERIALS; THE RECYCLING
SOLUTION

John Bohland, Todd Dapkus, Kristin Kamm and Ken Smigielski
Solar Cells, Inc.
1702 North Westwood Avenue, Toledo, Ohio, 43607, USA

ABSTRACT

Because traditional and newer PV technologies contain potentially hazardous
materials, PV manufacturers are becoming increasingly aware that end-of-life
modules and intermediate scrap materials must be managed according to
environmentally sound practices and in compliance with international, national and
regional regulations. Instead of disposal, we report methodologies to recycie both
newer, thin-film PV technologies and conventional, crystalline silicon PV. This
paper details these recycling processes; processes that reduce scrap material
management costs, reduce regulatory and liability burdens, and increase global
market acceptance of all PV technologies.

KEYWORDS: Recycling - 1: CdTe - 2: Silicon - 3

1. INTRODUCTION

Photovoltaic modules contain potentially hazardous materials such as cadmium, lead,
selenium and silver. These metals demand prudent scrap material management practices
throughout the PV module life cycle to avoid environmental and human heath risks and to
comply with existing regulations.

Even now, PV manufacturers must comply with disposal restrictions (in the US) based
on certain leachable metal concentrations. Metals of regulatory concern commonly present
in PV modules include cadmium, lead, selenium and silver. For instance, a standardized
leaching test resulting in greater than 1 mg/l cadmium, or greater than 5 mg/l lead, requires
disposal management as a hazardous waste according to US federal law [1]. The
implications of these regulations for PV manufacturers were discussed in more depth
recently by Eberspacher and Fthenakis [2].

This work shows that several economic and environmentally benign reclamation
methods to reclaim module scrap for both thin-film and crystalline silicon PV have already
been developed and practiced.

2. RECYCLING TECHNOLOGY SUMMARY

To provide alternative end-of-life disposal options, and recover valuable raw materials
such as glass PV substrates and semiconductor materials, Solar Cells, Inc. has developed
three specific reclamation technologies applicable to both conventional crystalline silicon
PV modules and newer thin-film materials. The technical details of these processes, their
economics, and SCI’s experience to-date follow.

For Solar Cells’ cadmium telluride (CdTe) thin-film modules, two recycling
technologies have been developed. The first was designed to address the end-of-life
module issue. Solar Cells interprets “end-of-life” as the point at which a CdTe PV module

1



can not be economically refurbished for any further use. For instance, if external electrical
lead wires fail or are damaged, repair and further use in a secondary market may be

possnble However, if the encapsulant fails or the front or back glass substrate breaks,
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breakage has been the largest contributor to the end-of-life condition at existing Solar
Celis’ arrays.

2.1  End-of-Life Thin-Film PV Recycling

Beginning with a broken module, disassembly commences. The external module power
lead wires are removed at their termination in a reaction injection molded polyurethane
nnttmo disc uemo a wire t‘nﬂmo tool and salvaged for their copper scrap value. The

module is then loaded into a “sknp hoist” bucket elevator conveyor, currently up to three at
a umc, for ucu'vén“y into a hammer mill. The hammer mill quick}y (‘v‘v‘itmu seconds) ) reduces
the module glass to between 4 and 60 mesh (4.76 mm to 0.25 mm) where it passes through
the hammer mill sizing screen and onto a high speed, high incline belt conveyor. During the
milling process, ethylene vinyl-acetate (EVA) encapsulant material is also fractured and
freed from the module’s front and back glass substrates. It is discharged from the mill in
greater than 4 mesh (4.76 mm) pieces. The tin-coated copper buss bars used for current

collection from the solar cell remains adhered to the EVA and follow this stream through

tha nracace Tha halt ranvauvnr trancefare the criichad olace and FUA niarac tA a nannrana_
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lined rotating conical barrel-finishing machine where the CdTe semiconductor and back
metal electrode are dissolved using an acid etchant. -

The friable glass and EVA leave the mill quickly, but the large elastomeric (about 8 cm
in diameter) polyurethane potting and mounting discs that were chemically adhered to the
module back-glass remain in the mill for about 30 seconds in order to completely free the
mounts from glass. Then, an air-cylinder actuated trap door is opened and they are

discharged into an isolated recentacle for recoverv Thue one evtremalu cimnle and
gischarged into an iselateg receptacie recovery. 1hus, one extremely simpie ang

effective machine disassembles and separates all module components Several uses are
posswle IOI' Ine TeC(_)VCl'CG pmyufetnane GlSKS gﬁﬂﬂ tnem ano use Inem as an lmpaa
modifier in new polymer formulations, use the mounts as packing material or fuel, or re-use
them directly in the recycling process in the barrel-finishing machine as media to prevent
glass clumping during the semiconductor etching process. This completes disassembly.

For CdS/CdTe thin-film modules, an etchant formula consisting of 2 to 4 N sulfuric

acid, 1% to 2% hv weight hvdrogen nprrnnde and a small percentage of an acid stable

JLLLARLV A LRSS St e il &= el L g )

surfactant is added to the barrel- ﬁmshmg machme Complete removal of the
semiconductor and metal electrode layers from the glass and EVA occurs at ambient
temperature in 15 minutes or less (depending on ambient temperature) due to the
aggressiveness of the acid and the vigorous glass on glass particle attrition caused by the
barrel rotation. Under these process conditions, the tin from the tin-coated copper bus bar
is removed but the copper is not itself significantly etched. No fume scrubbing equipment
is rpqmrpd for this pnummem,

Wil Wl AV LS SgReipfiduiAt

After etching, the barrel is lowered and the spent etchant is decanted over a gyratory

vibrating screen equipped with iwo screen decks; onc at 4 mesh (4.76 mm) and one at 60

mesh (0.25 mm). After an on-screen water rinse, the EVA, with the copper buss-bar still
adhered, is separated on the top (4 mesh screen) and is delivered to a receptacle. The next
screen deck, at 60 mesh, separates all but the finest glass pieces and delivers them to

another receptacle. The EVA, representing about 3% of the module weight, can be ground
and used as an impact modifier in new polymer formulations, used directly as packaging
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material, or simply burned for its fuel value. The contamination of the copper buss-bar may
reduce the applications of this material without further treatment.

About one percent by weight of the glass is smaller than 60 mesh and passes through
the second screen deck, along with the spent etchant, in an etchant accumulation and glass
fines settling sump tank. This glass is removed periodically and returned to the bulk glass
cullet stream, all of which is suitable for recycling by a glass manufacturer. About 95% of
inputted glass is recovered.

The spent etchant is pumped through a bag filter to remove any still suspended glass
fines into a chemical precipitation tank where sodium carbonate is used to neutralize the
acid etchant and precipitate all the dissolved metal species. Sodium carbonate is the
preferred precipitation agent because cadmium carbonate, the precipitation reaction
product, has less than 1 mg/l solubility at relatively low pH. The etchant is precipitated to
between pH 8 and 9, acceptable to the Toledo, Ohio wastewater treatment works. After
settling, the supernatant, containing only the sodium sulfate neutralization by-product, is
pumped to the sanitary sewer discharge line after a cartridge filter polishing step. Cadmium
concentrations in the discharged supernatant are consistently less than 0.1 mg/l; the
discharge limit is 0.3 mg/l. The cadmium concentration in each batch of supernatant is
measured and recorded before it is discharged. The precipitate sludge containing the
cadmium, tellurium, tin, and other metals from the module back metal electrode contact is
pumped to a sludge conditioning tank where lime or diatomaceous earth is added to bulk
the sludge and allow more efficient de-watering when filter-pressed. A small (0.5 f*) plate
and frame filter press is used to increase the metal laden sludge from about 4% solids to
60% solids. The effluent from the sludge press is returned to the precipitation tank instead -
of directly discharged because some metal-containing solids may pass through the filter
cloths at the beginning of the filter press run.

Finally, the de-watered sludge is removed from the filter press and placed in a small
alkali extraction vessel where tellurium, the one metal of commercial value from the CdTe
PV modules, is extracted in concentrated potassium hydroxide. After extraction, the
sludge is re-pressed in the filter press to separate the remaining undissolved metals,
including the cadmium, from the resulting potassium tellurite extraction solution. This
sodium tellurite electrolyte is electroplated in a custom electrowinning vessel and can be
sold as commercial (99.7%) tellurium at market value. Recent evaluations show the
tellurium recovery yield to be consistently above 80%. The remaining cadmium rich mixed-
metal sludge is sent to INMETCO, a smelter in Ellwood City, Pennsylvania that has earned
the United States Environmental Protection Agency’s title of “Best Demonstrated Available
Technology” for cadmium disposal. The cadmium is recovered in this process and can be
used eventually for nickel-cadmium battery feedstock. The general arrangement elevation
drawings in Figures 1 and 2 show the module disassembly and etching equipment, and
effluent treatment equipment, respectively.

Figure 1: CdTe module recycling disassembly and etching equipment drawing

3



Figure 2: CdTe module recycling effluent treatment equipment drawing.

This reclamation technology is also applicable to copper indium diselenide (CIS) thin-
film modules. A smali-scale experiment has shown that the same etchant formulation used
to etch CdTe modules is effective in removing the CIS film from its substrate glass.
Though indium has significant reclaim value, recovery chemistry for it has not been
investigated and may not be practical given the complex matrix of the CIS cell and the
amount of indium available..

A more thorough deernn tion of the Solar Cells’ CdTe module and revie
chemistry and equipment used in this patent-pending process were presented at the 26

TEDE nuyuycr rl
IEEE T VOU ).
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2.2  Thin-Film Manufacturing Scrap Recycling

A second, proprietary technology was developed by Solar Cells for recovering early
stage (unlaminated) manufacturing scrap. Early stage fall-off results mainly from start-up
waste WhPﬂ a new cnatmo rn is hemm

This novel, propnetary process allows economic recovery and direct re-use (re-coating)

emlac aatd | RPN

6fth SOsar bcll suosirate.
2.3  Crystalline Silicon PV Recycling

Solar Cells, Inc. is the first PV company to successfully apply the principles of inert gas
pyrolysis to the problem of reclaiming intact and functioning silicon PV cells from
encansulated crvstalline silicon (x-Si) PV modules. Though previous work has been done

TRAVRp SWAIRIY Wi yOeRiillliT S:eaviel ass B a WS, a RS henyis

on x-Si module recyclmg it resulted only in recovery of the silicon wafer material itself, not
functioning and potentially re-usable x-Si cells [4].

Study of a thermogravimetric analysis chart showing weight loss vs. temperature for
EVA led to the hypothesis that using inert gas pyrolysis may be a cost efficient way to
recover intact and functioning crystalline silicon cells from encapsulated x-Si module scrap

[5). Using pyrolysis, instead of combustion, results in controllable, (non-exothermic)
nolvmer Annnmpncmnn without creating carhonaceous hv-nrndnrte that render recovered

polymer reating eous
snlxcon cells unusable.

To test this idea, crystalline silicon cell “coupons” were fixtured in a Lindberg quariz
tube furnace and heated in a nitrogen atmosphere for about an hour at temperatures over
500°C. The coupons were fixtured to allow gravity drainage of intermediate liquid polymer
decomposition products away from the delaminated wafer. The Tedlar® backsheet was

removed prior to the pyrolysis step by gently heating the coupon then manually peeling the

hanl chaat feam tha BV A ancanenlant
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measured at 10.7% after delamination by the inert gas pyrolysis technique. The recovered

o

cells were clean and nearly residue-free. Figure 3 shows a photograph of a cleanly
recovered silicon cell.

Optimized process conditions, using equipment with faster temperature ramp-up
capabilities, perhaps combined with directed convective nitrogen gas flows, or even heating
under reduced pressure will result in even better recovered cell performance and
annearance.

By v Kasee

A patent application is underway for this process. A detailed technical report on this

m sl 3 ..t Aszth vy Dyros ro

methodology was presented at the 26 IEEE PVSC {6].
3. RECYCLING ECONOMICS

We commissioned the world’s only CdTe PV module recycling plant in March 1998.
0

in
From this limited operatino exnerience, economic analvses based on three cost scenarios

2 rass salad dAidA N P Ssiiin s sV, SWR S8l o%s YaSSe

have been developed.

3.1 Hazardous Waste Cost Avoidance Model .

The first scenario is the break-even hazardous waste disposal cost avoidance model for
in-house manufacturing scrap. Solar Cells has been quoted US $360 per 55 gallon drum
container of non-combustible hazardous waste disposal. About 720 pounds of crushed
glass (modules) will fit in a 55 gallon drum. If end-of-life CdTe modules required disposal

management as a hazardous waste, disposal at a permitted hazardous waste site would cost

TIC @©N 28 cmne Y7 ~e TTIQ €N &N nar nmiinAd RNacad An antinal ranital amiinmant Acncte lohae
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requirements and other operating and overhead costs, the recycling cost break-even point is
reached at an annual volume of 2,000 modules, assuming 35 pounds per module. In other
words, the recycling facility can process this throughput of modules for US $35,000 (the
same cost as hazardous waste disposal of this quantity of modules) assuming capital

equipment and installation costs are amortized over a ten year lifetime.



3.2  Maximum Throughput Model

The second scenario is the maximum throughput, in-house manufacturing scrap model.
Here, if the recycling facility is run at its maximum annual recycling capacity of 2 MW
(about 40,000 typical Solar Cells’ modules), the cost is diluted to just over US $0.02 per
W,, or about US $0.03 per pound, comparable to the cost of disposal of trash in a non-
regulated landfill.

3.3 Mazximum Throughput, Stand-Alone Model

The third scenario, a stand-alone CdTe module recycling facility, again processing 2
MW of typical Solar Cells’ CdTe modules, but now including costs incurred from facility
burden and transportation, results in an estimated processing cost of US $0.12 per W,, or
US $0.17 per pound. A comparable estimate has been made by Eberspacher of UNISUN
[7]. Though this cost may be a sizable fraction of the original manufacturing cost, recycling
remains a much more cost effective option than disposal as a regulated waste.

Recycling Cost Summary
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Figure 4: Graphical cost summary of Stand-Alone and In-House operating models Vs.
Throughput.

3.3 Thin-Film Substrate Recovery Pay-Back

For early stage fall-off recycling, the whole value of the substrate glass is recovered and
pay-back for installing and operating the recycling apparatus is estimated to occur after
processing 2,100 current Solar Cells’ CdTe substrates. This would occur in just over 3
months assuming 4% fall-off from a 10 MW coating line and certain operational, material

and capital costs.

3.4  Crystalline Silicon Cell Recovery Pay-Back

Last, silicon cell recovery has been estimated to cost $0.13 per watt, based on
reclaiming 250,000 x-Si cells annually, including labor, capital equipment and operating
costs. However, this estimate does not include pollution control equipment to recover or
combust the EVA pyrolysis by-products, transportation, facility costs, or the value of other
recoverable components of the x-Si module such as the aluminum frame or Tedlar®
backsheet. Even so, since silicon cells may cost at least US $1.50 per W, to produce, a
significant opportunity exists for recycling x-Si cells for its own economic merit, as well as

to avoid environmental liabilities.



4. SOLAR CELLS EXPERIENCE

Solar Cells has recently completed the first full-out test of its recently commissioned
CdTe module recycling line. In one eight hour period, 3,600 pounds of modules were
recycled or 450 pounds per hour. This compares with a plant design throughput of 700
pounds per hour. With more experience and process optimization, full design throughput is
expected.

Over 1,200 accumulated early stage manufacturing fall-off substrates have been
reclaimed, already resulting in over 50% pay-back of the apparatus used for this process.

While the x-Si recycling technology has not been implemented, it remains an economic
way to recycle scrap crystalline silicon PV modules as market or regulatory forces demand
it.

5. SUMMARY

For many reasons, including preventing unlikely but possible environmental damage
from irresponsible PV disposal practices, conserving relatively rare mineral resources like
tellurium, reducing the energy component of PV life cycle assessments, complying with
current and future regulatory requirements, and simply increasing market acceptance by
keeping a “green” product “green”, recycling makes sense.

Cost effective, environmentally benign and scaleable PV scrap management options that
result in true recycling of the major module components instead of simply converting one
type of waste into another have been developed and practiced. Photovoltaic products now
enjoy recyclable status similar to other electronic devices such as nickel-cadmium batteries,
circuit boards, computer chips, cathode ray tubes, and copier toner and printer ink
cartridges.
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1.4 Daniel Cunningham
Discussion about TCLP protocols
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+ Only two dimension
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¢ Metal concentration in extract depends on:
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1.5  Simon Tsuo
Silicon Solar Cell and Module Manufacturing: Current and Alternative,

More Environmentally Benign Processes



ENVIRONMENTALLY BENIGN SILICON SOLAR CELL MANUFACTURING
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ABSTRACT: The manufacturing of silicon devices - from polysilicon production, crystal
growth, ingot slicing, wafer cleaning, device processing, to encapsulation - requires many steps
that are energy intensive and use large amounts of water and toxic chemicals. In the past two
years, the silicon integrated-circuit (IC) industry has initiated several programs to promote
environmentally benign manufacturing, i.e., manufacturing practices that recover, recycle, and
reuse materials resources with a minimal consumption of energy. Crystalline-silicon solar
photovoltaic (PV) modules, which accounted for 87% of the worldwide module shipments in
1997, are large-area devices with many manufacturing steps similar to those used in the IC
industry. Obviously, there are significant opportunities for the PV industry to implement more
environmentally benign manufacturing approaches. Such approaches often have the potential
for significant cost reduction by reducing energy use and/or the purchase volume of new
chemicals and by cutting the amount of used chemicals that must be discarded. This paper will
review recent accomplishments of the IC industry initiatives and discuss new processes for
environmentally benign silicon solar-cell manufacturing.

Keywords: ¢c-Si - 1: Manufacturing and Processing - 2: Environmental Effect - 3

1. INTRODUCTION

With the worldwide photovoitaic (PV) solar energy market expanding rapidly and the
demand outpacing supply, the crystalline-silicon solar PV module is finally becoming a
commercially viable product. Most of the newcomers and the capacity expansions of existing
producers are based on either single-crystal silicon grown by the Czochralski (Cz) method or
polycrystalline silicon by casting. There are also increasing numbers of suppliers who are
developing production equipment for the industry based on best-known practices (BKPs) of
silicon solar cell and module processing. Because solar electricity generation is a large-area
application, it is likely the PV industry will eventually use more silicon than even the integrated-



circuits (IC) industry. It is important at this stage to review the environmental impact of the
rapidly growing silicon PV industry and to find opportunities for improving energy efficiency
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The manufacturing of semiconductor silicon devices - from polysilicon production, crystal
growth, ingot slicing, wafer cieaning, device processing, to encapsuiation - requires many steps
that are energy intensive and use large amounts of water and toxic chemicals. In the past two
years, the IC industry has initiated several programs to promote environmentally benign
manufacturing, i.e., manufacturing practices that recover, recycle, and reuse materials resources
with a minimal consumption of energy. One of the programs is the establishment of the

Fné-r.r,neer_tna Research f'ange,r for Fn\nrnnmpntn”\; Rnrng-n Semiconductor A/nm:fnniuwng on

Apnl 15, 1996, with an 1mtla1 fundmg of US$10 million from the United States National
DCICI'ICC POUDOKIIOI] UVDI‘ ) dIlO DCHIILOHQUCIDY nesear(:n \,orporauon \Dl\b ) \,rySIaume-
silicon modules accounted for 87% of the worldwide PV module shipments in 1997 and 93%
of those modules shipped for outdoor applications [1]. Silicon PV module manufacturing has
many steps similar to those used in the IC industry. Although the annual sales of the worldwide
silicon PV module industry is about 400 times smaller than that of the IC industry, the PV
r_n_c_h_lstrv consumes about 10% of the worldwide polysilicon production. Obviously, there are
s1gmﬂcant opportunmes for the silicon PV mdustry to learn from new developments in the IC
u.dustrj and to uupmuluu more mlvuumumuauy bcnusu ula.uufautuuus appr roaches. Such
approaches often have the potential for significant cost reduction by reducing the purchase
volume of new chemicals and by cutting the amount of used chemicals that must be discarded.
Because PV manufacturing has lower semiconductor material-quality requirements than IC
manufacturing, some lower cost and more environmentally sound processes may be acceptable
for PV manufacturing even though they don’t meet the stricter requirements of IC
manufacturing.
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silicon PV modules. We will simply highlight some areas where we think opportunities exist to
make the module manufacturing process more environmentaily benign.
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2. INDUSTRY INITIATIVES AND RESOURCES

. .
rae recent initiatives bv the semiconductor industrv in the environmentally benion
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manufacturing area could produce results that also benefit the PV industry: (1) The National
Science Foundation and the Semiconductor Research Corporation jointly established the NSF-
SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
on April 15, 1996 [2]. SRC is a consortium of 65 corporations and government agencies that
plans, directs, and funds the semiconductor industry’s pre-competitive, long-term research [3].
(2) In April 1997, the international trade association for the semiconductor industry,

Samiconductor Enn-nmpn and Materials International (QFMT\ created a new Environmental
W WwilMWAJLINSWBWLWL y EWwiAily GRAGE ATVAMIWE IWIY ASSPWE JAWMPAWEAWME | WASLTVAL Jy Wi WALWL W LiwVEy TP AL

Health and Safety Division that will explore worldwnde envxronmental pnormes for the
industry [4]. (3) In October 1957, the Electric Power Research Instituie (EPRI) and
SEMATECH Corp. formed a new center, the EPRI Center for Electronics Manufacturing, to
address productivity, environmental, and energy issues in the electronics industry [5].
SEMATECH is a non-profit R&D consortium of U.S. semiconductor manufacturers.

The NSF-SRC Center carries out research in six areas of semiconductor manufacturing'

roacoac ot n"\Amu\alc f‘h‘m'f‘ﬂl_mpf‘hﬂ“|f‘ﬁl '\f\“ehl“n ﬁm'eclnn
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of organics, and risk-assessment studies. Some of these research results are presented in a



weekly teleconference seminar series hosted by the four participating universities: University of
Arizona, Massachusetts Institute of Technology, Stanford University, and University of
California-Berkeley [6]. A good source of information on the Environmental, Safety, and
Health (ES&H) goals of the semiconductor industry is the ES&H Section of the United States
National Roadmap for Semiconductors [7]. In addition to these semiconductor industry
organizations, the United States National Photovoltaic Environmental, Health and Safety
Information Center [8] regularly publishes information on PV ES&H-related issues [9].

3. POLYSILICON PRODUCTION

For the feedstock material used in crystal growth, the silicon PV industry has been relying
on rejected materials from the IC industry. These rejected materials, about 2,100 metric tons in
1997, amount to about 10% of the semiconductor-grade polysilicon used by the IC industry.
This arrangement worked well until 1995 when a shortage of polysilicon feedstock began to
drive up the cost and limit the growth of the silicon PV industry. If the PV industry continues
to grow at the present rate, which in recent years has been higher than the growth rate of the
IC industry, and if crystalline silicon continues to be the dominant technology of the PV
industry, then we must develop new sources of solar-grade polysilicon. There are two
possibilities: (1) build new factories dedicated to the production of low-cost (< US$10/kg),
solar-grade polysilicon, and (2) find new ways to use the rejected silicon that is not currently
being used, for example, purifying the about 30% of silicon lost from wafer-cutting operations
(kerf loss) of semiconductor-grade polysilicon into solar-grade polysilicon. The purity
requirements for solar-grade polysilicon, according to the Solar-Grade Silicon Stakeholders
Group, are the following: it is preferred that polysilicon have either B or P doping, with no
compensation,; resistivity at 25°C should be greater than 1 ohm-cm; oxygen and carbon should
not exceed the saturation limits in the melt; and the total non-dopant impurity concentration
should be less than 1 ppma [10].

More than 98% of semiconductor-grade polysnhcon is produced by the trichlorosilane
(SiHCI3) distillation and reduction method [11,12]. The trichlorosilane is manufactured by
fluidizing a bed of fine pulverized metallurgical-grade silicon (MG-Si), which is more than 98%
silicon, with hydrogen chloride in the presence of a copper-containing catalyst. The MG-Si,
which costs about US$1/kg, is produced by the reduction of natural quartzite (silica) with coke
(carbon) in an electric arc furnace. This method of polysilicon production is very energy
intensive [13], and it produces large amounts of wastes, including a mix of environmentally
damaging chlorinated compounds. About 80% of the initial metallurgical-grade silicon material
is wasted during the process. In addition, the semiconductor-grade polysilicon material
produced by this method far exceeds the purity requirement of the PV industry, and the cost
(over US$50/kg, with most of it attributable to the SiHCI3 processes) is several times higher
than what the PV industry can afford [14]. Every watt of crystalline silicon PV module
generating capacity requires roughly 20 g of polysilicon. Thus, if the cost of solar-grade
polysilicon is US$20/kg, the cost of polysilicon per watt of a crystalline-silicon PV module is
US$0.40. It is obvious that less complicated, less energy intensive, more efficient, and more
environmentally benign methods need to be developed to meet the cost and quality
requirements of the PV industry. New methods of producing solar-grade polysilicon should
. either be chlorine free or recycle chlorine internally to reduce cost and avoid damage to the

environment.



3.1 Low-Temperature, Chlorine-free Processes for Polysilicon Feedstock Production

ow-Temperature, Chlor
The National Renewable Energy Laboratory (NREL) and Sandia National Laboratories
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initiated a joint research program with the Intersolarcenter to study new chlorine-free methods
of producing soiar-grade poiysilicon. So far, the most promising method deveioped by this
project is one that uses MG-Si and absolute alcohol as the starting materials. This new process
requires only 15 to 30 kWh of energy per kg of polysilicon produced vs. about 250 kWh/kg of
the trichlorosilane method. The silicon yield (polysilicon and the main by-product, silica sol) is
in the 80% to 95% range vs. 6% to 20% for the trichlorosilane method. The eventual cost goal
is US$10 per kg of solar-grade polysilicon.
The basic processing stages of this chlorine-free polysilicon production process are the
foll wulg
1. The reaction of metallurgical-grade silicon with alcohol proceeds at 280°C in the presence
of a catalyst:

")

Si + 3 CoHsOH <catalyst §i(OC,Hs)3H + Hy )
2. The disproportion (i. e. s1multaneous oxldatl nd reduction) of triethoxysilane in the
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4 Si(OCHs)3H CAlAVS SiHy + 3 Si(OCoHs) 4 )

3. Dry ethanol and such secondary products as high-purity SiO2 or silica sol can be extracted
by hydrolysis of tetraethoxysilane. The alcohol will be returned to Stage 1.
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4. Silane is decomposed pyroiyticaily to pure silicon and hydrogen at a temperature of about
(-]
900 C:

SiHy, 850°-900%C gi+ 2 H
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applications. Thus, the silane will undergo a simplified cycle of purification, and at Stage 4 the
less expensive and less energy-consuming process of a fluidized bed reactor can be used,
instead of the well-known Siemens Process [11].

urification of Metallurgical Silicon

NREL and ENEA (Natlonal Agency for New Technologies Energy & Environment) have
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pellets. The process uses the very large surface areas, produced by porous s1hcon etch on the
surfaces of the silicon wafer, as sites for gettering impurities in the subsequent high-
temperature annealing. The details of this process will be presented seperately at this
conference {15].

