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ABSTRACT

Modem computers make possible a new blending of sys-
tems, man, and cybernetics in the detailed simulation of
large soeioteetilcal systems. Several such simulations are
currently under development at Los Alamos National
Laboratory and elsewhere. When deployed, they will atlkct
the daily lives of hundreds of millions of people and the
allocation of billions of dollars. Whether they are deployed
depends entireIy on their perceived usefi.dness, which in
turn depends on answers to the following:

● What kinds of questions does the simulation
address and what kinds of solutions does it pro-
vide?

● How can the solutions be validated?

● Is simulation more cost-effective than other metb-
~s?

Answers to these questions lead us to define a uaefbl sim-
ulation as one which efficiently provides correct, robust
estimates required by decision-making needs, together
with well understood variability for the outcomes in hypo-
thetical situations.

This paper examines the implications of this criterion for
the design of TRANSIMS, a regional transportation net-
work simulation, and by extension, for simulations of other
sociotechnicai systems.

INTRODUCTION

The Transportation Analysis Simulation System (TRAN-
SIMS) is a lsrge-seal% detailed simulation of urban trans-
portation networks developed as a decision support tool.~ !fl
Urban planners in the United States are legally required to
forecast the effects on various subpopulations of changes
in the network infrastructure, but up till now there has been
no tool available for making these forecasts.

TRANSIMS simulates the second-by-second movement of
millions of individuals making their way over the course of
a day through a multi-modal regional transportation net-
work resolved down to roughly 10mmillion7.5 meter cells.

For input, it requires samples of a population’s demo-
graphics, regional land use patterns, and a detailed descrip-
tion of the trtinsportation network. From these, it generates
a synthetic population gives each indkidual a set of daily
activities, determines detailed transportation plans (mode
choice and route) fbr each, and follows them through the
network as they execute their plans.

TRANSIMS shares the following important properties
with other simulations of similarly complex systems such
as the electric power grid and communications networks:

● the dynamics depend on decisions made by a large
number of independent agents;

● interactions among the agents are primarily short-
range or loud in space and time, mediated by a
network but they also, have a non-negligible
long-range component

● the available resources, demands placed on the
resources, and the network itself are non-station-
my and oflen far from equilibrium.

Typically, development of simulations has fwsed on
modeling the underlying physical system - the flow of traf-
fic through the netsvok in this case-and indeed the model
itself is often referred to as the simulation. We argue here
that this is not correct. The deeision-making problem at the
heart of such large scale simulations necessitates wrapping
the model in a learning algorithm. It is fair to say that so-
called “simulation” sofhvare is useless without the learning
algorithm.

By itselfj the model of a system provides a Newtonian
clockwork picture. Getting vtild results from the model
requires a valid initial state, but detailed information about
the initial state is not available as input. Furthermore,
validity of the initial condkion depends on the use to be
made of the results. The learning algorithm must estimate
an initial state from the available dam known constraints
on the results, and dependencies between them arising
from the model.

In the discussion below, we will consider a discrete time
simulation from time 0 to a final time T. We dktinguish
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among the input data set+D, the time-dependent state of the.
dynamical system being modeled, S(O, the individual state

. of each agent withh the model, si(~ which together con-
stitute the state of the model, S(# = {s@ .... s~~); the
model M which maps S(O to S(1+1); the actual joint prob-
ability distribution of all the agents’ states at each time,
conditioned on the input da% P(S(0), ..,, S~) ID); and the
“results” ~ which can only depend on the input data D and
all the states S(0), .... S(9.

For example, in TRANSIMS the input daq D, consists of
two qualitatively different kinds of dati

1) information about infrastructure - a detailed road
I map, transit schedules, etc.

2) information about populations - a set of probabil-
ity distributions for demographic variables such
as income, age, and education.

The first kind of data is in principle readily available, since
it is required for design and control of the system under
study and varies on a slower time scale than the population
data, In contrast because of privacy concerns and the cost
of collecting da@ detailed information about the popula-
tion is not available. In particular, although the marginal
distribution of demographic variables is available for the
entire population, the joint distribution is available only for
a few smail sample subsets.

