
.-

Approved forpublic release;
distribution is unlimited.

Title: Using Perspective to Model Complex Processes

I

Author(s): Kelsey, Robert L.-XCM

Bisset, Keith R.- TSA-5

Submitted to: sp~ Aerosense

April 4-5, 1999
Orlando, Florida

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of tMs article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
pubtish;as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (10/96)

DISCLAIMER

This report was,.prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

4*
.

,*

Using perspective to model complex

R. L. Kelsey” and K. R. Bisset~

Los Alamos National Laboratory,

“XCM MS-F645, Los Alamos, NM 87545

processes

*TSA-5 MS-F602, Los Alamos, NM 87545

ABSTRACT

The notion of perspective, when supported in an object-based knowledge representation, can facilitate better ab-
stractions of realit y for modeling and simulation. The object modeling of complex physical and chemical processes is

made more difficult in part due to the poor abstractions of state and phase changes available in these models. The
notion of perspective can be used to create different views to represent the different states of matter in a process.

These techniques can lead to a more understandable model.

Additionally, the ability to record the progress of a process from start to finish is problematic. It is desirable to
have a historic record of the entire process, not just the end result of the process. A historic record should facilitate

backtracking and re-start of a process at different points in time. The same representation structures and techniques
can be used to create a sequence of process markers to represent a historic record. By using perspective, the sequence

of markers can, have multiple and varying views tailored for a particular user’s cent ext of interest.

Keywords: abstraction, perspective, object-based knowledge representation

1. INTRODUCTION

A poor representation of a problem can make the problem difficult to understand and thus difficult to solve. Due to a
poor representation there may be missing details and diminished reality, especially in the case of modeling real-world
processes, A correct representation of a problem can contribute to more successful problem solving.1 In a correct
representation, the form and function of entities in the problem may need to be more unconventional or novel rather
than typical.1

An object-based representation and its elements can facilitate the creation of more correct representations. The
elements of an object-base representation are not unlike those of obj ect-oriented modeling which include abstraction,
encapsulation, modularity, and hierarchy.2 Object-oriented programming can model systems which “correspond
more closely to the ‘real-world’ “ 3 and humans tend to perceive the world as being made of objects rather than
act ions.3

Abstraction is a means of dealing with complexity .2 Abstraction is used in object-oriented analysis and design,
simulation, and other areas. The notion of perspective (when supported in an object-based representation) can be
used to create better abstractions. Creating multiple perspectives can provide additional points of view which need
not be consistent with one another. This can lend focus and detail to the parts which compose an area of interest.
Perspectives help simplify the complexity in complex processes and facilitate novel representations of problems.

Consider the service branch problem as an example. The air force holds a perspective which identifies each and every
airplane, while what is happening and contained on the ground (the army) may be encapsulated as a single ground
force. The army would hold a perspective almost exactly opposite to the air force.

Andersonl presents and discusses a number of problems that illustrate the importance of a correct representation.
These problems include the mutilated checkerboard, the 27 apples, and the two-string problem. Gardner* discusses
a puzzle called fifteen and a word game that can both be abstracted to the game of tick-tack-toe with the help of a
three-by-three magic square. These are simple examples of making a problem easier to solve through abstraction of
the use of another perspective.

(Send correspondence to R.L.K)
R. L. K.: E-mail: rob@lanl.gov
K. R.B..: E-mail: kbisset@lanl.gov

I

“c

.

‘.

I
When modeling and simulating complex physical and chemical processes, two problems in particular exist. One

is the problem of representing material elements before, during, and after a change in state or phase. Some repre-

sentations regard each change in state/phase as a new or different object. This is not only a poor representation of
reality but a difficult representation to manage.

I
The other problem deals with recording the progress of a process, especially those modeled in computer simulation.

A historic record of a simulation from start to finish can result in huge amounts of data. Much of the data may even

be irrelevant or redundant when removed from the context of the whole. Dump data such as this is difficult if not

impossible to query for individual pieces of information due to lack of structure.

I
The notion of perspective can be used to create more appropriate representations for these problems. These

representations are more realistic and may contain more contextual detail. The folIowing sections describe the
object-based knowledge represent ation methodology (created and used by the authors) and its use. Examples are
discussed to illustrate the use of perspective in the state/phase change problem and the process record problem.