3.2

"'H

3.3 New Sources of Silicon Waste from the Electronic Industry
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about 250 micrometers thick is lost per wafer. This kerf loss is higher for inner-diameter (ID)



Saws. 'Dpnpndmo on the wafer thickness this kerf loss represents from 25% to 50% of the
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mgot matenal several times the quantity of the material that is presently used by the PV
industry. Presently, the solar industry uses mainly Cz ingot top and tails, pot scrap, and rejected
wafers from the IC industry {14]. If a method can be developed to produce solar-grade
polysilicon by purifying the kerf remains of semiconductor-grade ingots, enough polysilicon
would be generated for over 300 MW/year of crystalline-silicon solar cells, i.e., more than two
times the size of the current silicon solar-cell production.

There are four types of crystaliine-silicon solar cells: single-crystal, polycrystalline, ribbon,
and silicon film deposited on low-cost substrates. In 1997, market share of the worldwide PV
cell and module shipment for the four types of crystalline-silicon solar cells were 49.6% for
single-crystal, 34.0% for polycrystalline, 3.2% for ribbon, and 0.4% for silicon film [1]. Crystal
growth from a silicon melt generates relatively little waste. The main concern is the energy
required and the amount of argon gas used during crystal growth. Electricity and argon needed
for Cz growth are the highest among the four types of silicon materials [13]. Recently,
however, the worid’s largest manufacturer of Cz silicon solar celis, Siemens Solar, Industries,
announced a joint project with the Northwest Energy Efficiency Alliance to cut the amount of
electricity used to grow crystals and yield savings of 40% to 50% [16].

In the last six years or so, the PV industry has made the transition from using ID saws for
wafer slicing to using multiple-wire saws. Multiple-wire saws can improve wafer yield per unit
length of ingots by over 50% because of lower kerf loss and thinner wafers. However, wafer
slicing is still one of the most expensive processes in silicon solar-cell manufacturing because of
the large guantities of consumables (stainless-steel wire and abrasive slurry) and the kerf loss.

During wafer slicing, ingots are bonded to a ceramic submount with hot—melt adhesive and
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composed of silicon carbide (SiC) and mineral-oil-based or glycol-based slurry vehicle. Oil-
based slurry is commonly used by the PV industry. Compared to the water-soluble, glycol-
based slurries more commonly used by the IC industry, oil-based slurries produce more
environmentally damaging wastes and require more extensive wafer cleaning. The added cost
and the process changes needed for the PV industry to switch over to glycol-based slurry need
to be investigated. Methods of proper disposal or recycling of the stainless-steel cutting wire

also need be studied, as does the effective recovery of the SiC in the slurry. The development

of water-base slurries will also help reduce cost and environmental damage.

5.2 Wafer Cleaning and Etching

The cost of chemical waste disposal is high. It is important for the PV industry to find ways
to reduce chemical consumption and waste generation through source reduction, recovery,
recycle reuse, and substitution. Because wafer cleanliness for PV is not as critical as for IC

manuracrunng, a safe bﬂUlbc, in terms of m uuuuus sure the h xusucm quahtjy and most extensive

cleaning procedures are used, is not necessarily the right choice in terms of cost reduction and



environmental safety. Certain methods, such as dry cleaning processes, although not adequate

for the IC industry standards, may be sufficient for the PV industry. For example, centrifugal
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and/or hot detergent cleaning methods for wafer degreasing and cleaning after slicing. This
process uses carbon dioxide in three coexisting phases: liquid, supercriticai, and dense-gas.
Operating temperature ranges from 298 K to 310 K, and pressure ranges from 56 ATM to 100
ATM. CO; gas is non-flammable, non-combustible, and non-corrosive, and is abundant,
inexpensive, and reusable. Compressing CO; at about 70 ATM and at temperatures below its
critical temperature (305 K) liquefies the gas. Compressing CO, above its critical temperature

and pressure (72.9 ATM) does not cause a phase change, yet the density of the gas may be
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hqmd -like. Statlc and dynamic cleaning processes employmg the multi-phase COz system have
been ue‘velepea The excellent cleaning abilities derive from a combination of solvent uca.mng
power and, in the dynamic processes, by physical cleaning action. Although CO, at these
pressure and temperature conditions presents densities comparable to other cleaning agents
(about 500 g/L), it has a viscosity comparable to gases. For instance, it is from 10 to 30 times
smaller than 1,1,1-trichloroethane (TCA).

For texture etching and/or surface damage removal, most of the PV industry has been using

sodium hydroxide etchant. NaOH etchant is considerably cheaper and easier to dlspose of than
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Solar Industries found that the caustic waste per wafer generated by the saw-damage-removal
etching process was reduced by about 20% after the switch from ID saws for wafer slicing to
multiple-wire saws [18]. This is because the wire-sawn wafers require less etching to remove
saw damage.

The Photovoltaic Device Fabrication Laboratory (PDFL) at Sandia National Laboratories

has had a program to continuously monitor and reduce chemical usage since the laboratory

began operations in 1080 The chemical waste generation has been reduced bv nearly 759%
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since 1990 by using three procedures: (1) eliminate and/or replace hazardous chemicals, (2)
recycle chemicals, and (3) reduce usage of remaining hazardous chemicais. A key feature of
this effort was the use of statistical experimental designs to screen chemicals for their
effectiveness in wafer cleaning and statistical process control to ensure that chemical-reduction
changes did not impact the manufacturing process. An experiment was performed that used
statistical designs to examine the effect of 22 different parameters associated with chemical
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(hydrogen peroxide) that is widely used in the IC industry for cleaning silicon wafers.
Subsequent experiments and changes in procedure have eliminated suifuric and phosphoric
acids from PDFL.

Hydrofluoric (HF) acid solution is used for wafer cleaning, dopant oxide removal, and
diffusion tube and quartzare cleaning. It accounts for a very large percentage of the total
hazardous waste generated by silicon solar-cell manufacturing. It is possible to reprocess used
HF solutions using reverse osmosis [19]. A cost-benefit analysis indicates that, for a a system
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with a capacity of 1000 gal/day, about one US dollar is the net savings for every gallon of HF

solution reprocessed {20

| S—

5.3 Optimizing Water Use and Reuse
The semiconductor industry worldwide spends as much on ultrapure water as on wet
chemicals for wafer processing, about US$700 million each in 1996 [21]. The net-feed water

sge by the IC industrv averaces about 30 gallons ner sauare inch of wafer nrocessed in 1997
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The current United States National Roadmap for Semiconductors recommends decreasing the



net-feed water use to 10 gallons/in® in 2000 and 2 gallons/in® in 2012 [22). The NSF/SRC
Center is studying methods to decrease water usage by more efficient rinse processes, water
conservation in cooling, scrubbing and washing, and by lowering idle flows [23].

The silicon PV industry, of course, uses significantly less water per wafer than the IC
industry. However, the value of the final product per wafer of the PV industry is orders of
magnitude less than that of the IC industry. Obviously, water use by the PV industry is a
significant cost factor that needs to be carefully studied. It is also not clear whether the PV
industry really needs to use the same high-purity deionized water as that used by the IC
industry. Water purity in the semiconductor process is typically measured in a bath with a
resistivity monitor. The resistivity is inversely proportional to the ionic concentration of
chemicals. At 25°C, water can exhibit a resistivity of 18.2 megaohm-cm if no impurities are
present. The American Society for Testing and Materials (ASTM) has set four types of
requirements for electronic water [24]. The resistivity (in megaohm-cm) at 25°C for the
highest-grade electronic water, Type E-1, should be above 18.0 for 95% of the time and never
less than 17.0. Type E-2 should be above 17.5 for 90% of the time and not less than 16.0. Type
E-3 should be above 12.0. Type E-4 should be above 0.5. Type E-1 water, which costs 1 to 2
US dollars per 100 gallons, is intended for use in the production of devices having line widths
below 1.0 micrometer. Type E-2 water is for line widths below 5 micrometers and is probably
more than adequate for even the most critical wafer-cleaning needs of the PV industry. Even
Type E-3 may be adequate in most cases.

Reclaiming water is also an important issue to be investigated by the PV industry. For every
dollar spent to generate and process ultra-purity water by the IC industry, about $0.60 is spent
treating the industrial wastewater. According to SEMATECH, 70% of its members are
reclaiming at least some of their water. Careful design of the methods of recycling used water
back to the feed makeup for the water purification plant and the methods of reclaiming water
for use in support processes, such as cooling and gas scrubbing, is important for reducing the
cost of PV manufacturing.

6. SOLAR CELL PROCESSING

For junction diffusion, either a belt furnace or a tube furnace is typically used. Tube
furnaces traditionally use a POCl3 liquid source dopant, which generates toxic P,Os and Cl;
effluents and requires frequent cleaning of diffusion tubes using HF solutions. Belt furnaces are
more environmentally benign because they can use water-soluble, non-toxic, spin-on or spray-
on dopants or vapor dopants and do not require HF cleaning. Optically enhanced doping
methods, such as the solar furnace doping proposed by NREL [25], are also environmentally
benign alternatives.

Edge trimming to remove electrical shorts between the front and back junction can be done
either by laser cutting or plasma etching. Because of its very high throughput, CF, + O; plasma
etching is commonly used by the PV industry. However, CF,4 is one of the perfluorinated
compounds (PFCs) that has no known natural destruction mechanisms, and thus, has a large
global-warming potential [26). The PV industry needs to either find an alternative to the CF,
and O, plasma etch or improve the effluent treatment to include PFC capture and recycling,

Antireflection coatings can be deposited by vacuum evaporation, plasma deposition,
atmospheric-pressure chemical vapor deposition, and spin-on liquids. Silane, which is
pyrophoric, is commonly used in depositing silicon nitride antireflection coatings [27]. A safer



alternative, chlorosilane, which is non-pyrophoric, has been used successfully by the IC
industry for silicon nitride depositions [9].

For metal electrodes on the solar cells, it is not desirable to use silver-tin-lead solder baths
after screen printing to enhance the conductivity of the metal grids because of the added lead
content to the cells.

7. MODULE ASSEMBLY

7.1 No-Clean Flux

Flux, typically a derivative of pine resin, is applied to cell interconnection strips before
soldering to act as a deoxidizer and to ensure better adhesion between the solder and solar
cells. Conventional flux leaves residues on the cell surfaces that need to be cleaned with a
chlorofluorocarbon (CFC) compound. CFCs are known to cause ozone depletion in the
atmosphere [28]. Recently, water-soluble fluxes and no-clean fluxes, low-residue fluxes that
could be left on the solar cell after soldering have become widely available [29]. In an NREL-
funded program, Siemens Solar was able to eliminate the CFC usage in the manufacturing
facility by switching from conventional solder paste to a “no-clean” solder paste [18]. The no-
clean process both eliminates the environmental damaging CFC emissions and reduces costs.
Siemens Solar also found that, by using a water-soluble flux, the CFC usage can be reduced by
about 60% over a conventional flux. However, it appeared that water rinse of the cells retained
moisture during the lamination sequence and caused module reliability problems.

7.2 Lead-Free Solder

Lead is a well-known hazard to human health. When disposed of in landfills, it can leach
into soils and pollute ground water. It is important for the PV industry to remove or minimize
the use of lead in modules so that proper disposal at the end of module life will not become a
problem [30]. For example, some European countries have proposed a ban on the landfill
disposal of electronic products containing lead. There are two sources of lead in a crystalline-
silicon PV module: solder-dipped electrodes and solder-coated copper ribbons. The practice of
dip-coating solar-cell contact electrodes is no longer necessary with modern screen-printed
electrodes, but it is still used by a significant number of module manufacturers. The lead-tin
solder that coats the surfaces of copper ribbons for tabbing strips is needed to prevent the
oxidation of the copper and to improve the solderability of the ribbons. However, lead-free
alternatives to lead-tin solder have been investigated extensively by the printed-circuit-board
industry [31]. For example, the National Center for Manufacturing Sciences in Ann Arbor,
Michigan, has recently completed a US$10-million project that evaluated 79 lead-free solder
alloys and found seven promising replacement candidates [32]. The International Tin Research
Institute (ITRI) in Middlesex, England, has also done extensive studies on lead-free solder
alloys [33].

A very promising alternative for the tin-36% lead-2% silver ribbon coatings commonly used
by the PV industry is the tin-3.5% silver alloy. It is identified as a promising alternative for the
standard tin-37% lead alloy by both NCMS and ITRI. The silver in the alloy is needed to
increase the pull strength of the ribbon. The 221°C melting temperature, although higher than
the 183°C for the standard lead-tin alloy, is acceptable. Because it is a binary alloy, it should
have excellent stability. Its resistance to high-temperature fatigue is also good. The present cost
of the alloy, at US$0.10 per cubic centimeter, is about twice the standard lead-tin alloy, which



is the cheapest of the tin alloys. The cost difference between the silver-tin alloy and the lead-

tin-silver alloy is small.

8. CONCLUSIONS

As the silicon PV industry continues to rapidly expand, the environmental impact of its
manufacturing processes and products will receive increasing attention. It is particularly
important for a renewable energy technology to address its environmental impact during

manufasturing hacance ane af the nnmanr benefits of renewable enerov ceneration ic its low
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environmental impact. We have dnscussed several alternative approaches in this paper that are
both cost effective and environmentally benign. However, the manufacturability and reiiability
of most of these alternative approaches need further investigation. We propose that the silicon
PV industry form an association of government laboratories, equipment suppliers, and cell and
module manufacturers to promote more environmentally benign manufacturing approaches.
This association can also coordinate the PV industry’s interactions with the environmental

associations of the integrated-circuit and printed-circuit-board industries mentioned in this
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paper.
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BARRIERS TO PRODUCT STEWARDSHIP

by Jefferson C. Bagby' and Robert L. Guyer?
for The Rechargeable Battery Recycling Corporation

Introduction

The experience of rechargeable product manufacturers in the collection and
recycling of used small dry cell rechargeable nickel-cadmium (Ni-Cd) batteries in
the United States and Canada has shown that product stewardship programs are
likely to encounter several unexpected barriers. Organizations establishing product
stewardship programs may benefit from considering these barriers in their program
design.

The specific barriers to product stewardship discussed in this paper are:

¢ inartfully drafted laws that fail to match the logistics of product
stewardship with the realities of the international marketplace;

e the complexities of establishing a funding mechanism that fairly
apportions the costs and responsibilities of product stewardship
among all of the necessary participants;

e the impact of national laws and international agreements
regarding antitrust and tax laws upon a non-profit public service
company; and

e the impact of national laws and international agreements on the
transboundary movements of recyclable, yet hazardous,
materials.

But first, a description of the RBRC battery collection program:



The Rechargeable Battery Recycling Corporation (RBRC) is a non-profit public
service company managing the collection and recycling of small dry cell
rechargeable nickel-cadmium batteries (Ni-Cds) in the United States (US) and
Canada. Originally established in response to individual US state laws requiring
“Extended Producer Responsibility” (EPR) for Ni-Cds, the RBRC collection

program has overcome several unforeseen significant barriers to product

stewardship As a result, today the RBRC program may be more accurately
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Ni-Cd batteries power portable electric products commoniy found in the workplace
and home including camcorders, power tools, kitchen appliances, cellular and
cordless telephones, toys, and a host of other modern conveniences.

Ni-Cds can be recharged several hundred times. Depending on application, the
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tools) to ten years (home camcorder) with the average life being four years.
Annually, 900-1,200 million Ni-Cd cells are being manufactured with an expected
growth rate of 4-6 percent through 2002. These batteries, when spent, may be
classified as a hazardous waste under the laws of most nations due to their cadmium
content.
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(program) operates in the United States (US) and Canada. Currently, over 22,000
retail stores and scores of industrial, commercial, and institutional/governmentai
(ICI) facilities voluntarily participate as RBRC collection centers. Participation
allows retailers to demonstrate environmental regard while requiring no out-of-
pocket costs. RBRC subsidizes ICI participants, partially or completely, depending
on several variables.

Over 250 manufacturers of rechargeable products, representing about 75 percent of
the world's rechargeabie product producers, voluntarily fund RBRC. They do so by
paying RBRC a license fee to display the RBRC seal, a symbol similar in meaning to
the German Green Dot. The RBRC seal is always displayed on the Ni-Cd and
normally on the instruction manual and retail package. Display of the seal indicates
that the manufacturer has provided for future collection and recycling of the Ni-Cd
in the US and Canada.

- L un - P B W O __ LTI LOTMMMN
Inartaully vraited Laws, or "LI'Il’ versus oI

The RBRC program began in response to some US states mandating that battery
manufacturers collect used Ni-Cds in order to lessen heavy metals in the municipal
solid waste stream. This was early Extended Producer Responsibility legislation.



The "battery manufacturers do it all" approach was destined for failure because
most battery manufacturers have little direct contact with the consumer.
Experience, accompanied by an extensive industry lobbying effort, helped
lawmakers realize that participation by a much broader group than battery
manufacturers alone would be necessary for successful Ni-Cd collection.

Second-generation legislation calling for battery “marketers” or those in the stream
of commerce to share responsibility broadened participation by bringing in product
manufacturers and distributors. Lawmakers recognized that others besides
manufacturers must share in the responsibility for the collection and recycling of the
used product. However, without retailer participation, even the broadened shared
responsibility group could not meet battery collection mandates.

Retailer participation is critical because retailers, not manufacturers, have direct
contact with consumers.® The consumer holding the used Ni-Cd is most likely to
discard it into the municipal solid waste stream. Consumers will bring into the retail
store their used Ni-Cd in order to get the exact replacement battery. At that point
the consumer can be educated about recycling and their used Ni-Cd easily captured.

Participation by the retailers and associated consumer advertising conveys a sense
of presence and collects many batteries. However, the ICI sector overall uses most
of the world's Ni-Cds. Individual entities in this sector, such as electric utilities,
public safety (fire, police) departments, manufacturers, and the military, often use
Ni-Cds in large numbers and are capable of collecting and properly managing them.

Today authors of most modern battery collection and recycling legislation recognize
that imposing collection requirements on battery manufacturers alone is
unworkable. Instead of focusing on the “producer” of the product to collect and
recycle the product, enlightened legislators understand that shared responsibility
among all parties involved with a product is necessary if the product is to be
successfully moved from the solid waste to the recycling stream.

Equitable Allocation of Financial Responsibility

Equitably assigning funding obligations to those benefiting from the manufacture,
sale, and use of products is philosophically and mechanically difficult. Should any
product beneficiary be exempted from responsibility? And if so, why? Of those to
be assessed, how should costs be allocated? If a product stewardship program
crosses state or national boundaries, how should the recycling monies be shared or
allocated between states and nations? None of these are easy questions, but they
have been answered to some extent in the context of the RBRC program.

Rechargeable product manufacturers around the world discussed these issues over a
period of several years at various trade association meetings. It was generally

-3-



uct battery collection and recycling in as cost
effective and efficient a manner as poss1ble. The program should not be

expensive “public works” program, as the costs of the program will eventually be
included in the costs of products sold to consumers. Increasing product costs to
consumers by any substantial degree would distort the economics of the
marketplace, and could result in damaging environmental consequences. For
example, if rechargeable batteries became too expensive, consumers might switch to

cinols nea nrimarv haﬁnnpe thus dramaticallv increasino the number of nrimarv
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batteries entering the waste stream.

Cost allocation among battery and product manufacturers, distributors, and retailers
was a second major consideration. It was agreed that as the costs of the program
would end up in the final price to the consumer, that collection of the program costs
be as close as possible to the consumer in the distribution chain was desirable. This
would prevent additional price mark ups for program costs as the product moved
through commerce. In addition, since often only the final distributor or retailer
actually knows whether the product is to be sold in the US or Canada, collection of
the recycling program costs at a point close to the consumer helps assure that
recycling fees are not imposed on products destined for other nations.

RBRC resolved these issues by charging rechargeable product manufacturers a
license fee to place the RBRC seal on batteries that are sold into the US or
Canadian markets. This fee is usually collected from the final product assembler,

Asatebay ratnilar that ha al Lanawveladaon thot ¢hoa caendiind 2o ¢ o cnald o
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the US or Canada.

Would it have been easier to collect the recycling fee from the handful of Ni-Cd
battery manufacturers in the world, instead of from over 250 companies selling
products into the US and Canada? Of course, but none of the Ni-Cd manufacturers
had any idea of the quantity of their batteries that were ending up in the US and

Nanada A wnarldunda etniidy af alastranis aradnst marl-ate micoht armara thic Aa
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but it is certainly impractical to undertake such a study.

Antitrust and Tax Law Problems

Two types of legal issues that are usually not thought of in the context of product
stewardship have a very real bearing on how such programs are operated. Antitrust

considerations. in both UUS law and international Inw make the collection of
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information as to market share for the purpose of program cost allocation extremely
difficuit if not impossibie. In the US and many nations, coliection of market share
information can quickly lead to lawsuits about anticompetitive conduct. For
example, if manufacturers collect market share data and use this data to impose
recycling fees on competitors, some of the competitors are likely to allege that they



Further, if manufacturers agree to raise the price of their product across the board
for the purpose of paying collection program costs, they are likely to be charged
with “per se” price fixing. This can result in severe criminal and civil penalties.

Thus, any legislation that re q_ur-s cost allocation based on market share must
contain provnsnons dealing with antitrust laws. And, as these laws exist at the
national and international levels, it may not be pu;alunc for any nation or state to

unilaterally relieve manufacturers from their antitrust law obligations.

Once a funding source is acquired, tax authorities are quick to claim their share. As
noted above, RBRC was established as a non-profit public service corporation.
This was to eliminate the payment of income tax on recycling program funds
existing at the end of the ﬁscal year The amount of such ﬁmds may become
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be recycled several months or years hence. For products such as Ni-Cds, front-end
coiiection of substantiai funds is necessary as Ni-Cds will stiii need to be collected
and recycled far into the future, even after Ni-Cds are no longer being
manufactured. Other battery technologies will likely eventually replace Ni-Cds.

When the RBRC program moved from the US into Canada, RBRC discovered that

elmnlv heino a non-nrofit cornoration in the 1IS did not mean it was non-nrofit in
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Canada. In fact, Canadian tax law.did not explicitly provide for the situation where
a US non-profit would conduct operations in Canada. Revenue Canada finally
required RBRC to incorporate a Canadian subsidiary, complete with all the
corporate overhead that entails, within Canada. A for-profit corporation would not
have been required to do this to conduct business in Canada. So, to protect the
RBRC recycling program funds from end of year taxes, and thus to keep the costs

of the nrogram down for consumers. RBRC had to cpend additional monev for
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unneeded corporate overhead.

The non-profit tax issue needs to be addressed m the larger context of product
stewardship programs worldwide.

2t ungar ¥y men LECY
________ oroducts. including Ni-Cd batteries. are technically “hazardous waste”
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when they are sent to recycling. Recently national governments and international

non-governmental organizations have recognized that laws impede product
stewardship when they treat relatively harmless post-consumer products destined
for recycling as hazardous wastes or dangerous goods. Where multiple jurisdictions
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In the US, the Environmental Protection Agency (EPA) recently promulgated the
“Universal Waste Rule,” essentially deregulating certain common hazardous wastes
such as used batteries, mercury thermostats, and certain pesticides when they are
ehmned for recycling. This allowed the collection of these wastes at thg same

locatxons where they are sold new to the public, and allowed shipment of these

ancralions wrthait 1108 AF o smanmifact ~er havard g wrncta hatilae  Té¢ wraco
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only after the adoption of this new rule that the RBRC program was able to expand

to over 22,000 dl‘Op-OH locations.

Changing US law to treat used Ni-Cds as used consumer products or a common
good rather than a hazardous waste for purposes of collection, storage, and
transportation enabled the transformation of RBRC's formerly anemic US
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Current Canadian laws, similar to US laws before US EPA changed its rules, also
inadvertently impede Ni-Cd recycling by treating Ni-Cds as a dangerous good and
hazardous waste. Such regulation unnecessarily burdens recycling with
unproductive costs for such things as mandatory storage in a permitted hazardous

waste facility and shipping as a dangerous good rather than as common good.
Again, as in the US, Canadian regulators do not intend to frustrate collection efforts
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but are themselves tied up by existing regulations which treat used consumer
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Progucts as toxic or ndzar OOUS waslte.

International proponents of product stewardship must recognize that it is neither
economically feasible, nor perhaps desirable, for recycling operations for all types of
hazardous wastes to be located in every nation of the world. Pending international
restrictions on thg tranchmmdarv movement of certain hazardous wastes for

sed battenes may ultimately prove counterproductive to
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Conclusions

Based on the RBRC experience in the US and Canada, Extended Producer
Responsibility programs would be better characterized as Shared Product

Respon51b111ty programs, at least if they are to be effective. All participants in the
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effective. This includes component manufacturers, product assemblers, distributors,
retailers, consumers, and all end users of products. An additional yet most critical
participant in SPR is government.



Government can contribute most by drafting legislation and regulations that
recognize the many players in the international marketplace. Product “producers,”
on their own, cannot take on the entire task of stewardship. SPR laws must take
into account the realities of cost allocation, including restrictions from antitrust laws
and the additional overhead caused by tax laws. Finally, once there is a plan for
cost allocation, the environmental and transportation laws, at the local, national,
and international level must be reviewed to assure they do not impede efficient
collection and transportation to recycling.