The ith agent’s state si(~ depends on what sort of entity the
agent represents and the level of abstraction in its repre-
sentation. 3n TRANSIMS, the most obvious agents are
individual travelers. Each traveler’s state includes dynami-
cal variables such as position, and velocity as well as other
state variables such as the traveler’s next destination or
aversion to traflic congestion.

However, there are other entities in the model, with differ-
ent state variables capturing other kinds of time depen-
dence. For example, the network topology includes time-
.dependent traflic signals, reversible lanes, and costs asso-
ciated with resource usage, such as parking or tolls. All
these elements can be included in our description as agents
with associated states.

A typical question which might be posed to the TRAN-
SIMS simulation is: what is the effect of a change in park-
ing fees on mass transit ridership, and what subpopuiation
shows the largest change? The result of tie simulation in
this case is not the final state of the model, S(t). Instea4 the
result ~ must be deduced from all the intermediate states
of the model, specifi%lly, the demographics of travelers
who choose to use mass transit at each time step.

QUESTIONS AND ANSWERS.

Simulations are not magic. It would be incorrect to claim

that TR4NSIMS contains the behavior of specific individ-
uals. Only the ensemble of agents’ states has any meaning.
This ensemble is just one sample from the underlying joint
probability distribution P over all the agents’ states condi-
tioned on the input data, Each run of the model generates a
sample from this distribution. Statistics can be evaluated
on each sample and an estimate of the distribution P quan-
tifies the variability in those statistics. That is, if q denotes
the estimator used to evaluate the statistic Q fkom the states
of the model, so that Q = q(S(0), .... S~), the simulation
is used to construct P(Q I D) induced from P(q(S(0), ....
S(l)) ID).

The dkribution P can be used for system identification,
answering the question “How does the distribution of Q
compare to the distribution expected for this system?”. It
can also be used for extrapolation - “As the system
evolves, how does Q change?’. And it can even uncover
control parameters not explicit in the input data - “How
does Q change for different realizations of the initial state,
all equivalent with respect to the input data?’.

Sometimes P(Q I D) is all that is required for decision-
makers. When q is a fimction which accumulates dktnce
traveled by each vehicle driver, for example, P(Q 1D) will
describe how proposed infrastnwture changes affect the
total number of vehicle-miles traveled. Other kinds of
questions require a sightly different analysis. For example,
one might want to know the fraction of emissions account-
ed for by vehicles which travel fiuther under the infra-
structure changes. This depends on the type and condition
of the vehicle, as well as on how it is driven - all factors
which are likely to be related to the demographics of the
owner and driver. In this case, q would be an indkator
tlumtion determining membership in Q, the set of drivers
who drove farther under the hypothesized scenario than
under current conditions. The demographics would be
obtained by evaluating the demographics of the sub-popula-
tion Q to find@(@ ID).

This view has several obvious implications for the design
of a simulation.

Stocbasticity
There must be a stochastic element in the simulation or else
the sampling process will yield only a single wdue. The
only places to insert randomness into a model are in the ~
dynamics or the initial condition. For the simulation as a
whole, this translates to the agents’ decision-making
processes and the learning algorithm referred to in the
introduction.

Experimental Design
With Non the order of 10’%and Ton the order of 1W5, as
in TRANSIMS, P depends on an enormous number of
variables. It is not feasible to run the model often enough
to sample P in any detail. Careful analysis is required to
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. identi& important sources of variability in the dktribution
and design experiments to probe them.

.

Agent Identity
Some agents must maintain their identity in terms of the
input data. That is, from the input data we create synthetic
agents. each of which is associated with a set of demo-
graphics drawn from the input distributions in such a way
that all constraints provided by the input are respected.
Thm given a subset of agents which meets certain criteriaj
we can infer the distribution of input variables over that
subset.