2. BACKGROUND

2.1. Decomposition

In software design and development, decomposition refers to the breaking up of the whole into smaller parts, The

goal being that smaller parts are more easy to understand and deal with, as opposed to the whole. Two types of
decomposition are algorithmic and object-oriented .2 Algorithmic decomposition is also known as top-down structural

decomposition. This type of decomposition breaks the problem up into tasks which contribute to an overall process.
In this case, the parts of the whole are algorithms which represent the tasks.” In object-oriented decomposition the
parts of the whole are objects as opposed to tasks. The objects represent tangible entities in the problem, ones being
operated on by the tasks.

Whether one type of decomposition is better than the other depends on the ‘problem and application. What
is important to realize is that decomposition is not just for software design and development. It is also useful in
knowledge representation. Decomposition occurs during domain analysis of the knowledge of interest and during
acquisition or population of the knowledge into the representation. Since the knowledge representation used in this

work is object-based, an object-based decomposition is also used.

2.2. Object-based knowledge representation

2.2.1. Introduction

A methodology is used to create and use a knowledge representation for the problems of state/phase change and
process recording. This knowledge representation work is different from mainstream knowledge representation work
where the use of ontologies continues. Ontologies are taxonomic or hierarchical classifications for knowledge. Al-
tbough some ont ologies are created for specific knowledge domains, many claim the ability to represent large portions
of knowledge or all knowledge. As a result, ontologies can be large and difficult to understand and use.

What the methodology offers is a framework and guidelines for creating a knowledge representation specific’ to
and for an application domain of knowledge. This means that the knowledge of interest is more closely coupled with
the representation which helps make the population and maintenance of the representation easier. Representations

are created with a set of primitive and meta-level constructs. The meta-level constructs are object-based and have
defined relationships between them. This provides for the creation of structured, yet modular, representations.

The following sections describe in more detail some of the aspects of the object-based knowledge representation
methodology including the meta-level constructs and their implementation. More in depth details of the methodology
and knowledge representation in general can be found in Kelsey et al. 5~6 Some other applications of the methodology
are described in Kelsey et al. 7!s

.,

2.2.2. Object-based primitives

The methodology contains a set of object-based primitives referred toasmeta-level constructs. These are the basic

building blocks for creating a representation. The most fundamental of these is the class. A class represents a
collection of like objects. It can be considered a template for creating an instance or object. A class is defined and
described byitsattributes andmethods (also met*level constructs). Anattribute is a characteristic or property of

an object of the class. A method is an operation that can take place on an object of the class.

Also contained within a class is the perspective meta-level construct. A perspective is not a component for
describing a class, but defines a point of view through which an object of the class views other objects in the
knowledge domain. A perspective defines how those other objects are seen and perceived and can be used to further
focus and limit the knowledge in a domain. In this manner perspective establishes a relationship between meta-level
constructs and will be discussed as such in a later section.

A domain meta-level construct defines a group of objects that are instantiated from the available defined classes.

A domain contains instances (objects) of the classes. An instance is a meta-level construct and represents an actual
and unique object as defined by a class. Where a class represents a template, an instance represents the actual entity.

A domain containing instances represents a body of knowledge for use in an application.

An event meta-level construct defines an actual use of the knowledge represented in the domain. This is not to
be confused with a triggering mechanism or triggering entity. An event describes an occurrence between two objects.
An event contains a before state, a method, an after state, and an agent. A before state is a list of attributes and
their associated values (of the two objects) that change during the event being represented. Non-changing attributes
are not listed and the associated values in the before state are values before the occurrence. A method is the
method or operation causing the occurrence. The after state lists the same attributes in the before state but with

their associated values after the occurrence. The agent identifies the object who called the method to instigate the
occurrence.

Figure 1 shows a portion of the meta-level constructs and the structure they create. At the top of the structure is

the kr meta-level construct. A kr contains classesand a domain. A classcontains attributes, methods, and perspectives.

A class can be instantiated to create an instance that is contained by a domain.

kr
/———————

/ domain

/

class ~ instantiation ————+ instance

//\

attribute
/

perspective

method

Figure 1. Some of the meta-level constructs and the structure they create.

2.2.3. Relationships

There are a number of supported relationships between the meta-level constructs.
aggregation, perspective, and method-based. These relationships create structure
in a representation and in the overall representation. Perspective will be discussed

The relationships are inheritance,
between the entities of knowledge

in further detail in a Iat er section.
The inheritance relationship expresses a parent/child relationship. Using inheritance, a class can be defined to be a
child of another (parent) class. The child class inherits all the attributes and methods of the parent class.