! Jefferson C. Bagby is a partner in the Washington law firm of Guyer, Bagby & Zimmerman,
P.C. Formerly with the U.S. Geological Survey Office of Hazardous Waste Hydrology, he did
instrumentation design for nuclear and hazardous waste research projects at the Hanford
National Laboratory, Oak Ridge National Laboratory, Nevada Test Site, Idaho National
Engineering Laboratory, and Three Mile Island. He supervised private Superfund site
remediation in New York, New Jersey, and South Carolina. He has served as General Counsel
for the Rechargeable Battery Recycling Corporation since it was founded in 1994. He has
established national recycling programs for several companies and products, and routinely
practices before the US EPA and on Capitol Hill.

2 Robert L. Guyer is a partner in the Washington law firm of Guyer, Bagby & Zimmerman, P.C.
As an Electric Systems Environmental Engineer with the Gainesville Florida Regional Utilities,
and later as Senior Engineer with Environmental Science and Engineering, he has extensive
experience in power plant permits, contracts, and environmental compliance. As Legislative
Affairs Manager with Energizer Power Systems, he represented EPS before legislatures,
regulatory agencies, and private organizations. He served as Legislative Committee Chair for
the Portable Rechargeable Battery Association, the national trade association for the
rechargeable product industry. He is currently the Director of Legislative and Regulatory
Affairs for the Rechargeable Battery Recycling Corporation. He routinely practices before state
and provincial legislatures and regulatory agencies in the US and Canada, and on Capitol Hill.

Messrs. Bagby and Guyer were principal drafters and lobbyists for The Mercury Containing and
Rechargeable Battery Management Act (PL 104-142), one of only two federal environmental
bills signed into law in 1996.

3 Retailer participation for collection of some types of products may be different than found in
the RBRC program. For example, the national program for collection of used mercury
thermostats operated by the Mercury Thermostat Recycling Corporation (modeled on RBRC)
uses electric equipment wholesalers as the point of “retail” collection. Contractors installing
new mercury thermostats are asked to return the used thermostats to the electric wholesaler,
where they are then packaged and shipped to recycling. The thermostat installation contractor
is the “consumer” and the electric wholesaler is the “retailer.”



1.7  Hugh Morrow
International Cadmium Association, Worldwide Cadmium Recycling
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Energy Requirements and CO, Mitigation Potential of PV Systems’

E.A. Alsema
Dept. of Science, Technology and Society,
Utrecht University, The Netherlands

ABSTRACT: In this paper we investigate the energy requirements of PV modules and systems and calculate the
Energy Pay-Back Time for two major PV applications. Based on a review of past energy analysis studies we explain
the main sources of differences and establish a “best estimate™ for key system components. For present-day c-Si
modules the main source of uncertainty is the preparation of silicon feedstock from semiconductor industry scrap.
The best estimates of 4200 respectively 6000 MJ (primary energy) per m*> module area are probably representative
for near-future, frameless mc-Si and sc-Si modules. For a-Si thin film modules we estimate energy requirements at
1200 MJ/m? for present technology. Present-day and future energy requirements have also been estimated for the
BOS in grid-connected roof-top systems and for Solar Home Systems. The Energy Pay-Back Time of present-day
grid-connected systems is estimated at 3-8 years (under 1700 kWh/m? irradiation) and 1-2 years for future systems.
The specific CO, emission of these systems is 60-150 g/kWh now and 20-30 g/kWh in the future. In Solar Home
Systems the battery is the cause for a relatively high EPBT of more than 7 years, with little prospects for future
mmprovements. The CO, emision is now estimated at 250-400 g/kWh and around 200 g/kWh in the future. This
leads to the conclusion that PV systems, especially grid-connected systems, can contribute significantly to the
mitigation of CO, emissions. -

1. INTRODUCTION

The energy pay-back time or the energy requirement of PV systems has always been an issue receiving a
great deal of public attention. Rightly so, because the energy requirement is a very good indicator of the
net potential for CO, mitigation. The latter constitutes on its turn an important political motivation for PV
technology development.

My objective in this paper is to review existing knowledge on energy requirements for manufacturing PV
systems and give some example calculations for the energy pay-back time and the CO, emissions.

Over the past decade a number of studies on energy requirements of PV modules or systems have been
published, among others by the author of this paper [1-12]. I have reviewed and compared these studies
and tried to establish on which data there is more or less consensus and how observed differences may be
explained. Based on this review of available data I have established a ‘best estimate’ of the energy
requirement of crystalline silicon modules, thin film modules and BOS components.

Also I will show calculations of the Energy Pay-Back Time and CO, emissions for two representative PV
system applications, namely a grid-connected rooftop system and a Solar Home System.

Throughout this paper 1 will present energy data as Equivalent Primary Energy requirements, that is the
amount of primary (or fuel) energy necessary to produce the component. So all electrical energy input is
converted into primary energy requirements, with an assumed conversion efficiency of 35%. (So 1 MJ of
primary energy can supply 0.097 kWh of electrical energy.)

I restrict my assessment to the production phase of components because energy demands in the utilization
phase are generally negligible for PV systems, and because there is very little data on recycling or other
treatments of decommissioned systems.

* Presented at the BNL/NREL Workshop “PV and the Environment 1998”, Keystone, CO, USA, 23-24 July 1998.
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2. CRYSTALLINE SILICON MODULES

Present technology
Published estimates [1, 2, 4, 6, 9, 10, 12] for the energy requirement of present-day crystalline silicon

modules vary consxderably between 2400 and 7600 MJ/m? for multicrystalline (mc-Si) technology and
between 5300 and 16500 MJ/m? for :mole-crvcfalhne (sc-Si) tevhnnlno'v Partly, these differences can be

explained by different assumptions for process parameters like wafer thxckness and wafering losses.

The most important source of differences, however, is the energy requirement estimation for the silicon
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The second (and largest) source of PV feedstock are the tops and tails of Czochralsky ingots which are
cut off before the ingots are being sawn into wafers. These Cz tops and tails are then remelied to produce
ingots for PV wafers, with the result that the silicon in this PV ingot has in fact undergone two
crystaliization steps. We will call these the pnmary and the secondary crystaiiization steps.

In some past studies the energy consumption for the primary crystallization step was allocated equally to
the PV wafers and the micro-electronics wafers. Because of the very high energy use in Czochralsky
growing this can increase the estimate of the total energy requirement for the PV module dramatically.
However, the Cz tops and tails are more or less a waste product with a much lower economic value than
the wafers produced for the micro-electronics industry. For this reason I hold the opinion, and other
analysts now agree on this [13], that full energy accounting of the primary (as well as the secondary)

crystallization step gives much too pessimistic a result for silicon-based modules.

mc-Si sc-Si

Process low high low high _unit

mg silicon production 450 500 500 500 MJ/m? module
silicon puriﬁcation 1800 3800 1900 4100 MJ/m? module
crystallization & contouring #1 - 5350 - 5700 MIJ/m? module
crystallization & contouring #2 750 750 2400 2400 MJ/m? module
Wafering 250 250 250 250 MJ/m? module
cell processing 600 600 600 600 MJ/m? module
module assembly 350 350 350 350 MJ/m? module
Total module (frameless) 42001 11600 6000 13900 MJ/m? module
Total module (ﬁ'ameless) 35 96 47 109 MJ/Wp
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(in MJ of primary energy). The low and high vanants present different approaches with respect to silicon
feedsiock produciion.

On top of this “methodoiogical uncertainty” there is considerabie variation in the energy consumption
estimates for both the silicon purification process (900-1700 MJ/kg) and for the Czochralsky process
(500-2400 MJ/kg)', which may be real variations or due to assessment errors. Unfortunately I cannot
clarify this further due to lack of reliable and detailed data.

To show the total effect of these two sources of uncertainty I will give here two estimates for silicon

modules (table 1). The low estimate is based on the lower end value for silicon purification and does not
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consider the pnimary crystallization step, while the high estimate assumes the high end value for Si
purification and includes 2400 MJ/kg for the pnimary crystallization step.

From the silicon scrap matenal which comes out of the primary crystallization process, the PV industry
subsequently prepares a multi- or singlecrystalline ingot, which can be sawn into wafers. Assumed were
a 64% (mc-Si) resp. 60% (sc-Si) ingot yield, and for both technologies a 350 um wafer thickness and a
60% wafering yield. Energy use in the secondary Cz step was assumed to be considerably lower (1100
MJ/kg) than in the primary Cz step, because of the smaller ingot size (6") and lower quality required for
PV material.

Regarding the energy requirements for the remainder of the solar cell production process there is less
controversy. Our best estimate is that about 600 MJ/m? is added in cell processing and some 350 MJ/m?
during module assembly, assuming standard screen printing technology and glass/tedlar encapsulation.
The main uncertainty in the energy data concemns the 400 MJ/m? estimate for overhead energy that is used
for functions like lighting and climatization of the module production plant and for environmental control.
Taking into consideration also the production yields of cell and module processing (95% resp. 97%) we
obtain total energy requirements for c-Si modules in the 4200-13900 MJ/m2 range. Note that for the cell
and module processing our assumptions are the same for all four variants of table 1. Finally, we can
remark that only a few percent of this total energy requirement is used in a non-electrical form.

If we now assume encapsulated cell efficiencies of 14 resp. 15.5% and module packing factors of 0.87
resp. 0.82 for mc-Si and sc-Si modules (cf. table 2) we can evaluate the energy requirements on a Wp
basis (last row of table 1). We see that despite their higher efficiency sc-Si modules are slightly in the
disadvantage over mc-Si modules. This is mainly due to the higher energy consumption for the sc-Si
crystallization process.

It is unsatisfactory to have such a large uncertainty in the energy estimates. However, as I have stated
above, the high estimate gives in my view too pessimistic a result, because it fully includes the primary
crystallization step. So the actual value in the present situation will be closer to the lower estimate than to
the higher one.

Future technology

In the near future (1-2 years) the supply of off-spec silicon will quickly become insufficient to meet the
demands from the PV industry so that other feedstock sources will have to be drawn on. Because standard
electronic-grade silicon is to expensive for PV applications, dedicated silicon purification routes will be
needed. For this reason too, the lower energy estimates of table 1 are probably most representative for
near-future ¢-Si technology.

For a view on the longer-term potential (up to 2007) we have to look first at the major determinants for
the energy requirement of c-Si modules.

Our analysis above shows that these determinants are: 1) the inclusion or not of the primary
crystallization step, 2) the energy consumption for Si purification and 3) the silicon content of the cells.
For sc-Si cells the Czochralsky process is also a large contributor.

So it will be clear that future improvements in wafer production technology may bring down the energy
requirements of Si modules. Technologies like EFG or other methods which eliminate the losses from
wafer sawing, could have significant advantages.

A major factor determining future energy requirements will be the way silicon feedstock is produced. The
introduction of a solar-grade silicon process might reduce the energy content of silicon feedstock to 600-
1100 MJ/kg [1, 6] and make the discussion about one or two crystallizations obsolete. Because of the
latter fact the values for future Si technology may be less uncertain than those for present-day technology.



Based on a number of independently performed studies [2, 4, 6] I expect that future mc-Si production
technology may achieve a reduction in energy requirements to around 2600 MJ/m?, assuming innovations
like a dedicated silicon feedstock production for PV applications (solar grade or advanced Siemens)
delivering material with an energy requirement of about 1000 MJ/kg, and furthermore improved casting
methods (e.g. electromagnetic casting) and reduced silicon requirements per m? wafer. This kind of
technology will probably become available in the next ten years.

For single-crystalline silicon modules a total energy requirement around 3200 MJ/m? [4] may be achieved
with similar technology improvements.

If we further make a conservative assumption for future cell efficiencies of 16% resp. 18% (cf. table 2)
we obtain energy requirements per Wp of 18.8 resp. 21.6 MJ for future mc-Si and sc-Si technology.

Present (1997) Future (2007)
cell module cell Module
mc-Si 14 12.1 16 13.8
sc-Si 155 12.7 18 14.8
thin film n.a. 6 n.a. 9

Table 2: Assumptions for encapsulated cell and module efficiencies for different cell technologies

CO; emissions

Because more than 95% of the energy for Si module production is used as electricity the CO, emissions
due to module production can be estimated rather quickly’. Assuming a CO,-emission of 0.57 kg per kWh
produced electricity® ( 0.055 kg/MJ,.m) we obtain specific CO,-emissions of 1.9 kg/Wp for near-future
mc-Si and 2.6 g/Wp for near-future sc-Si. For year 2007 technology our estimates are resp. 1.0 and 1.2
kg/Wp. In our system assessment below we will calculate the CO, emission per kWh of delivered energy.

3. THIN FILM MODULES

Present technology :

Concerning thin film modules most published studies on energy requirements deal with amorphous
silicon technology [1, 2, 6, §, 10, 11] and two with electrodeposited CdTe modules [2, 7]. Although
estimates for the total energy requirement of a frameless a-Si module range from 710 to 1980 MJ/m?,
many of the differences may be explained by the choice of substrates and/or encapsulation matenals, and
the consideration or not of the energy requirement for manufacturing the production equipment. A
remaining factor of uncertainty, which cannot be explained so easily, is the overhead energy use for
functions like lighting, climatization and environmental control (estimated range 80-800 MJ/m?).

On the basis of a careful comparison and analysis of published energy estimates [3] I come to the best
estimate for energy requirements of an a-Si thin film module, as given in table 3.

From table 3 we can see that the semiconductor and contact matenials constituting the actual solar cell
contribute only very little to the module’s energy requirement. Low deposition efficiencies (<10%) in
combination with high purity requirements, however, may drive up this value.

2 CO, emissions from the silica reduction process are also quite small, about 0.1 kg/Wp([14]

? This is an approximate value within the UCPTE region, i.e. continental W-Europe [15]. In this region about
50% of the electricity is produced by nucleair and hydro power plants.



The materials used for the substrate and encapsulation constitute about 1/3 of the total energy input,
assuming a glass/glass encapsulation. A polymer back cover will reduce the energy requirement with
some 150 MJ/m2. On the other hand, if not one of the glass sheets of the encapsulation is used as
substrate, but an extra substrate layer is added, this will increase the energy requirement considerably
(e.g. with 150 MJ/m? in case of stainless steel foil).

Energy requirement Share

(MJ/m? module) (%)

cell material ‘ 50 4%

substrate + encapsulation material 350 29%

cell/module processing 400 33%

overhead operations 250 21%

equipment manufacturing 150 13%

Total module (frameless) 1200 100%
Total module (frameless) 20 MJ/Wp

Table 3: Contributions to the energy requirement of an a-Si thin film module for present-day production
technology (in MJ of primary energy).

The actual cell and module processing, comprising contact deposition, active layer deposition, laser
scribing and lamination, contributes roughly another 1/3 to the module’s energy requirement. Of course
significant variations may be found here between different production plants depending on the deposition
technology and the processing times.

For other thin film technologies most of the energy contributions will be about the same as for a-Si,
except with regard to the processing energy. Electrodeposited CdTe, for example, is estimated to require
some 200 MJ/m? less during processing. On the other hand a slightly higher overhead energy use is
expected (for environmental control). Also, an polymer back cover would be less desirable for CdTe
modules [2]. Although no energy studies for CIS were available we might expect the processing energy
for co-deposited CIS modules to be in the same range or possibly higher than for a-Si.

Assuming a 6% module efficiency we obtain an estimated energy requirement of 20 MJ/Wp for an
present-day thin film module, which is considerably lower than the values found for c-Si technology.
However, as we will see below, high BOS energy requirements may completely cancel out this advantage.

Future technology

Because the encapsulation materials and the processing are the main contributors to the energy input, the
prospects for future reduction of the energy requirement are less clearly identifiable as was the case with
¢-Si technology. A modest reduction, in the range of 10-20%, may be expected in the production of glass
and other encapsulation materials. It is not clear whether displacement of the glass cover by a transparent
polymer will lead to a lower energy requirement.

The trend towards thinner layers will probably reduce processing time which in tumn can lead to a
reduction in the processing energy and in the energy for equipment manufacturing. An increase of
production scale can contribute to lower processing energy, lower equipment energy and lower overhead
energy.

By these improvements I expect the energy requirement of thin film modules to decrease with some 30%,
to 900 MJ/m?, in the next ten years [cf. 2, 6]. If concurrently the module efficiency can be increased to
9%, the energy requirement on a Wp basis may reach the 10 MJ level.

CO; emissions



To estimate the specific CO, emission we can again apply the CO, emission factor of 0.055 kg/MJ’,
resulting in an emission of about 1.1 kg CO,/Wp.

4. BALANCE-OF-SYSTEM COMPONENTS

Like in economic analyses of PV systems the Balance-of-System is cannot be neglected in energy
analyses. Therefore we will shortly analyse the impacts of array supports, module frames® and batteries.
Recently, the results of a detailed analysis of the primary energy content of present applications of PV
systems in buildings have been published [16]. This study has considered several applications on rooftops
and building facades, as well as a large power plant.

Here I will restrict the BOS considerations to very simple assumptions for grid-connected roof-top
systems. I will assume that per m? module area 3.5 kg of aluminium is used for the supports of present
roof-top installations, requiring 500 MJ/m? of primary energy and causing an CO,-equivalent emission of
26.5 kg/m?*. For future roof-top systems I assume a reduced aluminium use of 2.5 kg/m?. The contribution
from the inverter is small ([17], cf. table 4), and cabling is not considered here, but presumably it is small
too.

It is worth noticing the significant contribution of module frames in present-day systems. Its wide range
of energy content (300-770 MJ/m?) in past studies is due to large differences in the amount of aluminium
used for the frames. Here I assumed 2.5 kg Al to be used per m? module, requiring 500 MJ of energy
input. In any case, PV modules are expected to be frameless for all future applications.

Unit Present Future
energy requirement energy requirement
Module frame (Al) MJ/m? 500 0
array support - roof integrated {MJ/m? 700 500
inverter (3 kW) MI/W 1 1
battery (lead-acid) MJ/Wh 0.9 0.9

Table 4: Energy requirements for Balance-of-System components and module frames.

Batteries constitute a critical part of autonomous PV systems. Estimates for the energy requirement of
lead-acid batteries found in the literature range between 25 and 50 MJ/kg [18-21]. The lower estimates,
however, only include the energy requirements for the input materials but not the energy consumed
during the battery manufacturing process. This process energy has been estimated at 9-16 MJ/kg [20, 21].
In most estimates the lead input is assumed to comprise a certain fraction of recycled lead (30-50%).
Without this lead recycling energy requirements would be higher.

As the specific energy density of a lead-acid battery is about 40 Wh/kg we obtain an energy requirement
per Wh of storage capacity in the range of 0.6-1.2 MJ (table 4). For my further analyses I will assume the
mid-range value of 0.9 MJ/Wh. Furthermore I assume that within the next ten years no significant
improvements in battery technology or battery energy requirements will occur. The CO, emission from
the battery production I estimate at about 2.4 kg-CO, per kg battery which is equivalent to 0.06 kg per
Wh capacity (adapted from [20]).

* Although thin film modules have lower share of electricity in the total energy requirement ( 70%), the
remaining 30% is used in glass production, where by chance the CO, emission is the same 0.055 kg per MJ

of used energy.

5 For energy analysis it is convenient to consider the frames separate from the modules, as part of the BOS.



5. ENERGY PAY-BACK TIME AND CO2 EMISSION OF PV SYSTEMS

Grid-connected systems

Figure 1 shows the energy pay-back time for two major PV system applications, namely gridconnected
rooftop systems and stand-alone solar home systems. The assumptions taken into account for calculations
are summarized in Table 5. Results are reported for multi-crystalline and amorphous silicon technologies.
For the reasons explained earlier, the present values for mc-Si are further split into a low and a high case.
The difference between the two cases 1s the most striking result as far as gnd-connected systems are
concemed.

Unit Gnd connected | Solar Home System
Irradiation kWh/m?¥vr 1700 1900
Final yield kWh/Wp/yr 1.28 1.3
system life vr 20 30
battery size Ah (@12V) 0 70
# of batt. sets required over system life |- . n.a. 5
Energy eff. of altemative supply option [% 35 25

Table 5: Assumptions for the calculations on Energy Pay Back Time and life-cycle CO, emissions

-

Energy Pay Back Time (years)

12

. Solar Home System
: (1900 KWh/m2/r)

10

mc-S me-S  TF1997 mo-Si  TF2007 me-Si me-S  TF1997 meSi TF2007
1997 low 1897 high 2007 1997 low 1997 high 2007

[@Module @Module rame OBOS |

Figure 1: The Energy Pay Back Time (in years) for two major PV applications, both for present-day
(1997) and future (2007) PV technology. For system-specific assumptions see table 5.

As a matter of fact, in the present mc-Si high case the energy pay-back time of a PV system is around
eight years, even in the middle-good insolation conditions of 1700 kWh/m’/yr. However, as already
mentioned, I believe that this is a rather pessimistic view of present state-of-the art. Given the fact that PV
industry will have to address the issue of feedstock anyway in the next few years, I think that the low case
is more representative for the near-future situation.

~



Further we may note that the contnibution from the BOS and frame 1s significant already today: each
causing an increase in energy pay-back time in the order of 0.3-0.5 year in combination with mc-Si cells.
Regarding thin film technology we can see that due to their lower efficiency, larger surface needed and
consequently higher BOS requirements, the energetic advantages of present amorphous modules are
cancelled by the higher BOS energy.

For future roof-top systems the expected energv pav-back time is 1-2 years both for me-Si and a-Si
technology.

These results show that grid-connected PV systems have considerable potential for saving on fossil-fuel

enerov nroduction and thus reducine (‘n- emissions. This can also be seen in ficure 2 where we have
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roughly a factor 10 lower than for fossil-fuel plants and that they will become even lower, around 20-30
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CO2 emission of grid-supply options (g/kWh)

Grid-eehnecied Rooftop PV system
(under 1700 kWh/m2/yr)

hard gas nuclear nuclear mc-Si me-Si TF 1997 mc-Si TF 2007
ceal low high 1997 1997 2007
low high

Figure 2: CO; emission for grid-connected roof-top PV systems and for conventional power systems
(coal, gas, nuclear-low estimates from [15], nuclear-high from [22]).

Solar Home Systems

This potential for CO, mitigation by PV technology is less straightforward the case for our second
application type, which concems a Solar Home System, as has been introduced over the past years in
many developing countries. A typical SHS as installed in for example Indonesia, comprises a 50 Wp
module and a 70 Ah battery. Such a system may have a final yield of 1.30 kWh/Wp/yr under a 1900
kWh/m?/yr irradiation. (Of course actual SHS performance data are heavily dependant on the user load
profile, but we believe our assumption is fairly representative). We further assume a typical life time for

the battery of 4 years, so that 5 battery sets are needed over a 20 year system life.

In order to evaluate an Energy Pay-Back Time we will compare the SHS with a d ! enerator which
converts primary enelgy (fuel) into electricity at an average efficiency of 25% . (No gn' upply in a
remote area may have a comparable conversion efficiency).



As the results in figure 1 show the EPBT of the assumed SHS configuration would be more than 7 years,
even with the low module energy estimates for mc-Si modules. For future PV technology only a modest
improvement is expected due to the large contribution of the battery (for which no improvement was
assumed) to the system EPBT.

Figure 3 displays the CO, emissions per kWh of the SHS application in comparison with one alternative
option, namely a diesel generator operating at 25% average conversion efficiency. Transportation energy
to get the diesel fuel at the user location has not been accounted.

We sec from figure 3 that the CO, emission from the PV installation is still considerably lower than for
the diesel, although the difference is smaller than for the grid-connected systems.

One consequence of this result is that one should be careful when attributing a large CO, mitigation
potential to SHS’s. Some kind of break-through in electricity storage technology will be necessary if we
want to improve the CO; mitigation potential of this application. In any case, the long-term worldwide
contribution of SHS to CO, mitigation will always be small in comparison to grid-connected systems. -
Also one should remember that SHS are very valuable for a different reason, namely providing energy
services at remote locations.

CO2 emission of stand-alone supply options
(in g/kWh)

mec-Si me-Si  TF 1997 mc-Si TF 2007 diesel
1997 low 1997 2007 gen.
high

Figure 3: Life cycle CO, emissions from Solar Home Systems and from a diesel generator.



6. CONCLUSIONS

We have reviewed energy requirement data for PV modules and BOS components. It was found that there
is considerable uncertainty with respect to the energy requirement of c-Si modules, due to accounting
difficulties for off-spec silicon and due to lack of reliable data on silicon feedstock production. This 1s
reflected in the large difference between calculated energy pay-back times, which range from around 8
years in the mc-Si high case to 34 years in the low case (under 1700 kWh/m?/yr irradiation).

1 think that these two difficulties mostly explain the large difference of results which can be found in past
literature. However, this will be no longer a major issue in the near future. In any case. dedicated
processes for “PV-quality”™ silicon feedstock. with a reduced energy requirement, are expected to bring
significant improvements in the energy requirement of c-Si modules. The same can be expected from
measures to reduce the amount of silicon required per m? wafer.

Thin film modules have a lower energy requirement per m? module area, but on a system level this is
offset by their lower efficiency, leading to higher BOS energy requirements and lower energy production.
With thin film technology the scope for a future reduction of energy requirements is more limited than for
c-Si.

The energy pay-back times of PV rooftops are expected to decrease to less than 2 years both for mc-Si
and a-Si module technology. Specific CO, emissions from these systems could go down from 60-150
g/kWh now to 20-30 g/kWh in the next ten vears. These values indicate that such future systems will
definitively have a high net fossil energy substitution and CO, mitigation potential.

This is less straightforward the case for Solar Home Systems, for which energy pay-back times of more
than 7 years were found. Still, the CO, emissions from such systems (250-400 g/kWh) are relatively low
in comparison with a diesel generator. In fact. the BOS is the crucial factor determining the energy and
environmental profile of these systems and limiting its actual CO2 mitigation potential. Irrespectively of
PV technology improvements, some kind of breakthrough in electricity storage means will be needed if
we want to improve the over-all environmental effectiveness of Solar Home systems.