Efficiency and Agent Abstraction
Decisions generally have a fixed time horizon beyond
which they are irrelevant. Atypical decision will be based
on running the model not just a single time, but many,
many times. For agent-based simulations, this constraint
places limits on the complexity of the agents and their
interactions. Only those aspects of state which are essential
to making the final decision should be included. Research
is often required to understand exactly what is essential.
For example, including a complicated psychological model
for drivers in TRANSIMS would slowdown the simulation
unacceptably. Inste@ we have shown how to generate cor-
rect distributions of trafllc behavior from extremely simple
cellular automata (CA) models

The result of a simulation is a set of joint probability dis-
tributions fm the agents’ states which can, in @ be relat-
ed to the input data. The state of any individual agent is
unimportant - it is like a channel creating dependence
between input ~d output. As long as the channel transmits
information with the required fidelity, details of the chan-
nel’s representation are not important.Furthermore, just as
in communication theory, the degree of surprise in the
result is a measure of the itionnation content of the mes-
sage, or in this case the simulation. A simulation which
provides low information content is not likely to be worth
the effort it takes to develop. On the other hand, too much
information overwhelms the decision maker.

In summary, simulations answer questions framed in terms
of a correlation structure in the output data or between
input and output data. The answer they provide is a set of
statistics evaluated on the joint probtillity distributions of
agents’ states, conditioned on the input data.

VALIDATING SOLUTIONS

A simulation’s validity is often defined as how well it mod-
els the dynamics. Not only is thk extremely dfikult to
determine for simulations of complex systems, but also it
is far too limited to ensure that the final product is useful.

.
For Complex Systems
There is a large and growing literature which attempts to

classify the kinds of behaviors arising when a Iatge num-
ber of simple systems are connected into a complex net-
work. Sometimes it can be shown that the variety of behav-
iors depends on only a few aspects of the component sys-
tems. In these cases it may be possible to validate a simu-
lation, given that its components capture those aspects cor-
rectly. In general, though, all that is known is that the
behavior a complex system exhibits can be very different
from that in any of its components.

Hence there is not yet any clearly superior systematic
method for valktating the simulation of a complex system.
One common approach is to validate system components
in isolatiou validate the interactions among small subsets
of components, and hope for the best when they are all
combined.

For example, transportation engineers publish observations
of trtdllc on roadways. These observations are reduced to a
set of expectations for traffic on a generic, isolated stretch
of roadway, encoded in what is called the “fundamental
diagram” of traflic flow. A great deal is known about this
diagram and the essential features of models which repli-
cate it.

Clearly, a necessary condition for a traf33cflow simulation
to be valid is the ability to reproduce this diagram. But this
is certainly not a suflkient condition. We can validate the
behavior of TRANSIMS on isolated road segment% or
include one or a few intersections, or investigate the ‘effect
of synchronizing controls across several intersections, but
none of this addresses the question of how faithfidly the
model reproduces dynamics of a huge-scale network. L$~

Sub-optimal Input Data
This diffkuhy in validating a model of a complex system
is a well-known problem and must be addressed. But the
problem of robustness is even more relevant to the useful-
ness of a simulation.

I

INPUT QUALITY

Fig. 1 Example variation in the quaiity of output as the
quaiity of input changesfor two &#erent simulations.



*

1. .
● .

The figure above sketches the operating characteristics of*
two different simulations in terms of input and output qual-
ity. By output quality, we mean how well the simulation,.
reproduces the behavior of the system it is supposed to
simulate. By input quality, we mean both the completeness
and correctness of what is available.

The ideal operating point for a simulation is in the upper
right comer of the figure, where high quality inputs lead to
high quality output. A simulation is usually deemed valid if
it can operate at this point. The output quality for less-than-
optimrd input data is ignored under the slogan “garbage in,
garbage out?’, represented here by the point at the origin.
But there are important differences among “garbage”
input ideal inpu~ and input available in real world appli-
cations. Likewise, there is a red difference between two
simulations with the operating characteristics sketched in
the fi~ even if they provide kientieat output at the ideal
operating point. The difference is that only one of the two
is usefid.

Robustness to less than perfkct input data is often an after-
thought in the design of a simulation. In a large-scale sim-
ulation, it must be among the first design criteria. In the
case of TRANSIMS, it has required coupling the traillc
model to a learning algorithm.

Together, the IWOdetermine sets of self-consistent initial
states for the rnod?l. There are many open questions about
the learning algorithm in TRANSIMS, and these are in fact
the focus of moat-of the research in TRANSIMS. None of
these questions can even be posed in the context of the
model alone.

Fig. 2 Architecture of a simulation.

As shown in the figure above, the role of learning algo-
rithms in simulation is like that of a controller, and the
“plant” under control is the model. The algorithm evaluates
the effects of changes in the initial state on model evolu-
tion. .