The aggregation relationship expresses a whole/part relationship. Using aggregation, a class can be defined that
is made of components and each component is an instance of a class. This is accomplished by allowing an attribute
of a class to contain an instance. In this manner, aggregate classes of other classes are created.

.*

Method-based relationships are relationships specific to the knowledge being represented. These relationships
occur between objects of classes that interact with each other through methods defined in each of the classes.

Methods are the operations and behavior specific to objects of a class and this is the reason why these relationships
are called method-based and specific to the knowledge being represented.

2.2.4. Perspective

The perspective relationship expresses a personal point of view of a knowledge domain. An object of a class possesses
a view of the rest of the classes/objects in the domain. An object can have more than one defined perspective and
change between them as necessary. A perspective can be general or limited and focused or anywhere in-between. It
is only dependent on what classes are defined in the domain and “the application of int crest.

A perspective is created by identifying the classes pertinent to the perspective. That is, what classes in the

domain are seen within this perspective? Additionally, the pertinent attributes and methods of each included class
(in the perspective) must be identified. A perspective includes, as well as excludes, classes and their associated

attributes and methods. As a result, a perspective can be thought of as a way of partitioning the knowledge domain.

A perspective can be further focused and limited through the inclusion/exclusion of instances (of classes) in the
domain. Additionally, attributes of each instance can be included/excluded depending on the value associated with
each attribute. This allows a perspective that creates an increasingly specific and narrow partition of the knowledge
domain.

2.2.5. SGML Implementation

The meta-level constructs and their use is implemented in the Standard Generalized Markup Languageg (SGML).

This standard describes technology for facilitating text interchange in documents, 10 but the technology has many
potential uses. An SGML document contains three components. 11 The first component is the SGML declaration

which determines the formal syntax and any optional features to be used within documents. These are the rules
for designing a document type definition (DTD) and for validating the conformance of a DTD and an associated
document.

The second component is the document type definition (DTD) which is a rule set for a group of documents. The
rules in a DTD describe the notation for making the content pieces of a document and how those pieces relate to one

another. A DTD is like a grammar. The third component is an actual document containing content and markup.

Implementation of the meta-level constructs is in the form of a DTD. Each of the meta-level constructs and their
associated parts and how each relates to one another is defined in the DTD~ The DTD’ also defines the corresponding

markup language to be used for each of the meta-level constructs. Examples of the DTD created for the object-
56 An actual representation of knowledgebased knowledge representation methodology are available in Kelsey et al. !

corresponds to a document, the third component.

Once a knowledge representation has been created and populated with knowledge, it can be used. Use of the
knowledge is obtained through the creation of post-parser routines. Typical utility uses are to translate and/or
convert knowledge between different formats and systems. SGML is particularly well suited for this type of use.

There are a number of reasons for using SGML to implement a knowledge representation scheme. There is growing
familiarity with markup languages and their use which means a user maybe able to understand more quickly how to
create and populate a knowledge representation of this type. Another benefit is that SGML is portable. Hypertext
markup language (lITML), a language used for World Wide Web (WW W) documents, is an application of SGML and
illustrates its portability. Perhaps the most important benefit is that the DTD for knowledge representation provides
a formal definition of the structure and relationships of and between the meta-level constructs of the knowledge
represent at ion. Syntax and structure is defined and can be checked in a formal manner.

3. COMPLEX PROCESSES

3.1. Phase/state changes

3.1.1. Introduction

Modeling complex physical and chemical processes where changes in the state of matter occur can be difficult. The
similar problem of systems with multiple phases of matter is also difficult. The difficulty of these problems lies in
how to represent entities that change form and in so doing, end up unlike their original self.

,,

Poor abstraction and decomposition in these types of situations can lead to representations that are difficult to
understand and use. However, there is always a tradeoff. What is simple for a user to understand maybe complicated

for a machine to process. In the case of the phase/state change problem, a better model of reality seems appropriate.

Representing the reality of the situation should be easier for a user to grasp and may lead to a more accurate model
for computer simulation. The following sections describe and discuss a simple example with changing states of

matter.

3.1.2. An example

Consider water as a simple exampIe. Water can exist in three different states: ice, liquid water, and steam. These
are the solid, liquid, and gas states of matter. In the solid state, water has a shape and volume. In the liquid state,
water has a volume, but there is no definite shape. The shape in a liquid state depends on the container holding the
water. In the gas state, water has neither a volume or a shape (these characteristics actually apply to all matter in
these states, not just water12). A gas can be compressed to fit into a fixed and smaller volume.