ACKNOWLEDGEMENTS

Erik Alsema was supported by the Netherlands Agency for Energy and the Environment (Novem). The
author is much indebted to Kazuhiko Kato (Electrotechnical Laboratory, AIST, MITI, Ibaraki, Japan)
and to Paolo Frankl (Centre for the Management of Environmental Resources, INSEAD, Fontainebleau,
France) who shared detailed data from their own studies [4, 6, 16] with the author and discussed their
assumptions and findings with him.

7. REFERENCES

1) Hagedom, G. and E. Hellriegel, Umwelrelevante Masseneintrage bei der Herstellung verschiedener Solarzellentypen -
Endbericht - Teil I: Konventionelle Verfahren, Forschungstelle fur Energiewirtschaft, Miinchen, Germany, 1992,

2) Alsema, EA., Environmental Aspects of Solar Cell Modules, Summary Report, Report 96074, Department of Science,
Technology and Society, Utrecht University, 1996.

3) Alsema, E.A., Understanding Energy Pay-Back Time: Methods and Resuits, IEA Expert Workshop on "Environmental
Aspects of PV Systems”, Utrecht, 1997.

4) Frankl, P., Analisi del Ciclo di Vita di Systemi Fotovoltaici, Thesis, University of Rome "La Sapienza”, 1996.

5) Frankl, P., A. Masini, M. Gamberale, and D. Toccaceli, Simplified Life-Cycle Analysis of PV Systems in Buildings - Present
Situation and Future Trends, Progress in Photovoltaics, 1998. 6(2), p. 137-146.

6) Kato, K., A. Murata, and K. Sakuta, Energy Payback Time and Life-Cycle CO2 Emission of Residential PV Power System
with Silicon PV Module, Progress in Photovoltaics, 1998. 6(2), p. 105-115.

7) Hynes, KM., A E. Baumann, and R. Hill, An assessment of environmental impacts of thin film cadmium telluride modules
based on life cycle analysis, 1st World Conf. on PV Energy Conversion, Hawaii, 1994.

8) Keoleian, GA and G.M. Lewis, Application of life-cycle energy analysis to photovoltaic module design, Progress In
Photovoltaics, 1997. §, p. 287-300.

-10-



9) Nijs, J.,, R. Mertens, R. van Overstraeten, J. Szlufcik. D. Hukin, and L. Frisson, Energy pavback time of crvstalline silicon
solar modules, in: Advances in Solar Energy, Vol 11, K. W. Boer (Eds.), American Solar Energy Society, Boulder, CO, 1997, p.
291-327.

10) Palz, W. and H. Zibetta, Energy Pay-Back Time of Photovoltaic Modules, Int. J. Solar Energy, 1991. 10, p. 211-216.

11) Snnivas, K.S., Energy investments and production costs of amorphous silicon PV modules, Université de Neuchatel, 1992.
12) Pust, K. and D Deckers, Kumulierter Energieaufwand, Amortizationszeit, Emtefaktor und Substitionsfaktor fiir die | MWp
Photovoltaikanlage in Toledo / Spanien; Diplomarbeit, Fachhochschule Gelsenkirchen, Fachbereich Elektrotechnik, 1996.

13) Alsema, EA., P. Frankl, and K. Kato, Energy Pay-back Time of Photovoltaic Energy Systems: Present Status and Prospects,
2nd World Conference on Photovoltaic Solar Energy Conversion, Vienna, 6-10 July, 1998.

14) Phylipsen, G.J M. and E.A. Alsema, Environmental life-cycle assessment of multicrystalline silicon solar cell modules,
Report 95057, Dept. of Science, Technology and Society, Utrecht University, Utrecht, 1995.

15) Suter, P. and R. Frischknecht, Okoinventare von Energiesystemen, 3. Auflage, ETHZ, Ztirich, 1996.

16) Frankl, P., A. Masini, M. Gamberale, and D. Toccaceli, Simplified Life-Cycle Analysis of PV Systems in Buildings - Present
Situation and Future Trends, IEA Expert Workshop on "Environmental Aspects of PV Systems", Utrecht, 1997.

17) Johnson, A.J., HR. Outhred, and M. Watt, An Energy Analysis of Inverters for Gnd—Cannected Photovoltaic Systems, IEA
Expert Workshop on "Environmental Aspects of PV Systems", Utrecht, 1997.

18) Brouwer, JM. and E.W. Lindeijer, Milieubeoordeling van accu's voor PV systemen, Report 72, ISBN 90-720011-34-1,
IVAM, University of Amsterdam, Amsterdam, 1993.

19) Gaines, L. and M. Singh, Energy and Environmenta! Impacts of Electric Vehicle Battery Production and Recycling, Total
Life Cycle Conference, Vienna, 1995.

20) Kertes, A, Life Cycle Assessment of Three Available Battery Technologies for Electric Vehicles in a Swedish Perspective,
Report TRITA-IMA EX 1996:7, ISSN 1104-2556, Dept of Environmental Technology and Work Science, Royal Institute of
Technology, Stockholm, 1996.

21) Sullivan, D., T. Morse, P. Patel, S. Patel, J. Bondar. and L. Taylor, Life-cycle energy analysis of electric-vehicle storage
batteries, Report H-1008/001-80-964, Hittman Associates. Columbia, 1980.

22) Bijlsma, J., K. Blok, and W.C. Turkenburg, Kemnencrgie en het kooldioxideprobleem, Dept. Of Science, Technology and
Society, Utrecht University, 1989.

-11 -



2.2  Bjorn Andersson
Materials Availability and Waste Streams for Large Scale PV



MATERIALS AVAILABILITY AND WASTE STREAMS
FOR LARGE SCALE PV

Bjorn A. Andersson

Department of Physical Resource Theory
Chalmers University of Technology and Géteborg University
S-412 96 Goteborg, Sweden
trtba@ty.chalmers.se

1 INTRODUCTION

The aim of this paper is to address the issue whether thin-film solar cells based on rare metals
could be part of the solution to the problem of global climatic change.

More specifically the objective is to discuss to what extent an expansion of PV production based
on CdTe, CIGS and aSiGe could be constrained by limited materials availability. This is not the
first time this issue is addressed. See for example Smith and Watts (1984), Zweibel et al.
(1986) and Zweibel and Barnett (1993).

If the potential of a technology is limited then its role in the dynamic process of technology
change ought to be assessed. Could it act as a bridging technology that will facilitate the
introduction of technologies with greater potential or will it act as a dead end technology that
deprive investments from or damage the reputation of the long term solutions and thereby
prolong the transition to a more sustainable energy supply system.

From an environmental perspective the role of the technology in the industrial metabolism
should be assessed. Could solar cells based on rare elements contribute to the creation of a
sustainable industrial metabolism or will they introduce new environmental problems. At the
end of the paper some environmental pros and cons associated with a large scale deployment of
solar cells based on rare elements are discussed.

There is a general lack of data for the minor metals considered here. Most figures given in this
text are rough estimates and ought to be treated with caution.

2 AVAILABILITY OF MINOR METALS

Cadmium (Cd), tellurium (Te) used in CdTe cells, indium (In), selenium (Se) and gallium (Ga)
used in CIGS cells and germanium (Ge) used in some aSi cells are elements that all could be
considered as rare or geochemically scarce elements. The average abundance in the continental
crust varies among these from less than (.01 ppm (Te) to about 15 ppm (Ga). In fact Ga is as
abundant as lead and almost as abundant as copper (25 ppm). The primary refinery production
of Ga is however a factor 10,0(X) smaller than the primary refinery production of copper and
lead. Figure 1 illustrates that the refinery production of Te, Se, In, Ge and Ga is substantially
smaller than for other metals of comparable abundance. This is due to the fact that the
availability of metals is depends on the extent to which they are concentrated in certain minerals
and ores. Te, Se, In, Ge and Ga do seldom torm any minerals of their own and high levels of
concentration in any mineral are exceptional. Therefore these metals are sometimes classified as
’scattered metals” (Habashi 1997).

Cadmium is heavily concentrated in sphalerite (ZnS, the main source of zinc), where it, due to
its similarity with zinc, substitutes for this metal in the crystal lattice. Therefore the output of Cd



is comparatively large. The revenue from Cd refinery can however not affect mining rates, it
only makes up a small traction of the total revenue from zinc mine production (about 1%). Itis
therefore termed a minor metal. Of course, also Te, Se, In, Ge and Ga are minor metals
recovered as byproducts from base metal mining. Te and Se are enriched in copper minerals and
concentrated in the process of copper refining. In and Ge are mainly byproducts of zinc. Also
Ga is somewhat concentrated in sphalerite but it is mainly recovered from bauxite. (See Figure
2.)
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crustal abundance from Wedepohl (1995).

Due to the low value and/or complex processes needed to recover the minor metals the
recovered amounts are not only dependent on the amounts present in the ore but also depends
heavily on the specific processes used to recover the base metal or more valuable byproducts
such as precious metals. As an example the recovery of Te and Se can be attributed to recovery
of gold and silver from copper anode slimes.

From Table 1 it is evident that only a traction of the considered here minor metals contained in
mined minerals are recovered (with the exception of Cd). This discrepancy is especially large
for the more geochemically abundant elements Ga and Ge. The amounts contained in mined coal
are about 5(X) times the amounts presently refined from metal ore.

Copper ore Te CdTe

ppe —g It = CdTe
Zine Ara _In 11 Q
Lol \JIC ALs rdNJJ
Bauxite ore —Ga Ge aSiGe

. .
Figure 2 The minor metals are produced as byproducts from base metal recovery.

To avoid confusion when discussing annual availability of metals we need a clear terminology
In figure 3 the flows and stocks of a minor metal is outlined. Extraction here denotes otal
amount of metal contained in mined minerals. The term mine production is here avoided since it
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post consumer scrap (old scrap). For minor metals, in most cases, only figures of total refinery
production and refinery capacity are given. However, in most cases recycling rates are low. Due
to variation in supply, demand and price the metal may be stockpiled in different parts of the
system. Theretore, averages over five years are used in this paper.
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Figure 3 The principle flows of a minor metal.

Table 1 Annual availability of primary metal

Refinery  Refinery Extraction, annual average 1993-1997¢

prod. average capacity
1993-1997:  1992° Total Zn-ore® Cu-ore® Bauxite! Coals

{tons/yr)
Te 280 450 2,100 2.000 100
CGd 19,000 26,000 34,000 32,000 2,000
In 190 250 1,100 430 610 100
Se 2,200 2,300 15,000 8200 7,000
Ga 45 145 28,000 480 3500 22,000
Ge 52 270 31,000 3200 610 27,000

a Secondary refinery production is included in all figures except for Ga. This fraction is however believed to be
modest. Data are taken from USGS Mineral Commaodity Summaries. Data for Te and Se are completed with
estimates from Crowson (1994).

b Data from Crowson (1994).

¢ Extraction refers to the total amount of the elements contained in mined minerals. Underlined figures denotes
the prime source of present primary recovery. In addition, small amounts of Te and Se are extracted from lead
ores and small amounts of In is extracted from tin ores.

d Based on zinc mine production (USGS Mineral Comimaodity Summaries) and estimates of concentrations in
sphalerite (ZnS), Cd: 3000 ppm (Roskill 1988), In: 40 ppm, Ga: 45 ppm and Ge: 300 ppm (Weeks 1973).

e A Te:Cu ratio of 200 ppm in ore is assumed (Roskill 1982). By using estimates of Se recovery per ton of
mined copper for Canada 650 ppm and the rest of the world 215 ppm (USBM 1985) the Canadian share of
world mine production and a recovery efticiency of 31% (USBM 1985) a Se:Cu ratio of 800 ppm is derived.
Figures of median In and Ge content in chalcopyrite of about 20 ppm (Weeks 1973) are used to estimate In:Cu
and In:Ge ratios to 60 ppm. Copper mine production from USGS Mineral Commodity Summaries.

f The average Ga concentration in bauxite is assumed to be 50 ppm (USBM 1985). Bauxite mine production
from USGS Mineral Commodity Summaries.

g Based on coal "production” figures trom BP (1996) and typical contents of elements in coals. Cd: 0.5 ppm
(Swaine 1990, Clarke and Sloss 1992), In: 0.02 ppm (Bowen 1979), Se: 1.5 ppm, Ga: 5 ppm, Ge: 6 ppm
(Swaine 1990). Te content is estimated to be in the same order of magnitude as In. Davidson and Lakin (1973)
assume a Se:Te ratio of 100 and Clarke and Sloss (1992) gives ().1 ppm as an upper limit.



To avoid confusion when discussing annual availability of metals we need a clear terminology.
In figure 3 the flows and stocks of a minor metal is outlined. Extraction here denotes the total
amount of metal contained in mined minerals. The term mine production is here avoided since it
in the literature sometimes include recovery factors. Primary refinery production is the part of
the extracted amounts that is refined to metal. Total retinery production also comprise secondary
refinery production, i.e. the recycling of scrap from manufacturing processes (new scrap) and
post consumer scrap (old scrap). For minor metals, in most cases, only figures of total refinery
production and refinery capacity are given. However, in most cases recycling rates are low. Due
to variation in supply, demand and price the metal may be stockpiled in different parts of the
system. Therefore, five years averages are used in this paper.
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3 CONSTRAINED PV EXPANSION RATES

In Table 2 the figures on refinery production, retinery capacity and extraction are translated into
potential annual increases of the solar cell stocks. It is evident from the limits set by present
refinery producuon and retmery c,.lpauty as well as from the potentml to use more of the
extracted materials that the availability of Te and In are bottlenecks for the growth of CdTe and
CIGS respccuvcly Gei is neither essential for aSi solar c.ells nor as limiting as Te and In. Higher
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will therefore in the following focus on Te and In.

Table 2 PV expansion rate constrained by annual availability of metals

Metals Metals Potential expansion rate limited by:
requirements® intensities”

Refinery Refinery Max. recovery from Max. recovery from
production®  capacity!  traditional source® total extraction’

(g/m?) (g/Wp) (GWp/yr)
Te 4.7 0.038 74 12 37 39
Cd 49 0.039 480 660 570 610
In 29 0.023 8.2 11 13 34
Se 48 0.038 57 60 150 280
Ga 0.53 0.0042 11 34 910 4,600
G 0.22 0.0018 30 150 1,300 12,000

a Estimates from Andersson et al. (1998). Thickness of CdTe, CIGS and aSiGe layers are 1.5 pm, 2.0 pm and
0.1 pm respectively.

b An efficiency of 12.5 % is assumed.

¢ Derived from refinery production in Tabie 1 (used as a proxy for pritnary refinery producton).

d Derived from refinery capacity in Table 1.

= PRY PN T PR . I-n miernce v nenl 2 o IND
C IU'70 Uf wc cxuaucu uh.llC[hu uUUl UJC th\C mcuu ore lll(ll Luucuuy la a SOurce o1 uic minad mcim. 1.C. 1V70

the underlined ﬁgums in Table 1. 70% is a typical value of the total efficiency of copper recovery from ore to
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If we assume that all of the current primary retinery production of Te and In but no more will be
available for solar cells then the expansion rates would be limited to about 7-8 GWp/yr for CdTe
and CIGS. Consider a scenario where a production capacity of S0 MWp/yr is present in the year
2005 and that the production capacity thereafter grows by 30%/yr. Then the production volume
would be constrained by Te and In availability in the year 2025 (Figure 4). If they after 2025
keep the pace of 7-8 GWp/yr of production from primary material not more than 230-250 GWp
or 360-390 TWh/yr' would be installed in the year 2050. To reach the size of the present global
electricity production of 10,000 TWh we would have to wait about 800 years.

Clearly the availability of Te and In has to be increased substantially to make an impression on
the electricity market and even more to be of any major importance for CO,-mitigation. We
should also consider that the materials intensity of the cells can be increased, i.e. thinner films
could be developed.

500 - GWp
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400 4 '
'
30% growth ¢ CIGS
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Figure 4 Expansion constrained by current levels of primary refinery production. In the
scenario the exponential growth comes to a halt in 2025. Based on Table 2.

4 PROSPECTS FOR INCREASED AVAILABILITY

The availability of primary metal for one technology, e.g. CdTe solar cells, is determined by the
supply, i.e. primary refinery production, and by the demand tor the metal from other
applications. In this section the supply side will be more thoroughly examined. The issue of
resource competing technologies will be touched upon at the end of the section.

Changes in supply could be divided into changes independent of the increased demand from the
solar cell industry and changes that occur due to increased demand and raised prices.
Independently of demand for the minor metal in question, output could increase or decrease due
to a change in demand for resource complementary technologies. For example, if the use of
technologies using copper would increase, the availability of Te would increase. If the demand
for gold would decrease the recovery of Te would also decrease. New ways of processing the
base metal ore could also alter the output of the minor metals.

If demand for the metal increases the revenue from the recovery of the metal will increase. This
will affect the price and the production volume. Recovery of the minor metal might spread to a
larger fraction of the mining operations. Existing processes of recovery can be optimized. If the
price would increase even more the processing of the base metal might be changed to increase

! Assuming 2000 kWh/m>yr and a total efticiency of B()S, power conditioning and temperature correction of
80%.



recovery rates. Recovery from sources, previously subeconomic, could emerge, such as Ge
recovery from coal ash. If the price could be elevated by about two orders of magnitude and

remain stable the minor metal may become a major metal. It then could become the main product
or at least a high value co-product, that could influence mining rates.

The scenario introduced in the previous section may now be revisited. Due to economic growth
and population growth the demand for base metals will most likely increase. The increases in
mine production could be held back by elevated recycling rates and more efficient materials
utilization (dematerialization). If we assume a growth rate of 2% for the mine producuon of base
metals during the next 27 years, 1.7 times the present levels would be produced in the year
2025. If the raised demand could increase the overall recovery rates for In and Te to 70% (the
efficiency of copper recovery) the output of In from zinc operations could increase by a factor
1.6 and of Te from copper ores by a factor 5 (see Table 2). Moreover, if the thickness of the
CdTe layer could be decreased from 1.5 to 1 um and the CIGS layer from 2 pm to 0.5 pm,
these assumptions taken together could increase the amount of available Te and In in the year
2025 by 13 and 11 times respectively. The annual expansion potential for CdTe and CIGS
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would be reached around year 21(X).

The amounts of In and Te that will be available will to a large extent depend on the price that
solar cell manufacturers are ready to pay for the metals, and ultimately on how much more
electricity per cent these cells can pmducc compared to competitors. Let us make a thought
experiment. Consider a reterence cell with a module efficiency of 10%. an operating efﬁc1encv
of 8% and a module cost of 50 USD/m>. Let assume that area related BOS cost is 50 USD/m?
and that this reference device is competitive on the mass markets for electricity (about 6 ¢/kWh).
If a CdTe or CIGS cell having the same production cost but 12.5% module efficiency and 10%
operating efficiency could be produced it would generate 25% more electricity at the same cost
as the reference module. The implication of this is that such CdTe and CIGS cells could pay up
to 25 USD extra for materials and still be profitable. The effects on metal prices of such a
situation is indicated in Table 3. The etfects on zinc and copper ore economy of drastically

elevated prices of Te and In is indicated in Table 4.
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Table 3 Low manufacturing cost and high efficiency can increase the willingness to
_pay for the metals by two orders of magnitude. See text for details.

Average prices Metals Potential metal price Potential price/
1993-1997 requirements  (equivalent of 25 USD/m?) current price
high low
(USD/kg) (g/m?) (USD/kg) (ratio)
Te 53 47 3.1 5,300 8,000 100 150
In 280 29 0.73 8,600 34,000 31 123
Ge 1,400 0.22 110,000 81

Table 4a Value of metals contained in a

typical zinc ore.

Table 4b Value of metals contained in a
a typical copper ore.

Ore conc®.  Metal price  “Ore value” Ore conc’. Metal price  "Ore value”

(ppm) (USD/kg)  USD/ton (ppm)  (USD/kg) USD/ton
Zn 40,000 1.0 40 Cu 5,000 23 23
Cd 180 2.5 0.4 Se 4.4 9.5 0.1
Ge 18 1,400 25 Au 0.13 13,000 33
Ga 2.7 410 1.1 Te 1990s 1.0 53 0.1
In 1990s 2.4 280 0.7 Te potential 5,300- 11-16
8,000
In potential 8.600-34,000 21-82

a Au:Cu ratio from Lucas (1985), other ratios from Table 1
b Average prices 1993-1997 from USGS (1998), In and Te potentiai prices from Table 3.

At least two conclusions can be drawn from this example. First, it is not impossible that demand
for Te, In and Ge could increase recovery rates and eventually become a force behind
accelerated mining.” ? Second, the limited supply of Te and In and the large price increases
needed to affect mining imply that any cost advantage of CdTe and CIGS would induce higher
materials costs.

There are figures indicating that the In content in mined copper ore is substantial (see table 1). If
this is so the copper ores might become an attractive source for In. Te is heavily concentrated in
manganese nodules on the ocean floor. Estimated median values vary between 30 ppm (Weeks
1973) and 48 ppm (Bowen 1979). The high Te prices indicated above could give rise to new
interest in ocean floor mining. Old waste dumps at mining sites could be another source of
various metals in the decades to come.

The high potentially high value of Te and In in solar cells will make it difficult for other large
scale applications to compete tor the metal. The tastest growing market for In is thin film ITO
(indium tin oxide) used for displays and energy etficient windows. If CIGS production take
off, CIGS and ITO will be resource competing technologies at least in the short run.

5 STOCKS

So far only annual availability and constraints on the expansion rate has been considered.
Estimates of the In and Te contents in zinc, copper and ocean floor resources are given in Table
5. Using the totality of land based and ocean tloor resources of In and Te would limit CIGS
cells to about 26 TWp or about 40 (XX) TWh (insolation 2000 kWh/m?yr) and CdTe to about 40

TWp or 60 000 TWh/yr.

2 If mines were to be operated mainly to recover In or Te energy payback times would be increased substatially.



Table 5 Potential In and Te resources

Ore contents® Potential solar cell
stock (70% recovery)®
In Te In Te
(ktons) (GWp)
Zinc reserve 11 1,400
Zinc reserve base 26 3,100
Zinc resources 110 14,000
Copper reserve 19 64 2,300 1,800
Copper reserve base 38 130 4,600 3,500
Copper resources 96 320 12,000 8,900
(land based)
Manganese nodules >1,000 >30,000
(ocean floor)

a Based on zinc and copper resources as given by USGS (1998) and In and Te concentrations as cited in Table 1.
Resources in manganese nodules from Weeks (1973)

b A module efficiency of 12.5% is assumed. A recovery rate of 70% is substantially higher than prevailing
recovery rates. :

6 THE CADMIUM PARADOX: HOOVER AND PANDORATECHNOLOGIES

It is not the use of metals that cause environmental problems but the emissions and leakage from
society to the environment. Different types of metal use are more or less dissipative. If the price
of a metal is high it is less likely that it will be discarded as waste or used in short lived
products. It is more likely that it will be contained in long lived products and recycled in closed
loops. Therefore it has been suggested that technologies where the hazardous metal can be
contained in a controlled fashion could be used to soak up” metals that otherwise would have
been lost to the environment. The argument has been used by Ayres and Ayres (1996) for
arsenic and electronics, by Andersson and Riide (1998) for cadmium, lead and vanadium and
electric vehicle batteries and by Andersson and Jacobsson (1998) for the here discussed metals
and solar cells. Andersson and Ride introduce the term hoover technologies. CdTe solar cells
could be a hoover technology that soak up cadmium that otherwise would have been lost to
environment.

Raising the value of a metal could however also lead to accelerated mining causing an increased
environmental pressure for example in the form of sulfur dioxide emissions, metal leakage from
waste dumps and large scale land transformations. It becomes a pandora technology that
releases deleterious elements into the environment.

This could lead to an interesting paradox. A large scale use of CdTe solar cells could decrease
the overall cadmium emissions and leakage. A large scale expansion of CIGS and aSiGe cells
could lead to increased mining of indium and germanium rich zinc minerals containing large
amounts of cadmium, and thereby cause an overall increase in cadmium emissions and cadmium
leakage.

We should also consider the riddance problem. Even if the metals can be safely stored in solar
cell systems, one day these technologies might be superseded by better performing alternatives.
Then the scrap price will fall drastically. We then face the riddance problem. Who will pay for
getting rid of tons of hazardous waste. At present, in Sweden the use of mercury is supposed to
be phased out and mercury is to be put in final storage. However, no money has been collected
to pay for this.

Conclusively there are environmental problems associated with high metal values and as well as
with low metal values.




7 CONCLUSIONS AND QUESTIONS

If major efforts to increase refinery output of Te and In are made CdTe and CIGS could reach
TWp levels of installed capacity during the next century. If the development of CdTe and CIGS
would at all succeed it is not unlikely that they could pay for such efforts. Long term contracts
between metal producers and solar cell manutacturers might be necessery avoid that swinging
prices will substantially increase the risk associated to investments in CdTe and CIGS
production.

It is however doubtful if CdTe and CIGS could become of any major importance to CO,-
mitigation. The implication of such an unlikely development would be that solar energy would
become the “coal industry” of the 20th century extracting about as much material from the crust
for every kWh of electricity produced.

The possible role tor CdTe and CIGS in the process of decarbonizing the energy system is as
bridging technologies. What important knowledge is gained by doing research on CdTe and
CIGS? Can the development of CdTe and CIGS production processes generate experience at a
critical point in time? Can they tear down market barriers, create distribution channels, shape up
legislation and increase the consumers interest in PV? Such questions ought to be addressed.

Direct solar energy is one of the major options for a sustainable energy supply system. In the
worst case the investment of time and money in the development of CdTe and CIGS could delay

a development of a global solar energy system.

Even if these solar cells can not be of major importance to global climatic change they can form
an impressive industry that can deliver demanded products. For such an industry it is important
to develop a careful materials management. The resource scarcity and the environmental
problems associated with the used rare metals call for strategies to obtain closed loop recycling,
including recycling of old scrap. One possibility to facilitate post consumer recycling is to sell
CdTe and CIGS cells only to certain market segments, e.g. professionally operated large scale
installations.