With knowledge of the question the simulation must

answer, it can determine which input data most strongly
ai%ct the simulation results, and vdich must be improved
to meet required tolerances in variability of the results.
Like the model, it is thus a special purpose tool incorporat-
ing some understanding of the model’s properties and the
simulation’s goals.

For example, one of the central problems in simulating
tratlic is to generate realistic routes for travelers. Given the
travel times on each link of the network and a set of mode
choices, it is possible to find the shortest path through the
network for any number of travelers. But each new travel-
er affects the others’ travel times in a way which can be
determined exactly only by running the fill model. This is
a nonlinear, coevolutionmy probleu and a direct solution
is not currently possible.

TRANSIMS’S learning algorithm solves this problem
through iterative approximation. Firsl each traveler is C ~;
routed using the uncontested network travel times. The
resulting plans are simulated and new travel times we
determined. Then a subset of travelers is rerouted using the
new travel times. The travel times form a sort of mean field
approximation to the interaction history of each traveler,
which is not sensitive to the route of any individual travel-
er.

The choice of travelers to replan is an essential part of the ~~~
learning qlgorithm -it does not work to replan everyone or! .-
~ustto replan travelers who arrive at their destinations-late.
‘Moreover, the goal of the study determines which travelers
must be routed correctly. In some cases, “for example
freight @lIc can be modeied much less carefhlly than
commuter trafHc with no adverse effect on the result.

This iterative approach has an intuitive appeal - people do
not re-pkm trips based on avoiding interactions with spe-
cific travelers, but on avoiding congestion. It is tempting to
think of each iteration as a new “day”’,but that would be a
misinterpretation of the algorithm. Each iteration is noth-
ing more than a step in a learning algorithm. The dynamics
of this algorithm may have nothing to do with day to day
fluctuations in trsflic, but the end state of the algorithm
should be one of many possible realistic sets of travel
plans.

In general, a karning algorithm involves multiple itera-
tions of the dynamical model with feedback for selectively
updating initial states. The dynamical model by itself is
useless, since it requires complete knowledge of the initial
state, which is typically unavailable. The learning algo-
rithm by itself is useless since it requires feedback from the
model.

COST Electiveness

There are few alternatives which even attempt to suppofi



decision-making in large sociotechnical systems. Analytic
methods either focus on the components and ignore the
crwial problem of scaling to real systems or idealize away
important parts of the dynamics in an effort to make the
WI system tractable.

Deeisions in these systems are often made on the basis of
intuition or experience with incomplete knowledge, both of
the current state of the system and of the true ei%ets of the
decision. simulations break down the steps for rational
decision making in the most natural way:

● estimate the m-rent state of the system (or enough
of it to base the deeision on) from the available
data.

● evolve the state to understand the effeets of the
deeision.

Simulations (as the term is used here model + learning
algorithm) solve these two problems in a cost effeetive
way. The only alternatives for determining the initial state
are to improve data collection efTortsuntil the system state
is direet.ly observable or directly to estimate the system
state from the input data. The former is typically more
expensive than developing a simulation, and must be
repeated for each different deeision, as the representation
of the system changes. The latter relies on machine learn-
ing techniques which are unlikely to work well in ,tie. eon-
text.of sparse data and a hi~ dimensional problem.

:.
Using alternative rnet@ds is even htider for hypo&tical
situations. Direet observations become impossible aqd the
generalization power of machine learning tecluiques will
be poor given oniy a few training examples. But simulation
systems can handle hypothetical cases as easily as real
cases.

Gathering data for simulation represents a capiti invest-
ment} which returns dividends in the form of simulating
many different scenarios, rather than an o~rating expense,
as does gathering data for model building.

CONCLUSIONS

Jn summary, simulations can be viewed as algorithms
which learn to generate joint probability distributions in
many variables from a small sample of distributions in a
few vaxiables. The quality of the simulation depends on the
degree to which the correlation structure in the generated
distributions matches that of the system it is intended to
model.

A usefi.d simulation couples a dynamical model of the sys-
tem to a learning algorithm capable of determining a self-
consistent initial state for the model from sparse input data.
The simulation then robustly estimates the time evolution
of system state distributions and provides an understanding