Water changes state from solid to liquid to gas due to an increase in temperature, given a fixed pressure. Pressure
actually affects the change from liquid to gas (boiling point) much more so than solid to liquid (melting point). 12
This is because liquids and solids are far less (if at all) compressible relative to gases.

Two different ways of representing water and its states without the notion of perspective are discussed. Both

ways use object decomposition. One way uses the concept of inheritance and the other way uses the concept of
aggregation. In the first way there is a class water which cent ains attributes that are common to all states of water,
such as temperature. Additionally, there is a water-the-gas, water-the-liquid, and water-the-solid class, all which

inherit from the class water. The attributes in each of these are specific to the state of water being represented.
In the class water-the-liquid there are the attributes volume and density. In the class water-the-solid there are the
attributes voIume, density, and shape. Note that these representations and those that follow assume a fixed pressure
and not all attributes are identified. There could be additional attributes depending on the application. Much is
absent here in the interest of simplicity. Figure 2 shows a representation of water and its states using inheritance.

class water
attributes

temperature

class water-the-gas
inherits from: water

attributes

Figure 2.

class water-the-liquid class water-the-solid
inherits from: water inherits from: water

attributes attributes
volume volume
density density

shape

Representation of water and its states using inheritance.

The other representation uses aggregation and state-specific classes. This means there are classes water-the-gas,
water-the-liquid, and water-the-solid, but the y do not inherit from the class water. Instead, the class water cent ains
an attribute state and an attribute state-specific (in addition to the attribute temperature). The attribute state
identifies the current state and the attribute state-specific points to the state object (of the state class) as specified
by the attribute state. In this manner, the state specific attributes are contained within the class water through
aggregation. Figure 3 shows a representation of water and its states using aggregation.

Using perspective, the representation of water and its states becomes simplified. There is only one class which is
the class water and it contains all the attributes that are necessary to water and its different states. By defining a
perspective specific to each state, the class water can be viewed as if it represents the state of interest (and nothing
more). Figure 4 shows the representation of water and its states using perspective and the SGML implemented
meta-level constructs. It is important to note that the perspectives defined in Figure 4 are shown outside of a

class water
attributes

temperature
state
state-specific

class water-the-gas
attributes

class water-the-liquid class water-the-solid
attributes attributes

volume volume
density density

shape

Figure 3. Representation of water and its states using aggregation.

class for brevity. Perspectives are actually contained in the class that possesses the perspective. In this case, these
perspectives could be defined in some kind of class user that might be viewing and using the class water in terms of
different states.

<class name= ’’water”> <perspective name= ’’gas-state”>
<attribute name= ’’temperature’’attribute>e> cdef>gas state view of waterddef>
<attribute name= ’’density’’dattribute>e> <iclass name= ’’water”>
<attribute name= ’’volume’’dattribute>e> <atts>temperatu re.datts>
cattribute name= ’’shape’’>attribute>e> .diclass>

</class> dperspective>

<perspective name= ’’liquid-state”> <perspective name= ’’solid-state”>
cdef>liquid state view of water-ddef> cdef>solid state view of matterddef>
ciclass name= ’’water”> ciclass name= ’’water”>

catts>temperature density volumedatts> <atts>temperature density volume shapedatts>
</iclass> 4iclass>

</perspective> c/perspective>

Figure 4. Representation of water and its states using perspective.

In Figure 4 the <class name= > tag is used to define the class water and the <attribute name= > tag is used

to define the attributes of the class water. The <perspective name= > tag is used to define a perspective where the

<clef> tag shows the definition of this perspective. An <iclass> tag lists the classes to be included in this perspective
and the <atts> tag lists the associated attributes to be included of the included class. Within the perspective gas-
state is included the class water and its associated attribute temperature. Within the perspective liquid-state is
included the class water and its associated attributes temperature, density, and volume. Within the perspective

solid-state is included the class water and its associated attributes temperature, density, volume, and shape.

There is more maintenance necessary in supporting the representations that use either inheritance or aggregation.
In the inheritance example, there is a class defined for each state. This means that as the state of water changes, an
instance of these classes must be destroyed and an instance must be created. In the aggregation example, it is not
clear whether instances of each of the state classes must be destroyed because only one is pointed to at any particular
time. These issues do not apply to the representation using perspective, Each perspective consolidates the pertinent
information for that state of water. There are no additional contrived classes necessary to model the different states.

lb.

*-

I
*.