2.3 Robert Williams
PV and the Competition in 21st Century
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(all based on atmospheric pressure, down-draft, air-blown gasifiers and cold gas clean-up,

generating “producer gas,” which is typically made up of ~ 20% CO, 20% H,, 10% CO,, 50% N)

Commercial technolo
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CAPITAL COSTS FOR ELECTT G
(1997 Dollars)
Technology $/kW | $/kWh | Total Capital
Cost ($/kW) |
2 20
hours | hours
Compressed Air
Large (350 MW) 350 352 370
Small (50 MW) 450 2 454 490
Above Ground 500 20 540 900
(16 MW) R
Conventional 900 10 920 1,100
Pumped Hydro
Battery (Target. 10 MW)
Lead Acid 120 170 460 | 3,520
Advanced 120 100 320 | 2,120
Flywheel (Target. 100 MW) 150 300 750 6,150
Superconducting Magnetic 120 300 720 | 6,120
Storage (Target, 100 MW)
Supercapacitors (Target) 120 | 3,600 | 7,320 | 72,120

Source: Robert B. Schainker

Electric Power Research Institute
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(A. Cavallo, “High Capacity Factor Wind Energy Systems,” Journal of Solar Engineering, 117, 1995:137-143)
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OF JOULE II PROJECT ON
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"The Underground Storage of CO,"™

£

(Y

(&)

w

(3

din

.

aine

4

indicates that CO, can be ret

1ons

&

CO, accumulat

(=4

mng

L4

. iars a1

dy of large naturally occu

tu

1€ s
underground reservoirs for millions of years."

i

o

(=4

de from fossil-

d by the necessity to separate the CO,

10X1

Lovd

a

"The main obstacle to the implementation of the underground disposal of carbon d
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Energy Conversion and Management, vol. 37, nos. 6-8, pp. 1146-1154, 1996.
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Sam Holloway, "An Overview of the Joule Il Project “The Underground Disposal of Carbon Dioxide,"
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HYDROGEN SEPARATION DEVICE (HSD)

HSD is based on inorganic ceramic (AL,O; or other) membrane

| Membrahe manufacturing technology established at large scale at ORNL for
production of membranes for gaseous diffusion-based uranium enrichment
technology. Manufacturing technology is classified.

Inorganic membranes are far more expensive than polymer membranes

Proposed membrane for H; separation costs ~ $1,000/m?
Installed HSD cost ~ $6,000/m*

For comparison, current grid-connected rooftop PV systems cost $6/Wp
Insolation ~ 1000 W/m?, n = 10% =» PV system cost = $600/m’

But rated H, separation rate is very high.

Membrane coefficient = 11b H, /hour/ft’ = 192,200 W/m?> = $0.03/W



CENTRALIZED SOLID OXIDE FUEL CELL/GAS TURBINE HYBRID CYCLE
FUELED BY HYDROGEN DERIVED FROM COAL USING A HSD
PLUS AQUIFER DISPOSAL OF THE SEPARATED CO,

Overall efficiency of providing electricity from coal ~ 50% or more
Near zero lifecycle CO, emissions
“Guesstimated” electricity generation cost, including cost of CO, sequestration ~ 4 cents/kWh

Exhaust

Turbine Generator

Compressors

—

Electric
power

intercooler

SOFC
system

Fuel

Exhaust «

Recuperator
fuel heater

Figure 3 SOFCs may be advantageously combined with a gas turbine by us-
ing vitiated air and unconsumed fuel from a pressurized fuel cell to power the
turbine. EPRI studies indicate that unprecedented combined electrical effi-
ciency—75% or more—is likely for SOFC-gas turbine combined-cycle units,
at cosls projected to be competitive with conventional generation options.



EXPERIENCE WITH CO, STORAGE IN AQUIFERS

Ongoing: Sleipner CO, Injection Project, North Sea (Statoil)

1 million tonnes/year of CO, is being recovered from natural gas (9.5% CO,) withdrawn from the Sleipner West
gas field using an amine solution of MDEA.

Recovered CO, is being be transported to and stored in a 250 m-thick deep aquifer (Utsira formation) located

800 m under the seabed beneath the nearby Sleipner East field.
Project investment: $50-$80 million,

Project came onstream in 1996 and will last ~ 20 years.

Prospective: Natuna CO, Capture & Storage, So. China Sea (Pertamina/Esso E&P

Natuna)

Natuna gas field (1.27 x 10> Nm® recoverable NG reserves) is 225 km from Natuna Island.

Field gas is 71% CO,. Offshore the field gas will be cryogenically separated into product gas (mainly CH,) and

waste gases (mainly CO,). Product gas will be piped to Natuna Island for further purification and processing to
LNG. The separated CO, will be stored in two underground aquifers north of the Natuna field.

Sequestration rate will be > 100 million tonnes of CO,/year; equivalent to 0.5% of total CO, emissions from
fossil fuel burning.

Project is currently in the planning stage. Once construction begins it will be 8 years before first LNG deliveries
to customers takes place.



Find ways to “jump to” a faster experience/learning curve.
...will thin films make it possible to do this?

itive instruments such as a RPS to force PV prices down quickly.
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Installed Modules (MWp)
CUMULATIVE PRODUCTION AND COST FOR GLOBAL EFFORT
TO “BUY DOWN” PV MODULE PRICE TO $1 PER PEAK WATT

FOR AVERAGE TECHNOLOGY (would be encouraged by administrative approach)

CUMULATIVE PRODUCTION REQUIRED = 135,000 MWp

BUY-DOWN COST = $50 BILLION

FOR LEAST-COST TECHNOLOGY (would be encouraged by market approach: e.g., Renewable Portfolio

Standard, Renewables NFFO)

CUMULATIVE PRODUCTION REQUIRED = 430 MWp

BUY-DOWN COST = $120 MILLION



IMPORTANCE OF COMPLEMENTING REMOTE STAND-
ALONE PV APPLICATIONS WITH DISTRIBUTED

GRID-CONNECTED APPLICATIONS

Rural domestic lighting market is relatively limited:
463% of LDC population is in rural areas
¢ 67% of these have no access to electricity
¢10% of households can afford to pay for PV if financing available
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For other rural stand-alone markets (e.g., water pumping) PV will face stiff

competition from other renewables (e.g., biomass)

Grid-connected, distributed markets are large and relatively easy to access and
probably very competitive @ $3/wac PV system cost =» good potential for moving
quickly along experience/learning curves

System costs of $3/w,c might be realized in less than 5 years
Supply curves for PV markets as a function of installed system price for grid-

connected applications for developing as well as industrialized countries, taking
into account various distributed benefits
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MARKAL-MACRO: A Computer Tool for Integrated Energy-Environmental-Economic
Analysis

Vasilis M. Fthenakis.
Environmental and Waste Technology Center
Brookhaven National Laboratory
Upton, NY 11973

SUMMARY

MARKAL-MACRO, is a well-established model for energy-environment-economic
systems analysis, which is currently in use by many industrialized and developing countries and
regions. The model describes all possible flows of energy from resource extraction through
energy transformation and end-use devices to demand for useful energy services and
conservation. It finds the “best” energy scenario for a given period by selecting the set of
options that minimizes the total system’s cost over the period. More than 200 technologies
including PV, wind, solar thermal, biomass fuels, wave, and ocean-thermal gradients are
modeled. The potential role of Photovoltaic (PV) technologies to reduce carbon dioxide
(CO,) emissions in the United States in a competitive market environment was evaluated using
MARKAL-MACRO. Under specific assumptions on projected cost and efficiency
improvements, PV may compete favorably as a general source of electricity supply to the grid
by about 2010 in the southwestern United States. This analysis indicates that PV has the
potential to reach a total installed capacity of 140 GW by the year 2030, and to displace a
cumulative 450 million metric tons of carbon emissions from 1995 to 2030. Under constraints
on carbon emission, PV becomes more cost effective and would further reduce carbon
emissions from the US energy system.

INTRODUCTION

The cost of photovoltaic power has decreased over seven-fold in the past two decades
and is projected to decrease a further four-fold in the next two decades [1]. PV already
competes favorably in the United States for certain niche markets, (e.g., accent lighting,
security lighting, sensing devices, water pumps, and communications). Many of these uses
compete directly with grid-connected service, but non-grid-connected PV is chosen for
convenience or to avoid the cost of electric connections. Current installed capacity in these
applications in the United States amounts to about 60 MW, it is expected to grow about 10%
per year through 2000 {2}, and then its growth will accelerate, as our model predicts. PV is
also cost-effective in remote applications where connection to the grid is not feasible, and the
competition is diesel generators.

Near-term utility applications of PV in the US are likely to focus on peaking power and
power-conditioning applications. Many utilities, especially in the Southwest, experience a



peak load coinciding with peak solar insulation; this maximizes the value of PV for peaking
nowar The madular canabilitv of PV allows utilities to install appropriate gapagn_ty levels in
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needed locations. Grid-connected demand-side systems are now being installed on roofs o
buildings. Thirty-nine US utilities are testing grid-connected PV systems {3]. Several new

demonstration installations are expected over the next five years.

Over the longer term (2000 to 2030), if the projected improvements in efficiency and

cost materialize. PV mav become competitive with fossil filel plants. If drastic reductions in

WIS ARV ssarisw, Ay UWWULIIWY VWVINLP WMLV Y Vit AU0DM AW paGiiis.

carbon emissions are requlred in the future, both energy demands and energy pnces are likely
io UC auccwu bal’DUl’l ITCC lecnx‘lmogles bULll ast V lﬂeﬁ WTll flaVC an d(.l(llll()ﬂal aavantage
A long-term potential application of PV is the productlon of hydrogen to provide a carbon-free
fuel for heating and motive power. We did not consider this in the current analysis, but it was
explored and found cost-effective under severe carbon emission constraints (over 20% below

the current level) in Europe [4]. We used the NREL projections on the efficiency and cost of

PV module in this analysis to characterize the capital and operating costs and the system’s
efficiency by vintage year (Table 1). We also used capacity factors rangmg form 0.17 to 0.23,
AAAAAAAA Aiovs ¢ thn wanmoan Af anlae tnanlatine ~£10NN NAON L ITL-I.._I...

UUIICDPUIIUUIS LU Liic 1al 5C Ul dUlail 11dLUIallVLl Ul 1 0UU=L90U A YY]L/ 711t .

THE MODEL
The MARKAL-MACRO model (5) is an integration of MARKAL a dynamic linear
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programming m
system, and MACRO, a single sector macroeconomic growth model. MARKAL was
developed at the Brookhaven National Laboratory (BNL) in a collaborative effort under the
auspices of the International Energy Agency (6,7). MARKAL-MACRO was also pioneered at
BNL in close collaboration with Alan Manne, Stanford University. Most countries in OECD,
over half-a-dozen economies in transition, and more than 20 developing countries and regions

currently use MARKAL and MARKAL-MACRO.
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(RES), depicting all possible flows of energy from resource extraction through energy
transformation and end-use devices to demand for usefui energy services. Each link in the
RES is characterized by a set of technical coefficients (e.g., capacity, efficiency), environmental
emission coefficients (e.g., CO,, SO;, and NO,), and economic coefficients (e.g., capital costs,
date of commercialization). MARKAL finds the “best” RES for each period by selecting the
set of options that minimizes the total system’s cost over the entire planning horizon. By

Amhininae MMADI AT /n “hattamamn” tachnalaagical madell and MACROND (n ‘tongdo\'vn”

WIIIUIIHIIE AVALMNLNWL ALy UULLUIII‘UP WWIRIVIVRIVGL 1IIVUVl) GIIW VAL ANENY (d
neoclassic macroeconomic model) in a single modeling framework (Fxgure l) MARKAL-
MACRO captures the interplay between the energy system, the economy and the environment,
which is crucial in analyzing energy and environmental policies under sustainable development.

<

In optimizing the energy-economic system, the model explores a wide range of options,
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in ﬂmg rcu‘l.‘lC‘li‘lg demands for Sncrgy scn vices, ulvcauus in ener £y COnscrvation mcasuics,
investing in higher efficiency supply and end-use devices, switching from coal or oil to natural

gas, and switching from fossil fuels to renewable technologies. In addition to PV, renewable



technologies explored by the model are wind, solar thermal, biomass fuels, wave, and ocean-
thermal gradients. The model thus can evaluate the potential of PV in a competitive market
environment. The cost characteristics of some of the competitive technologies are shown in
Table 2.

SCENARIOS OF PV PENETRATION IN THE US

Three PV scenarios were studied in the analysis. To evaluate the full benefit of future
PV market potential, we chose a Base scenario with PV cost and efficiency levels fixed at 1995
levels; this is labeled as “BASE”. In the second scenario, we assume the NREL expectations
of improvements in PV technology and cost (Table 1) and average US solar insolation of 1800
kWh/m?-yr. Since large PV electricity generation plants are expected to be built in locations of
better than average solar intensity, this case is labeled “Low-PV”. In the third scenario we
assume that all PV power plants would be built in the areas of the maximum US solar
insolation (e.g., Arizona) where the solar insolation is 2480 kWh/m?-yr; it is labeled “High-
PV”. Cases with solar insolation in the range of 1900-2400 kWh/m*-yr were also examined.
To complete the input data-base for model runs, each of these three basic PV scenarios was
combined with the US MARKAL-MACRO data base used in the least-cost energy strategy
study conducted by the U.S. Department of Energy (8).

Two model runs were made under each scenario, one with no limit on CO, emissions,
and one with CO, emissions in 2010 through 2030 constrained at 20% below the 1990 level,
which is one of the proposed reduction targets currently under discussion in the Framework
Convention on Climate Change (9). Thus, six cases were generated; they are listed below.

Case Name Description
BASE Base Scenario, no CO; constraint.
BASE-20% CO; Base Scenario, 20% CO, reduction beginning in 2010.
Low-PV Low solar insolation, no CO; constraint.
Low-PV-20% CO; Low solar insolation (1800 KWhr/m?/yr), 20% CO, reduction
beginning in 2010.
High-PV High solar insolation (2480 KWhr/m?/yr), no CO, constraint.
High-PV-20% CO; Southwest Scenario, 20% CO- reduction beginning in
2010.
RESULTS

The analysis examines three kinds of results. The first is the projected PV market
penetration in the different cases. To what extent does the model find the technology cost-
effective and how rapidly does it enter into the energy system? How is PV technology valued
relative to its competitors? The second is the effect of investing in PV on U.S. CO; emissions.



How do these emissions change in the unconstrained cases? How is the marginal cost of CO,
control affected in the carbon constraint cases? The third is the implication for the broader
economy. What is the impact on gross domestic product (GDP) in the different cases?

Projected Market Penetration

Figure 2 shows the projected capacity of PV for the four basic cases cases. As
expected, there is no new capacity of PV technologies installed neither in the “BASE” case nor
in the “BASE-20% CO;” case. Also, there is no significant market penetration of new PV
technologies in the “Low-PV” case. In the “High-PV” case, PV becomes competitive and
enters the market on a large scale (from 9 GW in 2010 to 140 GW in 2030). The projected
difference in market penetration between the two cases indicates that site conditions are crucial
in determining the economic competitiveness of the PV technologies as technically
characterized by NREL. Under the constraints of the 20% CO, emission reduction, PV
becomes competitive in the “Low-PV-20% CO,” case and is projected to penetrate the market
on a large scale after 2015. (Figure 3). In the High-PV-20% CO,” case, PV energy is
projected to reach its full market potentials specified in MARKAL-MACRO after 2005. As
shown in Figures 4 and 5 the corresponding penetration of wind and biomass in the electricity
market is projected to be much smaller. PV starts replacing mainly gas turbines in 2010 and
later in 2020, also replaces coal steam plants (Figure 6). Table 3 shows the reduced costs
(shadow prices) of PV technologies by vintage. Negative reduced costs indicate how much the
economy would lose (in millions of 1990 $) if one unit (in GW) of PV is forced into the energy
system, in a given year. These values represent the non-competitiveness of PV in the
centralized market for electricity supply, given today’s environmental constraints; they assume
zero credit to PV due to environmental benefits. Furthermore, these reduced costs do not
reflect PV’s value in the limited niche market (e.g., remote location) in which PV already has
proven competitive against the grid, nor they reflect PV’s value in non-grid application (e.g.,
electronics). Positive reduced costs represent the economic benefit gained on further increases
in the capacity of PV above the bounds set in MARKAL-MACRO. In the “Low-PV” case, the
absence of positive marginal costs (from -124 million $ in 1995 to $0 in 2030) explains the lack
of PV market penetration in that case. Under relatively low insolation conditions, MARKAL-
MACRO projects that PV will not compete favorably against other improving technologies
such as advanced gas turbines, wind generators, and cogenerators. In regions, however, where
the solar insolation is higher than 1900 kWhr/m?/yr, PV does compete favorable with other
electricity generating technologies, in time frames varying with the insolation. Under CO,
emission constraints, the values of marginal cost in turn positive even in the “Low-PV-20%
CO,” -20% CO,” case, showing cost-effectiveness of Central-PV systems even in relatively

low solar intensity conditions.




Carbon Emissions and Control Costs

Figure 7 shows the projected carbon emissions for the four cases (CO; is represented
by equivalent carbon). Assuming there are no constraints on carbon emissions, the “High-PV
case resulted in a reduction of over 64 million metric tons of carbon emission in 2030 from the
“BASE” case carbon emission of over 2 billion metric tons. The total cumulative reduction
over the entire 1995-2030 time frame in the “High-PV” case amounts to over 450 million
metric tons. We note that most of the reductions occurred in the later periods, as shown in
Figure 3; these reductions would be the beginning of a longer term trend as the market share of
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Table 4 shows the marginal costs of CO, reduction in the CO; constrained cases.

These values represent the increase in total cost of the energy system to further reduce one ton
of carbon emissions. They fluctuate from period to period, depending on the availability of
efficient CO, mitigating technologies in a period. In the “BASE-20% CO,” case, these values
range from US$ 238 per ton in 2010 to 283 per ton in 2020. In the “High-PV-20% CO;” case,
the marginal CO, reduction costs are consistently lower than the “BASE” case, implying that
the energy system becomes more cost-effective in controlling its future CO, emissions with the
introduction of low-cost PV technologies. Although the marginal cost of CO; reduction in the
“Low-PV-20% CO,” case (with less favorable site conditions for PV technologies) are higher
than those for “High-PV-20% CO,”, the availability of these technologies will still provide
lower marginal costs for CO, reduction compared to the “BASE-20% CO,” case. The
marginal costs of CO, reduction derived in MARKAL-MACRO are direct measurements of a
country’s economic and technological flexibility to respond to a more stringent CO, emission
standard in its energy system. Across different countries, they represent the basic information
needed in analyzing strategies for mitigating CO, emissions at the global level.

Impact on Gross Domestic product (GDP)

Table 5 depicts the growth trends in GDP projected in MARKAL-MACRO for the six
cases. Under the three CO, emission-reduction cases, the impact of higher energy cost is
reflected in the economy through their lower GDP values relative to the projected GDP in the
unconstrained cases. With or without CO, emission constraints, the introduction of low-cost
PV technologies has a positive impact on GDP growth. The GDP is projected to grow at
1.82% per year in the “Low-PV” case. The growth projection increases slightly more in the
“High-PV” case; the impact is about 0.1% per year accumulating to about $3 billion out of $11
trillion by 2030. When the carbon constraint is imposed, GDP growth slows to 1.77%/year in
the “BASE-20% CO,” case due to higher overall energy costs. However, the impact of PV
technologies on GDP growth is larger in the “High-PV-20% CO.” case under constraints,
amounting to an increase of 24 billion dollars in 2030. The GDP growth does not account for
job creation or manufacturing energy requirements for PV, competing technologies or a CO;
mitigation industry. It only describes the impact of electricity costs to US customers.



CONCLUSION

This study shows the capabilities of MARKAL-MACRO in integrated energy-
environmental-economic analysis. As an example, the penetration of Central-PV in the US
was studied using this model. It was shown that, under our assumptions regarding cost and
efficiency improvement, PV could be competitive as a general source of electricity supply to
the grid in the southwestern U.S. by 2010. This PV penetration in the energy market would
replace fossil-fuel combustion technologies and will, therefore, reduce the emissions of carbon
by 450 million tons from 1995 through 2030 on a strictly economic basis. Such penetration
may also help to lower the marginal cost of reducing carbon emissions generated from the US
energy system. This study is limited to describing the impact of central PV stations in the

highly competitive US energy market; it does not examine the PV prospects in the promising
markets of the developing countries.
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Table 1. CHARACTERISTICS OF CENTRAL PV SYSTEMS .

1995 2000 2005 2010 2020 2030
Capital Cost ($/W) ' 6.250 | 3.125 1.785 | 0.893 0.714 0.571
O&M (Cents/kWh) ! 2.7 0.6 0.3 0.2 0.1 0.1
Module efficiency, % 7 10 12 14 15 16

! Data supplied from NREL for flat pane! stationary systems with lifetime of 30 years; Costs in

1990 USS;




Table 2. ESTIMATED COSTS OF SOME ELECRICITY GENERATION TECHNOLOGIES'

Technology 1995 2000 2005 2010 2020 2030
Central Wind*

Capital ($/W) 0.816 0.792 0.779 0.799 0.779 0.779

Fixed O&M ($/W) 0.023 0.020 0.017 0.017 0.017 0.017
Natural Gas Combined Cycle’

Capital ($/W) 0.691 0.691 0.691 0.691 0.691 0.691

Fixed O&M (3/W) 0.032 0.032 0.032 0.032 0.032 0.032

Var. O&M (8/GJ) 0.255 0.255 0.255 0.255 0.255 0.255
Biomass ATS Turbine Cycle*

Capital ($/W) 1.060 1.060 1.060

Fixed O&M (3/W) 0.035 0.035 0.035

Var. O&M (8/GJ) 0.60 0.60 0.60
Biomass Combine Cycle*

Capital ($/W) 1.242 1.242 1.242 1.242 1.242 1.242

Fixed O&M ($/W) 0.045 0.045 0.045 0.045 0.045 0.045

Var. O&M (3/GJ) 0.77 0.77 0.77 0.77 0.77 0.77
Coal Atmosph. Fluidized Bed *

Capital (/W) 1.440 1.440 1.440 1.440 1.440 1.440

Fixed O&M ($/W) 0.033 0.033 0.033 1 0.033 0.033 0.033

Var. O&M (3/GJ) 21 2.1 2.1 2.1 2.1 21
Coal Steam®

Capital ($/W) 1.533 1.533 1.533 1.533 1.533 1.533

Fixed O&M ($/W) 0.020 0.020 0.020 0.020 0.020 0.020

Var. O&M ($/GJ) 1.35 1.35 1.35 1.35 1.35 1.35

1 All costs are in 1990 US $

2 Central Wind; Capacity Factor = 0.33

3 Natural Gas Combined Cycle; Capacity factor = 0.80

4 Biomass ATS Turbine & Combine Cycle; Capacity factor = 0.80
3 Hard Coal Atmospheric Fluidized Bed; Capacity Factor = 0.6
¢ Bituminus Coal Stem Electric; Capacity factor= 0.7



TABLE 3. MARGINAL COST OF PV (Million $/GW)

1995 2000 2010 2020 2030
Low-PV -124 -100 -123 -63 0
High-PV -78 22 +5 +12 +25
Low-PV-20% CO, -119 -78 -52 0 +23
High-PV-20% CO, -50 0 +26 +34 +25
TABLE 4. MARGINAL COST OF CARBON REDUCTION ($/Ton)
2010 - 2015 2020 2025 2030
BASE-20%CO, 238 272 283 275 267
Low-PV-20% CO, 238 267 281 272 256
High-PV-20% CO, 238 267 280 272 251
TABLE 5 GROSS DOMESTIC PRODUCT (In billion 1990 $)
Case/Year 1995 2000 2010 2020 2030
BASE 6224 7045 8648 10094 11479
Low-PV 6224 7045 8648 10094 11479
High-PV 6224 7045 8649 10094 11482
BASE-20% CO, 6224 7037 8537 9907 11249
Low-PV-20% CO, 6224 7037 8538 9908 11262
6224 7037 8538 9910 11273

High-PV-20% CO,

10
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Projections of PV Penetration in the US
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Projections of Biomass Generation Capacity in the US
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400

(under two PV scenarios)

350 ¢

300 —
250 +

T

200 -
150 -

T

100

v

50 +

0 ﬁ

1

- mm.mm Case

—&— High-PV Case

I 4

l

1995 2000

T

2005

1 1

2010 2015
YEAR

1

2020

2025

2030



Annual US Carbon Emissions
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High-Throughput Manufacturing of Thin-Film
CdTe Photovoltaic Modules

Alan McMaster and Steve Johnson

Solar Cells, Inc., 1702 N. Westwood Ave., Toledo, Ohio 43605

Abstract. The main obstacle to the wide spread use of photovoltaics as a major source
of renewable energy has been cost. The key to lowering the cost of photovoltaic generated
energy to the levels of conventional sources of energy is to have a technology that is adaptable
to manufacturing processes. It is necessary to have a technology that is scalable in order to reach
the production throughputs needed to make the use of photovoltaic power economically viable.
It is also necessary to have a stable end product in order to gain wide acceptance. Solar Cells,
Inc. (SCI) has been working at producing large-area CdS/CdTe photovoltaic (PV) modules and
the processes developed at SCI can be scaled to achieve high production levels at cost effective
rates.

INTRODUCTION

Harold McMaster founded SCI in 1987. The focus at SCI from the very
beginning was to develop and manufacture low cost PV modules on a large scale
capable of producing energy at prices competitive with conventional energy sources.
The concept would involve developing a continuous inline PV manufacturing process
that would be coupled to a glass float line. Currently, the industry average
manufacturing costs of a PV module is greater than $3.00/watt. The SCI process would
ultimately produce PV modules at less than $.50/watt. The primary focus of this paper
will be to review the advances in the development of semiconductor deposition

equipment.

PROCESS

Initially, SCI began by working with amorphous silicon semi-conductor for the
PV modules. Early on it became apparent that this technology did not fit SCI's goals of
high throughput and low cost and therefore was abandoned. SCI's scientists began a
search for a material system that would be compatible with the company goals. CdTe
was selected for several reasons including the following: possesses an ideal bandgap,
has a simple structure and requires no doping, films are well bonded, devices are
inherently stable, materials are readily available, tolerant to impurities. Most
importantly the process is adaptable to large scale manufacturing processes. For
example, this process is performed in the low vacuum regime. Construction and
maintenance cost are lower compared with a high vacuum system. The natural drive



towards the stiochiometric formation of CdTe crystals allows greater latitude in
operating parameters and therefore greater ease of manufacturing

The process steps used to manufacture thin-film CdTe PV mod are listed in
Figure 1. The key step in the process is the semiconductor dcposmon. SCI’s scientist
have developed a proprietary deposition process named Vapor Transport Deposition
(VTD). This process has increased deposition rates by an order of magnitude over close

space sublimation. The line speed for a glass float line is typically greater than 6
cm/sec. SCI has already demonstrated deposition line speeds of up to 4.6 cm/sec, which

would coat a 60 cm X 120 cm substrate in less than 30 seconds. There are no technical
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FIGURE 1. Process sequence in making CdTe PV modules.

EQUIPMENT

The semiconductor deposition process has been routinely demonstrated on the

100 kW pilot production coating equipment. This is a batch system with a load lock

3 A hamha . .. .
equipped vacuum chamber. SCI engineers are currently designing a production 50 MW

semiconductor coating machine (Figure 2) for SCI's first manufacturing facility. The
actual mechanism used in VTD is simple in design and operation. Presently cross webs
of up to 120 cm are being coated with good uniformity and material utilization. The
ability to increase the cross web coating capability presents no technical obstacles. The
new 50 MW coating equipment will be capable of producing plates with a width of 120

mm and a length up to 240 mm.



The 50 MW coater is a scaled up version of the pilot production coating
machine and will function similarly. An advanced 20 MW module finishing line will be
built in conjunction with the 50 MW coater. This line will incorporate new technologies
encompassing laser scribing, metalization and encapsulation processes. This line will
be installed and operating by the year 2000. With this technology SCI will be able to
reduce the cost of photovoltaics to approximately $1.00/watt.

FIGURE 2. 50MW Production Coating Machine

As stated earlier, it will be necessary to incorporate a glass float line into a
continuous inline semiconductor process in order to achieve the $.50/watt goal. This
necessitates changing from a batch type operation using load locks to a continuos inline
system.

Development has begun on the next generation coating equipment (Figure 3).
By the use of a slit seal design, the load locks can be eliminated thus allowing the
transport of a continuous glass ribbon substrate through the vacuum chamber. The
coating would be done using the same VID technology as in the load lock systems.
The continuous coating system has been built, installed and is currently being tested.
Initial testing involves the cycling of glass substrates through the system under
simulated coating conditions. This will be followed by actual semiconductor coating
trials. There are several advantages in using a continuous coating machine verses the
load lock type. Throughputs can be higher due to the mechanical simplicity of the
continuous machine. The vacuum portion of the system can be greatly reduced. Since
all of the heating can be done at atmospheric pressure only the semiconductor coating



»eds to be under vacuum. The 50 MW coater has a vacuum system over 2100

cm long verses less than 100 cm long for the continuous coating machine. Not only
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vacuum chamber hortens the required startup and shut down cycle, therefore
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FIGURE 3. Experimental Continuous Coating Machine

increasing up-time The inline process eliminates many intermediate handling stcps
uuuauy the gldbb will be reheated uamg a standard roller hearth furnace. This can be
either electric radiant heaters or gas fired convection heaters that are particularly
efficient at heating low-E glass very uniformly. When the process is integrated into a
glass float line much of the energy used in making the glass will also be used during the
process steps downstream, thereby requiring limited make up heat. The TCO would be
made online using standard atmospheric coating processes. This will supply a pristine

surface for semiconductor deposition. The scribing would be done online using
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technology. The temperature profile of the process steps is favorable, in that
temperatures are continuously decreasing. This eliminates the need for any re-heating.

ERFORMANCE

Another 1mportant lngreuient to the success of the Process is the demonstrated
stability of SCI's CdTe films. SCI Currently has eight module field installations
actively producing solar energy and being used for demonstration and testing purposes.
Product installed at the National Renewable Energy Labs in Golden, Colorado is



completely stable after 2 %2 years of continuous outdoor exposure (Figure 4). This
stability has also been confirmed by 40,000 hours of indoor testing performed at SCIL.
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FIGURE 4. Stability Chart for Array Installed at NREL, Golden, Colorado.

SUMMARY

The focus at SCI has been the development of a high throughput low cost PV
process. Significant progress has been made especially in the full scale demonstrations
of high speed semiconductor deposition rates. This has allowed SCI to proceed with a
design of a 50 MW coating machine that will be capable of producing product at a
profitable rate. The next generation of coating equipment, using the in-line continuous
process can ultimately achieve the PV cost goal of $.50/watt.
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ABSTRACT:

The United States does not have one single guideline, code or standard by which
photovoltaic (PV) systems may be connected to the utility grids, or for installations of

stand-alone or PV hybnd systems. Many utilities that are active in PV programs have

written their own guideline for PV and other dispersed generation system

interconnections. Where no such document exists, a number of standards, guidelines
COOCS ana local I'UICS are USCO UIlllIleS nave aocumeﬁts to mcnuae grlu penormance
issues such as harmonics or voltage operating ranges. The National Electrical Code
(NEC) focuses primarily on fire and personnel safety.[1] The issues of waveform
distortion, electromagnetic interference, power factor, voltage ranges, PV-system
islanding, and performance are covered in a wide variety of other standards. The
documents come from the Institute of Electrical and Electronic Engineers (IEEE), the
American National Standards Institute (ANSI), the American Society for Testing and
Materials (ASTM), and the International Electrotechnical Commission (IEC).
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Underwriter $ Laboratories Inc. writes standards for recognizing and listing of
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components. This paper wili aescribe errorts to ensure tnat the INational Electrical Code,
Article 690 -Solar Photovoltaic Systems- includes the PV-unique requirements for safe
instaliations of roof mounted and building-integrated systems and will overview the
changes that will appear in the 1999 edition of the NEC. Efforts of the other standards
making groups will also be reviewed and described.

INTRODUCTION:

There is not one single guideline, code or standard by which PV systems may be safely

installed or connected to the utility grids, and it is equally true for installations of stand-

alone or PV-hybnd systems Many utilities that are active in PV programs have written
their own guideline for PV and other dispersed generation system interconnections.
Where no such utility-generated document exists, a selection of a number of standards,
guidelines, codes and local rules are used. The most universal requirement however, is
that PV system installations must meet requirements of the NEC as mandated by law in at
least 40 states and by most major cities.[1] Where the NEC has not been adopted as law,

it is often used with additional requirements that have been added to better fit the local

environment.[2]

In addition to fire protection and safety -as covered in the NEC, the issues such as
______ e rman L ko v PP VORI o

waveform distortion, elecrromagneuc interference (EMI), power factor, voltage ranges,

—
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PV-system islanding, and performance are covered in a wide variety of publications. The
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American National Standards Institute (ANSI), the American Socnety for Testmg and
Materials (ASTM), and the International Electrotechnical Commission (IEC).
Underwriter’s Laboratories, Inc. writes standards for recognizing and listing of
components.

THE NEC:

The NEC, also (ANSI/NFPA 70), published by the American National Standards

Institute/National Fire Protection Agencv is the most used document for insnectino and
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accepting PV installations. The NEC does not address the issues of performance power
quality, islanding, operating windows for voltage or current (except for a 600-Volt
limitation in one- and two-family dwellings), or power ratings. It does require
components that are listed or certified by a recognized certification laboratory when those
components are available. Also, the NEC is primarily a fire protection document, but it
does now also address the issue of human safety with requirements for ground-fault

interrupters and minimizing electrical shock hazards.

The NEC was established and
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deals with the safe installation and use of nearly all electnc power mponents and
systems that are outside of the utility owned and operateo generation or distribution
system. Control circuits, computer and data processing circuits, antenna cables and
CATYV systems, fire-alarm circuits, and nearly all other low- and high-powered electrical
and electronic circuits are included. Automobiles, railroad cars, ships and self-contained,
PV-powered devices like wristwatches, calculators, and small toys are not covered by the

NEC.

8

Nearly all devices that have external electrical terminals
to other powered or power supplymg devices, come under the auspices of the
requirements established by the NEC. Motor-driven generators are also covered, as are
systems with voltages less than 50 volts, emergency systems, and legally required

standby power systems.

Article 690 -Solar Photovoltaic Systems-, covers PV systems and was added to the NEC
in 1984, It has been revised and expanded in 1987, 1990, 1993, 1996 and now the1999

edmons Although 1984 was the first time PV systems were explicitly mentioned, there
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and some electrical contractors, that PV power systems have always come under the
NEC.

Residential-size PV systems are limited to single-phase installations. Intermediate- and
Central Station-size systems range into the megawatt size, are generally three-phase, and
are covered by this same NEC Article 690. There is no categorization except for class of
equipment that must be used to meet the voltage and power requirements. The NEC does



limit the dc voltage for PV systems to 600 volts for residential applications, and this
limitation was specified for one-and two-family dwellings for the 1999 NEC.

The 1999 NEC code revision cycle has been completed. There were fifty-nine proposals
submitted for changes in Article 690 of the NEC this cycle by an ad hoc Task Group
appointed by the National Fire Protection Association as requested by the chairman of
Code Making Panel 3 (CMP#3). The Task Group was asked to provide expertise to
determine if the scope of Article 690 was sufficient or if the Article needed to be
rewritten. The Task group was also required to provide substantiation for each proposal
it submitted and to study the issues that needed clarification or expansion in Article 690.

THE ARTICLE 690- SOLAR PHOTOVOLTAIC SYSTEMS- TASK GROUP:

Collaborative work was completed by the PV industry-supported Task Group to write
proposals for changes to bring Article 690 of the 1999 NEC up to the state-of-the-art in
PV device and system technology. The Task Group consisted of nine members was
appointed by the National Fire Protection Association as an “ad hoc Task Group” for
Article 690 - Solar Photovoltaic Systems. The Department of Energy’s National
Photovoltaic Program, the Solar Energy Industry Association (SEIA), and most
importantly by all sectors of the PV module and balance-of-system industries supported
the Task Group. -

Seven meetings served to unify the PV industry participants on code issues. The
meetings were held as joint events between the NEC Article 690 Task Group and the
SEIA, Standards and Codes Technical Review Committee. Discussions, information
exchange, and industry consensus also served to greatly clarify the needs and
justifications for the proposed code changes. A number of the changes were needed
because of recent advances in technology. They included AC PV modules, modular
inverters with multiple modes of operation (utility-interactive, stand-alone, and hybrid),
triple-junction PV modules, building-integrated PV such as roofing shingles, PV-
laminated roofing, window walls, and facades. Many changes were also written to
provide clarifications of the current language or to change requirements currently
included in the NEC.

The Task Group wrote and submitted 59 proposals for PV system-related changes to the
National Fire Protection Association (NFPA). The work concentrated on PV industry-
prioritized issues related to safety and installation. Changes were proposed for fire and
personnel safety, system servicing, AC PV modules, integration of PV into building
electrical systems, point-of-connection for building-integrated systems, clarifications for
hybrid systems, batteries, and charge controllers. All proposed changes made by the
Task Group were based first on safety. Other considerations were PV system installation
impacts, good engineering practice, interconnection with the utility grid, availability of
hardware, and system cost and performance. Close coordination with Underwriters
Laboratories, Inc. (UL) and the Institute of Electrical and Electronic Engineers (IEEE)
standards committees have also been an important part of this work.[3][4][5]



SUMMARY OF ARTICLE 690 CHANGES FOR 1999:

Definitions

Changes addressed all sections of Article 690. A significant number of changes and
additions were proposed in the definition section. They defined new devices, tied the
Sections of Article 690 to the remainder of the code, and improved consistency in
language throughout Article 690. Table 1 lists the new and changed definitions.

Definition Type of Impact, Consequence or Description
Change
AC Module (AC New Definition. | Allows AC module applications. Defines AC
PV Module): modules as a complete listed package for Section 690-
6 (AC Modules).
Array: Minor Change to | Removed the old reference to thermal controller.
clarify and
correct.
Charge Controller: | New Definition. | Defined the role of charge controller in PV systems.
Electric New Definition. | Defined a utility grid as one that is not controlied by
Production and the PV system. Needed to better differentiate hybnd
Distribution systems.
System:
Hybnd System: New Definition. | Defined hybrid systems and energy sources in hybrid
systems.
Interactive Change Defined an interactive system as tied to the utility
System: Definition. grid.
Inverter: Change Better defined charging functions associated with
Definition. some inverters.
Inverter Input Minor Change to | Defined inverter input circuit for both stand-alone and
Circuit: Clarify interactive inverters.
Application
Definitions.
Inverter Output Minor Change to | Clarified definition to be consistent with new Figure
Circuit: Clarify with New | 1.
Figure 1.
Module: Minor Change to | Clarified definition and differentiated AC modules.
Clarify New
Definition.
Photovoltaic Minor Language | Changed to make language consistent.
Output Circuit: Change.
Photovoltaic Minor Language | Changed to make language consistent.
Source Circuit: Change.
Stand-alone Change to Clarified and removed tie to utility interactive
System: Clarify. systems.
System Voltage: New Definition. | Added to provide consistency throughout Article 690.

Table 1. List of definition changes for 1999 Article 690, NEC




New Part I Added for Systems Greater than 600 V

One new part was written for Article 690 to provide requirements for PV systems
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dealmg with PV systems with dc voltages greater than 600 volts, and clarification that
instailations in singie- and two-family dwellings be limited to 600 voits, gives vaiuabie
safety requirements for PV installations. The addition also clarifies the intent of PV-
system voltage calculations and requirements, and makes it perfectly clear that systems
with maximum system voltages over 600 volts must use a different set of requirements

consistent with Article 710.
New Sections for Article 690

Several new sections for Article 690 were also proposed for the 1999 NEC. One
completely new section (Section 650-6 - AC Modules) was added to address
requirements for the new AC PV module products and their connection to the utility
lines. Other new sections included 690-10: Stand-alone Inverter, 690-11: Sizing and
Protection, 690-52: AC Photovoltaic Modules, 690-54: Interactive System Point-of-
Connection, 690-60: Identified Interactive Equipment, and 690-72: Charge Control.
Some of the new sections consisted of language modified and/or moved from other parts
of Article 690. Other changes were added for clarification and to address new
annlmahnnc other new lanouage and/or definitions
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Revisions of the existing Figure 1 of Article 690 were needed to clarify the intent of the
figure. Numerous installations have been plagued with uncertainty because designers
have tried to use the existing figure for system design, or because electrical inspectors
have insisted that the installed system should look like the figure. The new figure
specifies that it is for component identification only and is purposely designed to identify
PV-unique components, connections and system options. The new figure includes
connection and configuration nomenclature and options for grid-tied, stand-alone, and

hybrid PV system applications.

Removal of Cross References

Deletion of a requirement (690-3) to install a PV system in accordance with the
provisions of Article 705 “Interconnected Electric Power Production Sources” clarifies
PV-system installation requirements. PV systems and equipment have characteristics
that are justifiably different from other interactive equipment such as uninterruptible

power supplies and emergency generators addressed in Article 705. This deletion
eliminated the cross-reference in the NEC and allows Article 690 to stand on its own for
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PV installations.



Ground Fault Protection

A revised Section 690-5 provides much needed clarification for ground-fault protection

of residential roof-mounted PV installations for fire nrotection. The revisions prnv;de
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rules for the detection, interruption and indication of ground faults. Indication is a very
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involve dlsconnectmg (or liﬁing) the grounded conductor or placing a high resistance in
the ground path. The 1956 NEC gave no direction. The 1996 NEC Handbook tried to
address the issue, but used the term “disable the array” that was a topic of more
confusion, since the only way to truly disable an array is to block the sunlight. The
revisions give requirements for disconnecting the faulted PV source, interrupting the fault

current, and indicating the status or condition of the system.

AC PV Modules

A very significant proposal for building-integrated PV was the addition of Section 690-6
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evolving AC module technologies. Although just emerging as a new product, these
devices wiil very likely find their way to hardware and department stores, architect’s
manuals, and builder’s product lines by the time the 1999 NEC is issued. There have
been more than 100 AC PV modules installed in the USA already, and new orders exist

for more than 1000.

This new section provides the necessary functional re

connection of listed AC modules to the utility ines
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(aj Photovoliaic Source Circuits. The requiremenis of Article 690 pertaining to
photovoltaic source circuits shall not apply to ac modules because the photovoltaic
source circuit conductors and inverters are all one integral unit.

(b) Inverter Output Circuit. The output of an ac module shall be considered an
inverter output circuit.

(c) Disconnecting Means. A single disconnecting means, in accordance with 690-17,
shall be permitted for the combined ac output of one or more ac modules.

Additionally, each ac module in a multiple ac-module system shall be provgded with a
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connector, bolted, or termmal-type disconnecting means.

(d) Ground Fault Detection. AC module systems shall be permitted to use a single
detection device to detect only ac ground faults and to disable the array by removing
ac power to the ac module(s).

(e) Overcurrent Protection. The output circuits of ac modules shall be permitted to
have overcurrent protection and conductor sizing in accordance with Article 240-4,

Exception No. 2.

Section (a) above acknowledges that AC PV modules have no user-accessible dc circuits
and that other dc requirements of PV source circuits in Article 690 are not applicable
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dection (€C) alows tné COmUINnead Outpul O1 munipi€ Av rv moaui€s 10 1€€a a Singié

=)}



dedicated branch circuit provided that each AC PV module is provided with an accessible
disconnect.

System Voltage versus Temperature Compensation

Section 690-7 begins with new language for determining maximum system voltage and
other circuit requirements. The new Table 690-7, “Voltage Correction Factors for
Crystalline and Multi-crystalline PV Modules," and the rules for applying the
temperature correction for crystalline and multi-crystalline PV applications more
accurately use local temperature corrections to open-circuit voltage in those systems.
This table addresses the PV module technology (crystalline) that has the greatest
temperature coefficient for open-circuit voltage. The temperature break points for the
temperature ranges in the table are carefully selected to match PV modules that are

commercially available.

Ambient For ambient Approximate Section 690-7(a) also gives
Temp. °C temperatures below Ambient instructions to refer to
25°C (77°F), multiply Temp. °F manufacturer  specifications
the rated open-circuit when other than crystalline
voltage by the PV technologi . I
appropriate factor technologies are installed.
shown below The new table is reproduced
2510 10 1.06 77 to 50 below as Table 2.[3]
9100 1.10 49 to 32
-1t0-10 1.13 31to 14 A comparison of the 1996 and
-11 to -20 1.17 13to4 the new 1999 NEC is
-21 t0 40 1.25 -5 t0-40 . .
provided here to illustrate the

Table 2. Proposed Table 690-7 Voltage Correction Factors

for Crystalline & Multi-crystalline Silicon Modules. positive impact of the new

Table 690-7. This example
shows how the change will
allow for continued safe installation of PV systems in all climatic regions of the country,
while making allowances for regional climatic differences that were previously ignored
and unnecessarily restricted the PV systems’ designers and installers. The example is for
a PV installation in Phoenix, AZ where the coldest temperature is -9°C (16°F). The
example system uses crystalline silicon PV modules that are listed to UL Standard
1703.[3] The design requires strings of 24 series-connected modules, each with a rated
open-circuit voltage of 22 V, to optimize performance and utilization of the inverter. The
system designer or integrator must multiply the rated open-circuit voltage of the modules
by 125% to allow for the worst-case cold-temperature of -40°C under the requirements of
the 1996 NEC and using the current UL-1703 listing criteria. No allowance was
provided for the fact that the coldest recorded temperature in Phoenix is -9°C. Using the
125% factor allows only 21 modules to be connected in series (21 X 22 X 1.25 = 577.5
Volts) to keep the string voltage less than 600V. Engineers using only UL label
information on the PV module to design the example system have discovered that the
inverter operating window no longer matched the PV array output, sometimes requiring

expensive inverter modifications.



Using the new Section 690-7 and new Table 690-7 allows the designer or system
mtporatnr to calculate the cvctem vnltaqe uemg a temnerature-denendgm fa_gtgr more in

line w1th the Phoenix environment. The new calculatxon allows a multlpllcatlon factor of
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-10°C (31 to 14°F). ith the new 1999 NEC, the system can now use 24 modules in
series (24 X 22 X 1.13 = 597 Voits) and remains under the 600-volt limit for a residentiai

application.
Solar Irradiance and Conductor Deratings

Solar irradiance of 1250 W/m? is common in many parts of the country. The integration
of the PV module current factor of 125%, which is currently written as a UL requirement,

and the NEC._reguired 80% deratine factor for continuous current for all conductors and
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overcurrent devices has been needed. Many opened fuses and loose connections in early
1’ Vv SySICmS can DC aIU'IDUICQ io ovemealmg UUC io UnGCrSlZCQ erlﬂg or lmproper
temperature ratings for terminal blocks and fuses. There has been much confusion in
applying these factors because they appear in different documents, but the change (690-8)
for 1999 puts all requirements in the NEC and simplifies the calculation. Coordination
with UL will remove the 125% requirement from the UL-1703 Standard used for listing
PV modules [3]. The new language is reproduced below [3].

Circuit Sizin
it Sizi
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(a) Co tation of Maximum Circuit Current. The maximum current for the
specific circuit shall be computed as follows:

parallel module rated short-circuit currents multiplied by 125 percent.
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parallel source circuit rated short-circuit currents as calculated in (1).

(3) Inverter Output Circuit. The maximum current shall be the inverter output
current rating.

(4) Stand-Alone Inverter Input Circuit. The maximum current shall be the stand-
alone inverter input current rating when the inverter is producing rated power at
the lowest input voltage.

(1) Photovoltaic Source Circuits. The maximum current shall be the sum of

-

(b) Ampacity and Overcurrent Devices. Additionally, circuit conductors and
overcurrent devices in solar photovoltaic systems shall be sized at not less than 125%

of the maximum currents as computed in (a) above. The rating or setting of
overcurrent devices shall be permitted in accordance with Sections 240-3(b) and (c).

Exception: Circuits containing an assembly together with its overcurrent device(s)
that is listed for continuous operation at 100 percent of its rating shall be permitted
to be utilized at 100% of its rating.

(c) Systems with Multiple DC Voltages. For a photovoltaic power source having
multiple output circuit voltages and employing a common-return conductor, the
ampacity of the common-return conductor shall not be less than the sum of the ampere
ratings of the overcurrent devices of the individual output circuits.



Interconnection Requirements

Two related new sections address connecting inverters to service entrance panels. They
were written to clarify the requirements for supplying power (690-10) to service entrance
hardware at lower than service panel rated currents and sizing conductors (690-11).
Proposals using a “maximum system voltage” terminology were also written to provide
code language consistency.

A proposal was also submitted to provide the necessary language in Section 690-64(b) to
allow the ac connection of PV systems at the load side of the service disconnecting
means or at any distribution equipment on the premises. This serves the practical side of
PV systems since PV arrays may be located on the roof of buildings and the service
disconnecting means is usually at a lower level in an equipment room. These changes
will better facilitate building-integrated PV installations.

An example for a commercial PV interconnection is a PV-powered, electric vehicle
charging station on a commercial building that has a main circuit breaker rated at 300
amps at the ac load center. Six 60-amp load circuits and breakers are connected to the
load center to supply power to six battery chargers.

A 60-amp circuit breaker is added to the load center to allow the output from a PV utility-
interactive inverter to supply PV power to the main panel, hence the charging stations.
This new connection could allow the bus bars in the load center to be over loaded. If all
six charging stations are drawing 60 amps and the PV system is supplying 60 amps, then
the grid is supplying 300 amps. Circuit breakers would not trip, but the internal 300-amp
bus bars in the load center could be over loaded and carrying up to 360 amps. Section
690-64(b)(2) requires that the sum of the ratings of all overcurrent devices connected to a
cable, conductor, or bus bar be less than the ampacity of that conductor.

Solutions for adding PV to this system are to reduce the total ratings of the input breakers

to be equal to or less than the load center rating.

1. The 300-amp load center could be replaced with a load center having a rating of 360
amps or higher while retaining the 300-amp main breaker.

2. If'the actual power drawn by the charging stations were less than 240 amps, the rating
of the main circuit breaker could be reduced to 240 amps while retaining the 300-amp

load center.

The restrictions for residential installations (690-64(b)(2) (Exception)) are not as
stringent as for commercial applications. The sum of the overcurrent devices in
residential applications can be up to 120% of the rating of the load center.

A residential load center rated at 100 amps may accept a 20-amp feeder from a PV
system (2400 watts of PV at 120 volts or 4800 watts at 240 volts). A load center rated at
200 amps may accept a 40 amp feeder from a PV system (4800 watts of PV at 120 volts
or 9600 watts at 240 volts). These power levels are consistent with the maximum

expected sizes of residential PV systems.



Inverters and Multi-wire Branch Circuits

A proposal to permit a single-phase, 120V inverter to supply power to a single-phase
120/240V service entrance panel provided there are no multi-wire branch circuits was
made to clarify PV system connections to service entrance panels. There are estimated to
be more than 50,000 such inverter installations already, but no allowance for them is
given in the existing code. The multi-wire branch circuits contain a common neutral
conductor that may be overloaded when used with single 120V-inverters. The task group
will provide additiona! input to the NFPA to insure concerns are addressed in the 1999

NEC.

For example, many newer houses are wired with multi-wire branch circuits to reduce the
cost of wiring. These multi-wire branch circuits are connected so that the 120/240V load
center supplies a three-wire with ground cable from two circuit breakers connected to
each (opposite) side of the 120/240V service. A common neutral is run with the
ungrounded conductors to a remote location in the dwelling. The three-wire 120/240V
cable is then split into two separate 120V branch circuits, and the common neutral
conductor is spliced to two separate neutral conductors. The common neutral conductor
(between the load center and the point where the circuit branches) carries the difference
in currents from the two 120V branch-circuits when connected to 120/240V because the
currents are 180° out of phase.

In a stand-alone PV system, a single, 120V inverter may be connected to the dwelling
load center by connecting the output of the inverter to the two ungrounded conductors
leading to the main load center disconnects. The currents in the two 120/240 conductors,
which are out of phase when connected to a utility, are in phase when connected to a
single inverter, and currents in the common neutral in the multi-wire branch circuit that
subtracted (difference) are now in phase and add. When both of the 120V branch circuits
are fully loaded, the neutral conductor in the multi-wire branch circuit now carries twice
its rated current and is not protected by an overcurrent device.