3.2. Process record

3.2.1. Introduction

I

Process records are a record of every change that has taken place in a process, such as those modeled in a simulation.

This discussion deals only with the form of the knowledge generated by the process and how it can be used. It does

not deal with the mechanism for extracting that knowledge from the process.

I
A process can be thought of as a sequence of changes to the attributes of a collection of objects (e.g., the simulation

entities of a simulation). Each change is recorded as an event. A process record enables a user to more easily analyze
data, to restart a process at any point, and to branch processes. Combined with perspectives, a process record allows

data to be presented with a narrow focus, containing only the pertinent information. This ability aids in the analysis
of large amounts of complex data.

Normal simulation dumps provide a snapshot of the state of simulation at a particular point in time. A simulation
can only be restarted from these points. In addition, important information about the changes that take place in
between snapshots may be left out of the dumps. These drawbacks can be reduced or eliminated by increasing the
frequency of the snapshots, with a corresponding increase in amount of data generated. Large amounts of data are
hard to analyze without complex filters and the intelligent presentation of data. It is hard to extract the relevant
pieces of information from this data, or to even define what “relevant” is for a particular user with a particular

purpose.

I
Instead of simulation dumps, the use of events is presented. Events provide information not only about what

happened (the change taking place), but also about what caused the change (agent instigating the change), and the
mechanism of the change (method causing the change). A sequence of these events is a continuous record of the
changes that take place during a process.

If a sequence of events records all of the changes that have taken place in a process, the state of a process
can be retreated at any point. This allows a process to be re-start ed and the execution continued from any point.
Additionally, events can be inserted into or removed from the process record and the contents of events in the process
record can be changed. This allows the process to be branched at particular points. This can be used for “what

if)) scenarios and experimenting with different branches of the execution of a process. It also removes the need for
rerunning the beginning parts of the simulation, leading to a decrease in execution time for successive simulations,
During testing, it can also be used to explore branches of the simulation that are hard to reach through normal
execution and reduce time needed to create data sets which exercise particular branches. Because the oId and new
values of changed attributes are given in each event, changes can be tracked in both the forward and backward
direction, starting from any event in the process record.

3.2.2. An example

Consider a simple simulation of a bouncing ball. It is assumed that the collisions are completely elastic, and that there
is no air resistance. There are three entities in this simulation: the bouncing ball, the floor, and gravity. Figure 5
shows the class definitions of each of these entities. The bouncing ball has two attributes: position and direction.
Position may have the value air or ground indicating the top or bottom of the bounce, respectively. Direction (of

motion) may either be up or down. In addition, the bouncing ball object contains two methods: push and pull.
The floor object calls the push method of the ball at the bottom of the bounce and the gravity object calls the pull
method of the ball at the top of the bounce.

<class name= ’’bouncing-ball’% <class name= ’’floor”>
<attribute name= ’’position’’>dattribute> </class>
<attribute name= ’’direction’’>dattribute>
<method name= ’’push’’>method>d>
<method name= ’’pull’’dmethod>d>

clclass>

<class name= ’’gravity”>
</class>

I Figure 5. Representation of the bouncing ball, the floor, and gravity.

If a simulation dump happens every two seconds and the ball hits the ground every second, then the ball appears
not to move, since for each simulation dump the ball is in the same position. This is clearly incorrect. If the ball hits

*-
.

the ground every minute and the simulation lasts for 29 seconds, then the ball appears not to move. This is correct
since the simulation was not run long enough to see movement. For a simulation with many complex objects of

differing time scales, it maybe difficult to determine which of the above cases is present. Through the use of events,

the proper case can be determined since all the information is contained in the process record. Figure 6 shows the
events for one bounce of the ball.

<event name= ’’eventl “z <event name= ’’event2”> <event name= ’’event3”> <event name= ’’event4”> <event name= ’’event5”s
tbefstates cbefstate> .cbefstate> cbefstates tbefstate>

ball.position= air ball.direction = down ball.position= ground ball.direction = up
<befstates

balLposition= air
-dbefstatez clbefstate~ -dbefstatez dbefstate>

<methods <methods <method> <method> <method>
gravity-~pull floor-~push floor+push gravity->pull

-dmethodb dmethod>
gravity->pull

-dmethod> -dmethod> dmethod>
caftstate> caftstatez .caftstate> <aftstate> taftstate>

ball.position= ground ball.direction = up ball.position= air ball.direction = down
cJaftstatea

ball.position= ground
<aftstate> <aft state> -daftstatez -daftstate>

cagent> <agent> <agent> <agent> <agent>
gravity floor floor

cJagent>
gravity

clagentb
gravity

C/agent> -dagentz </agent>
<event> cJeventa -devent> -devent> -devenb

Figure 6. Five events recording one bounce of the ball.

Perspectives can be combined with events to present meaningful views of the data and to remove irrelevant data,
cutting down on information overload. A perspective would only present events which contain attributes, methods,
or classes of int crest. For example, a perspective that includes the class ball would see all five events. A perspective
that only includes the attribute position of the class ball would see eventl, event3, and event5. A perspective that
only includes the class gravity would see event 1, event4, and event5.

4. CONCLUSIONS

The problem of changing states of matter demonstrates some intriguing issues for knowledge representation. In the

simple example discussed, water and its states were represented using multiple classes and by an opposing manner
using multiple perspectives. Whether creating a class for each state is correct or not depends on one’s definition of

state, but a physical object water is always water, irregardless of which state it exists. A representation using multiple
perspectives (one for each state) recognizes that water is always water, but consolidates the pertinent details of each
state into a separate partition. In this manner, water takes the form of the current state as it would in reality. The
perspective masks the details that belong to another state. A perspective creates not just a view, but a partitioned
access and partitioned use of a domain of knowledge.

The event meta-level construct is used to create a continuous record of a process. Each change within a process
is recorded with an’ event along with why the changed occurred (method causing the change) and the reason it

occurred (what agent instigated the change). A typical simulation dump outputs the values of all its variables at

a specified time interval. A number of these dumps still does not contain the continuous record possible with a
sequence of events because some information may be lost in between dump intervals. Also, a dump will contain a
potentially large amount of irrelevant information, such as variable values that have not changed. With the use of
perspectives, events can be consolidated into more focused categorizations which could make them more useful for
analysis of process records. There is also the potential for more flexible re-starts of a process including the ability
to experiment by inserting user-defined events into a process sequence. Although the overhead of recording every
change in a process can be extreme, the value gained for analysis and experimentation may outweigh the cost.

1.

2.

3.

REFERENCES

J. R. Anderson, Cognitive Psychology and Its Implications, W.H. Freeman and Company, New York, NY,
fourth cd., 1995.

G. Booth, Object-Oriented Analysis and Design with Applications, Addison-Wesley Publishing Company, MenIo
Park, CA, second cd., 1994.

P. Norvig, Paradigms of A~tij$cial Intelligence Programming: Case Studies in Common LISP, Morgan Kaufmann
Publishers, San Mateo, CA, 1992.

t,. .
. .

4.

5.

6.

7.

8.

9.

10.
11.

12.

M. Gardner, Aha!, Scientific American, Inc. / W.H. Freeman and Company, New York, NY, 1978.

R. L. Kelsey, R. T. Hartley, and R. B. Webster, “An object-based methodology for knowledge representation
in SGML ,“ in Proceedings of the Ninth IEEE Inie?’natiomd Conference on Tools With Artificial Intelligence,

pp. 304-311, IEEE Computer Society, (Los Alamitos, CA), 1997.

R. L. Kelsey, Object-Based Knowledge Bep?’esentation Implemented in SGML. PhD thesis, New Mexico State

University, Las Cruces, NM, July 1998.

R. L. Kelsey, R. B. Webster, and R. T. Hartley, “Using multiple perspectives to suppress information and
complexity, ” in Digitization of the BattZespace III, vol. 3393, pp. 72–85, Society of Photo-Optical Instrumentation
Engineers, Society of Photo-Optical Instrumentation Engineers, (Bellingham, WA), 1998.

R. L. Kelsey and R. B. Webster, “Adapting perspectives to facilitate knowledge assimilation,” in Applications
and Science of Computational Intelligence II, vol. 3722, Societ y of Photo-Optical Instrumentation Engineers,

Society of Photo-Optical Instrumentation Engineers, (Bellingham, WA), 1999.

International Organization for Standardization, Geneva, 1S0 8879:1986 Information processing - Tezt and ofice

systems - Standard Genendized ~mkup Language (SGML), Ott ober 1986.

E. van Herwijnen, Pmctical SGi’i4L, Kluwer Academic Publishers, Boston, MA, second cd., 1994.

L. Alschuler, ABCD.. .SGML A User’s Guide To Structured Information, International Thomson Computer

Press, Boston, MA, 1995.

D. D. Ebbing, Genend Chemist?’y, Houghton Mifflin Company, Boston, MA, 1984.