Suggested solutions for connecting 120V inverters to service entrance panels include:
1. Removing the multi-wire branch circuits by rewiring into separate 120-volt branch
circuits,
2. Connecting both hot conductors of the multi-wire branch circuit to a single circuit
breaker,
3. Adding a second inverter to provide 120/240-volt power that is phased like the utility.

All solutions involve reconfiguration of the electrical system and should be made only
if other code requirements, such as exceeding the maximum allowable number of
receptacles on a branch circuit, are not violated. Additionally, the output current of a
single inverter must be limited by a single overcurrent device rated no higher than the
rating of the load center to prevent possible overloading of the neutral buss in the load

center.
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IEEE STANDARDS, RECOMMENDED PRACTICES AND GUIDELINES:

The IEEE has published seven standards and guidelines related to PV system components
out of Standards Coordinating Committee 21 (SCC21) on Photovoltaics. IEEE Standard
1262, “Recommended Practice for Qualification of Photovoltaic Modules was the latest
publication.[6] Other important SCC21 documents include terrestrial PV system criteria,
recommended practices for installation of batteries for PV systems, and recommended
practices for sizing of batteries for PV systems.[6][7][9] The recommended practices for
batteries are now in the process of being recertified.[9]

PV System Safety Guideline

The fire safety and personnel safety of installed PV systems is a top priority for
designers, installers, inspectors and users. The NEC spells out the installation
requirements for installation of all electrical systems, but the 1069 pages are often
unfamiliar to those involved with PV systems. A Project Authorization Request (PAR)
1374 to write a guideline titled “IEEE Guide for Terrestrial Photovoltaic Power Systems
Safety” has now been completed. The guideline has been successfully balloted and will
become IEEE Standard 1374 during the fall 1998. It is written to provide an easily read
safety document targeted specifically for PV systems. It is closely correlated with the
NEC and other ANSI/IEEE recommended practices and standards.

The purpose of the guide is to describe PV-specific topics or components related to the
design and installation of PV power systems that affect safety, and to suggest good
engineering safety practices for PV electrical balance-of-system design, equipment
selection and hardware installations. PV-unique electrical power requirements are
emphasized in the guide. The guide describes system types and addresses wiring for PV
modules, balance-of-system, and batteries. Particular attention is given to the critical
temperature considerations required for PV systems at the module and array level,
voltage ratings, cable and insulation types, wiring ampacity, and sizing calculations
needed for safe and reliable design. Other important topics such as overcurrent
protection, disconnects, grounding, surge and transient protection, and instrumentation
are also described with examples and recommendations for selection of the hardware.
The guide is carefully cross-referenced to the applicable articles and sections in the NEC.

Utility Interconnect and Interface Guidelines

A very critical standard for utility interface and interconnects, now designated PAR929,
“Recommended Practice for Utility Interface of Photovoltaic (PV) Systems,” is currently
being revised and rewritten with a targeted publication date also late 1997. This
document is being revised by utility and PV industry experts to integrate the utility and
PV system issues into a document that can be used by utilities, designers and installers

for utility-interactive PV systems.

Important issues that are the focus of the PAR929 revision include defining the
requirements for inverter shutdown under abnormal utility condition, anti-islanding
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protection, reconnect after a utility disturbance, the need for manual disconnects, power
quality requirements, and direct current isolation.

Field Test Methods for Grid-Connected PV Systems

Field test methods are being formulated for PV systems through an approved project
authorization request designated PAR1373, “Recommended Practice for Field Test
Methods and Procedures for Grid-Connected Photovoltaic Systems,” The PAR was
issued in 1993, and the document has now been reviewed by the committee. The test
methods specified in this document could be used for confirming performance of newly
installed PV systems or used to obtain data to determine if systems were subject to
degradation over time. Tests for inverters, modules, and arrays will be included in the
guideline.

PV Module Energy Rating

A project authorization request was submitted for module energy rating in July 96 and
was approved in September 1996. The working group includes industry applications
groups and was designated PAR1479. Work is progressing and the draft has been
submitted to the SCC21 committee for review.

Concentrator PV Receivers and Modules

A project authorization request was submitted for concentrator PV technologies including
the receiver sections and PV modules has also been submitted. It is awaiting IEEE
standards board PAR approval. The approval is expected during the summer of 1998 and
work is progressing toward a standard for testing and certifying concentrator PV
hardware.

LISTING STANDARDS:

Underwriters Laboratories, Inc. is currently in the process of reviewing the proposed first
edition of the “Standard for Inverters, Charge Controllers and AC Modules for Use in
Residential Photovoltaic Power Systems, UL1741”. UL conducted an UL Industry .
Advisory Group (IAG) meeting in January 1997 to review the latest version of their
Subject 1741, the draft standard intended for listing inverters and charge controllers and
AC modules for use in PV power systems. The meeting was held to allow IAG members
to provide PV industry input during preparation of the draft standard and before public
review. The IAG consisted of participants associated with PV module manufacturing,
inverter manufacturing, charge controller manufacturing, ac module development,
systems integration and the US DOE Photovoltaic Program. The UL goal for publishing
the completed standard projected for December 1998 but correlation with the IEEE P929
may delay the publish date. The draft UL1741 now includes new language for testing
and listing of AC modules, charge controllers and inverters. [4] Dates were established
to coincide with the 1999 NEC in order that code changes may also be reflected in the
UL standard. The timing also allows UL to incorporate requirements spelled out in the
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revised IEEE 929 “Guideline for Interconnection of Photovoltaic Power Systems to the
Tlhhfv Grid” in the UL1741. UL has also begun review of their UL1703 “Standard for

Flat-Plate Photovoltaic Modules and Panels.”[3]

ASTM:

There are more than 20 ASTM standards related to PV systems, performance, testing,
reference cells, insulation integrity, mechanical integrity and corrosion testing for PV
components.[10][11] Additional six documents are being worked on with expected
publication dates in the 1999 time frame. Documents being written or revised, as of
April 1997, include a test method for electrical performance and spectral response of
multi-junction PV cells and modules, a test method for PV array wet insulation

resistance a snecification for solar simulation for terrestrial PV testing. test methods for
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measuring spectral response of PV cells, and a test method for PV modules in cyclic
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IEC TECHNICAL COMMITTEE 82 (IEC 82) STANDARDS:
The IEC TC 82 has published more than 19 PV-related standards. PV-related standards
already published include procedures for measuring I-V characteristics and using

temperature and irradiance correction to the measured I-V characteristics for PV cells and
modules cnpctra] resnonse and mismatch measurements. solar simulator nprfgrmancp
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impact damage, utility interface characteristics, and on-site measurements of I-V
characteristics of PV arrays.[8] Work underway inciudes a new safety standard for PV
modules, a PV module environmental test standard for marine environments, a new
method for determining the linearity of PV devices, a new method for defining solar
simulator requirements, and new standards for rating PV modules for power and energy
delivery IEC standards are considered to be the most likely base-line criteria for the

emerging PVGAP (global accreditation program).

P, X FTYON PR
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established in 1993 as an effort by 20 countries to focus on the planning, design,
construction, operation, performance, and promotion of photovoltaic power systems. The
mission of the program is to enhance international collaboration efforts through which
photovoltaic energy becomes a more significant energy option in the near future. The
United States is currently active in five of the seven annexes of the implementing

agreement as listed below.

Task I is responsible for the exchange and dissemination of information on photovoltaic
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power systems U’ Vl'b) Task IV is focused on muucuus OI GISPErsea r vr o ifi SUppon of
the utility grid, but currently is limited to an ad hoc task group between the USA and
Italy. Task V concentrates on the technical issues for grid interconnection of buiiding-
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integrated and other dispersed PVPS. Task VI focuses on the design and operation of
modular photovoltaic plants for large-scale power generation. Task VII has just begun
and will focus on PVPS in the building environment. Task VII held the second official
meeting at Soltech98 in May 1998. Task VII concentrates on building-integrated PV
systems and issues. A new Task IX is currently being proposed to address issues
associated with PV applications and infrastructure in developing countries.

US participation concentrates primarily on Task I, Task V and, recently, Task VII. Task
I has identified three subtasks. They are to publish a PVPS status survey report to be
updated every two years, to provide quarterly newsletters, and to hold an executive
conference on strategic photovoltaic business opportunities for utilities. The second bi-
annual survey report was published in March 1997 and has been distributed to the US
photovoltaics industry through the Edison Electric Institute and Sandia National
Laboratories. The Edison Electric Institute participates in Task I by supporting their US
expert while Sandia provides the alternate expert member and technical support for the
task. The “Executive Conference on Strategic Photovoltaic Business Opportunities” was
held in the US in September 1995 as part of Task I activities.

The US DOE participates directly in Task V and a new Task VII through Sandia and the
National Renewable Energy Laboratory. Task V has an overall objective to develop and
verify technical requirements that will serve as technical guidelines for grid
interconnections for building-integrated and other dispersed power systems. These
guidelines focus on safety and reliable interties to the grid at the lowest cost. The work
focuses on three categories: review, definition of guidelines, and collaborative testing to
demonstrate technical issues such as islanding or control algorithms with solutions to
identified problem areas. Task V has already published reports on existing interconnect
guidelines for PVPS interconnections and on utility distribution systems. A report on
interconnection equipment is also available for distribution to industry. Nine technical
topics are under investigation in Task V for addressing utility-interconnect guidelines. A
summary of the findings and proposed guidelines for each will be published as part of the
final report for Task V and distributed through Sandia and the IEA. The final report will
be presented at the next Task V meeting in Albuquerque in September 1998.

Another important milestone for Task V work was an international workshop that was
held in Zurich, Switzerland on September 15 and 16, 1997. The workshop was designed
to involve utilities, inverter manufacturers, photovoltaic system suppliers, and engineers
in international discussions to discuss guidelines that may be used and an international
level. Topics included islanding, reclosing, external-disconnect requirements,
overvoltage protection, grounding, and dc injection.

SUMMARY:

Publication of the 1999 NEC, with a strong and well-developed Article 690 on PV power
systems, represents a safety code that enables PV systems to be installed with well
understood requirements, to be easier to inspect, and, above all, to be safer for the user

and for maintenance. Good installation practices required by the NEC will also improve
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long-term system performance and reliability. Publication of new IEEE standards and
guidelines will serve the PV industry and the utilities by providing clearly defined
qualification procedures, interface requirements and design criteria. ASTM standards
already in place and scheduled for publication in the near future will provide the means
for test methods for components and materials. The IEC international standards will
provide the international perspectives and requirements for the manufacturers and
designers of PV systems. Convergence of the publication of these codes, standards and

sdalion +ha 100
guiageiines in the 1999 time frame will atlcustucu the PV uldustr:y s "bl!lty to desi £gn,

install and apply the technology in a wide range of applications.
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IEEE Standards/Guidelines for PV Components and Systems

Document # Title

519 IEEE Guide for Harmonic Control and Reactive Compensation of Static Power Converters

928 IEEE Recommended Criteria for Terrestrial Photovoltaic Power Systems.

929 IEEE Recommended Practice for Utility Interface of Residential and Intermediate Photovoltaic
Systems. (Being Rewritten)

937 IEEE Recommended Practice for Installation and Maintenance of Lead-Acid Battcries. for
Photovoltaic Systems

1001 IEEE Guide for Interfacing Dispersed Storage and Generation Facilities with Electric Utility
Systems

1013 IEEE Recommended Practice for Sizing Lead-Acid Batteries for Photovoltaic Systems

1035 IEEE Recommended Practice: Test Procedure for Utility-Interconnected Static Power
Converters. (Out of Print)

1144 Sizing of Industrial Nickel-Cadmium Batteries for Photovoltaic Systems

1145 IEEE Recommended Practice for Installation and Maintenance of Nickel-Cadmium Batten'es.
for Photovoltaic Systems

1146 IEEE Recommended Practice for Grounding of Battery Subsystems in Photovoltaic Systems

1262 Recommended Practice for Qualification of Photovoltaic Modules

1374 Guide for Terrestrial Photovoltaic Power System Safety

WG C5 Special Publication on Static Power Converters Serving as the Utility Interface Package ( IEEE
PES Power System Relay Committee, WG C5)

C62.41 IEEE Recommended Practice on Surge Voltages in Low-Voltage AC power Circuits
IEEE Standards/Guidelines In Process for PV Components and Systems

Document # Title

P 1361 Recommended Practice for Determining Performance Characteristics and Suitability of
Batteries in Photovoltaic Systems .

P 1373 Recommended Practice for Field Test Methods and Procedures for Grid-Connected
Photovoltaic Systems

P-1479 Recommended Practice for the Evaluation of Photovoltaic Module Energy Production

P-1513 Recommended Practice for Qualification of Concentrator Photovoltaic (PV) Receiver Sections
and Modules.

P 926 PV Energy Performance Ratings.

P 927 PV Energy Calculations.




ASTM E44.09 Standards/Guidelines for PV Components and Svstems

Document # ] Title

E 927-91 Specification for Solar Simulation for Terrestrial Photovoltaic Testing

E 948-83 Test Methods for Electrical Performance of Non-Concentrating Terrestrial Photovoltaic Cells
Using Reference Cells

E 973-91 Test Method for Determination of the Spectral Mismatch Parameter Between a Photovoltaic
Device and a Photovoltaic Reference Cell

E 1021-91 Methods for Measuring the Spectral Response of Photovoltaic Cells

E 1036-85 Methods of Testing Electrical Performance of Non-Concentrator Terrestrial Photovoltaic
Modules and Arrays Using Reference Cells

E 1038-93 Test Method for Determining Resistance of Photovoltaic Modules to Hail by Impact with
Propelled Ice Balls

E 1039-85 Method for Calibration and Characterization of Non-Concentrator Terrestrial Photovoltaic
Reference Cells Under Global Irradiation

E 1040-93 Specification for Physical Characteristics of Non-Concentrator Terrestrial Photovoltaic
Reference Cells

E 1125-86 Test Method for Calibration of Primary Non-Concentrator Terrestrial Photovoltaic Reference
Cells Using a Tabular Spectrum

E 1143-87 Test Method for Determining the Linearity of a Photovoltaic Device with Respect to a Test
Parameter

E 1171-93 Test Method for Photovoltaic Modules in Cyclic Temperature and Humidity Environments

E 1328-90 Terminology Relating to Photovoltaic Solar Energy Conversion

E 1362-90 Test Method for the Calibration of Non-Concentrator Terrestrial Photovoltaic Secondary
Reference Cells

E 1462-92 Test Method for Insulation Integrity and round Path Continuity of PV Modules

E 1524-93 Test Method for Saltwater Immersion and Corrosion Testing of Photovoltaic Modules for

Marine Environment

ASTM E44.09 Standards/Guidelines in Progress for PV Components and Systems

Title

[Document# ]

— e s

-‘Tst Method for Conocnu;or Devices ) -
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192 Test Method for Solar Radiation Weathering of Photovoltaic Modules

198 Test Method for Saltwater Pressure, Immersion and Temperature Testing of Photovoltaic
Modules for Marine Environments

199 Test Method for Wet Insulation Integrity Testing of Photovoltaic Modules

200 Test Method for Electrical Performance and Spectral Response of Multi-junction Photovoltaic
Cells and Modules

201 Test Method for Mechanical Integrity of Photovoltaic Modules




IEC TC-82 Standards/Guidelines for PV Components and Systems

Document # Title

IEC-891 Procedures for Temperature and Irradiance Corrections to Measured I/V Characteristics of
Crystalline Silicon PV Devices

IEC-904-1 Measurement of PV I/V Characteristics

IEC-904-2 Requirements for Reference Solar Cells

1IEC-904-3 Measurement Principals for Terrestrial PV Solar Devices with Reference Spectral Irradiance
Data

IEC-1173 Over voltage Protection for PV Power Generating Systems

IEC-1215 Design and Type Approval of Crystalline Silicon Terrestrial PV Modules

Underwriters Laboratories Inc., Certification for PV Components
Document# | Title

UL-1703 Flat-Plate Photovoltaic Modules and Panels*

*Note: Various Certification Laboratories use a combination of their standards and UL Standards for testing.
Other Non-PV Standards are used where needed.

Proposed Underwriters Laboratories Inc., Certification for PV Components
Document # | Title

UL-1741 Proposed Draft of the Standard for Static Inverters and Charge Controllers For Use in
Photovoltaic Power Systems

Current National Electrical Code for PV Systems
Document # | Title

ANSUNEPA 70- | National Electrical Code, Article 690 and Other Pertinent Articles Related to Solar
1996 Photovoltaic Systems

Current FCC Documents Used for PV Components and Systems

| Document # | _ Title
FCC Rules & | Part 15, Radio Frequency Devices, Subpart B

Regulations

1. Note: Some of the documents associated with batteries are typically not used with grid-interactive systems but
may be used with some of the new bi-mode or four-quadrant inverters and also PV arrays.
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SUMMARY
In the past, most of net energy or environmental analysis studies of photovoltaic (PV) systems have
been focused on the module manufacturing issues. On the contrary, this paper focuses more on the
Balance-of-System (BOS), particularly as far as building integration is concerned. It is argued that as
PV module technologies and manufacturing processes improve, the contribution of BOS will
proportionally became more significant. The first objective of the study is to quantify the materials and
energy flow related to BOS during the installation of PV systems. The second objective is the
quantitative evaluation of the benefits of building-integrated PV systems over their entire life-cycle and
the identification of best solutions to maximize their energy efficiency and CO, mitigation potential. The
results of a simplified Life-Cycle Analysis (LCA) are reported. Firstly, a number of existing
applications have been studied. Secondly, a parametric analysis of possible improvements in the
Balance-of-System (BOS) has been developed. Finally, the two steps have been combined with the
analysis of both crystalline and amorphous silicon technologies. Results are reported in terms of several
indicators: energy pay-back time, energy yield, and net CO; balance. The indicators show that the

integration of PV systems in buildings clearly increases the environmental benefits of present PV

technology.

1. INTRODUCTION

The integration of PV systems in buildings shows several advantages with respect to conventional PV
power plants in open fields. Major benefits are the occupation of ground and surfaces that are already

used for other purposes, the saving of construction material needed for PV module supporting
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structures, the substitution of building envelope materials, and the possibility of recovering a significant
fraction of the thermal energy dissipated by the PV panels. The objective of the present study is twofold:

the first goal is to quantify the relevance of Balance-of-System (BOS) in terms of energy consumption
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Given the complexity of the systems studied and the wide range of materials involved in the analysis, a
simplified LCA has been applied to PV systems. The results are reported in terms of energy
consumption, energy pay-back time and CO, emissions. Firstly, a number of existing applications have
been studied, namely the Serre power plant and several examples of integration in buildings. Secondly, a
parametric analysis of possible improvements in the BOS has been developed and included in the model.
Finally, the two steps of the analysis have been combined with the analysis of both present and future
crystalline and silicon technologies.

Some assumptions and simplifications have been adopted, with respect to several issues.

With respect to the system boundaries: all PV systems considered in the analysis are connected to the
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electric grid; the combination of PV module manufacturing, materials for BOS and PV energy
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amorphous silicon technology and for future technologies. The optimizations considered here are
certainly technically feasible and do not rely on any significant technoiogical break-through. The actual
time of adoption for large-scale production of future PV technologies will depend on the evolution of
R&D programs, investments and PV market.

With respect to data sources: in the case of PV, data on both manufacturing and energy production

vary from place to place. Italian average data have been adopted for all the parameters that are site-
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dependent, such as: average annual insolation (the adopted value is 1700 kWh/m? on a 30° tilted

surface), energy consumption and CO, emissions related to PV module manufacturing, efficiency and

data-bases have been reviewed and best estimate average values have been used for calculations.

3. ANALYSIS OF THE BALANCE OF SYSTEM (BOS)

Types of Installations

For the comparison of PV systems two major categories are identified, namely “conventional”
installations (array field PV power plants), and PV systems in buildings. The latter can be further
classified into sub-categories, corresponding to the part of the building on which the PV system is
applied (terrace or flat rooftop, tilted roof, facade etc.). Furthermore, the classification depends on
whether the PV system is mounted on existing structures (retro-fit systems) or designed together with a

new building (integrated installations). Finally, integrated hybrid systems with heat recovery are

manufacturing process, and on the production site. For each single matenal, the tai

¢ indicates average
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values taken and adapted from various sources. These values represent our best estimate and are

representative for a mean European situation.

Array field PV power plants.
The 3.3 MW array field power plant of Serre, Italy, has been studied in detail {2, 3]. Power plants in the

open field require large quantities of reinforced concrete and steel needed for the structures necessary to
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support PV modules. This leads to a relatively high primary energy content of the BOS (slightly more
than 1800 MJy/m?). As shown in the next paragraphs, this value is much higher than the corresponding
figure for the majority of PV systems in buildings. It should also be observed that, in the case of Serre,
data on BOS energy consumption are a rather conservative estimate as the plant represents the real

state-of-the art of such type of systems'.

For the above mentioned reasons, the BOS primary energy content of future array field power plants is

not expected to decrease significantly, at least in a near future.

Existing installations PV in buildings : learning by doing.

Several existing installations have been analyzed recently [2, 4, 5]. These include the retrofit system at
the German School of Rome, Italy, (20 kW, - both flat and tilted roof), the retrofit facade in a building
property of ENEL in Rome (1,3 kW), the retrofit PV cladding facade at the University of Northumbria,
United Kingdom, and several installations in Switzerland. PV tiles produced by the German company
BMC have been studied as well [2].

Most of these systems have been pilot projects and/or first installation examples in each country. As a
consequence, the use of materials has not always been optimized. This is clearly the case of the PV
cladding facade at the University of Northumbria, for which a large use of very energy-intensive
primary aluminum has caused a BOS primary energy requirement almost as high as for the PV power
plant of Serre (see Fig. 1). Although to a less extent, primary aluminum is also responsible for the
relatively high BOS energy content of integrated tilted roofs in Switzerland [4]. The flat roof at the
German School in Rome shows a high primary energy content (around 1300 MJ/m®) as well, because of
an excessive use of steel for the supporting structures. The PV tile shows a relatively high energy
content, attributable to the large quantity of clay needed (almost 1,7 m® per m? of PV modules). In
contrast, most of the other systems in buildings have a significantly lower total primary energy content

of around 600 MJu/m?®. Fig. 1 summarizes the primary energy content of the BOS of present PV

systems.

'As a matter of fact, the BOS material requirements of this plant are much lower than those of similar European




Future installations : possible optimizations:

In the future, PV installations in buildings will likely be designed taking into account the full life-cycle
of materials. This is necessary for an energy-conscious, energy efficient and environmentally sound
design of the systems. Two approaches can be followed, namely: to minimize absolute quantities of
materials and to use a large fraction of recycled, secondary materials. Fig. 2 shows the possible primary
energy content of future optimized PV systems. The scenario depicted is characterized by the following
assumptions: i) future installations will contain 80% of secondary aluminum. This strongly decreases
energy consumption for most PV systems in buildings; #i) light concrete supporting structures will likely
be used for PV systems on flat roofs, both for economic reasons and for the simplicity of installation
and maintenance; iii) an advanced type of clay will be used for PV tiles, which allows energy
consumption to be reduced by about 30% [6].

If all the above mentioned factors are taken into account, the comparison between the BOS /cnergy
content of PV plants and PV systems in buildings becomes radically favorable to the latter, as clearly

illustrated in Fig. 2.

4. CRYSTALLINE AND AMORPHOUS SILICON MODULE MANUFACTURING
Crystalline silicon

Very recently, a critical review of a number of studies on energy requirement of PV modules or systems
has been performed [7]. The study points out that the published estimates for the energy requirement of
present-day crystalline silicon vary considerably : between: 4200 - 11600 MJ/m? for multi-crystalline
silicon (mc-Si); and between 6000 - 13900 MJ/m? for single-crystalline silicon (sc-Si). Partly, these
differences can be explained by different assumptions for process parameters like wafer thickness and
wafering losses. However, the most important source of differences is the energy requirement estimation
for the silicon feedstock used to produce PV wafers. Currently the majority of PV cells are made from

off-spec silicon that is rejected by the micro-clectronics industry. As a matter of fact, the major source

installations, e.g. Phalk 500 in Switzerland [3]. For this reason, the figures for Serre have been used also for the future
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of uncertainty is the preparation of silicon feedstock from electronic industry scraps, involving two
crystallization steps. The present manufacturing energy requirement very strongly depends on i)

allocation criteria for the primary crystallization step ; ii) the silicon content of the cell ; iii) the specific
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steps obsolete [7]. The significantly lower expected energy consumption values will mainly be caused
by three factors, namely: i) a much higher silicon mass efficiency (that is a much better use of silicon
feedstock input per kWp output, ii) internal recycling and iii) less specific energy consuming processes
(i.e. faster Czochralsky and/or directional solidification processes).

Amorphous silicon

The differences in published estimates for the manufacturing of amorphous silicon modules (710 - 1980
MJ/m?) can be explained by the choice of substrate and/or encapsulation materials, and by whether the
overhead auxiliary energy use and energy consumption for equipment manufacturing are taken into
account or not. The cell material itself accounts for only a few percent of the total energy requirements.
The best estimate for present primary energy requirement for amorphous silicon manufacturing is
around 1200 MJ/m? [7]. Assuming a 6% module stabilized efficiency, this corresponds to a‘specific
energy requirement of 20 MJ/W,, which is significantly lower than the one of present crystalline silicon

modules (35-96 MJ/W, for mc-Si). However, lower efficiencies and thus higher BOS requirements can

cancel out this advantage, at present and in the future.- The potential for improvement is lower than for
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Tabie 3 summarized the technological parameiers used for the calcul

instaliations.
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S. ENERGY PROFILES OF SILICON PV SYSTEMS

£

importiance, at least in the case mc-Si “high”. As a matter of fact, in this case the Energy Pay-Back
Time (EPBT)’ slightly higher than eight years, even if the system is installed in a place with a relatively
high sun radiation, such as Central Italyg. Because of the large contribution of PV modules, the
instaHation of PV systems in buildings reduces the EPBT only to a limited extent (max. 18% for roofs).
Facades show even worse results because of the bad exposure to the sun at these latitudes. The most
effective PV system seems to be the simple installation on flat roofs [2].

However, in the case of mc-Si “low” and a-Si, the contribution of the BOS is proportionally higher.
Therefore, the benefits of the integration in buildings are more significant. Even the contribution of the

aluminium module frames will be not negligible. This will be even more true with future PV modules

and is described in more detail in the next paragraph.

Future prospects
In future, the manufacturing of crystalline silicon cells will require significantly less energy. Whatever

the specific technology (single- and/or multi-crystalline silicon derived from electronic industry, or

2 The EPBT is the time needed for the PV system to supply the amount of energy consumed for its production. It is defined
as: EPBT (vears) = Consumed energy for system production / Annual energy produced by the system

30ther parameters used for calculations are: i) PV plant electric BOS efliciency: 85%; ii) efficiency of Italian electricity
production mix: 39,1%; grid distribution losses: 7% iii) for integrated systems, the primary energy content of the building
materials substituted by the PV components have been subtracted from the BOS primary energy content of Figg 1 & 2.

7
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Fig. 4 shows the EPBT of future multi-crystalline silicon PV systems. Results are subdivided according
to the various manufacturing steps of crystalline silicon PV systems, namely the preparation of high-

urity silicon feedstock, the cutting of silicon ingots into wafers, the manufacturing of cells, the

=3
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As a consequence of manufacturing and efficiency improvements, the expected EPBT of such
“optimized” power plant is reduced by more than a factor three (from 8 down to 2,3 years) with respect
to present power plants.

Moreover, as already mentioned, the BOS plays a more important role in the total energy balance. This
means that the integration in buildings gives proportionally more benefits than today. The EPBT of a
fully integrated future mc-Si PV roof system is expected to be about 40% smaller than that of a future
PV plant.

Moreover, the EPBT is further strongly reduced if heat recovery is taken into account. In integrated
systems, at least part of the heat dissipated by the PV panels can be recovered by means of an air

channel between the back-plates of the modules and the roof (or facade) itself. This air flow has a

double effect: first, it allows the warm air to be used in the building for air conditioning and/or pre-
heating of water; second, it cools down the cells, thus increasing their efficiency. In this study an annual

taken according to simple instaliations in Switzerland, which use only small air fans as auxiliary
systems to provide air circulation [8]. In this case, the thermal energy recovery in tilted roof can reduce
the EPBT by almost a factor 3 with respect to a PV power plant. As a matter of fact the expected EPBT
of an integrated tilted roof with heat recovery is lower than 10 months®. It is also worth noticing that the
PV facades become interesting when equipped with a heat recovery system (Fig. 4). However, given the
difficulties to effectively recover and use the thermal energy throughout the whole year, these results

have to be interpreted with care.

* To calculate the corresponding primary energy, the substituted heat has been supposed to be produced by methane boilers.
8
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Finally, the negative BOS contribution for PV integrated facades and roofs should be remarked. This
(theoretical) result reflects the possible use of PV modules to replace conventional building cladding
materials. The result is particularly significant for the case of Alukobond panels’. The energy needed to
manufacture a 1 mm thick aluminum foil is very high, larger than the BOS energy content of a PV
facade-integrated systems. As a consequence, the BOS contribution is negative. The planning and
design of a PV facade instead of an Alukobond facade can be therefore considered as a conceptual
energy saving measure. Although purely theoretical, this result highlights the need for energy-conscious
architects and engineers to be aware of the hidden energy contents of building matenals.

All these results are even more significant in the case of future amorphous silicon modules. As shown in
Fig. 5, in this case the EPBT of PV roof systems is always lower than one year. With heat recovery it
further drops down to less than six months. If the substitution of Alukobond panels occurs, the total
(theoretical) EPBT is zero !

Figure 6 shows the net energy yield of future PV systems®. The expected energy yield value for
crystalline silicon power plants is around 12-14 times. Amorphous silicon systems show a lower value
because of lower efficiency and consequent higher BOS requirements. Retrofit PV roof systems increase
the energy yield values up to 20 times. This value further increases in the case of full integration in
buildings. In this case, the disadvantage of amorphous silicon is canceled by much lower BOS
requirements due to the substitution of conventional building cladding materials. As a matter of fact,
amorphous silicon systems show the highest energy yield values. In the case of heat recovery, they are
expected to produce more than 50 times the amount of energy needed for their integration in buildings.
These values indicate that future PV systems will definitively have a high net fossil energy substitution
and CO, mitigation potential. If compared with the energy yield of present crystalline silicon array field

power plants (between 2,5 and 3 times), they also show the impressive improvement potential of PV

technologies and applications.

5. ENVIRONMENTAL PROFILE OF FUTURE PV SYSTEMS

SAn Alukobond panel is made by a sandwich of two thin aluminum foils (total thickness 1 to 3.5 mm) with a hard rubber
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The CO: mitigation potential constitutes an important political motivation for PV technology
development. The mitigation potential can be shown with several indicators. Here, results are presented
in terms of CO, balance and CO; specific emissions. Fig. 7 shows the CO, balance of Im® of multi-
crystalline and amorphous silicon systems during their lifetimes. The indirect air emissions caused
during manufacturing and installation of modules have been calculated according to the Italian
electricity production mix (0,531 kg CO; / kWh,). The avoided emissions have been calculated
considering the Italian distribution mix (0,567 kg CO, / kWhy ) [1]”. A specific emission factor of
0,198 kg CO, / kWhy, has been taken into account for thermal energy production (natural gas boilers).
As expected, and in contrast with the present situation, the balance is radically positive, that is the
avoided CO, emissions are much higher than the emission caused during the manufacturing phase.
Amorphous silicon systems cause very low emissions during manufacturing. However, due to lower
efficiencies, and, most important, to much shorter life-times, they avoid much less emissions than multi-
crystalline silicon systems during their life-cycle (recycling is not taken into account here). As a/matter
of fact, mc-Si systems are expected to save a net amount of more than 3000 kg CO, /m?, while a-Si
show a value of around 1000 kg CO,/m?.

The figure further shows the importance of the recovery of heat recovery. A future hybrid PV/Th mc-Si
integrated PV roof system is expected to avoid more than 5000 kg CO,/m’. It is interesting to notice
that despite worse insolation conditions, facades with heat recovery show a very interesting CO,
mitigation potential. However, it is worth recalling that results concerning hybrid systems should be
interpreted with some care, since they still require more detailed investigations and further tests. More
detailed LCAs of hybrid systems are needed in the future, in order to take into account the downstream
use of the recovered heat.

In any case, the figure demonstrates that future PV systems will have significant environmental

performances.

layer in between. These panels are often used in modern office buildings

© Energy yield = gross energy produced during lifetime of PV system / energy consumed during production of PV system
7 PV systems in buildings substitute low-voltage electricity and have no distribution losses, therefore their environmental
benefits are higher.
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The significant improvement achievable by PV systems can also be expressed in terms of specific
emissions during lifetime. Today, a single-crystalline silicon PV power plant has a specific emission
value of around 0,2 kg CO, / kWh,,. This is mainly caused by indirect emissions deriving from high
electricity consumption during the manufacturing of modules. In future, this value is expected to drop as

low as 0,06 kg CO, /kWh,, for PV power plants and 0,04 kg CO, /kWh,, for integrated PV roofs [3].

6. CONCLUSIONS

The results of a detailed analysis of the primary energy content of the BOS of several PV systems is
reported. With few exceptions, the BOS energy content of most PV systems in buildings is around three
times lower than that of a PV power plant. In future, this energy content will be further reduced by
minimizing absolute quantities of materials and using large fractions of recycled materials.

Today, the BOS relevance in the total energy balance of PV systems is limited, because of the very high
energy content of crystalline silicon cells. However, this energy content will be drastically reduced in the
future. As a consequence, the BOS will increasingly become the crucial factor deterfnining the total
energy and environmental profile of PV systems. This holds even more strongly for amorphous silicon
modules. Thin film modules have lower energy requirement per m? module area, but on a system level
this is offset by their lower efficiency, leading to higher BOS energy requirements and lower energy
production. As a matter of fact, the analysis shows that in the future the integration in buildings will
give proportionally much larger benefits than today.

The study argues that the integration of PV systems in buildings presents favorable effects when
compared to conventional PV power plants, both in terms of energy production and CO, avoided
emissions. These benefits increase significantly if the installation allows the recovery of part of fhe heat
dissipated by PV panels.

For example, EPBT values are expected to drop from the 8 years of present crystalline silicon power
plants down to 1,4 years and 0,8 years for mc-Si and a-Si PV roof systems respe&ively. The EPBT are

further halved in integrated systems if heat recovery is allowed. Similarly, CO, specific emissions are

11



expected to drop from present 0,2 kg CO; / kWh,, of array field power plants down to 0,04 kg CO,
/kWh,, for integrated PV roofs.

These values definitively indicate that future building-integrated PV systems will have a high net fossil

energy substitution and CO; mitigation potential.
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Fig. 1 - Primary energy content of the BOS of present PV systems
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module efficiency: mc-Si: 14.5%, a-Si: 10%,
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PV plant Conventional PV plant in outdoots fields; this installation requires a careful preparation of land, and special structures to
support the PV panels. Exposure of panels to the solar radiation is optimized by means of fixed south-oriented structures or
tracking systems. An electric efficiency of 85% has been assumed for these systems.

Flat roof In this type of installation, PV modules are fixed on the flat surface of the rooflop by means of suitable light structures.
Exposure is optimized (fixed panels, south-oriented).

Tilted roof PV modules are directly applied on the existing surface of the roof. The sun exposure cannot be always optimal, since it is a

( fit) “retro-fit” operation. Electric system losses can be higher. Mean losses of 10%with respect to the optimal reference case
(PV plant or flat roof) have been therefore considered.

Tilted roof The PV system and the building are designed together. The possibility of planning a better exposure of the panels and of

(integrated) using cell cooling systems leads to slightly lower losses (5%) with respect to the reference case®. PV panels substitute parts
of the roof from the beginning of the project. Thus there is an additional energy saving due to the construction materials
which are not used in the roof part covered by the PV panels.

Facade PV modules are used as cladding materials for covering an existing facade. A loss of 38% compared to the optimal case is
caused by the reduced incident radiation on a vertical surface at the latitude of Central Italy.

(retro-fit)

Facade PV system and the building are planned and designed together. Losses are 2% lower than the retro-fit facade. As usual,

. there is also an energy saving due to the substitution of the conventional construction materials with PV modules.

(integrated)

PV cladding PV modules function as facade cladding. However, they are tilted with respect to the facade, thus forming a “PV sawtooth
curtain wall”. Losses are the same as for retro-fit tilted roofs.

(retro-fit)

Systems with heat | BOS efficiency is the same as for integrated systems. Additionally, a mean heat recovery of 2 kWha, per kWhy produced is

recovery taken into account.

Tab. 1 - Classification of different PV installation types - source : [2]

8Silicon cells efficiency decreases when temperature increases.
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Energy content of materials CO; specific emissions
total primary energy of which electricity total (process + energy)

Materials MJo/kg KWhy/kg MJwke’ kg COy/kg
steel 32.00 2.20 20.25 1.91
primary aluminum 198.00 17.00 156.51 10.59
secundary sluminum 12.60 0.00 0.00 0.51
light concrete 4.40 0.10 0.92 0.28
concrete 1.63 0.04 0.37 0.16
armored concrete 6.06 0.15 1.38 0.40
copper 70.00 4.72 43.45 3.09
glass 14.40 0.12 1.10 0.77
PVC 66.80 4.26 39.22 4.20
clay 10.70 0.05 0.46 0.66

Tab. 2 - Primary energy content and CO; specific emissions of BOS materials.

Average values adapted from [9, 10, 11, 12, 13, 14, 15]

A mean efficiency of 39,1% of the Italian electricity production mix has been considered to convert electricity into primary
energy consumption.
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Silicon PV technologies

multi-crystalline single-crystalline amorphous
present Future present future present future
Cell efficiency 14% 16% 15,5% 18% - -
Module efficiency 12,1% 14,5% 12,7% 14,8% 6% 10%
Primary energy content for module 4200 - 6000 -
manufacturing (MJ / m2)° 11600 2600 13900 3100 1200 840
Module lifetime (years) 25 30 25 30 10 15

Tab. 3 - Technological parameters of present and future silicon PV modules

adapted from [2 and 7]
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3.3  Christi Herig
The Million Roof Initiative: Current Status
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Planning integration
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@2 Solar Buildings
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The numbers speak for themselves: from 2000 solar-equipped
buildings in 1997 to over one million in 2010.




System Size (kW)
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The average photovoltaic system size will double by the year 2000 and quadruple by 2010.
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Christy Herig, NREL



800 -
{00 4

600

500 |

400 '

300 -
200
100 4

0

- Annual Capacity (MW)

610

1997

1998 1889 2000 2005 2010

MR A T4

Each additional solar megawatt enriches our nation’s domestic economy.

hristy Herig, NREL
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By establishing local suppliers and service companies, the initiative
will keep community resources invested.locally rather than having
to export dollars to import fuel or electricity.
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It's certain that as volume goes up, the cost of solar systems will decline
dramatically. Actual prices in the marketplace may vary from these
benchmark goals due to numerous market factors. The installed cost of
$3.00 per watt is a key threshold for broader commercial use of photovoltaics.
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Christy Herig, NREL
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The per-kilowatt cost of solar energy is projected to decline by nearly 300%
over the 13-year span of the Initiative. The optimistic benchmark goals
shown here do not reflect the many variables that affect true energy costs.

* Christy Herig, NREL
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By 2010, emissions of carbon dioxide, the most “prolific” Greenhouse gas, will
be reduced by an amount equal to what is now produced by 850,000 automobiles.
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For every $100 million invested in the Initiative, 3,850 direct and indirect jobs
will be created, resulting in more than 70,000 new high-tech jobs by 2010.

,N'\
~ Christy Herig, NREL



ar illion Solar Roofs
 Partnership Commitments

Wash. State Solar Total = 526,400
Energy Ind. Ass.
20,000 —\
New England
Sacramento Elec. Service
Munc. Util. Dist. 100,000
« Within SMUD terr. \ @ ,
Maryland
25,000 Statd of Colo Energy Adm.
« Within CA — 200,000 1,000 20.000
c;-fovs\l :t:?‘;‘:: l?:v‘;:;r @ Salt River Broj. = 20,00
® -
100,000 Tutson Elec. Powe ; 0
O
Hawaii Elec. Federal
Light Co. Commitment
itics 20,000 20,000

" Christy Herig, NRE
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" 10 Point Action Plan
1. Establish 25 major partnerships to install
solar energy systems by Sept. 30, 1999

2. Improve access to financing for solar
energy systems

3. Build a network of state renewable energy
funds

4. Establish Million Solar Roofs tax credit

5. Obtain commitments from other federal
agencies \
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“Dpoers 10 Point Action Plan

6 Support adoption of the administration’s
utility restructuring plan

7. Establish uniform interconnection standards
for photovoltaics and promote net metering

8. Support major partnerships through the DOE
Regional Support Offices and training and
technical assistance

9. Support research, development, and
demonstration

10 Hold quarterly progress meetings

Chnsty Heng NREL






Department of Energy
Washington, DC 20585

Million Solar Roofs Initiative

Top Ten Questions

1. What is the Million Solar Roofs Initiative?

Million Solar Roofs is an initiative to install solar energy systems on one million U.S. buildings by
2010. It was announced by President Clinton on June 26, 1997 in his speech before the United
Nations Session on Environment and Development. This effort includes two types of solar
technology - photovoltaics that produce electricity from sunlight and solar thermal panels that
produce heat for domestic hot water, for space heating or for heating swimming pools.

The U.S. Department of Energy will work with partners in the building industry, other federal
agencies, local and state governments, utilities, the solar energy industry, financial institutions and
non-governmental organizations to remove market barriers to solar energy use and develop and
strengthen local demand for solar energy products and applications. The Million Solar Roofs
Initiative will bring together the resources of the Federal government with key national businesses
and organizations and focus them on building a strong market for solar energy applications on

buildings.

The three principal goals of the Initiative are:

e Reduce greenhouse gas and other emissions using clean energy from the sun. In 2010,
with one million solar energy roofs in place, the Initiative would reduce carbon emissions
in an amount equivalent to the annual emissions from 850,000 cars.

o Create high-tech jobs in the solar energy industry. By 2010, approximately 70,000 new
jobs could be created as a result of the increased demand for photovoltaic, solar water
heating and related solar energy systems.

 Keep the U.S. solar energy industry competitive. By i mmmg the domestic market for
solar energy, increasing domestic production and reducing the unit cost for solar energy
systems, the Initiative will enable U.S. companies to retain their competitive edge in the
worldwide market. By 2005, the photovoltaic market alone is expected to exceed $1.5

billion worldwide.

@ Printed with 30y ink on fecycied peper



2. Why are we undertaking this Initiative and at this time?

Greenhouse gas emissions are caused mostly by the inefficient burning of fossil fuels. By
increasing the efficiency of how we use fossil fuels, reducing our use of these fuels and
switching to alternative, non-poliuting fuels, we can significantly reduce the amount of
greenhouse gases we put into the atmosphere and reduce the threat of global climate change.

One of the most promising non-fossil sources is solar energy. As President Bill Clinton said
in a June, 1997 speech to the United Nations, “Capturing the sun’s warmth can help turn

down the Earth’s temperature.”

Photovoltaics were invented approximately 40 years ago at AT&T’s Bell Laboratories and
later developed as a means to power satellites and space vehicles. As the U.S. investment in
the technology improved their performance and reduced their costs, other countries saw their
potential and started their own development efforts. In the past two decades, research and
development have improved the efficiency and reliability of photovoltaics reduced the costs
of photovoltaic electricity by a factor of 5.

The Million Solar Roofs Initiative will help increase the market for solar energy and
encourage increased development and production of solar energy systems. At the same time,
the Initiative will give consumers an affordable, clean-energy option, create new U.S. high
technology jobs and play an important role in reducing greenhouse gas'emissions.

3. What are the qualifications for a building to be a part of this Initiative?

To be included in the Million Solar Roofs Initiative, a building’s solar energy system must
comply with all relevant parts of the National Electrical Code (NEC), Underwriters
Laboratories (UL) standards and the Solar Rating and Certification Corporation (SRCC)
standards, be located on or immediately adjacent to the building and meet the following

minimum standards:

Photovoltaic Systems:
. Residential systems must be a minimum of 0.5 kW

. Commercial systems must be a minimum of 2.0 kW

Solar Thermal Water Heating Systems:
. Residential domestic must be a minimum of 1.0 kW equivalent or 20

square feet of collectors
. Residential swimming pool heating must be a minimum of 100 square
feet of collectors
Commercial domestic must be a minimum of 2.0 kW or 40 square feet
of collectors
. Commercial swimming pool heating must be a minimum of 400 square
feet of collectors

Solar Thermal Space Heating Systems:
. Collector must be a minimum of 100 square feet or 4.0 kW



4. Who is a Million Solar Roofs Partner?

The Million Solar Roofs Initiative will encourage participation of all interested individuals,
businesses, industries, governments, federal agencies, utilities and non-governmental
organizations. The Initiative will attract partners building by building, community by
community, state by state and business by business. It will work “top-down” and “bottom-up”

through three types of partnerships:

Individual Partnerships: Any person or organization who installs the minimum size
solar electric or solar thermal energy system on a residential, commercial, institutional
or government building will be able to register with the Million Solar Roofs Registry.
There is no requirement for participation in any other activities for these parties to be
a partner in the Initiative.

State and Community Partnerships: Million Solar Roofs State and Community
Partnerships bring together business, government and community organizations at the
regional level with a commitment to install solar energy systems. Examples of State
and Community Partners include:

e Builders

Energy Service Providers

Utilities -

Non-Governmental Organizations

Environmental Groups

Local Governments

State Governments

Federal Government Agencies

National Partnerships: At the national level, partners will make a commitment to

mstall a significant number of solar energy systems and provide national support for

the Initiative. Examples of potential National Partners include:

Any Entity that commits to installing over 5,000 solar roofs by 2010

Solar Energy Equipment Manufacturers and Distributors

National Utility Companies and Energy Service Providers

National Financial Institutions

National Government Associations such as the National Association of Counnes
the National League of Cities, the National Association of State Energy
Officials, the U.S. Conference of Mayors and the International City/County
Management Association

o National Business Associations such as the Solar Energy Industries Association

and Utility Photovoltaic Group
« National Environmental Organizations



Examples of activities that Million Solar Roofs partners may undertake include:

. Developing a plan for solar energy installations under the Million Solar Roofs
Initiative.
. Committing to a specific number of solar energy systems to be installed on buildings

in the pcnod between 1998 and 2010.

buuuuilung govermment efforts to overcome barriers to so
efficiency applications in buildings.

. Identifying financial incentives for solar energy installations.

. Establishing net metering for photovoltaics.

. . Developing and/or modifying codes and standards that affect solar energy

imnstallations,

. Implementing ttammg prograrm for building officials, the construction mdustry, solar

PRI | PR PR, |
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. Providing outreach support for solar energy and energy efficiency.

. Taking part in national information sharing, peer-to-peer exchanges and cooperative
research and training efforts. .

. Connecting the Million Solar Roofs Initiative with other sustainable community

-

‘initiatives.

6. What assistance is available?

The Million Solar Roofs Initiative, coordinated by the U.S. Department of Energy and
supported by its partners, provide the following:

. Assistance in accessing low-cost loans, buy-down grants and other financial
assistance.
. Training and information about the experience implementing the Initiative in

communities around the United States.

. Recognition and support on a national, regional and local basis.

. Marketing and technical assistance from DOE’s Regional Support Offices and the
program staffs of DOE’s Offices of Utility Technologies and Building Technology,
State and Commmitv Proorams and the DOE Federal Enercv Magagemem Program.

v A asana. J = v CAlL.14l -1

. Technical assistance and training support from DOE’s nauonal laboratories.

PR Y W memed nnloe oo wntmannas aeanmiatimeme aed

. Lmkage with and access to customers and solar energy businesses, associations and

related industries that can provide assistance to local teams and others interested in
solar energy applications. .
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7. What is the
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The federal sector represents approxumaici
500,000 buildings. These half-million buildings require the ederal government to spend over
$3 billion each year for heating, cooling, lighting and powering the operations. During the



past twenty years, actions have been taken to reduce that energy bill through energy efficiency
investments and the application of renewable, including solar, energy systems on new and

existing federal buildings.

President Clinton has committed the Federal government to install solar electric and solar
thermal energy systems on 20,000 federal buildings by 2010. The U.S. Department of
Energy’s Federal Energy Management Program will assist Federal agencies to meet that
commitment.

The Federal Energy Management Program recently established umbrella contracts with
energy service companies to purchase energy efficiency services for Federal buildings. These
“Super Energy Savings Performance Contracts™ enable all Federal agencies to improve the
efficiency of their buildings through cost effective partnerships with the private sector. The
next round of procurements will put in place almost $200 million in contracts which will use
private financing to install solar energy systems at Federal facilities and enable Federal
agencies to support the Million Solar Roofs Initiative. In addition, the General Services
Administration has developed and implemented streamlined procurement procedures for
Federal agencies to obtain solar energy systems. The Department of Defense has already
installed many solar energy systems on its buildings including, for example, solar hot water
systems on Navy housing and a solar space heating system on an Army aviation maintenance
facility. i}

8. What are Photovoltaics?

Photovoltaic devices, or solar cells, convert sunlight directly to electricity. It is an attractive
alternative to conventional sources of electricity for many reasons: it is silent, non-polluting,
and renewable; it requires no special training to operate; it is modular and versatile; it is
extremely reliable and virtually maintenance free (with no moving parts); and, it can be
installed almost anywhere. The customer pays only for the system; the fuel is free.

Photovoltaic cells are made of a semiconductor material, usually silicon, and produce an
electric current in the presence of light. Individual cells are combined to create modules that
produce a specific amount of peak power.  The modules, in turn, can be combined to create
arrays that produce larger amounts of power. These arrays can be sized to meet the power

requirements of the particular application.

9. What is Solar Thermal heating?

 Solar energy can be used to heat both water and air. Solar water heaters use the sun to heat
either water or a heat-transfer fluid, such as an antifreeze mixture, in collectors usually
mounted on the roof. The hot water, produced directly in the collector or via heat from the
transfer fluid, is then stored in standard insulated water tank. Some systems use an electric



pump to circulate the fluid through the collectors. These environmentally friendly systems
are increasingly cost competitive for providing domestic hot water and for swimming pool

heating.

Solar space heating offsets building heating loads by either heating recirculated building air
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normally required to receive direct sunlight and provide air temperatures higher than the
mterior temperature to be effective. The transpired coliector, which uses a dark coliection
surface with perforated metal plates to heat the air just behind the plate surface, is very
effective in preheating outside or ventilation air. One additional benefit of the transpired
collector is that it can also serve as a component of the building shell.

10. How much will solar energy systems cost?

A residential solar hot water system may cost anywhere from $1,800 to $3,500 and compete
effectively with water heated by electricity that costs 8 cents per kWh or more. Solar thermal
space heating is very effective in most areas of the country. For example, the cost of a 100
square foot transpired collector installation can range ﬁ'om $1,000 for retrofits on existing
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cost of the system in five years or less.

Photovoltaic costs are more complicated because system size, features and net cost to the
users depend on the financing terms and interest rates, available incentives and access to low
cost hardware and installation through bulk purchasing programs. For example, residential
photovoltaic systems recently installed in Sacramento, California cost just under $7,000 per
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Solar technologies are cost-effective in many niche applications today, for example, the use
of photovoltaics at remote installations not on the power gnid. A solar energy system’s cost
can also be reduced by Federal and State tax incentives and other financial support. Additional
cost reductions are possible through the use of state-implemented net metering options.
Financing assistance can, in many cases, reduce the cost of solar energy systems to the point
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For More Information:

By Phone:

Efficiency and Renewable Energy Clearinghouse (EREC)
1-800-DOE-EREC (363-3732)

On the Internet:
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www.MillionSolarRoofs.org

Solar Energy Industries Association
www.seia.org



